• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluating the Formation Mechanisms of the Equatorial Pacif c SST Warming Pattern in CMIP5 Models

    2016-11-24 11:33:25JunYINGPingHUANGandRonghuiHUANG
    Advances in Atmospheric Sciences 2016年4期

    Jun YING,Ping HUANG,and Ronghui HUANG

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100190

    2University of Chinese Academy of Sciences,Beijing 100049

    3Joint Center for Global Change Studies,Beijing 100875

    Evaluating the Formation Mechanisms of the Equatorial Pacif c SST Warming Pattern in CMIP5 Models

    Jun YING1,2,Ping HUANG?1,3,and Ronghui HUANG1

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100190

    2University of Chinese Academy of Sciences,Beijing 100049

    3Joint Center for Global Change Studies,Beijing 100875

    Based on the historical and RCP8.5 runs of the multi-model ensemble of 32 models participating in CMIP5,the present study evaluates the formation mechanisms for the patterns of changes in equatorial Pacif c SST under global warming. Two features with complex formation processes,the zonal El Ni?no-like pattern and the meridional equatorial peak warming(EPW),are investigated.The climatological evaporation is the main contributor to the El Ni?no-like pattern,while the ocean dynamical thermostat effect plays a comparable negative role.The cloud-shortwave-radiation-SST feedback and the weakened Walker circulation play a small positive role in the El Ni?no-like pattern.The processes associated with ocean dynamics are conf ned to the equator.The climatological evaporation is also the dominant contributor to the EPW pattern,as suggested in previous studies.However,the effects of some processes are inconsistent with previous studies.For example, changes in the zonal heat advection due to the weakened Walker circulation have a remarkable positive contribution to the EPW pattern,and changes in the shortwave radiation play a negative role in the EPW pattern.

    global warming,equatorial Pacif c SST warming pattern,multi-model ensemble,CMIP5

    1.Introduction

    ThewarmingpatternsofequatorialPacif cSSTduetorising greenhouse gas concentrations is one of the most important problems in projecting regional climate change and has thus been paid considerable attention in the research community for decades(Clement et al.,1996;Collins,2005;Liu et al.,2005;Xie et al.,2010;Ma and Yu,2014).The patterns of equatorial Pacif c SST warming(EPSW)affect various aspects of regional and global climate change.For example, theydominatethe changesinannual-meanprecipitation,with increased(decreased)rainfall over the areas of large(small) SST warming,and play a more important role in the changes in tropical cyclone intensity than the local absolute SST increases(Vecchi and Soden,2007;Knutson et al.,2008;Xie et al.,2010;Huang et al.,2015).Moreover,the uncertainties of EPSW also dominate the uncertainties of the changes in atmospheric circulation over the equatorial Pacif c(Ma et al., 2012;Ma and Xie,2013).

    Two well-known features of EPSW patterns have been obtained from the multi-model ensemble(MME)of CMIP3 andCMIP5,andfromindividualmodel simulations(Fig.1a): the zonal El Ni?no-like warming pattern(simply referred to as the El Ni?no-like pattern hereafter),with more warming in the eastern than western Pacif c(Ramanathan and Collins,1991; Meehl and Washington,1996;Collins,2005;Vecchi and Soden,2007;Song and Zhang,2014);and the meridional equatorial peak warming(EPW)pattern(Liu et al.,2005;Xie et al.,2010).However,these patterns remain controversial in different scenarios(DiNezio et al.,2009;Zhang and Li, 2014)and different models(Huang and Ying,2015).For instance,a few studies have suggested a La Ni?na-like warming (Clement et al.,1996;Cane et al.,1997)or a zonal uniform warming(DiNezio et al.,2009)for the zonal structure of the SST warming over the equatorial Pacif c.

    Several distinct mechanisms have been proposed to explain the discrepant SST warming patterns.For the zonal structure,the weakened Walker circulation associated with a slower increase in rainfall than in moisture(Held and Soden,2006)can reduce the zonal SST gradient to promote an El Ni?no-like pattern by reducing the westward surface wind stress and the westward oceanic current as well as the cold upwelling in the eastern Pacif c(Vecchi and Soden,2007). The zonal SST gradient can also be weakened by a greater evaporative cooling in the western Pacif c than in the easternPacif c(Knutson and Manabe,1995)and by the stronger cloudradiationregulationinthewesternPacif c(Ramanathan andCollins,1991).Ontheotherhand,thezonalSST gradient can be enlarged by the increased ocean vertical temperature gradient in the eastern Pacif c with upwelling colder subsurface water,known as the ocean dynamical thermostat effect (Clement et al.,1996;Cane et al.,1997),favoring a La Ni?nalike warming pattern.Moreover,the zonal warming pattern can be enlarged by the Bjerknes feedback of zonal air-sea coupling(Bjerknes,1969;Song and Zhang,2014).

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Fig.1.The(a)MME SST warming pattern and(b)mixed layer ocean temperature warming pattern in the equatorial Pacif c. Stippling indicates that more than 80%of models have the same sign.

    In terms of the meridional pattern,Seager and Murtugudde(1997)attributed the EPW pattern to the weaker trade wind at the equator than that in the subtropics,and Liu et al.(2005)to the changes in latent heat,shortwave cloud forcing and ocean vertical mixing.Xie et al.(2010)further emphasizedthedominantroleoftheclimatologicalminimum of evaporative cooling at the equator.

    All of these formation mechanisms seem theoretically reasonable.However,somemechanismscanbefoundmerely in individual model experiments.For example,the ocean dynamical thermostat as a damping effect to the El Ni?no-like patternwas foundin the Zebiak-CaneCGCM with a uniform heat f ux forcing situation(Clement et al.,1996).Based on hybrid CGCM experiments,the EPW pattern was attributed to the stronger trade wind speed in the subtropics than at the equator(Seager and Murtugudde,1997),whereas the effect of evaporative cooling was suggested based on the simulations of the GFDL's CGCM(Knutson and Manabe,1995). However,the performances of these mechanisms in a large group of models remain unclear.

    In the present study,we analyze the changes in the ocean mixed layer energy budgets in 32 CMIP5 models to evaluate the importance of these mechanisms on the formation of the equatorial Pacif c SST warming pattern.To quantify the importance of these mechanisms,we decompose the ocean mixed layer energy budgets into various terms to represent the respective mechanisms.The paper is organized as follows:Section 2 describes the models,variables and methods. Section 3 presents the results.Conclusions are given in section 4.

