• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of the Pacific-Japan Teleconnection Pattern on July Sea Fog over the Northwestern Pacific:Interannual Variations and Global Warming Effect

    2016-11-24 11:33:43JingchaoLONGSupingZHANGYangCHENJingwuLIUandGengHAN
    Advances in Atmospheric Sciences 2016年4期

    Jingchao LONG,Suping ZHANG?,Yang CHEN,Jingwu LIU,and Geng HAN

    1Physical Oceanography Laboratory,Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China,Qingdao 266100

    2Meteorological bureau of Quanzhou,Quanzhou 362000

    Impact of the Pacific-Japan Teleconnection Pattern on July Sea Fog over the Northwestern Pacific:Interannual Variations and Global Warming Effect

    Jingchao LONG1,Suping ZHANG?1,Yang CHEN1,Jingwu LIU1,and Geng HAN2

    1Physical Oceanography Laboratory,Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China,Qingdao 266100

    2Meteorological bureau of Quanzhou,Quanzhou 362000

    The northwestern Pacific(NWP)is a fog-prone area,especially the ocean east of the Kuril Islands.The present study analyzes how the Pacific-Japan(PJ)teleconnection pattern influences July sea fog in the fog-prone area using independent datasets.The covariation between the PJ index and sea fog frequency(SFF)index in July indicates a close correlation,with a coefficient of 0.62 exceeding the 99%confidence level.Composite analysis based on the PJ index,a case study,and model analysis based on GFDL-ESM2M,show that in high PJ index years the convection over the east of the Philippines strengthens and then triggers a Rossby wave,which propagates northward to maintain an anticyclonic anomaly in the midlatitudes, indicating a northeastward shift of the NWP subtropical high.The anticyclonic anomaly facilitates the formation of relatively stable atmospheric stratification or even an inversion layer in the lower level of the troposphere,and strengthens the horizontal southerly moisture transportation from the tropical-subtropical oceans to the fog-prone area.On the other hand,a greater meridional SST gradient over the cold flank of the Kuroshio Extension,due to ocean downwelling,is produced by the anticyclonic wind stress anomaly.Both of these two aspects are favorable for the warm and humid air to cool,condense,and form fog droplets,when air masses cross the SST front.The opposite circumstances occur in low PJ index years,which are not conducive to the formation of sea fog.Finally,a multi-model ensemble mean projection reveals a prominent downward trend of the PJ index after the 2030s,implying a possible decline of the SFF in this period.

    Pacific-Japan teleconnection,sea fog frequency,northwestern Pacific,global warming

    1.Introduction

    Sea fog is a weather phenomenon that occurs over oceans and coastal regions wherein tiny water droplets sustain in the atmospheric boundary layer and cause atmospheric horizontal visibility of less than 1 km.Sea fogs influence offshore activities,maritime routes,and port operations.Besides,the coverage of low-level cloud,including sea fog,plays a significant role in the energy balance of the global climate system (Norris and Leovy,1994;Clement et al.,2009).

    Previous researches indicate that sea fogs may occur over the cold Yellow Sea surface under the conditions of plentiful moisture supply and stable atmospheric stratification(Wang, 1983;Hu and Zhou,1997;Gao et al.,2007,2010;Zhang and Bao,2008;Zhang et al.,2009).Besides,the transition of marine stratus cloud into fog,forced by subsidence from the Pacific high near the Californian coast,was proven by Koraˇcin et al.(2001).Climatologically,the sea fog frequency (SFF)over China's adjacent seas is characterized by prominent seasonal variation,which Zhang et al.(2009)comprehensively analyzed.On the interannual timescale,the variation in foggy days is controlled by the monsoon circulation anomaly in spring and summer in the Yellow Sea(Zhang et al.,2005;Wang et al.,2006).

    The midlatitude region of the northwestern Pacific (NWP)is highly foggy.The maximum annual mean SFF is 23%(Fu and Song,2014),reaching its peak in July(Zhang et al.,2014a).Sugimoto et al.(2013)indicated that an intensified Okhotsk high and southward shrinking of the northern Pacific subtropical high(NPSH)are responsible for low SFF at Kushiro,Hokkaido,in July.Zhang et al.(2014a)suggested the primary controller of SFF in the NWP is the position and orientation of the NPSH.Yet,the mechanisms involved in the interannual variations of the atmospheric circulations associated with SFF are not well understood.

