• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvements of Vis-NIRS Model in The Prediction of Soil Organic Matter Content Using Wavelength Optimization

    2016-12-15 05:04:59LINZhidanWANGYubingWANGRujingWANGLiusanLUCuipingZHANGZhengyongSONGLiangtuLIUYang
    發(fā)光學(xué)報 2016年11期
    關(guān)鍵詞:中科院合肥波長

    LIN Zhi-dan, WANG Yu-bing, WANG Ru-jing, WANG Liu-san,LU Cui-ping, ZHANG Zheng-yong, SONG Liang-tu, LIU Yang

    (1. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China;2. Department of Automation, University of Science and Technology of China, Hefei 230026, China;3. Electronic Engineering Institute, Hefei 230037, China)

    ?

    Improvements of Vis-NIRS Model in The Prediction of Soil Organic Matter Content Using Wavelength Optimization

    LIN Zhi-dan1,2,3, WANG Yu-bing1*, WANG Ru-jing1*, WANG Liu-san1,LU Cui-ping1, ZHANG Zheng-yong1, SONG Liang-tu1, LIU Yang1

    (1.InstituteofIntelligentMachines,ChineseAcademyofSciences,Hefei230031,China;2.DepartmentofAutomation,UniversityofScienceandTechnologyofChina,Hefei230026,China;3.ElectronicEngineeringInstitute,Hefei230037,China)

    Visible-near infrared spectroscopy (Vis/NIRS) is proved to be an effective tool in the prediction of soil properties. Wavelength optimization plays an important role in the construction of Vis-NIRS prediction model. In this article, a total of 130 topsoil samples collected from Guoyang County, Anhui Province, China, were used to establish a Vis-NIRS model for the prediction of organic matter content (OMC) in line concretion black soils. Through comparison, the combined spectral pretreatments of smooth and multiplicative scatter correlation (MSC) were applied to minimize the irrelevant and useless information of the spectra and increase the correlation between spectra and the measured values, and subsequently, SPXY methods were used to select the representative training set. Successive projection algorithm (SPA) and genetic algorithm (GA) were then conducted for wavelength optimization. Finally, the principal component regression (PCR) model was constructed, in which the optimal number of principal components was determined using leave-one-out cross validation technique. Results show that: both SPA and GA can significantly reduce the wavelength and favorably increase the accuracy, especially, GA can greatly improve the prediction accuracy of soil OMC, withRcc, RMSEP and RPD up to 0.931 6, 0.214 2, 2.319 5, respectively. Conclusively, using appropriate wavelength optimization methods, not only the computational load can be significantly reduced but also the prediction precision can be improved.

    visible-near infrared spectroscopy(Vis-NIRS); organic matter content (OMC); spectral pretreatments; sample selection; wavelength optimization

    1 Introduction

    The application of precision agriculture needs vast amounts of accurate, real-time and low-cost soil data over a large area, which sets high requirements for soil detection methods. The detection method should be more efficient in both detection time and cost. Visible and near infrared reflectance spectroscopy (Vis-NIRS) is a non-destructive, rapid and repeatable method that can serve as an effective substitute technology for traditional laboratory chemical detection methods[1-4]. When a sample is illuminated by light, certain bonds in the molecules vibrate with the varying electric field, which will absorb optical energy and cause less light to be reflected off the sample. Three of the most pronounced vibrations observable in near-infrared band are the groups involving C—H, N—H and O—H bonds, which thus makes it possible to measure soil properties such as moisture, organic C and N using Vis-NIRS technique[5-6]. Each soil property has distinct spectral fingerprints in Vis-NIR region. Owing to the significant developments in equipment, optical components, computer and chemometrics, Vis-NIRS now is extensively applied in many fields for qualitative and quantitative analyses[7].

    Soil organic matter content (OMC) plays a major role in soil’s many chemical and physical processes and significantly affects the pattern of a soil reflectance spectrum. As to the prediction of OMC using Vis-NIRS technique, many researchers have conducted a great number of studies and achieved many favorable results. Based on the collected Vis-NIR data, Vasquesetal.[8-9], Mouazenetal.[10], Stevensetal.[11], and Rossel and Behrens[12]used different multivariate regression methods and systematically compared their capabilities in soil OMC contents. Principle component regression (PCR) is a common model in multiple linear regression. Changetal. evaluated the ability of near infrared spectroscopy to predict soil OMC with PCR, with the determination coefficient up to 0.87 and the residual prediction deviation (RPD) of 2.79[13]. Vasquesetal. identified the best combination to predict soil OMC with five multivariate techniques including PCR[8].Wangetal. analyzed the potential of Vis-NIRS to predict soil OMC using two spectrometers, and the results showed that both two spectrometers can achieve favorable results in the prediction of soil OMC[14]. All of those proved the feasibility of PCR-based NIRS model in the prediction of OMC. However, the noise and some irrelevant or collinear information concluded in Vis-NIRS can affect the accuracy of the PCR method, which should be eliminated with some measures before the establishment of model.

    In this paper, PCR was used to relate the Vis/NIR spectra with soil OMC, while spectral pretreatments, sample selection and wavelength optimization were conducted for improving the prediction accuracy of the constructed model. By comparing the prediction results using different methods, the application of spectral pretreatment, sample selection and wavelength optimization on the improvement of soil OMC prediction capacities were evaluated.

    2 Materials and Methods

    2.1 Collection of Soil Samples

    The experimental field in Tongfeng Seed Industry was selected in the present study, which is located in the Guoyang County, Bozhou City, Anhui Province, China (33°27′-33°47′N; 115°53′-116°33′E). The mean annual temperature is about 14.6 ℃, and the mean annual precipitation is about 830 mm. The overall flat fields in Guoyang County can be classified as the lime concretion black soil. As one type of ancient cultivated soils, lime concretion black soil presents a highly localized distribution in Huaibei Plain, China. According to China Soil Scientific Database (http://www.soil.csdb.cn/), it is composed of two layers from top to bottom, namely, black-soil layer and lime-concretion layer, respectively. Generally, the lime concretion black soils are abundant in K content but relatively poor in OM, N and P contents, which can also be reflected by the data in Tab.1[15-16].