    2.Models and methods

    2.1.Models and variables

    Outputs from 32 CMIP5 models are used in the present study.Table 1 lists the names and relevant organizations of the 32 models.The details of the models can be found at http://www-pcmdi.llnl.gov/(Taylor et al.,2012).The historical runs for the period 1981-2000 and the RCP8.5 runs for 2081-2100 are used to represent the current and future climate,respectively.

    The variables include the monthly mean SST,total cloud fraction(its standard variable name in CMIP5 is clt),surface latent heat f ux(QE),sensible heat f ux(QH),net longwave radiation(QLW),net shortwave radiation(QSW),surface zonal(uas)and meridional(vas)wind velocity,surface scalar wind speed(sfcWind),ocean temperature(thetao),and ocean 3D mass transport(umo,vmo,and wmo).The net longwave/shortwaveradiation is def ned as the difference between upward and downward longwave/shortwave radiation. The sign of the f ux is def ned such that a positive f ux warms the ocean.Some variables not archived in a few models are marked in Table 1.Moreover,the ocean vertical mass transport not well described in CSIRO Mk3.6.0,BNU-ESM and MIROC5isalsoexcluded(http://cmip-pcmdi.llnl.gov/cmip5/ errata/cmip5errata.html).Ocean 3D currents are obtained from the ocean 3D mass transports.All of the model outputs are interpolated onto a 2.5?×2.5?grid.

    2.2.Def nition of the EPSW pattern

    The change under global warming is f rst def ned as the difference between the 20-year long-term mean of the RCP8.5 run and that of the historical run.Changes in each model are normalized by their respective tropical SST warming averaged between 60?S to 60?N,in order to remove the inf uence of tropical mean SST change.Then,the regional mean SST increase is removed to def ne the EPSW pattern. As shown in Fig.1a,the sign agreement test indicates that most of the CMIP5 models(more than 80%of the 32 models)show some universal patterns of EPSW.

    2.3.Decompositions of heat budgets

    The formation mechanisms of the EPSW patterns can be detected from the surface energy budget changes.For instance,the effect of evaporative cooling can be represented by the latent heat changes(Xie et al.,2010),the effect of cloud-shortwave-radiation-SST feedback by the shortwave radiation changes(Ramanathan and Collins,1991),and the effect of the ocean dynamical thermostat is implied in the ocean heat transport changes(Clement et al.,1996;DiNezioet al.,2009).

    Table 1.List of the 32 CMIP5 models used in the present study.

    For the change in long-term mean,the energy budget balance in the ocean mixed layer can be expressed as(Xie et al., 2010)

    where?denotes future change.?QE,?QH,?QLW,?QSWand?DOrepresent changes in latent heat f ux,sensible heat f ux, net longwave radiation,net shortwave radiation and ocean dynamical processes,respectively.The DOcan be decomposed as

    where?Qu,?Qvand?Qwrepresent changes in the ocean 3D heat transports,and?R is a residual term representing changes in heat transports due to sub-grid scale processes such as vertical mixing and lateral entrainment(DiNezio et al.,2009).

    Because the?Qu,?Qvand?Qwinclude both the effects of changes in ocean currents and changes in ocean temperature gradients associated with different mechanisms,we decompose them into two components:

    whereρois sea water density;cpis specif c heat at constant pressure;H is mixed layer depth,chosen as a constant of 30 m;and u,v,w and T are ocean zonal,meridional and ver-tical current,and temperature,respectively.?Qu1,?Qv1and?Qw1representtheeffectofchangesin oceancurrents,which mainly ref ect the role of changes in surface wind stress and in atmospheric general circulation(Vecchi and Soden,2007); and?Qu2,?Wv2and?Qw2represent the effect of changes in ocean temperature gradients.The patterns of mixed layer temperature changes in Fig.1b are close to the EPSW patterns(Fig.1a),with a spatial correlationcoeff cientnear 0.97, indicating that the mixed layer energy budget is reasonable for studying the SST change pattern and that the mixed layer depth(30 m)is properly chosen.

    Another important variable involving multiple processes is latent heat f ux(Xie et al.,2010).The surface latent heat f ux in models is calculated using the bulk formulas:

    whereρais surface air temperature;L is latent heat of evaporation;CEis the exchange coeff cient;V is surface wind speed;qs(T)is the saturated specif c humidity,following the Clausius-Clapeyron relationship;Tssis SST;and T′is the difference between SST and surface air temperature,known as the stability parameter.RH is the relative humidity,α= L/(RvT2)≈0.06 K?1,and Rvis the ideal gas constant for water vapor.

    From Eq.(4),changes in latent heat f ux can be inf uenced by changes in SST,surface wind speed,surface stability and RH,related to different processes(Xie et al.,2010; Huang,2015).Thus,?QEis decomposed into two parts:?QE=?QEO+?QEA,where?QEO=αQE?Tssis the response of SST change(Newtonian cooling)and?QEAcontains the effects of changes in wind speed,RH and surface stability(Du and Xie,2008;Xie et al.,2010).In?QEA, the effect due to surface wind speed change can be written as?QEW=QE?V/V,which is the key aspect in the windevaporation-SSTfeedback(Xie and Philander,1994)and important to the SST warming pattern formation(Xie et al., 2010).The residual of?QEA,?QER=?QEA??QEW,represents both the effect of changes in RH and surface stability.

    The?QEO=αQE?Tss,includingthe effects of the climatological evaporation QEand the SST change,can be divided into two terms,following Huang(2015):

    where the angled brackets denote the tropical Pacif c mean, the prime represents the deviations,the termrepresents the response of the spatially non-uniform SST change, andthe effect of the spatial distribution of the climatological latent heat f ux.

    3.Results

    Figures2a-cexhibitthechangesinlatentheatf ux(?QE), net longwave radiation(?QLW)and net shortwave radiation (?QSW).Changes in sensible heat f ux(?QH)are omitted due to relatively small values.SST warming is mainly contributed by increases in net downward longwave radiation, while changes in latent heat and net shortwave radiation suppress surface warming.The regional deviations of these surface energy budgets are shown in Figs.2d-f.Changes in latent heat f ux and net shortwave radiation exhibit pronounced spatial patterns(Figs.2d and f),indicating more important inf uences on the EPSW pattern;whereas,the increases in net longwave radiation(Fig.2e)are mainly spatially uniform,contributed by the near uniform increases in greenhouse gases.