    The Pacific-Japan(PJ),or East Asia-Pacific(EAP),teleconnection pattern is an important atmospheric bridge con-necting the tropical and midlatitude atmosphere.It is triggered by an SST anomaly in the western Pacific warm pool and maintained by the dispersive energy of a quasi-stationary Rossby wave(Nitta,1987;Huang and Li,1987;Huang, 1990;Lu and Huang,1998;Kosaka and Nakamura,2006, 2008,2010,2011).The PJ pattern can influence the atmospheric circulation,large-scale vertical motion,and moist static stability(Weaver and Ramanathan,1997),which may affect the SFF in the NWP.Zhang et al.(2009)found that the phase of the PJ plays an important role in the ending of the fog season in August in the Yellow Sea.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    In this study,we investigate the impact of the PJ pattern on SFF,with a focus on the atmospheric circulation over the NWP.The paper is organized as follows:A brief description of the datasets used and some definitions is provided in section 2.Section 3 introduces the seasonal and interannual variations of the SFF.Section 4 presents composite analyses, case study and model analysis based on GFED-ESM2M.In section 5,we provide a projection of the PJ index and SFF under global warming conditions.The paper concludes with a summary and discussion in the final section.

    2.Data and method

    Thesurface-basedobservationsofvisibilityfromICOADS during 1981 to 2005 were used to obtain the SFF(Woodruff et al.,2011).The sounding data at Kushiro were obtained from the University of Wyoming(http://weather.uwyo.edu/ upperair/sounding.html),andunifiedto30-mvertical-interval boxes for calculation and drawing.Ocean temperature and velocity(1981-2005)were obtained from SODA(TAMU Research Group,2014)(Carton and Giese,2008)at a horizontal resolution of 0.5?×0.5?and 40 vertical levels with 10-m spacing near the surface(1981-2005).Climate Forecast System Reanalysis data(CFSR)for the period 1981-2005, with a horizontal resolution of 0.5?×0.5?,were applied in the analyses of cloud liquid water mixing ratio(CLWMR), geopotential height,air temperature,and winds(http:// nomads.ncdc.noaa.gov/modeldata/cmd pgbh/;Saha et al., 2010).These data include 12 vertical levels below 700 hPa and are capable of characterizing the marine atmospheric boundary layer(MABL)under different circulation conditions.The SST data(1981-2005),on a 2?grid,were from ERSST.v3b(http://www.esrl.noaa.gov/psd/)(Xue et al.,2003; Smith et al.,2008).Data from CMIP5 were also used,including the following:the historical simulation data[precipitation,3D wind,geopotential height,air temperature,cloud liquid water(CLW),and SST]for the period 1951-2005 from GFDL-ESM2M(Dunne et al.,2012),for analyzing the relationship between precipitation over the east of the Philippines,the PJ pattern,and sea fog in the fog-prone area[horizontal resolution of 2.5?lat×2?lon,global grids (144×90),and 17 levels in the vertical direction];data from MIROC-ESM,CanESM2,GFDL-ESM2G,GFDL-ESM2M, CCSM4,CNRM-CM5,MIROC5,andMRI-CGCM3,including their historical and RCP4.5 experiments-used to project the possible trend of the PJ index under global warming. We interpolated the model data to a 2.5?×2.5?horizontal resolution,following NCEP-NCAR data.The PJ pattern is reproduced well by these CMIP5 models(figure not shown), comparative to the findings of Kosaka and Nakamura(2011) using CMIP3.

    In this study,a fogaWhen the visibility in an observational report in a certain grid is less than 1 km(the code of VV is 90-94 in ICOADS)and there is neither rainfall nor snow at the same time,we defined this as a sea fog event in this grid.ICOADS data are not routinely collected,since the number of ships,buoys,and other platforms available change with time.To avoid this uncertainty,we defined the relative frequency of sea fog occurrence(SFF).The NWP was meshed into a 1?×1?grid to calculate the SFF.event was defined as when the visibility was less than 1000 m(excluding precipitation and dust), according to ICOADS.The relative SFF in the grid of 1?×1?over the NWP was calculated by

    where Nfogis the number of fog events and Nobsis the total number of observations(Zhang et al.,2014a).We defined the ocean east of the Kuril Islands(40?-50?N,145?-165?E) as the climatological fog-prone area(hereinafter,fog-prone area),where the SFF is basically greater than 15%(Fig.1). The time series of the SFF in each July from 1981 to 2005 in the fog-prone area is defined as the SFF index.

    According to Kosaka(2013,personal communication), the PJ pattern can be obtained by regressing vorticity or geopotential height anomalies onto the PJ index,which is extracted from the first principal component(PC1)of the EOF for the monthly meridional pressure gradient force at 850 hPa over the NWP(0?-60?N,100?-160?E),

    in whichφand u represent geopotential height and zonal wind velocity at 850 hPa,respectively;f is the geostrophic parameter and y denote meridional direction.

    3.Relationship between SFF and the PJ pattern over the NWP

    The climatological annual mean SFF in the NWP is characterized by a zonally elongated band with a maximum up to 21%in the fog-prone area located over the cold flank of the Kuroshio Extension(KE)(Fig.1).The seasonal variations of the SFF are remarkable,with more fog in summer than in winter and a peak in July(Fig.1).