    A total of 130 topsoil samples were collected using S-type sampling. Soil samples were collected from the surface layer at the bottom of a 20 cm deep trench, with the use of a special soil sampler. Each sample was about 2 000 g and was placed into a tightly sealed plastic bag to avoid external contamination. After the rejection of weeds and small pieces of rocks, the soils were then naturally air-dried and sieved less than 2 mm[17]. The soil samples after preprocessing were divided into two portions by four-way division method: A and B. The samples in Group A were placed in properly closed bags and taken to the chemical laboratory for the analysis of OMC. The soil OMC was determined by the potassium dichromate volumetric method coupling with a watering heating technique[18]. The statistical data of measured results are listed in Tab.1. The samples in Group B were taken to spectral measurements, which are described in depth in the next section.

    Tab.1 Statistical data of all samples measured results

    2.2 Spectral Data Acquisition

    The experimental instrument employed in the present work, was Vis/NIR soil sensor by Veris Technology Incorporation. As a tractor-mounted sensor that can collect real-time soil information, the spectrophotometers and the optical system of Veris Vis/NIR soil sensor were built into a shank, mounted on a toolbar and then pulled by a tractor during field investigations. In present work, the spectrophotometers (Ocean Optics USB4000 and Hamamatsu C9914GB) and the optical system (a tungsten halogen bulb and fibers) in Veris Soil Sensor were dismounted from the tractor-mounted mobile platform and performed measurements in laboratory. The total spectra range from 342 to 2 222 nm, which were automatically stitched by the software at the absorption terminal. All the data processing procedures in present work were compiled with Matlab. A total of 130 samples was adopted for measurements, which were put in a petri dish and the surface was smoothed beforehand. During the measurements, the sample surface was pressed against the sapphire window of Veris soil sensor. To make a tradeoff between the minimization of the measured errors and time consumptions, each sample was detected three times, which was rotated by 120° for the next scan. After each measurement, the collected three spectra was averaged. The averaged absorbance soil spectra was given in Fig.1, in which they-axis absorbance spectra (A) were converted from reflectance spectra (R) byA=log10(1/R) and thex-axis wavelength was reciprocal to wave number. It can be found that the first two large absorption peaks are located at around 1 420 and 1 930 nm, respectively, both of which are coincident with the characteristic absorption peaks of H2O[18].

    Fig.1 Vis-NIR spectra of 130 samples measured by the Veris soil sensor

    2.3 Spectral Pretreatments

    The measured spectra were easily influenced by individual differences (the particle size of samples, the intensity of light, the condition of measurement,etc.), baseline variations and substantial noises. Therefore, the pretreatment should be applied to minimize the irrelevant and useless information of the spectra and increase the correlation between the spectra and the measured values. The frequently-adopted pretreatment methods include normalization, first and second derivatives, multiplicative scatter correlation (MSC), standard normal variate (SNV), detrending or any combination thereof[19-20]. In the present study, the pretreatment and the subsequent processing programs were compiled with MATLAB 2012b.

    SNV and MSC transformations can remove the baseline drift from spectra caused by the scattering and the variation of particle sizes. To remove high frequency noise, Savitzky-Golay polynomial smoothing filter can digitally smooth a given spectrum by approximating it within a specified data window using a polynomial with a specified order. Accordingly, the data can be best matched in the window on a least-square basis. In the present work, the filter with a polynomial of order 3 and the window with the width of 7 data points were used[14]. By comparing the results using 17 different pretreatment methods, the best pretreatment method employed in present work was the combination of S-G filter for smoothing and MSC.

    2.4 Sample Selection

    The selection of a representative training set plays a determinative role in the construction of prediction models, since the models established with the representative-characteristics samples can lead to the acceleration of regressions, the improvement of the prediction accuracy and the reduction of storage space and costs. Moreover, the application range of the established models can be expanded by adding a small amount of representative samples, being beneficial to the update and improvement of the models.

    Kennard-Stone (KS) method and the sample set partitioning based on jointx-ydistance (SPXY) method Kennard-Stone (K-S) algorithm aim at covering the multidimensional space in a uniform manner by maximizing the Euclidean distances between the instrumental response vectors (x) of the selected samples[21]. SPXY method extends the K-S algorithm by encompassing bothx- andy- differences in the calculation of inter-sample distances[22].

    2.5 Wavelength Optimization

    Wavelength optimization on the full spectrum with the aim of enhancing accuracy is still a challenging task, especially when the collected spectra display strong overlapping and imperceptible distinctive features. The spectra in Vis-NIR range are mainly composed of the overtones and combination bands of hydrogen groups, and the absorption peaks are of weak intensity, relatively low sensitivity, wide absorption band width, serious overlaps and multiple correlations in spectral information. If the full spectrum was involved in the model, it would not only increase the complexity of the model and calculation load, but also reduce the prediction accuracy of the model owing to the irrelevant variables and collinearity between variables.

    Successive projections algorithm (SPA) selects the wavelengths according to the contribution value sequence of the test samples and looks for the original spectral data with minimum redundant information. Accordingly, the overlapping information can be avoided and the redundant information can be eliminated in the selected wavelength data. This method can greatly reduce the amount of calculation model and improve the stability and accuracy of the model[23].

    Genetic algorithm (GA) is a kind of random search optimization algorithm by reference to the rule of biological evolution. Owing to the invisible parallelism, adaptive and global optimization ability, GA has become a common method for the optimization of wavelength in the construction of NIR prediction models. In combination with GA algorithm, the constructed NIR prediction models exhibit relatively high predictive abilities[24].