    For the ocean dynamics(Fig.3),the 3D heat transports are mainly located in the equatorialPacif c,except the meridional heat transport,which cools the NH and warms the SH offtheequator.Thehorizontalheatadvection(Figs.3aandb) warms the surface of the equator,while the vertical heat advection(Fig.3c)cools SST in the eastern Pacif c.In addition, the residual term mainly warms the equatorial eastern Pacif c and cools the off-equatorialf anks of the eastern Pacif c(Fig. 3d).

    3.1.Zonal El Nin?o-like pattern

    In the MME,the SST warming in the eastern Pacif c is larger than that in the western Pacif c,exhibiting an El Nin?olike pattern.The difference between the regional mean of (5?S-5?N,145?-85?W)and(5?S-5?N,125?E-175?W),denoted by the dashed green boxes in Fig.1a,is around 0.12?C per 1?C of global warming.

    Four mechanisms are suggested to inf uence the zonal pattern formation.The total effect of evaporative cooling, represented by the changes in latent heat f ux,causes warmer SST in the eastern than the western Pacif c,favoring an El Nin?o-likepattern(Fig.2d).Figures4aandbshowtheNewtoniancoolingeffect(?QEO)andthe atmosphericforcingeffect (?QEA).The?EEOnear the equator is similar to the EPSW pattern(Fig.4a),indicatingafavorablefactorforthe ElNin?olike pattern.On the contrary,the atmospheric adjustment effect(Fig.4b)appears to damp the El Nin?o-like warming.In?EEO,the effect of the spatial distribution of climatological latent heat f ux(?EEO2,Fig.4d)is the dominant contributor to the total effectof evaporativecooling,favoringan El Nin?olike pattern(Knutson and Manabe,1995),while the effect of non-uniform SST change(?QEO1,Fig.4c)plays a damping role.

    The cloud-shortwave-radiation-SST feedback is suggested to be another factor favoring the El Nin?o-like pattern, which can be represented by the changes in shortwave radiation.As shown in Figs.2c and f,there is more decreased net shortwave radiation over the western Pacif c than the western Pacif c,favoring an El Nin?o-like pattern.To illustrate the role of cloud-shortwave-radiation-SST feedback,a cloudshortwave-radiation-SST feedback index(CSFI)is def ned by regressing monthly net shortwave radiation anomalies to SST anomalies(Sun et al.,2003;Sun et al.,2006),to quantify the strength of shortwave feedbacks in the climate system.Figure 5a shows the spatial distribution of the CSFI in the historical run.The CSFI is negativein most parts near the equator,suggesting a negative convective cloud-shortwaveradiation-SSTfeedback,andpositiveovertheeasternPacif c,indicating a positive stratus cloud-shortwave-radiation-SST feedback(Ramanathan and Collins,1991;Song and Zhang, 2014).The negative(positive)cloud-SST feedback will suppress(enhance)the local SST warming.This process can be demonstrated by the changes in cloud amount(Fig.5b). Thus,the cloud-shortwave-radiation-SSTfeedback weakens the zonalgradientofSST,contributingtoan El Ni?no-likepattern.

    Fig.2.Changes in(a)latent heat f ux(?QE),(b)net longwave radiation(?QLW),and(c)net shortwave radiation (?QSW).(d-f)As in(a-c)but with the respective tropical Pacif c mean removed.

    Fig.3.Regional changes in the(a)zonal,(b)meridional and(c)vertical heat transport,and(d)the residual term in Eq.(2).

    Fig.4.Components of the regional changes in latent heat f ux:(a)?QEO,(b)?QEA,(c)?QEO1and?QEO2

    Fig.5.(a)Cloud-shortwave-radiation-SST feedback index in the historical run.(b)Changes in total cloud fraction.

    The changes in ocean heat transports associated with the oceancurrentchanges(Figs.6a-c)indirectlyref ectthe effect of the changes in atmospheric general circulation connected by the surface wind stress changes.The effects of changes in ocean zonal and vertical currents both warm the SST along the equator(Figs.6a,c),which is associated with the weakened Walker circulation(Vecchi and Soden,2007).However, the zonal current changesdo not contributemuchto the zonal gradientofSSTchanges(Fig.6a)becauseofthenearuniform zonalcurrentchanges(Fig.7a).Meanwhile,thedownwelling changes in the eastern Pacif c(Fig.7b)—weakening the cold upwelling and warming the SST—mainly represent the effect of weakened Walker circulation on the zonal gradient of SST changes(Fig.6c and?Qw1).The effect of changes in meridionalcurrentalsowarmstheSST intheeasternPacif caround 5?N(Fig.6b)with a relatively weak magnitude,which could be attributed to the weak weakening of the meridional overturning circulation(Vecchi and Soden,2007;Ma and Xie, 2013).

    Theoceandynamicalthermostateffectcanberepresented by changes in the ocean heat transports due to changes in ocean vertical temperature gradients(Figs.6f)(Cane et al., 1997;Seager and Murtugudde,1997;An and Im,2014).Under global warming,the ocean vertical temperature gradients will increase(Fig.7b),with less solar radiation absorbed in the subsurface than at the surface.Thus,the background upwelling pulls up cooler subsurface water to cool the surface in the eastern Pacif c,damping the El Ni?no-like pattern(Fig. 6f).

    The energy budget analyses basically verify that the previous suggested mechanisms are pronounced in the MME of the 32 CMIP5 models.However,they also exhibit great discrepanciesin spatialstructureandstrength(Figs.2f,4c andd, and 6).The effects of weakened Walker circulation(Fig.6c) and ocean dynamical thermostat(Fig.6f)are conf ned near the equator(2.5?S-2.5?N),with great horizontal gradients, because of the narrow upwelling and stratif cation region in the eastern Pacif c.Whereas,the effects of climatological evaporationand cloud radiationfeedbackextendto 5?S-5?N, close to the structure of the SST change pattern.