    The regressions of geopotential height and the wind anomaly at 850 hPa in July onto the PJ index show that there are three anomalous centers-in the ocean east of the Philippines,southeast of Japan,and in the Okhotsk Sea(Fig.2a)-in agreement with the pattern proposed by Nitta(1987)and Huang and Li(1987).The fog-prone area is situated just between the two anomalous centers of the PJ pattern(the rectangle in Fig.2a).In Fig.2b,both the PJ index and the SFFindex in July exhibit a prominent interannual variability,with a correlation coefficient of 0.62 exceeding the 99%significant level.When the PJ index keeps in its positive phase,the convection over the tropical ocean east of the Philippines is stronger,which is conducive to the formation of a positive phase of the PJ pattern.Controlled by such a PJ pattern,the pressure pattern and associated southerly wind anomaly are favorable for fog formation;this is discussed in detail in the following sections.

    Fig.1.Climatological distribution of annual SFF(%)over the NWP(color scale),climatological SST(contours;?C),and the SFF seasonal variation(bottom right)in the fog-prone area(blue rectangle in the figure),based on ICOADS.Schematic flow patterns of the Kuroshio and its extension are shown by the meandering red vector.

    Fig.2.(a)Regressions of geopotential height anomalies(contours;gpm)and wind anomalies(vectors;m s?1)at 850 hPa in July onto the PJ index from 1981 to 2005(gray shading denotes the 90%confidence level for the geopotential height anomaly).(b)Interannual variation of PJ index and SFF index in the fog-prone area in July(the blue rectangle is the same as in Fig.1).

    4.Comparison between high and low PJ index years

    To further investigate the impacts of the PJ pattern on atmospheric circulation and hence the SFF,a composite analysis was performed.As shown in Fig.2b,1981,1984,1989, 1994,1997,1999,2000 and 2002 can be classified as high PJ index years(normalized PJ index of greater than 0.6)(hereinafter,HI years);and 1983,1986,1987,1988,1991,1993, 1998 and 2003 as low PJ index years(normalized PJ index of less than 0.6)(hereinafter,LI years).

    4.1.Difference at the near-surface level

    In HI years,the NPSH shifts northeastward,strengthening the southerly moisture flux over the fog-prone area (Fig.3a).However,the NPSH is narrow and extends southwestward in LI years;the easterly wind weakens the moisture flux(Fig.3b).Most of the moisture converges along the north flank of the NPSH over the south of the fog-prone area.The static stability at the low level(θ975hPa-θ1000hPa)is strongerin HI years than in LI years.The difference between HI years and LI years exhibits a PJ-like pattern in the geopotential height field with three anomalous centers(?,+,?,from south to north;Fig.3c).The characteristics of the quasistationary Rossby wave are revealed by the wave-activity flux,defined by Takaya and Nakamura(2001).The southerly wind anomalies over the fog-prone area may lead to stronger warm advection,creating a more stable stratification in the low-level atmosphere.

    Fig.3.Composite map of(a)HI years,(b)LI years,and(c) the difference between HI years and LI years at 1000 hPa: geopotential height(contours;gpm),low level static stability (θ975hPa-θ1000hPa;shading;K),moisture flux(black vectors; kg m?1s?1),and wave-activity flux at 850 hPa(blue vectors; m2s?2),with scaling in the bottom right of(c).The area circled by the purple contours represents statistical significance at the 90%confidence level,based on the Student's t-test.The blue rectangle is the same as in Fig.1.

    The SST(SAT;surface air temperature)in HI years is about 0.8?C(1.5?C)higher than in LI years over the north flank of the KE,with southerly wind anomalies(Fig.4a).The difference between SAT and SST,i.e.,SAT-SST,is adopted to denote the stability of the air-sea interface.The spatial pattern of the difference in SAT-SST between HI years and LI years(Fig.4b)resembles that of the low-level static stability in Fig.3c.The greater values of SAT-SST imply greater stability at the air-sea interface.This configuration,along with the low-level stability,facilitates a damping of the development of turbulence farther upward,which is favorable for the maintenance of fog in the fog-prone area.

    The fog-prone area lies at the north flank of the KE,with sharp changes in SST(Fig.1).The difference in the meridional SST gradient between HI years and LI years shows that the SST front,which develops between the KE and Oyashio current with a sharp SST gradient,is stronger in HI years than in LI years(Fig.4b).Since sea fogs over this area in July are advection cooling fogs that form when a warmer air mass flows over a colder sea surface and the air temperature decreases to the dew point(Wang,1983),a sharp SST gradient will be favorable for air-mass cooling and hence fog formation(Klein and Hartmann,1993;Li and Zhang,2013).The reinforcement of the meridional SST gradient over the cold flank of the KE is likely to result from the increase in SST over the KE,which may be caused by the ocean downwelling associated with the anticyclonic wind stress anomaly(shown in Fig.4c).A longitude-depth section of sea temperature and ocean vertical motion confirms that the stronger downwelling will lead to a warmer sea temperature under an anticyclonic wind stress anomaly in HI years(Figs.4c and d).