    2.6 Calibration and Validation

    Among the training set after selection with 130 samples, the calibration and validation sets were selected in the present work, with the aim of prediction an unknown sample scientifically and exactly. The selected 100 samples were divided as calibration data set, and the rest 30 samples were used as the validation set. In calibration stage, the spectra were compressed using principal components analysis (PCA), and the optimum number of principal components (PCs) was determined using leave-one-out cross validation (LOOCV) technique, in which each sample was omitted and predicted using the calibration model established by the remaining samples[25]. With the pre-processed spectra, the prediction residual error sum of squares (PRESS) in leave-one-out cross validation for different number of PCs and soil contents was calculated. A suitable number of PCs is an efficient way of taking full advantage of spectral information and noise-filtering, while some useless information, such as the measured errors, can be over-included for more number of PCs, also known as ‘over-fitting’. Subsequently, the models were constructed using PCR method, in which multiple linear regressions were performed using the obtained optimum numbers of PCs. In validation stage, the above-described calibration model developed from training set (100 samples) was used to predict the contents of soil samples in validation set (30 samples), and the predicted values were compared with measured values. The statistic parameters for evaluating the predictive capability of the models include correlation coefficient (Rcc), root means square error of prediction (RMSEP) and the ratio of standard deviation of the validation set to standard error of prediction (RPD)[26].

    3 Results and Discussion

    The spectra after the combined pretreatments of S-G filter for smoothing are displayed in Fig.2. One

    can observe that, compared with the original spectra, the pretreated spectra can smooth the spectra, reduce the effect of noise and then enhance the spectral characteristics.

    Fig.2 Vis-NIR spectra of 130 samples after the combined pretreatment of S-G filter for smoothing and MSC

    After the pretreatments, SPXY and KS method were used for the selection of training set and PCR-based prediction models for OMC were then developed. Tab.2 and Fig.3 show the results of OMC prediction using different training set selection methods. It can be observed that, using random selection (RS), the prediction results are considerably poor; the prediction results using KS sample selection are much better than the results using RS, asRccincreases from 0.329 0 to 0.719 8, RMSEP decreases from 0.453 7 to 0.437 9, and RPD increases from 1.078 0 to 1.282 6. The prediction results using SPXY results are best, withRcc, RMSEP and RPD up to 0.829 8, 0.273 8, 1.721 6, respectively. As stated above, SPXY method selects the training set by calculating the inter-sample distances based on overall considerations of the NIR spectral and target variables, so the selected training set is more representative than that selected using KS method and the established model is best in prediction accuracy. Consequently, SPXY method was picked out for further in-depth discussions in calibration and validation.

    Tab.2 OMC prediction results of PCR models with smooth+MSC and different sample selection methods

    Fig.3 Correlation between the predicted and the measured values of OMC with different sample selection methods. (a) RS. (b) KS. (c) SPXY.

    Tab.3 lists the results of PCR models with the use of different wavelength optimization methods (as the modeling detains illustrated in Section 2.6), and Fig.4 shows the comparison between the predicted results and the measured values. As shown in Tab.3, SPA and GA can both increase the accuracy of PCR model and greatly decrease the predicting errors. Both two methods can contribute to the optimization of wavelengths so as to remove the effects of noise and enhance the predictive capability. This can be reflected by the increased correlation coefficientRccand RPD as well as the decreased RMSEP.

    Fig.5 displays the characteristic wavelengths selected by SPA and GA, respectively. SPA and GA employ simple operations in a vector space to obtain the subsets of variables with small collinearity, which can effectively eliminate the redundant information of the wavelength variables and thus improve

    Tab.3 Prediction results of PCR models with different wavelength optimization methods

    Fig.4 Correlation between the predicted and the measured values of OMC with different wavelength selection methods. (a) NULL. (b) SPA. (c) GA.

    the prediction precision. In the present study, using SPA method, the optimal wavelength combination was selected based on the calculated RMSEP.While using GA method, the number of iterations, the population size, the genetic probability and mutation probability were set as 250, 30, 0.7 and 0.3, respectively. Specifically, SPA requires a less computational work load than GA, however, GA-based prediction model has a better prediction precision. Since GA is an adaptive global search algorithm and takes the serial correlation characteristics of the spectral data into account in the optimization of wavelength, more useful spectral information was included while some irrelevant or nonlinear variables were rejected. Thus, the GA-PCR model is superior to SPA-PCR model in the prediction of soil OMC.

    4 Conclusion

    In order to establish an accurate and robust prediction model for soil OMC, different pretreatment methods, sample selection methods and wavelength optimization methods were applied in the process of Vis-NIRS model establishment. Results show that the combination of S-G filter for smooth and MSC can effectively eliminate the effects of noise and baseline drift better. Both KS and SPXY can select the representative samples, but SPXY method overall considers bothx-andy-differences in the calculation of inter-sample distances, and can select the more representative samples and gain more accurate results. SPA and GA can decrease the number of jointed wavelengths enormously, simplify the model and increase the accuracy remarkably. SPA requires a less computational work load but GA is preferable in prediction accuracy. In conclusion, after spectral processing and the selection of training set, the GA-PCR model can accurately predict soil OMC while occupies fewer computational resources. The proposed method,i.e., the adoption of wavelength optimization before regression, can provide a new thought for the practical application of Vis-NIRS in the prediction of soil properties.

    [1] BEN-DOR E, BANIN A. Near infrared analysis as a rapid method to simultaneously evaluate several soil properties [J].SoilSci.Soc.Am.J., 1995, 59:364-372.

    [2] REEVES J B, MCCARTY G W, Meisinger J J. Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils [J].JNIRS, 2000, 8(3):161-170.