    The effect of climatological evaporation,cloud radiation feedback,the weakened Walker circulation,and the ocean dynamical thermostat can be represented by thezonaldifferences betweentheeastern(5?S-5?N, 145?-85?W)and western(5?S-5?N,125?E-175?W)Pacif c of?QEO2,?QSW,?Qw1and?Qw2,respectively. The climatological evaporation contributes the most to the El Ni?no-like pattern with the east-west differenceexceeding 2 W m?2(around 2.03 W m?2),while the ocean dynamical thermostat contributes a comparable damping to the El Ni?no-like pattern formation(?1.96 W m?2).The cloud-shortwave radiation-SST feedback(0.92 W m?2)and the weakened Walker circulation(0.59 W m?2)play a positive but relatively small role.

    Fig.6.Regional changes in the ocean heat transports induced by changes in(a)zonal current(b)meridional current(c)vertical current(d)zonal gradients of temperature(e)meridional gradients of temperatureand(f)vertical gradients of temperature

    Fig.7.(a)Changes in horizontal currents averaged in the mixed layer(vectors less than 0.02 m s?1are omitted).(b)Vertical gradients of changes in ocean temperature(color shading)and the zonal overturning current(vectors;m s?1)at the equator (averaged between 2.5?S and 2.5?N).Changes in vertical velocity are multiplied by 100 for display,and vectors less than 0.05 are omitted.

    3.2.Equatorial peak warming pattern

    The meridional EPSW exhibits a peak warming at the equator(Fig.8a).Three terms of the zonal-mean heat budgets peak at the equator,favoring the EPW pattern(Fig.8a):representingtheeffectofclimatologicalevaporation;representing the effect of changes in ocean zonal heat transport;andrepresenting the effect of changes in the ocean residual term.On the other hand,the changes in theshortwaveradiationRHandstabilitythe meridional heat transportand the vertical heat transportdamp the EPW pattern(Fig.8b).

    Among the mechanisms,the latent heat changes due to the effect of the climatological evaporative cooling is the greatest positive contribution to the EPW pattern(Fig.8a), which was f rst mentioned by Liu et al.(2005)and emphasized by Xie et al.(2010).Another important positive factor in the present analysis,which has not been emphasized,isthe effect of changes in the ocean zonal heat transport due to the weakened Walker circulation(yellow curve in Fig.8a), as demonstrated in Figs.6a and 7a.This result is inconsistent with that in Liu et al.(2005),suggesting the changes in oceaniccirculationarenotimportant.Theresidualterm(?R′) involving sub-grid scale processes,such as the ocean vertical mixing,also has a positive contribution to the EPW pattern,although its meridional range is relatively small.Meanwhile,these favorable mechanisms are balanced mainly by the effects of changes in the ocean vertical heat transports due to enhanced oceanic vertical temperature gradients and the latent heat changes due to changes in the atmosphericRH and stability(Fig.8b).It should be noted that the effects of changes in shortwave radiation(Liu et al.,2005)and surface wind speed(Seager and Murtugudde,1997),believed to be positive in forming the EPW pattern,do not contribute to the EPW pattern positively.The former damps the EPW pattern, while the latter mainly affects the off-equatorial patterns.

    Fig.8.(a)Zonal mean of(multiplied by 10;units:K)and the terms with positive contribution to the EPW pattern(units:W m?2K?1).(b)The terms with negative contribution to the EPW pattern(units:W m?2K?1).

    4.Conclusions

    This paper analyzes the changes in the mixed-layer energy budget using 32 CMIP5 models,to investigate the formation mechanisms of the annual-mean equatorial Pacif c SST warming patterns.Discussed are two patterns that are pronounced but whose mechanisms are unclear:the zonal El Ni?no-like pattern and the meridional equatorial peak pattern.

    For the El Ni?no-like pattern,we examined the effects of climatological evaporation,the cloud-shortwave-radiation-SST feedback,the weakening of the Walker circulation,and the ocean dynamical thermostat.The quantitative energy budget analyses,based on the MME of the CMIP5 models, revealed that the effect of climatological evaporation plays a major role,while the cloud-shortwave-radiation-SST feedback and the weakened Walker circulation play relatively small roles.On the contrary,the effect of the ocean dynamical thermostat plays a major negative role,damping the El Ni?no-like pattern formation,with comparable magnitude to the effect of climatological evaporation.The effects of climatological evaporationand the cloud-radiationfeedback on the equatorextendmuchwider meridionallythan those of the effects associated with ocean dynamics.

    For the meridional EPW pattern,the dominant role of the climatological latent heat f ux is also apparent in the MME of the 32 CMIP5 models,as in Xie et al.(2010).Nevertheless,the performances of some mechanisms evaluated in the present study are different from those in some previous studies.The changes in the zonal heat transport due to the weakened Walker circulation make a considerable positive contribution to the EPW pattern,which is inconsistent with the result in Liu et al.(2005).Moreover,the effect of changes in shortwave radiation damps the EPW pattern,which is inconsistent with the positive role proposed by Liu et al.(2005), while the effect of surface wind speed mainly inf uences the off-equatorial patterns,which is also inconsistent with the positive role proposed in Seager and Murtugudde(1997).

    The present study is based on the MME of 32 CMIP5 models'outputs.The inter-model spreads in the EPSW are quite large in current CMIP models(DiNezio et al.,2009; Huang and Ying,2015),with great impacts on the uncertainties in projecting regional climate changes(Huang et al., 2013;Ma and Xie,2013).The present energy budget analysis provides a useful method to study the importance of the mechanisms to the inter-model uncertainty in the EPSW, which is worthy of study in the future.

    Acknowledgements.The work was supported by the National Basic Research Program of China(Grant Nos.2014CB953903 and 2012CB955604),and the National Natural Science Foundation of China(Grant Nos.41575088 and 41461164005).We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling,which is responsible for CMIP5,and the climatemodeling groups(listed in Table 1)for producing and making available their model output.We also thank the two anonymous reviewers for their constructive suggestions.

    REFERENCES

    An,S.-I.,and S.-H.Im,2014:Blunt ocean dynamical thermostat in response of tropical eastern Pacif cSST to global warming. Theor.Appl.Climatol.,118,173-183.

    Bjerknes,J.,1969:Atmospheric teleconnections from the equatorial Pacif c.Mon.Wea.Rev.,97,163-172.

    Cane,M.A.,and Coauthors,1997:Twentieth-century Sea surface temperature trends.Science,275,957-960.