    4.2.Difference in vertical structure in the MABL

    Figures5aandbshowthatthedepthoftheMABLisshallow at the cold flank of the SST front,and the strengthened vertical gradient of the virtual potential temperature implies thefrequentoccurrenceoftemperatureinversionscappingthe MABL.Over the SST front and its warm flank,virtual potential temperature is relatively uniform under 950 hPa,indicating a well-mixed MABL.The CLWMR is used to represent the fog or cloud.

    In HI years,the stable atmospheric stratification and low MABL over the northern edge of the NPSH produces more horizontal motion;the southerly winds march to 50?N,taking more humid and warmer air to the fog-prone area below 920 hPa.The CLWMR is horizontally distributed with its peak around 960 hPa over the SST front and to its north(Fig. 5a).Whereas,the southerly wind in LI years,with an obvious ascending motion,results in the higher MABL and the rise of the maximum center of CLWMR to 940 hPa,which is probably related to low-level clouds(Fig.5b).The averaged vertical profiles at Kushiro(the location is shown in Fig.6b) in July 2010(typical HI;Fig.5d)and in July 2013(typical LI;Fig.5e)further clarify the difference.In July 2010,the temperature and virtual potential temperature(VPT)profiles show an inversion layer below 300 m.The VPT increases with height,indicating stable stratification in the low-level atmosphere,which results from the configuration of southerly wind below 800 m and westerly wind in the upper layer.The southerly wind in the low-level atmosphere is conducive to the transport of more moisture northward,consistent with Fig.5a.However,the atmospheric stratification is unstable in the low-level atmosphere in July 2013,which is possibly associated with counterclockwise changes in wind direction,from southeasterly at around 400 m to easterly at around 800 m.

    Fig.4.Difference between HI years and LI years:(a)SST(color scale;?C),SAT(green contours;?C)and wind(vectors;m s?1)at 1000 hPa,with scaling in the bottom right;(b)air temperature at 2 m minus SST (color scale)and meridional SST gradient(black contours at 0.8 K km?1intervals,±0.8,±1.6,±2.4);(c) ocean vertical motion averaged from the sea surface to 50 m(color scale;m s?1)and wind stress(vectors; N m?2);(d)longitude-depth section of sea temperature(color scale;K),zonal(m s?1)and vertical velocity (10?4m s?1),averaged from 35?to 45?N.The difference fields above show statistical significance at the 90%confidence level,based on the Student's t-test.The rectangle is the same as in Fig.1.

    In HI years,the positive SAT-SST corresponds to a low and stable MABL,with the CLWMR base close to the sea surface,indicating more fog(Fig.5a).The positive SATSST results from the even larger increase in SAT associated with warm advection(Fig.5a),in spite of the warmer SST in HI years(Fig.5c).In LI years,the weaker warm advection leads to SAT-SST below or near 0?C,which brings about an unstable air-sea interface that facilitates the lift of the MABL and the level of the maximum CLWMR(Fig.5b).The difference between HI years and LI years shows that a positive CLWMR near the sea surface is capped by a warmer potential temperature anomaly(Fig.5c).The peak of the SAT-SST is not collocated with the maximum of the potential temperature,but is shifted to the north by about 2?,probably as a result of advection by the southerly wind in HI years(Fig. 5c).

    The northeasterly migration of the NPSH in HI years enhances the southerly advection,which is conducive to more moisture transportation and a more stable and lower MABL. On the other hand,the NPSH anomaly favors heating of the SST over the warm flank of the SST front,via downwelling forcing,producing a stronger SST gradient.All of these factors facilitate the generation of sea fog.

    Fig.6.Fog case:(a)Synoptic map.Geopotential height(thick black contours represent 1016 hPa;contours with intervals of 2 hPa)and wind(arrows)at 1000 hPa.The trajectories are represented by red,blue and green lines at 10 m,300 m and 1000 m,respectively.An overview of atmospheric circulation over the NWP is shown in the top left, and the red rectangle denotes the detail shown in the main part of the panel.(b)Multifunctional Transport Satellites (MTSAT)MTSAT visible cloud image at 0000 UTC 30 July.(c)Backward trajectories.Asterisks represent the starting point of the backward tracking.Meters MSL:height,THETA:potential temperature,RELHUMID:relative humidity. (d)Sounding at Kushiro at 0000 UTC 30 July,virtual potential temperature(solid line with black dots;K),temperature (solid line;?C),dewpoint(dashed line,?C),RH(dotted line;%),and horizontal wind(arrows;m s?1).