    [3] REEVES J B, MCCARTY G W, REEVES V B,etal.. Mid-versusnear-infrared diffuse reflectance spectroscopy for the quantitative analysis of organic matter in soils and other biological materials [J].AbstractofPapersofAmericanChemicalSociety, 2002, 223:U141-U142.

    [4] DUNN B W, BEECHER H G, BATTEN G D,etal.. The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia [J].Aust.J.Exp.Agr., 2002, 42(5):607-614.

    [5] SHEPHERD K D, WALSH M G. Development of reflectance spectral libraries for characterization of soil properties [J].SSSA, 2002, 66(3):988-998.

    [6] ISLAM K, SINGH B, MCBRATNEY A B. Simultaneous estimation of various soil properties by ultra-violet, visible and near-infrared reflectance spectroscopy [J].Aust.J.SoilRes., 2003, 41:1101-1114.

    [7] BEN-DOR E, IRONS J, EPEMA G F.SoilReflectance:RemoteSensingforTheEarthScience[M]. New York: John Wiley & Sons Inc., In: RENCZ A N. (Ed.), 3rd. Manual of Remote Sensing, 1999.

    [8] VASQUES G M, GRUNWALD S, SICKMAN J O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra [J].Geoderma, 2008, 146:14-25.

    [9] VASQUES G M, GRUNWALD S, SICKMAN J O. Modeling of soil organic carbon fractions using visible?near-infrared spectroscopy [J].SoilSci.Soc.Am.J., 2009, 73:176-184.

    [10] MOUAZEN A M, KUANG B, DE BAERDEMAEKER J,etal.. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy [J].Geoderma, 2010, 158:23-31.

    [11] STEVENS A, UDELHOVEN T, DENIS A,etal.. Measuring soil organic carbon in crop land satregional scale using airborne imaging spectroscopy [J].Geoderma, 2010, 158:32-45.

    [12] VISCARRA ROSSEL R A, BEHRENS T. Using data mining to model and interpret soil diffuse reflectance spectra [J].Geoderma, 2010, 158:46-54.

    [13] CHANG C W, DAVID A L, MAURICE J M,etal.. Near-infrared reflectance spectroscopy—principal components regression analyses of soil properties [J].SoilSci.Soc.Am.J., 2001, 65:480-490.

    [14] WANG Y B, HUANG T Y, LIU J,etal.. Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy [J].Comput.Electron.Agr., 2015, 111:69-77.

    [15] LIU L W. Formation and evolution of vertisols in the Huaibei Plain [J].Pedosphere, 1991, 1:3-15.

    [16] 李錄久,郭熙盛,王道中,等. 淮北平原砂姜黑土養(yǎng)分狀況及其空間變異 [J]. 安徽農(nóng)業(yè)科學(xué), 2006, 34 (4):722-723. LI L J, GUO X S, WANG D Z,etal.. State and spatial variability of nutrient of lime concretion black soil in Huaibei Plain [J].J.AnhuiAgric.Sci., 2006,34 (4):722-723. (in Chinese)

    [17] NATHAN M, GELDERMAN R.RecommendedChemicalSoilTestProceduresforTheNorthCentralRegion[M]. USA:North Central Regional Research Publication No. 221, 2012.

    [18] 魯如坤. 土壤農(nóng)業(yè)的化學(xué)分析方法 [M]. 北京:中國農(nóng)業(yè)科學(xué)出版社, 2000:106-107. LU R K.ChemicalAnalysisMethodofAgriculturalSoil[M]. Beijing: China Agricultural Science Press, 2000:106-107. (in Chinese)

    [19] RINAN A, VAN DEN BERG F W J, ENGELSEN S B. Review of the most common preprocessing techniques for near-infrared spectra [J].TrendsAnal.Chem., 2009, 28(10):1201-1222.

    [20] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures [J].Anal.Chem.,1964, 36(8):1627-1639.

    [21] WU W, WALCZAK B, MASSART D L,etal.. Artificial neural networks in classification of NIR spectra data: design of training set [J].Chemometr.Intell.Lab.Syst., 1996, 33(1):35-46.

    [23] 章海亮,劉雪梅,何勇. LS-SVM檢測土壤有機(jī)質(zhì)和速效鉀研究 [J]. 光譜學(xué)與光譜分析, 2014, 34(5):1348-1351. ZHANG H L, LIU X M, HE Y. Measurement of soil organic matter and available K based on SPA-LS-SVM [J].Spectrosc.Spect.Anal., 2014, 34(5):1348-1351. (in Chinese)

    [24] 陸婉珍. 現(xiàn)代近紅外光譜分析技術(shù) [M]. 北京:中國石化出版社, 2001:56-67. LU W Z.ModelNIRSpectroscopy[M]. Beijing, China Petro-chemical Press, 2001:56-67. (in Chinese)

    [25] ABDI H, WILLIAMS L J. Principal component analysis [J].WileyInterdisciplinaryReviews:Comput.Stat., 2010, 2(4):433-459.

    [26] MOUAZEN A M, BAERDEMAEKER J D, RAMON H. Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy [J].JNIRS, 2006, 14(1):189-199.