    Clement,A.C.,R.Seager,M.A.Cane,and S.E.Zebiak,1996: An ocean dynamical thermostat.J.Climate,9,2190-2196.

    Collins,M.,2005:El Ni?no-or La Ni?na-like climate change?Climate Dyn.,24,89-104.

    DiNezio,P.N.,A.C.Clement,G.A.Vecchi,B.J.Soden,B.P. Kirtman,and S.-K.Lee,2009:Climate response of the equatorial Pacif c to global warming.J.Climate,22,4873-4892.

    Du,Y.,and S.-P.Xie,2008:Role of atmospheric adjustments in the tropical Indian ocean warming during the 20th century in climate models.Geophys.Res.Lett.,35,L08712.

    Held,I.M.,and B.J.Soden,2006:Robust responses of the hydrological cycle to global warming.J.Climate,19,5686-5699.

    Huang,P.,2015:Seasonal changes in tropical SST and the surface energy budget under global warming projected by CMIP5 models.J.Climate,28,6503-6515.

    Huang,P.,and J.Ying,2015:A multimodel ensemble pattern regression method to correct the tropical Pacif c SST change patterns under global warming.J.Climate,28,4706-4723.

    Huang,P.,S.-P.Xie,K.M.Hu,G.Huang,and R.H.Huang,2013: Patterns of the seasonal response of tropical rainfall to global warming.Nature Geoscience,6,357-361.

    Huang,P.,I.-I.Lin,C.Chou,and R.H.Huang,2015:Change in ocean subsurface environment tosuppress tropical cyclone intensif cation under global warming.Nature Communications, 6,7188.

    Knutson,T.R.,and S.Manabe,1995:Time-mean response over the tropical Pacif c to increased CO2in a coupled oceanatmosphere model.J.Climate,8,2181-2199.

    Knutson,T.R.,J.J.Sirutis,S.T.Garner,G.A.Vecchi,and I.M. Held,2008:Simulated reduction in Atlantic hurricane frequency under twenty-f rst-century warming conditions.Nature Geoscience,1,359-364.

    Liu,Z.Y.,S.Vavrus,F.He,N.Wen,and Y.F.Zhong,2005:Rethinking tropical ocean response to global warming:The enhanced equatorial warming.J.Climate,18,4684-4700.

    Ma,J.,S.-P.Xie,and Y.Kosaka,2012:Mechanisms for tropical tropospheric circulation change in response to global warming.J.Climate,25,2979-2994.

    Ma,J.,and S.-P.Xie,2013:Regional patterns of Sea surface temperature change:A source of uncertainty in future projections of precipitation and atmospheric circulation.J.Climate,26, 2482-2501.

    Ma,J.,and J.-Y.Yu,2014:Linking centennial surface warming patterns in the equatorial Pacif c to the relative strengths of the Walker and Hadley circulations.J.Atmos.Sci.,71,3454-3464.

    Meehl,G.A.,and W.M.Washington,1996:El Ni?no-like climate change in a model with increased atmospheric CO2concentrations.Nature,382,56-60.

    Ramanathan,V.,and W.Collins,1991:Thermodynamic regulation of ocean warmingby cirruscloudsdeduced fromobservations of the 1987 El Ni?no.Nature,351,27-32.

    Seager,R.,and R.Murtugudde,1997:Ocean dynamics,thermocline adjustment,and regulation of tropical SST.J.Climate, 10,521-534.

    Song,X.L,and G.J.Zhang,2014:Role of climate feedback in El Ni?no-like SST response to global warming.J.Climate,27, 7301-7318.

    Sun,D.-Z.,J.Fasullo,T.Zhang,and A.Roubicek,2003:On the radiative and dynamical feedbacks over the equatorial Pacif c cold tongue.J.Climate,16,2425-2432.

    Sun,D.Z.,and Coauthors,2006:Radiative and dynamical feedbacks over the equatorial cold tongue:Results from nine atmospheric GCMs.J.Climate,19,4059-4074.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485-498.

    Vecchi,G.A.,and B.J.Soden,2007:Global warming and the weakening of the tropical circulation.J.Climate,20,4316-4340.

    Xie,S.-P.,and S.G.H.Philander,1994:A coupled oceanatmosphere model of relevance to the ITCZ in the eastern Pacif c.Tellus A,46,340-350.

    Xie,S.-P.,C.Deser,G.A.Vecchi,J.Ma,H.Y.Teng,and A.T. Wittenberg,2010:Global warming pattern formation:Sea surface temperature and rainfall.J.Climate,23,966-986.

    Zhang,L.,and T.Li,2014:A simple analytical model for understanding the formation of Sea surface temperature patterns under global warming.J.Climate,27,8413-8421.

    Ying,J.,P.Huang,and R.H.Huang,2016:Evaluating the formation mechanisms of the equatorial Pacif c SST warming pattern in CMIP5 models.Adv.Atmos.Sci.,33(4),433-441,

    10.1007/s00376-015-5184-6.

    17 august 2015;revised 4 October 2015;accepted 27 October 2015)