    4.3.Case study

    To confirm the results from the climatological analysis, we investigated a fog event(30-31 July 2014)and a nonfog event(23 July 2013)in the fog-prone area,based on ICOADS.HYSPLIT(version 4)was used to operate the backward tracing of the air parcels.For the fog event,Fig. 6b shows sea fog covered the ocean to the southeast of Hokkaido.The large-scale circulation pattern was positive-PJ-like(inserted in Fig.6a),and the fog-prone area was controlled by an anticyclonic circulation with southerly wind and stable stratification(Figs.6a and d).The backward tracing of the air parcels shows that the parcels at 10 m,300 m and 1000 mcamefromsouthofthestartlocation[(43?N,147?E);asterisks in Fig.6a],indicating the influence a deep Pacific high. The potential temperature(PT)maintained at 295 K and the RH at 10 m increased from 70%to 85%when the air parcel was over the KE,implying a possible contribution of the KE to maintaining the high temperature and humidity(Zhang etal.,2014a).Meanwhile,the PT decreased rapidly to 288 K once it had flowed across to the north flank of the KE,and the RH reached 91%,suggesting the possibility of fog occurrence.

    For the non-fog case,Fig.7a shows that the fog-prone area was controlled by a cyclone with northeasterly wind and unstable stratification(Figs.7a and d),favorable for cloud (Fig.7b).The large-scale circulation pattern in this case was negative-PJ-like(inserted in Fig.7a).The trajectory analyses show that the PT at 10 m was almost equal to,or even higher than,that at 300 m,suggestive of weakened stratification in the MABL over the cyclone.The PT dropped remarkably owing to the sharp front,while the RH almost reached saturation from near the sea surface to 1000 m,indicating a deep cloud layer.

    The above results imply that the atmospheric circulation and KE front play different roles in the formation of sea fog. The former determines the favorable wind direction and stable atmospheric stratification,while the latter is conducive to maintaining high temperature and humidity and,hence,condensation to fog droplets,after moving across the SST front, which is basically in agreement with the climatological results.

    4.4.Analysis based on GFDL-ESM2M

    GFDL-ESM2M was used to analyze the atmospheric response to changes in the PJ pattern.Since the PJ pattern is maintained by the dispersive energy of the quasi-stationary Rossby wave triggered by the enhanced anomalous convection over the east of the Philippines(Nitta,1987;Huang and Li,1987;Kosaka and Nakamura,2006),the normalized regional mean(15?-25?N,145?-160?E)precipitation was used to define enhanced(weakened)convection years,with a value greater than 1.4(less than?1.4),from which the composite analysis was made.In enhanced convection years,the intensified precipitation over the ocean east of the Philippines results in a negative stream function anomaly at 850 hPa,and triggers prominent wave activity flux propagating from the convective zone to the anticyclonic anomaly in the midlatitudes(Fig.8c).At 200 hPa,the anticyclonic anomaly in the midlatitudes is also remarkable,but shifts to the north slightly,indicating a barotropic anticyclone(Figs.8a and c),i.e.,a PJ pattern consistent with Huang and Li(1987) and Kosaka and Nakamura(2006).The CLW anomaly near the sea surface,capped with a positive PT anomaly,denotes greater sea fog occurrence,when the convection strengthens over the east of the Philippines(Fig.8e).In weakened convection years,anomalous atmospheric circulation is opposite compared with enhanced convection years(Figs.8b and d). A northerly wind anomaly and unstable atmospheric stratification are dominant in the MABL(Fig.8f),which are unfavorable for the formation of sea fog.All of these features are in agreement with the results from the reanalysis data and indicate that the model can simulate the PJ pattern and reflectits physical relations with sea fog in the fog-prone area.

    Fig.8.Composited anomalies of(a)stream function and wave activity flux at 200 hPa,(c) stream function,wave activity flux at 850 hPa(blue arrows with blue scaling in the bottom right)and precipitation(green contours),(e)latitude-height section of potential temperature (contours;interval of 0.2 K),CLW(color scale),meridional wind(m s?1)and vertical velocity (?10?2hPa s?1)vectors,with black scaling in the bottom right in(d)and SST,averaged from 150?E to 155?E,in enhanced convection(high PJ index)years.The composited anomalies in weakened convection(low PJ index)years are shown in(b,d and f).The gray shading,precipitation contours and synthetic fields above show statistical significance at the 95%confidence level,based on the Student's t-test.

    5.Possible trend of the PJ index and SFF under global warming conditions

    Based on the relations between the SFF and PJ index discussed above,we projected the possible trend of the PJ index and SFF under global warming conditions using eight models under the RCP4.5 scenario.

    The multi-model ensemble(MME)mean projection of the PJ index in the eight models reveals an obvious declining trend,statistically significant at the 99%confidence level, from the 2030s to the end of the 21st century(Fig.9).During the 2030s and 2050s,the frequency of the positive phase of the PJ index is higher than that of the negative phase.After 2060,the negative phase increases,implying weakened convection over the ocean east of the Philippines and thus lower SFF in the fog-prone area.The Student's t-test shows the difference in the PJ index between 2030-2050 and 2060-2100 exceeds the 99%confidence level.The shift is similar to the projection of the EAP index in the SRES A1B experiment in IPCC AR4 models(Huang and Qu,2009).Such a change in phase of the PJ pattern may decrease the SFF over the fog-prone area by the end of the 21st century,which is in agreement with our results.