    林志丹(1981-),男,山東棲霞人,博士研究生,講師,2009年于合肥電子工程學(xué)院獲得碩士學(xué)位,主要從事光譜分析與建模等方面的研究。

    E-mail: linzd@mail.ustc.edu.cn王儒敬(1964-),男,安徽亳州人,博士,研究員,2004年于中科院合肥物質(zhì)科學(xué)研究院獲得博士學(xué)位,主要從事農(nóng)業(yè)智能系統(tǒng)的理論、方法與技術(shù)的研究。

    E-mail: rjwang@iim.ac.cn汪玉冰(1985-),女,安徽六安人,博士,副研究員,2010年于中科院合肥物質(zhì)科學(xué)研究院獲得博士學(xué)位,主要從事分子光譜分析及化學(xué)計量學(xué)在精準(zhǔn)農(nóng)業(yè)中的應(yīng)用等方面的研究。

    E-mail: ybwang@iim.ac.cn

    2015-05-30;

    2016-06-25

    中科院科技服務(wù)網(wǎng)絡(luò)計劃(KFJ-EW-STS-069)資助項目

    波長優(yōu)選對土壤有機(jī)質(zhì)含量可見光/近紅外光譜模型的優(yōu)化

    林志丹1,2,3, 汪玉冰1*, 王儒敬1*,汪六三1, 魯翠萍1, 張正勇1, 宋良圖1, 劉 洋1

    (1. 中國科學(xué)院 合肥智能機(jī)械研究所, 安徽 合肥 230031;2. 中國科技大學(xué) 自動化系, 安徽 合肥 230026; 3. 合肥電子工程學(xué)院, 安徽 合肥 230037)

    可見光/近紅外光譜模型是土壤屬性預(yù)測的有效工具。波長優(yōu)選在光譜建模過程中起著重要作用。文中首先利用從安徽省渦陽縣采集的130個砂姜黑土土壤樣本獲得可見光/近紅外光譜,然后利用平滑與多重散射校正聯(lián)合的光譜預(yù)處理方式消除光譜中的無關(guān)變量和冗余信息以提高模型預(yù)測結(jié)果的相關(guān)性,再利用SPXY方法挑選建模集樣本,分別利用連續(xù)投影算法和遺傳算法進(jìn)行波長優(yōu)選,最后利用留一法進(jìn)行交互驗證建立有機(jī)質(zhì)含量的主成分回歸模型。研究結(jié)果顯示:連續(xù)投影算法和遺傳算法都可以有效地減少參與建模的波長數(shù)并提高模型的準(zhǔn)確度,尤其是遺傳算法能夠更好地提高土壤有機(jī)質(zhì)含量預(yù)測精度,其相關(guān)系數(shù)、預(yù)測均方根誤差和相對分析誤差分別達(dá)到0.931 6,0.214 2和2.319 5。通過合適的特征波長選取,不僅計算量可以大大減少,預(yù)測精度也會有效提高。