    ?Ping HUANG

    Email:huangping@mail.iap.ac.cn

    亚洲免费av在线视频| 欧美日韩精品网址| 亚洲伊人色综图| 99在线人妻在线中文字幕 | 麻豆av在线久日| 极品人妻少妇av视频| 脱女人内裤的视频| 亚洲专区中文字幕在线| 美女高潮到喷水免费观看| 国产黄频视频在线观看| 国产高清videossex| 成人永久免费在线观看视频 | av网站在线播放免费| 一级毛片女人18水好多| 12—13女人毛片做爰片一| 亚洲,欧美精品.| a级毛片在线看网站| 欧美一级毛片孕妇| 国产精品久久久久久精品电影小说| 亚洲美女黄片视频| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区黑人| 中文字幕色久视频| 9热在线视频观看99| 国产在线观看jvid| 国产精品久久久久久人妻精品电影 | 亚洲午夜精品一区,二区,三区| 国产精品久久久av美女十八| 亚洲国产精品一区二区三区在线| 亚洲国产中文字幕在线视频| 中文亚洲av片在线观看爽 | 亚洲精华国产精华精| 久久久久视频综合| 色老头精品视频在线观看| 国产在线一区二区三区精| 性高湖久久久久久久久免费观看| 性少妇av在线| 一本久久精品| 精品国产一区二区三区四区第35| 精品福利永久在线观看| 国产男女内射视频| 亚洲欧美日韩另类电影网站| 午夜福利,免费看| a在线观看视频网站| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区mp4| 精品一区二区三卡| 这个男人来自地球电影免费观看| 日本av手机在线免费观看| 久久久久久免费高清国产稀缺| 国产精品国产av在线观看| 电影成人av| 亚洲av成人一区二区三| 日韩制服丝袜自拍偷拍| 狠狠婷婷综合久久久久久88av| 日本vs欧美在线观看视频| 午夜91福利影院| 久久精品国产a三级三级三级| 色94色欧美一区二区| bbb黄色大片| 国精品久久久久久国模美| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线免费观看网站| av又黄又爽大尺度在线免费看| 高清欧美精品videossex| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 国产一区二区 视频在线| 亚洲中文字幕日韩| 十八禁网站免费在线| 亚洲精品自拍成人| www.精华液| 美女国产高潮福利片在线看| 欧美变态另类bdsm刘玥| 成人黄色视频免费在线看| 国产一区二区 视频在线| 欧美日韩黄片免| 91精品三级在线观看| 亚洲熟女精品中文字幕| 亚洲av成人一区二区三| 免费黄频网站在线观看国产| 天堂中文最新版在线下载| 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区| 80岁老熟妇乱子伦牲交| 欧美日韩视频精品一区| 天天躁日日躁夜夜躁夜夜| 无遮挡黄片免费观看| 国产福利在线免费观看视频| www.精华液| 久热爱精品视频在线9| 久久毛片免费看一区二区三区| 桃红色精品国产亚洲av| av国产精品久久久久影院| 亚洲专区中文字幕在线| 久久99一区二区三区| 国产精品免费大片| 国产视频一区二区在线看| 欧美黄色片欧美黄色片| 国产一区二区在线观看av| 精品国产国语对白av| 巨乳人妻的诱惑在线观看| 久久人妻福利社区极品人妻图片| 色尼玛亚洲综合影院| 亚洲熟女毛片儿| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| 在线十欧美十亚洲十日本专区| 午夜福利乱码中文字幕| 99精品久久久久人妻精品| 午夜91福利影院| 天天影视国产精品| 日本av免费视频播放| 日日摸夜夜添夜夜添小说| 亚洲精品在线观看二区| 国产精品 国内视频| 久久久久久久久免费视频了| 91成人精品电影| 亚洲av日韩在线播放| 成人三级做爰电影| 亚洲五月色婷婷综合| 人妻一区二区av| 亚洲人成电影免费在线| 色婷婷久久久亚洲欧美| 99在线人妻在线中文字幕 | 国产99久久九九免费精品| 999久久久国产精品视频| 精品久久久久久久毛片微露脸| 最新在线观看一区二区三区| 成年版毛片免费区| 午夜福利欧美成人| 高清毛片免费观看视频网站 | 亚洲精品粉嫩美女一区| 亚洲综合色网址| 一级黄色大片毛片| 国产一区二区三区在线臀色熟女 | 亚洲国产av新网站| 9热在线视频观看99| 亚洲第一青青草原| 国产97色在线日韩免费| 亚洲中文字幕日韩| 男女之事视频高清在线观看| 午夜免费鲁丝| 午夜免费成人在线视频| 一边摸一边抽搐一进一小说 | 在线亚洲精品国产二区图片欧美| 99国产综合亚洲精品| 人妻久久中文字幕网| 黄网站色视频无遮挡免费观看| 成年人免费黄色播放视频| 夜夜夜夜夜久久久久| 欧美精品亚洲一区二区| 国产精品自产拍在线观看55亚洲 | 国产精品99久久99久久久不卡| 国产伦理片在线播放av一区| 日韩大片免费观看网站| 蜜桃国产av成人99| cao死你这个sao货| xxxhd国产人妻xxx| 两个人免费观看高清视频| 久久九九热精品免费| 精品高清国产在线一区| 久久精品aⅴ一区二区三区四区| 91国产中文字幕| 国产1区2区3区精品| tube8黄色片| 中国美女看黄片| 日本av手机在线免费观看| 亚洲少妇的诱惑av| 亚洲精品自拍成人| 香蕉久久夜色| 国产在线视频一区二区| 在线av久久热| 激情视频va一区二区三区| 免费高清在线观看日韩| 淫妇啪啪啪对白视频| 十八禁高潮呻吟视频| 一级片免费观看大全| 亚洲精品av麻豆狂野| 在线观看一区二区三区激情| 男人操女人黄网站| 成年人午夜在线观看视频| 99re6热这里在线精品视频| aaaaa片日本免费| 午夜激情av网站| 天堂动漫精品| svipshipincom国产片| 中文字幕制服av| 51午夜福利影视在线观看| 久久久久久久久免费视频了| av欧美777| 亚洲熟女精品中文字幕| 国产精品99久久99久久久不卡| 亚洲熟妇熟女久久| 男女高潮啪啪啪动态图| 精品亚洲成国产av| 一区在线观看完整版| av不卡在线播放| a级片在线免费高清观看视频| 操出白浆在线播放| 欧美日韩精品网址| 精品国产一区二区三区久久久樱花| 国产亚洲午夜精品一区二区久久| 人人妻,人人澡人人爽秒播| 国产精品 国内视频| 男男h啪啪无遮挡| avwww免费| 亚洲人成电影免费在线| 国产视频一区二区在线看| 露出奶头的视频| www.