    6.Summary and discussion

    The midlatitudes of the NWP is a highly foggy area,especially the ocean east of the Kuril Islands in July.In this study,we investigated the influences of the PJ pattern on sea fog over the fog-prone area in July and discussed the possible trend of the PJ pattern and the associated SFF under the conditions of global warming using eight models.

    Composite analysis,a case study,and analysis based on GFDL-ESM2M showed that,in HI years,the convective activity over the east of the Philippines strengthens,which triggers a Rossby wave to propagate northward and the maintenance of an anticyclone anomaly in the midlatitudes.In the geopotential height field,the NPSH shifts northeastward,strengthening the southerly wind and moisture flux over the fog-prone area.Under the influence of the northern edge of the NPSH,the atmospheric stratification in the lower troposphere is relatively stable.The reinforced horizontal southerly winds enhance the warm advection in the lower atmosphere,resulting in a stronger inversion layer over the cold flank of the SST front and a stable air-sea interface,providing favorable atmospheric conditions for fog formation.Thegreater meridional SST gradient over the cold flank of the KE,which results from the warming in the KE due to ocean downwelling forced by the anticyclonic wind stress anomaly, is conducive to a cooling and condensing of the warm and humid air to form fog droplets,when air masses cross the SST front.InlowPJindexyears,theoppositesetofcircumstances exists,which is unfavorable for the formation of sea fog.

    Fig.9.Normalized PJ index in eight models under the RCP4.5 scenario from 2006 to 2099.The black bold line and red trend line denote the MME mean and linear trend in the period 2037-99, respectively.

    Fig.10.Regressions of the SST(color scale;?C)and wind anomalies at 1000 hPa[vectors, with scaling in the top left in(c)]onto the SFF index from 1981 to 2005:(a)preceding winter (December-February);(b)spring(March-May);(c)summer(June-August).The dotted areas denote statistical significance at the greater than 90%confidence level.The green circles represent the cyclonic and anticyclonic surface circulation anomalies,and the rectangle is the same as in Fig.1.

    Previous research suggests that the PJ wave train is associated with remote anomalous SST forcing(Xie et al.,2009; Kosaka and Nakamura,2010).The regressions of the SST and wind anomalies in the preceding winter onto the SFF index show that high SFF is more likely to occur in the subsequent summer of La Ni?na-like events(Fig.10).The SST cooling in the tropical mid-eastern Pacific in La Ni?na-like winters can result in the decreases in SST in the following spring-summer in the northern Indian Ocean through the“capacitor effect”,which triggers the positive phase of the PJ pattern,according to previous studies.Thus,the SFF might be projected by the phase of the PJ pattern as well as the changes in SST in the tropical mid-eastern Pacific.So,the projection of SST rising notably over the tropical eastern Pacific in the 21st century(Lu et al.,2008;Zhang et al.,2014a) also supports the possibility of a high frequency in the negative phase of the PJ index.It is worth noting that rainfall, associated with the cyclonic anomaly,may increase over the ocean east of the Kuril Islands,and there may be a decrease in atmospheric stability(corresponding to a negative PJ pattern) under global warming conditions,based on the“warmer-getwetter”theory(Xie et al.,2010),which is highly compatible with our results.

    The present work focused mainly on the impact of the PJ pattern,with the signal coming from the tropical SST anomaly.A number of other influences were not considered in this study,such as the“Silk Road”pattern(Kosaka et al., 2009;Kosaka and Nakamura,2011),forcing by local SST, and intraseasonal variation in the PJ pattern,all of which may also play a role in the formation of sea fog.These aspects constitute the next step in our research.

    Acknowledgements.The authors wish to thank Prof.Shang-Ping XIE for his constructive suggestions,and Dr.Yi LI,Wen-Xiu ZHONG,and Lei WANG for their helpful discussions.The authors arethankfulto thetwoanonymousreviewersfor theircomments and suggestions.The dataset was from the Earth System Grid Federation,CISL Research Data Archive.This work was supported by a“973”project(Grant No.2012CB955602)Natural Science Foundation of China and the Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401),and the NSFC(Grant No. 41175006),J.W.Liu was supported by the Fundamental Research Funds for the Central Universities.

    REFERENCES

    Carton,J.A.,and B.S.Giese,2008:A reanalysis of ocean climate using Simple Ocean Data Assimilation(SODA).Mon.Wea. Rev.,136,2999-3017.

    Clement,A.C.,R.Burgman,and J.R.Norris,2009:Observational and model evidence for positive low-level cloud feedback.Science,325,460-464.