    可見光/近紅外光譜; 有機(jī)質(zhì)含量; 光譜預(yù)處理; 樣本選擇; 波長優(yōu)化

    1000-7032(2016)11-1428-08

    O235 Document code: A

    10.3788/fgxb20163711.1428

    *CorrespondingAuthors,E-mail:ybwang@iim.ac.cn;rjwang@iim.ac.cn

    猜你喜歡
    中科院合肥波長
    HPLC-PDA雙波長法同時測定四季草片中沒食子酸和槲皮苷的含量
    合肥的春節(jié)
    加大授權(quán)力度中科院先行一步
    科技傳播(2019年23期)2020-01-18 07:57:10
    中科院沈陽生態(tài)研究所技術(shù)
    雙波長激光治療慢性牙周炎的療效觀察
    合肥:打造『中國IC之都』
    日本研發(fā)出可完全覆蓋可見光波長的LED光源
    中國照明(2016年4期)2016-05-17 06:16:15
    便攜式多用途光波波長測量儀
    物理實驗(2015年9期)2015-02-28 17:36:46
    中科院位列自然指數(shù)全球首位
    生態(tài)合肥
    国产精品一区二区性色av| 国内精品美女久久久久久| 精品久久久久久久久亚洲 | 国产成人av教育| 直男gayav资源| 国产精品人妻久久久久久| 久久香蕉精品热| 精华霜和精华液先用哪个| 久久久久久久午夜电影| 成人性生交大片免费视频hd| 午夜久久久久精精品| 成人永久免费在线观看视频| 日日啪夜夜撸| 九九热线精品视视频播放| 国产精华一区二区三区| 中文字幕免费在线视频6| 国产成人一区二区在线| 成人三级黄色视频| 床上黄色一级片| 久久久久国内视频| 久久久国产成人精品二区| 日日摸夜夜添夜夜添小说| 亚洲av五月六月丁香网| 国产精品久久久久久久电影| 九九在线视频观看精品| 午夜福利高清视频| 国产极品精品免费视频能看的| 国产女主播在线喷水免费视频网站 | 又粗又爽又猛毛片免费看| 久久精品91蜜桃| 亚洲精品影视一区二区三区av| 嫩草影院精品99| 深爱激情五月婷婷| 亚洲国产精品成人综合色| 99riav亚洲国产免费| 99在线视频只有这里精品首页| 日本撒尿小便嘘嘘汇集6| 精品日产1卡2卡| 午夜久久久久精精品| a级一级毛片免费在线观看| 国产成人一区二区在线| 免费av不卡在线播放| 嫩草影视91久久| 日韩欧美一区二区三区在线观看| 日韩欧美一区二区三区在线观看| 亚洲精华国产精华精| 精品99又大又爽又粗少妇毛片 | 国产精品久久视频播放| 国产aⅴ精品一区二区三区波| 国产高清不卡午夜福利| 亚洲综合色惰| 97热精品久久久久久| 亚洲不卡免费看| 欧美精品啪啪一区二区三区| 国产伦精品一区二区三区视频9| 欧美激情在线99| 成人二区视频| 精品福利观看| 亚洲一级一片aⅴ在线观看| 一区二区三区免费毛片| 99久久成人亚洲精品观看| 网址你懂的国产日韩在线| 在线观看一区二区三区| 欧美zozozo另类| 桃色一区二区三区在线观看| 日韩,欧美,国产一区二区三区 | 欧美国产日韩亚洲一区| 欧美日韩黄片免| 亚州av有码| 禁无遮挡网站| 成人一区二区视频在线观看| 欧美又色又爽又黄视频| 狂野欧美激情性xxxx在线观看| 狂野欧美白嫩少妇大欣赏| 国产色爽女视频免费观看| 欧美激情久久久久久爽电影| 久久婷婷人人爽人人干人人爱| 国产高清有码在线观看视频| 在线播放国产精品三级| 国产午夜福利久久久久久| 他把我摸到了高潮在线观看| 久9热在线精品视频| 成人综合一区亚洲| 亚洲精品亚洲一区二区| 日本免费a在线| 欧美色欧美亚洲另类二区| 亚洲中文日韩欧美视频| 自拍偷自拍亚洲精品老妇| 国产精品自产拍在线观看55亚洲| 成熟少妇高潮喷水视频| 国产亚洲精品久久久久久毛片| 国产精品一及| 久久久国产成人免费| 日韩大尺度精品在线看网址| 欧美+亚洲+日韩+国产| 琪琪午夜伦伦电影理论片6080| 国产美女午夜福利| 亚洲国产日韩欧美精品在线观看| 美女免费视频网站| 桃红色精品国产亚洲av| 看片在线看免费视频| 欧美+亚洲+日韩+国产| 淫秽高清视频在线观看| 国产69精品久久久久777片| 韩国av一区二区三区四区| 日本免费一区二区三区高清不卡| 九九热线精品视视频播放| xxxwww97欧美| 色综合色国产| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 欧美潮喷喷水| 精品人妻1区二区| 国内毛片毛片毛片毛片毛片| 尤物成人国产欧美一区二区三区| 国产精品一区二区性色av| 久久久久久国产a免费观看| 能在线免费观看的黄片| 中国美白少妇内射xxxbb| 一级a爱片免费观看的视频| 男女视频在线观看网站免费| 精品国内亚洲2022精品成人| 在线观看av片永久免费下载| 国内毛片毛片毛片毛片毛片| 精品99又大又爽又粗少妇毛片 | 少妇人妻精品综合一区二区 | 最新在线观看一区二区三区| 波野结衣二区三区在线| 成年女人永久免费观看视频| 老司机午夜福利在线观看视频| 伦理电影大哥的女人| 99热网站在线观看| 好男人在线观看高清免费视频| 免费一级毛片在线播放高清视频| 久久国产乱子免费精品| 久久国内精品自在自线图片| 国产亚洲精品综合一区在线观看| 精品人妻视频免费看| 亚洲国产精品成人综合色| 五月伊人婷婷丁香| 性色avwww在线观看| 成人美女网站在线观看视频| 欧美日本亚洲视频在线播放| 亚洲va在线va天堂va国产| 精品一区二区三区av网在线观看| 男人舔奶头视频| 观看美女的网站| 校园春色视频在线观看| 国产高清视频在线播放一区| 亚洲欧美日韩卡通动漫| 联通29元200g的流量卡| 少妇被粗大猛烈的视频| 男人和女人高潮做爰伦理| 午夜免费男女啪啪视频观看 | 久久6这里有精品| 久久久久精品国产欧美久久久| 亚洲一区二区三区色噜噜| 露出奶头的视频| 国产v大片淫在线免费观看| 黄色日韩在线| 国产国拍精品亚洲av在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区免费欧美| 精品不卡国产一区二区三区| 中文字幕熟女人妻在线| 如何舔出高潮| 国产高清不卡午夜福利| 国产精品av视频在线免费观看| 高清毛片免费观看视频网站| 99热这里只有是精品50| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站| 校园春色视频在线观看| 中文字幕av成人在线电影| 制服丝袜大香蕉在线| 亚洲美女搞黄在线观看 | 88av欧美| 91精品国产九色| 国产熟女欧美一区二区| 免费大片18禁| 免费观看精品视频网站| 久久精品国产自在天天线| 亚洲va在线va天堂va国产| 亚洲av中文字字幕乱码综合| 久久这里只有精品中国| 日本撒尿小便嘘嘘汇集6| 免费无遮挡裸体视频| 免费不卡的大黄色大毛片视频在线观看 | 美女 人体艺术 gogo| 亚洲最大成人中文| 琪琪午夜伦伦电影理论片6080| 亚洲精品456在线播放app | 51国产日韩欧美| 老司机深夜福利视频在线观看| 免费av毛片视频| 成人av在线播放网站| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 老司机午夜福利在线观看视频| av.