精华液| 好男人电影高清在线观看| 久久免费观看电影| 成人永久免费在线观看视频 | 亚洲欧美一区二区三区久久| 日本黄色日本黄色录像| 91大片在线观看| 免费看a级黄色片| 高清毛片免费观看视频网站 | 777米奇影视久久| 国产无遮挡羞羞视频在线观看| 叶爱在线成人免费视频播放| 最新美女视频免费是黄的| 国产男靠女视频免费网站| 免费人妻精品一区二区三区视频| 亚洲自偷自拍图片 自拍| 人人妻人人爽人人添夜夜欢视频| 免费久久久久久久精品成人欧美视频| 人人妻,人人澡人人爽秒播| 亚洲人成电影观看| 美女国产高潮福利片在线看| 国产一区二区三区在线臀色熟女 | www.精华液| 日韩制服丝袜自拍偷拍| 99riav亚洲国产免费| 中文字幕精品免费在线观看视频| 久久久国产精品麻豆| www.熟女人妻精品国产| 99re在线观看精品视频| 99热国产这里只有精品6| 国产精品1区2区在线观看. | 又大又爽又粗| 老熟妇乱子伦视频在线观看| 狠狠婷婷综合久久久久久88av| 免费在线观看日本一区| 亚洲全国av大片| 最近最新免费中文字幕在线| 99国产精品一区二区三区| 国产欧美亚洲国产| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av香蕉五月 | netflix在线观看网站| 国产91精品成人一区二区三区 | 久久中文看片网| 久久久久久亚洲精品国产蜜桃av| 亚洲国产欧美日韩在线播放| 亚洲精品自拍成人| a级毛片黄视频| 国产精品一区二区在线观看99| 亚洲avbb在线观看| 欧美精品高潮呻吟av久久| 99精品久久久久人妻精品| 一级黄色大片毛片| 51午夜福利影视在线观看| 精品少妇久久久久久888优播| 久久精品熟女亚洲av麻豆精品| 亚洲人成伊人成综合网2020| 国产日韩欧美视频二区| 国产精品av久久久久免费| 我的亚洲天堂| 1024香蕉在线观看| 少妇的丰满在线观看| 亚洲 国产 在线| 亚洲人成电影观看| 亚洲欧美日韩另类电影网站| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 欧美黑人欧美精品刺激| 国产高清国产精品国产三级| 亚洲国产毛片av蜜桃av| 欧美黄色淫秽网站| 三上悠亚av全集在线观看| 这个男人来自地球电影免费观看| 一边摸一边抽搐一进一出视频| 黑丝袜美女国产一区| 免费在线观看日本一区| 十八禁网站网址无遮挡| 国产人伦9x9x在线观看| av欧美777| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 国产色视频综合| 老司机在亚洲福利影院| 日本精品一区二区三区蜜桃| 18禁裸乳无遮挡动漫免费视频| 狠狠精品人妻久久久久久综合| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区mp4| 最近最新中文字幕大全免费视频| 99国产精品一区二区三区| 黑丝袜美女国产一区| 日日夜夜操网爽| 久久中文看片网| 多毛熟女@视频| 亚洲精品在线观看二区| 亚洲国产av影院在线观看| 999久久久精品免费观看国产| 亚洲性夜色夜夜综合| 丁香六月欧美| 19禁男女啪啪无遮挡网站| 91大片在线观看| 久热这里只有精品99| 18禁裸乳无遮挡动漫免费视频| 日韩欧美国产一区二区入口| 亚洲国产av新网站| 黑人巨大精品欧美一区二区蜜桃| 日本wwww免费看| 欧美亚洲日本最大视频资源| 国产熟女午夜一区二区三区| 女人被躁到高潮嗷嗷叫费观| 日韩有码中文字幕| www.自偷自拍.com| 99久久国产精品久久久| 999久久久国产精品视频| 后天国语完整版免费观看| 女同久久另类99精品国产91| 超色免费av| 国产精品免费视频内射| 免费看十八禁软件| 建设人人有责人人尽责人人享有的| av超薄肉色丝袜交足视频| 成年人午夜在线观看视频| 国产伦人伦偷精品视频| 老司机深夜福利视频在线观看| 国产成人精品在线电影| 91九色精品人成在线观看| videosex国产| 大片免费播放器 马上看| 日韩三级视频一区二区三区| 国产av国产精品国产| 亚洲成av片中文字幕在线观看| 伦理电影免费视频| 免费在线观看完整版高清| 国产片内射在线| 精品一区二区三卡| 国产亚洲午夜精品一区二区久久| 女人高潮潮喷娇喘18禁视频| 电影成人av| 一本综合久久免费| 亚洲精品中文字幕一二三四区 | 一区二区三区精品91| 一二三四在线观看免费中文在| 男女下面插进去视频免费观看| 国产精品熟女久久久久浪| 91av网站免费观看| av电影中文网址| 久久中文字幕人妻熟女| 欧美性长视频在线观看| 亚洲黑人精品在线| 九色亚洲精品在线播放| 18在线观看网站| 日韩一区二区三区影片| 日本av免费视频播放| 欧美日韩黄片免| 欧美日韩视频精品一区| 亚洲专区中文字幕在线| 精品久久久久久电影网| 韩国精品一区二区三区| 99久久精品国产亚洲精品| 亚洲av成人不卡在线观看播放网| 性少妇av在线| 亚洲第一av免费看| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线 | 亚洲av成人一区二区三| 中文字幕人妻丝袜制服| 下体分泌物呈黄色| 99riav亚洲国产免费| 黄网站色视频无遮挡免费观看| 亚洲五月婷婷丁香| 美女视频免费永久观看网站| 免费在线观看黄色视频的| 亚洲精品国产区一区二| 欧美日韩一级在线毛片| 日韩欧美国产一区二区入口| 亚洲精品乱久久久久久| avwww免费| 久久久精品94久久精品| 国产精品二区激情视频| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密| 午夜日韩欧美国产| 欧美激情高清一区二区三区| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说 | 十八禁网站免费在线| 久久青草综合色| 欧美日本中文国产一区发布| 中文字幕高清在线视频| 国内毛片毛片毛片毛片毛片| 欧美精品啪啪一区二区三区| 一边摸一边抽搐一进一小说 | 亚洲熟妇熟女久久| 久久精品国产综合久久久| 极品教师在线免费播放| 色老头精品视频在线观看| av超薄肉色丝袜交足视频| 