    Dunne,J.P.,and Coauthors,2012:GFDL's ESM2 global coupled climate-carbon earth system models.Part I:physical formulation and baseline simulation characteristics.J.Climate,25, 6646-6665.

    Fu,G.,and Y.J.Song.,2014:Climatology characteristics of sea fog frequency over the Northern Pacific.Periodical of Ocean University of China,44,35-41.(in Chinese)

    Gao,S.H.,H.Lin,B.Shen,andG.Fu,2007:Aheavyseafogevent over the Yellow Sea in March 2005:Analysis and numerical modeling.Adv.Atmos.Sci.,24,65-81,doi:10.1007/s00376-007-0065-2.

    Gao,S.H.,S.B.Zhang,Y.L.Qi,and G.Fu,2010:Initial conditions improvement of sea fog numerical modeling over the Yellow Sea by using cycling 3DVAR-Part II:RAMS numerical experiments.Periodical of Ocean University of China,40, 1-10,18.(in Chinese)

    Hu,R.J.,and F.Zhou,1997:A numerical study on the effects on air sea conditions on the process of sea fog.Journal of Ocean University of China,27,282-290.(in Chinese)

    Huang,G.,and X.Qu,2009:Meridional location of west pacific subtropical high in Summer in IPCC AR4 simulation.Transactions of Atmospheric Sciences,32,351-359.(in Chinese)

    Huang,R.H.,1990:Studies on the teleconnections of the general circulation anomalies of East Asia causing the summer droughtandfloodinChinaandtheirphysicalmechanism.Scientia Atmospheric Sinica,14,108-117.(in Chinese)

    Huang,R.H.,and W.J.Li,1987:Influence of the anomaly of heat source over the northwestern tropical Pacific for the subtropical high over East Asia.Proc.International Conf.on the General Circulation of East Asia,April 10-15,1987,Chengdu, China,40-45.

    Klein,S.A.,and D.L.Hartmann,1993:The seasonal cycle of low stratiform clouds.J.Climate,6,1587-1606.

    Koraˇcin,D.,J.Lewis,and W.T.Thompson,2001:Transition of stratus into fog along the California coast:observations and modeling.J.Atmos.Sci.,58,1714-1731.

    Kosaka,Y.,and H.Nakamura,2006:Structure and dynamics of the summertime Pacific-Japan teleconnection pattern.Quart. J.Roy.Meteor.Soc.,132,2009-2030.

    Kosaka,Y.,and H.Nakamura,2008:A comparative study on the dynamics of the Pacific-Japan(PJ)teleconnection pattern based on reanalysis datasets.SOLA,4,9-12.

    Kosaka,Y.,and H.Nakamura,2010:Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone.Part II:A global survey.J.Climate,23,5109-5125.

    Kosaka,Y.,and H.Nakamura,2011:Dominant mode of climate variability,intermodel diversity,and projected future changes over the summertime Western North Pacific simulated in the CMIP3 models.J.Climate,24,3935-3955.

    Kosaka,Y.,H.Nakamura,M.Watanabe,and M.Kimoto,2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations.J.Meteor.Soc.Japan, 87,561-580.

    Li,M.,and S.P.Zhang,2013:Impact of sea surface temperature front on stratus-sea fog over the Yellow and East China Seas-A case study with implications for climatology.Journal of Ocean University of China,12,301-311.

    Lu,R.Y.,and R.H.Huang,1998:Influence of East Asia/Pacificteleconnection pattern on the interannual variations of the blocking highs over the Northeastern Asia in summer.Scientia Atmospheric Sinica,22,727-734.(in Chinese)

    Lu,J.,C.Gang,and D.M.W.Frierson,2008:Response of the zonal mean atmospheric circulation to El Ni?no versus global warming.J.Climate,21,5835-5851.

    Nitta,T.,1987:Convective activities in the tropical Western Pacific and their impact on the northern Hemisphere summer circulation.J.Meteor.Soc.Japan,65,373-390.

    Norris,J.R.,and C.B.Leovy,1994:Interannual variability in stratiform cloudiness and sea surface temperature.J.Climate, 7,1915-1925.

    Saha,S.,and Coauthors,2010:The NCEP climate forecast system reanalysis.Bull.Amer.Meteor.Soc.,91,1015-1057.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Lawrimore, 2008:Improvements to NOAAs historical merged land-ocean temp analysis(1880-2006).J.Climate,21,2283-2296.

    Sugimoto,S.,T.Sato,and K.Nakamura,2013:Effects of synoptic-scale control on long-term declining trends of summer fog frequency over the pacific side of Hokkaido Island.J. Appl.Meteor.and Climatol.,52,2226-2242.

    Takaya,K.,and H.Nakamura,2001:A formulation of a phaseindependent wave-activity flux for stationary and migratory quasi geostrophic eddies on a zonally varying basic flow.J. Atmos.Sci.,58,608-627.