在线天堂| 噜噜噜噜噜久久久久久91| 色av中文字幕| 嫩草影视91久久| 亚洲国产精品成人综合色| 大又大粗又爽又黄少妇毛片口| 2021天堂中文幕一二区在线观| 亚洲黑人精品在线| 亚洲成av人片在线播放无| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 国产精品国产高清国产av| 免费高清视频大片| 亚洲国产精品久久男人天堂| 亚洲精品一区av在线观看| 欧美成人一区二区免费高清观看| 内射极品少妇av片p| 国产精品一及| 欧美3d第一页| 亚洲成人久久性| 一夜夜www| 国产色婷婷99| 日韩欧美一区二区三区在线观看| 欧美中文日本在线观看视频| 成人av一区二区三区在线看| 色精品久久人妻99蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久国产蜜桃| 天堂影院成人在线观看| 国产 一区精品| 久久国内精品自在自线图片| h日本视频在线播放| 女生性感内裤真人,穿戴方法视频| 亚洲人成网站在线播| 国产极品精品免费视频能看的| 超碰av人人做人人爽久久| 亚洲天堂国产精品一区在线| 久久精品国产自在天天线| 成人av在线播放网站| 婷婷亚洲欧美| 国产精品精品国产色婷婷| 精品人妻一区二区三区麻豆 | 赤兔流量卡办理| 婷婷精品国产亚洲av| 欧美日韩黄片免| 免费观看人在逋| 在线观看美女被高潮喷水网站| 美女cb高潮喷水在线观看| 午夜精品在线福利| 男插女下体视频免费在线播放| 国产亚洲av嫩草精品影院| 久久久久久久久久成人| 在线a可以看的网站| 午夜福利高清视频| 国产精品无大码| 欧美日韩精品成人综合77777| 久久久成人免费电影| 日本精品一区二区三区蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 欧美性猛交╳xxx乱大交人| 精品久久久久久久末码| 久久久国产成人免费| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 亚洲无线在线观看| 性欧美人与动物交配| 国产精品亚洲美女久久久| 色在线成人网| а√天堂www在线а√下载| 日韩欧美在线二视频| 国产老妇女一区| 国产成人福利小说| 成人鲁丝片一二三区免费| 国产精品亚洲一级av第二区| 深夜精品福利| 无人区码免费观看不卡| 免费看光身美女| 黄色配什么色好看| 国产精品久久久久久精品电影| 嫁个100分男人电影在线观看| 日韩欧美在线二视频| 中文亚洲av片在线观看爽| 亚洲精品色激情综合| 99精品久久久久人妻精品| 黄色欧美视频在线观看| 久久久久久九九精品二区国产| 亚洲国产欧美人成| 日本撒尿小便嘘嘘汇集6| 熟妇人妻久久中文字幕3abv| 男人舔女人下体高潮全视频| 一区二区三区免费毛片| 国内精品久久久久精免费| 国产乱人视频| 制服丝袜大香蕉在线| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区性色av| 女人十人毛片免费观看3o分钟| 麻豆一二三区av精品| 他把我摸到了高潮在线观看| 九九爱精品视频在线观看| 亚洲精品在线观看二区| 国产亚洲av嫩草精品影院| 免费无遮挡裸体视频| 欧美性感艳星| 色综合婷婷激情| 精品午夜福利在线看| 精品久久久久久成人av| 欧美日韩精品成人综合77777| 国产中年淑女户外野战色| 日本黄色视频三级网站网址| 日韩高清综合在线| 国产白丝娇喘喷水9色精品| 色综合站精品国产| 国产欧美日韩精品一区二区| 哪里可以看免费的av片| 精品久久久噜噜| 黄色女人牲交| 99热这里只有精品一区| 18禁黄网站禁片免费观看直播| 99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看| 欧美zozozo另类| 色5月婷婷丁香| 国国产精品蜜臀av免费| 成人一区二区视频在线观看| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 他把我摸到了高潮在线观看| 亚洲第一电影网av| 婷婷六月久久综合丁香| 中文字幕免费在线视频6| 亚洲乱码一区二区免费版| 亚洲人与动物交配视频| 日本免费一区二区三区高清不卡| 国产精品一区www在线观看 | 国产精品自产拍在线观看55亚洲| 国产精品野战在线观看| 国产av不卡久久| av在线老鸭窝| 99久久中文字幕三级久久日本| 亚洲avbb在线观看| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 久久精品综合一区二区三区| 亚洲人成网站在线播| 日本-黄色视频高清免费观看| 成人特级av手机在线观看| 成人二区视频| 两个人的视频大全免费| 丝袜美腿在线中文| 99热精品在线国产| 久久精品夜夜夜夜夜久久蜜豆| 美女cb高潮喷水在线观看| 午夜免费男女啪啪视频观看 | 久久99热这里只有精品18| 禁无遮挡网站| 天天一区二区日本电影三级| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 精品一区二区三区人妻视频| 亚洲欧美日韩卡通动漫| 真人做人爱边吃奶动态| 亚洲欧美日韩无卡精品| 亚洲最大成人av| 久久久久久久精品吃奶| 国产午夜精品久久久久久一区二区三区 | 天天一区二区日本电影三级| 国产精品,欧美在线| 中文字幕免费在线视频6| 99国产极品粉嫩在线观看| 好男人在线观看高清免费视频| av天堂中文字幕网| 制服丝袜大香蕉在线| 免费在线观看日本一区| 国产精品无大码| 好男人在线观看高清免费视频| 欧美日韩国产亚洲二区| 欧美一区二区国产精品久久精品| 亚洲av成人精品一区久久| 欧美bdsm另类| 欧美中文日本在线观看视频| 久久精品人妻少妇| 国产精品女同一区二区软件 | a级毛片免费高清观看在线播放| 中文在线观看免费www的网站| 国产 一区精品| bbb黄色大片| 人妻夜夜爽99麻豆av| 99riav亚洲国产免费| 黄色一级大片看看| 露出奶头的视频| 国产精品电影一区二区三区| 草草在线视频免费看| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 99热网站在线观看| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 