一边摸一边做爽爽视频免费| 69精品国产乱码久久久| 亚洲少妇的诱惑av| 亚洲精品国产一区二区精华液| 国产av一区二区精品久久| 成人18禁高潮啪啪吃奶动态图| 99re6热这里在线精品视频| 丁香六月欧美| 肉色欧美久久久久久久蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩成人在线一区二区| 久久久久久久国产电影| 两人在一起打扑克的视频| 亚洲国产毛片av蜜桃av| av一本久久久久| 精品乱码久久久久久99久播| 91精品国产国语对白视频| 99国产综合亚洲精品| 不卡av一区二区三区| 男女下面插进去视频免费观看| 久久国产精品影院| 欧美日韩视频精品一区| 午夜免费成人在线视频| 国产激情久久老熟女| 另类亚洲欧美激情| 亚洲色图综合在线观看| 亚洲av电影在线进入| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 色婷婷av一区二区三区视频| 国产淫语在线视频| 亚洲情色 制服丝袜| av有码第一页| 无限看片的www在线观看| 欧美精品人与动牲交sv欧美| 亚洲精品国产区一区二| 在线观看免费午夜福利视频| videos熟女内射| 婷婷丁香在线五月| kizo精华| 在线观看免费高清a一片| 欧美激情高清一区二区三区| 久久国产精品影院| 国产精品1区2区在线观看. | 操美女的视频在线观看| 男女无遮挡免费网站观看| 国产aⅴ精品一区二区三区波| 19禁男女啪啪无遮挡网站| 国产亚洲精品一区二区www | 成人18禁高潮啪啪吃奶动态图| 欧美日本中文国产一区发布| 亚洲专区字幕在线| 中亚洲国语对白在线视频| 亚洲精品在线美女| av片东京热男人的天堂| 久久亚洲精品不卡| 黄片播放在线免费| 免费高清在线观看日韩| 国产精品一区二区精品视频观看| 亚洲熟女精品中文字幕| 丝袜喷水一区| 多毛熟女@视频| 亚洲精品美女久久久久99蜜臀| 亚洲中文日韩欧美视频| 高清黄色对白视频在线免费看| 亚洲三区欧美一区| 热99re8久久精品国产| 国产精品麻豆人妻色哟哟久久| 黄色丝袜av网址大全| 欧美激情极品国产一区二区三区| 老司机深夜福利视频在线观看| 免费看十八禁软件| www.自偷自拍.com| 欧美中文综合在线视频| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影 | 丁香六月天网| 男女高潮啪啪啪动态图| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看人妻少妇| 成人18禁在线播放| 亚洲中文av在线| 色婷婷久久久亚洲欧美| 波多野结衣一区麻豆| 极品少妇高潮喷水抽搐| 黑人猛操日本美女一级片| 天堂动漫精品| 两性午夜刺激爽爽歪歪视频在线观看 | 91麻豆精品激情在线观看国产 | 黄片播放在线免费| 香蕉丝袜av| 日韩一区二区三区影片| 99久久精品国产亚洲精品| 两个人免费观看高清视频| 中文字幕av电影在线播放| 狠狠狠狠99中文字幕| 激情视频va一区二区三区| 操美女的视频在线观看| 国产91精品成人一区二区三区 | 一级,二级,三级黄色视频| 国产高清视频在线播放一区| 久久久久视频综合| 中文字幕人妻丝袜一区二区| 免费在线观看视频国产中文字幕亚洲| 日韩大码丰满熟妇| 国产精品影院久久| 成人18禁在线播放| 午夜福利在线免费观看网站| 一级黄色大片毛片| 日本撒尿小便嘘嘘汇集6| 久久久欧美国产精品| 少妇猛男粗大的猛烈进出视频| 精品福利永久在线观看| 999久久久国产精品视频| 美女扒开内裤让男人捅视频| 欧美日本中文国产一区发布| a级毛片黄视频| 中文字幕人妻熟女乱码| avwww免费| 国产免费视频播放在线视频| 欧美精品一区二区大全| 亚洲全国av大片| 亚洲欧洲日产国产| 久久久国产精品麻豆| 黄色成人免费大全| 日韩一卡2卡3卡4卡2021年| 国产av一区二区精品久久| 丝袜美足系列| 最新的欧美精品一区二区| 老熟女久久久| 久久影院123| 极品教师在线免费播放| 激情视频va一区二区三区| 国产成人欧美在线观看 | 欧美人与性动交α欧美精品济南到| 国产日韩欧美在线精品| 99精品在免费线老司机午夜| 亚洲av欧美aⅴ国产| 伊人久久大香线蕉亚洲五| 成人18禁在线播放| 99国产综合亚洲精品| 激情视频va一区二区三区| 可以免费在线观看a视频的电影网站| 99re6热这里在线精品视频| 欧美国产精品va在线观看不卡| 久久午夜亚洲精品久久| 亚洲国产看品久久| 亚洲精品av麻豆狂野| 日韩人妻精品一区2区三区| 国产精品影院久久| 久久国产精品人妻蜜桃| 51午夜福利影视在线观看| 成人av一区二区三区在线看| 高清av免费在线| 国产精品九九99| av免费在线观看网站| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 欧美性长视频在线观看| 在线观看免费午夜福利视频| 少妇被粗大的猛进出69影院| 国产亚洲精品一区二区www | 国产1区2区3区精品| 1024视频免费在线观看| 在线观看人妻少妇| 啦啦啦中文免费视频观看日本| 欧美精品人与动牲交sv欧美| av天堂在线播放| 人人澡人人妻人| 欧美在线一区亚洲| 久久人人97超碰香蕉20202| 国产片内射在线| 中文字幕人妻丝袜制服| 久久久久久久大尺度免费视频| 久久久精品94久久精品| 精品国产乱码久久久久久男人| 老司机靠b影院| 国产男女内射视频| 亚洲性夜色夜夜综合| 国产一区二区三区视频了| 国产精品久久电影中文字幕 | 久久精品成人免费网站| 午夜福利视频在线观看免费| 亚洲色图综合在线观看| 久久精品成人免费网站| 亚洲欧美色中文字幕在线| 91精品国产国语对白视频| 欧美亚洲 丝袜 人妻 在线| 啦啦啦免费观看视频1| 日日摸夜夜添夜夜添小说| 这个男人来自地球电影免费观看| 搡老岳熟女国产| 国产成人精品久久二区二区免费| 成人手机av| 欧美黑人精品巨大| 丰满少妇做爰视频| 69精品国产乱码久久久| 一进一出好大好爽视频| 老司机亚洲免费影院| 亚洲国产av新网站| www.999成人在线观看| 欧美日韩av久久| 十分钟在线观看高清视频www| 国产精品二区激情视频| 亚洲精品一卡2卡三卡4卡5卡| 一本—道久久a久久精品蜜桃钙片| 国产一区二区激情短视频| 一区二区三区激情视频|