欧美性感艳星| 日韩大尺度精品在线看网址| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人精品二区| 中文字幕av成人在线电影| 最近最新免费中文字幕在线| 尾随美女入室| 日韩欧美三级三区| 91麻豆av在线| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 亚洲性久久影院| 十八禁网站免费在线| 欧美高清性xxxxhd video| av天堂在线播放| 免费观看的影片在线观看| 日韩,欧美,国产一区二区三区 | 不卡视频在线观看欧美| 成人午夜高清在线视频| 国产高清不卡午夜福利| 好男人在线观看高清免费视频| 99久久久亚洲精品蜜臀av| 麻豆成人午夜福利视频| 99国产极品粉嫩在线观看| 免费看av在线观看网站| 一a级毛片在线观看| 精品99又大又爽又粗少妇毛片 | 免费一级毛片在线播放高清视频| av在线天堂中文字幕| 国产伦一二天堂av在线观看| 毛片一级片免费看久久久久 | 最近中文字幕高清免费大全6 | 国产精品女同一区二区软件 | 在现免费观看毛片| 亚洲 国产 在线| 国产日本99.免费观看| 国产 一区 欧美 日韩| 亚洲天堂国产精品一区在线| 亚洲av美国av| 真人做人爱边吃奶动态| 在线观看美女被高潮喷水网站| 久久久久国产精品人妻aⅴ院| 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽| 久久久色成人| 国产av在哪里看| 91麻豆av在线| 精品一区二区免费观看| 日韩大尺度精品在线看网址| 久久久精品欧美日韩精品| 内射极品少妇av片p| 男女视频在线观看网站免费| 亚洲中文字幕一区二区三区有码在线看| 午夜爱爱视频在线播放| 亚洲欧美日韩无卡精品| 99久久成人亚洲精品观看| 亚洲国产欧洲综合997久久,| 亚洲成av人片在线播放无| 日本a在线网址| 国产乱人伦免费视频| 免费观看的影片在线观看| 22中文网久久字幕| 久久草成人影院| 男人舔女人下体高潮全视频| 久久久久久久亚洲中文字幕| 中文字幕熟女人妻在线| 99久久九九国产精品国产免费| www.www免费av| 国产高潮美女av| 桃色一区二区三区在线观看| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久久免费视频| 淫秽高清视频在线观看| 国产精品一区二区三区四区免费观看 | 高清毛片免费观看视频网站| 亚洲 国产 在线| 免费看日本二区| 色综合亚洲欧美另类图片| 国内精品久久久久精免费| 噜噜噜噜噜久久久久久91| 看免费成人av毛片| 亚洲四区av| 大型黄色视频在线免费观看| 极品教师在线视频| 91麻豆精品激情在线观看国产| 大又大粗又爽又黄少妇毛片口| 最近视频中文字幕2019在线8| 欧美不卡视频在线免费观看| 亚洲欧美日韩高清专用| 无遮挡黄片免费观看| 内地一区二区视频在线| 国产精品一区二区三区四区久久| 亚洲无线观看免费| 成人无遮挡网站| 一区二区三区高清视频在线| 成年女人毛片免费观看观看9| 久久久久久伊人网av| 日韩一区二区视频免费看| 校园人妻丝袜中文字幕| 成人特级黄色片久久久久久久| 热99re8久久精品国产| 美女大奶头视频| 老女人水多毛片| 综合色av麻豆| 亚洲精品一卡2卡三卡4卡5卡| 午夜精品久久久久久毛片777| 精品久久久久久,| 国产大屁股一区二区在线视频| 九九热线精品视视频播放| 日韩精品中文字幕看吧| 国产欧美日韩一区二区精品| 精品久久久久久,| 老师上课跳d突然被开到最大视频| 有码 亚洲区| 国产精品不卡视频一区二区| videossex国产| 国内精品美女久久久久久| 国产亚洲欧美98| 99热网站在线观看| 日韩在线高清观看一区二区三区 | 成人永久免费在线观看视频| 一本久久中文字幕| 人人妻人人澡欧美一区二区| 老师上课跳d突然被开到最大视频| a级毛片a级免费在线| 婷婷亚洲欧美| 人妻少妇偷人精品九色| 亚洲成人中文字幕在线播放| 男女那种视频在线观看| 俄罗斯特黄特色一大片| 国产精品久久久久久久电影| 美女高潮的动态| 亚洲一级一片aⅴ在线观看| 韩国av一区二区三区四区| 在线观看午夜福利视频| 嫩草影视91久久| 别揉我奶头 嗯啊视频| 床上黄色一级片| 国产毛片a区久久久久| 国产精品嫩草影院av在线观看 | 18禁黄网站禁片午夜丰满| 欧美bdsm另类| 国产精品野战在线观看| 男女视频在线观看网站免费| 日韩一本色道免费dvd| 亚洲avbb在线观看| 国产精品日韩av在线免费观看| 免费无遮挡裸体视频| 国产精品美女特级片免费视频播放器| 少妇被粗大猛烈的视频| 国产av麻豆久久久久久久| 亚洲国产精品成人综合色| 久久久久久九九精品二区国产| 精品99又大又爽又粗少妇毛片 | 人妻制服诱惑在线中文字幕| 久久久国产成人免费| 国产一区二区在线观看日韩| 中文字幕人妻熟人妻熟丝袜美| 我要看日韩黄色一级片| 日韩中文字幕欧美一区二区| 啦啦啦啦在线视频资源| 波多野结衣高清作品| 国内精品一区二区在线观看| 国产真实乱freesex| 精品国产三级普通话版| 日韩欧美在线乱码| 久久久久九九精品影院| 少妇人妻一区二区三区视频| 中文字幕久久专区| 一区二区三区四区激情视频 | 国产高清不卡午夜福利| 桃色一区二区三区在线观看| 亚洲av美国av| 久久久久国产精品人妻aⅴ院| 人妻少妇偷人精品九色| 国产蜜桃级精品一区二区三区| 中文字幕高清在线视频| 俺也久久电影网| 国产真实伦视频高清在线观看 | 午夜亚洲福利在线播放| 免费在线观看影片大全网站| 亚洲人成网站在线播| 综合色av麻豆| 日韩中文字幕欧美一区二区| 国产v大片淫在线免费观看| 国产一区二区在线av高清观看| 国产精品98久久久久久宅男小说| 一级黄片播放器| 高清日韩中文字幕在线| 91狼人影院| 在现免费观看毛片| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美在线乱码| 免费观看的影片在线观看| eeuss影院久久| 日日摸夜夜添夜夜添小说| videossex国产| 亚洲自拍偷在线| 日日夜夜操网爽| 最近最新免费中文字幕在线| 国产精品福利在线免费观看| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久av不卡| 免费看a级黄色片| 天堂网av新在线| 天天躁日日操中文字幕| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 亚洲精品影视一区二区三区av| 亚洲精品一区av在线观看| 国产色婷婷99| 精品久久久久久久末码| 无遮挡黄片免费观看| 成人欧美大片| 俺也久久电影网| 欧美bdsm另类| 韩国av一区二区三区四区|