    TAMU Research Group,cited 2014:SODA 2.2.4.[Available online at http://sodaserver.tamu.edu/assim/SODA 2.2.4/]

    Wang,B.H.,1983:Sea Fog.China Ocean Press,Beijing,352 pp. (in Chinese)

    Wang,X.,F.Huang,and X.Zhou,2006:Climatic characteristics of sea fog formation of the Huanghai Sea in summer.Acta Oceanologica Sinica,28,26-34.(in Chinese)

    Weaver,C.P.,and V.Ramanathan,1997:Relationships between large-scale vertical velocity,static stability,and cloud radiative forcing over Northern Hemisphere Extratropical Oceans. J.Climate,10,2871-2887.

    Woodruff,S.D.,and Coauthors,2011:ICOADS Release 2.5:Extensions and enhancements to the surface marine meteorological archive.Int.J.Climatol.,31,951-967.

    Xie,S.P.,K.M.Hu,Jan Hafner,H.Tokinaga,Y.Du,G.Huang, and T.Sampe,2009:Indian Ocean capacitor effect on indowestern Pacific climate during the summer following El Ni?no. J.Climate,22,730-747.

    Xie,S.P.,C.Deser,G.A.Vecchi,J.Ma,H.Y.Teng,and A.T. Wittenberg,2010:Global warming pattern formation:Sea surface temperature and rainfall.J.Climate,23,966-986.

    Xue,Y.,T.M.Smith,and R.W.Reynolds,2003:Interdecadal changes of 30-Yr SST normals during 1871-2000.J.Climate, 16,1601-1612.

    Zhang,S.P.,and X.W.Bao,2008:The main advances in sea fog research in China.Periodical of Ocean University of China, 38,359-366.(in Chinese)

    Zhang,H.Y.,F.X.Zhou,and X.H.Zhang,2005:Interannual change of sea fog over the Yellow Sea in spring.Oceanologia et Limnologia Sinica,36,36-42.(in Chinese)

    Zhang,S.P.,S.P.Xie,Q.Y.Liu,Y.Q.Yang,X.G.Wang,and Z. P.Ren,2009:Seasonal variations of yellow sea fog:Observations and mechanisms.J.Climate,22,6758-6772.

    Zhang,S.P.,Y.Chen,J.C.Long,and G.Han,2014a:Interannual variability of sea fog frequency in the Northwestern Pacific in July.Atmos.Res.,151,189-199.

    Zhang,S.P.,J.C.Long,Y.J.Yin,W.Y.Yang,and W.B.Yang, 2014b:Analysis of the process of a local sea fog lifted into low cloud in eastern China.Periodical of Ocean University of China,44,1-10.(in Chinese)

    Long,J.,S.Zhang,Y.Chen,J.Liu,and G.Han,2016:Impact of the Pacific-Japan teleconnection pattern on July sea fog over the northwestern Pacific:Interannual variations and global warming effect.Adv.Atmos.Sci.,33(4),511-521,

    10.1007/s00376-015-5097-4.

    16 April 2015;revised 2 October 2015;accepted 20 October 2015)

    ?Suping ZHANG

    Email:zsping@ouc.edu.cn

    国产91精品成人一区二区三区| 国产成人av教育| 巨乳人妻的诱惑在线观看| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 国产精品久久久人人做人人爽| 97人妻天天添夜夜摸| 在线播放国产精品三级| 18禁裸乳无遮挡免费网站照片 | 夜夜夜夜夜久久久久| 国产成人精品无人区| av视频免费观看在线观看| 亚洲成人免费电影在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲精华国产精华精| 久久久久亚洲av毛片大全| 午夜日韩欧美国产| 亚洲成a人片在线一区二区| 亚洲黑人精品在线| 久久狼人影院| 国产乱人伦免费视频| 精品第一国产精品| 久久午夜亚洲精品久久| 女生性感内裤真人,穿戴方法视频| 精品久久久久久,| 一级黄色大片毛片| 91在线观看av| 国产精品 欧美亚洲| 国产熟女午夜一区二区三区| 十八禁网站免费在线| 男女下面进入的视频免费午夜 | 国产成人av教育| 啦啦啦在线免费观看视频4| 十分钟在线观看高清视频www| 少妇裸体淫交视频免费看高清 | 国产欧美日韩一区二区三区在线| 久久香蕉精品热| 国产成+人综合+亚洲专区| 丝袜美足系列| 色综合婷婷激情| 亚洲国产欧美网| av电影中文网址| 99久久99久久久精品蜜桃| 久久 成人 亚洲| 中文字幕高清在线视频| 国产激情欧美一区二区| 淫妇啪啪啪对白视频| 后天国语完整版免费观看| 十八禁人妻一区二区| 国产黄a三级三级三级人| 亚洲自拍偷在线| 亚洲五月色婷婷综合| 久久人妻av系列| 久久精品亚洲av国产电影网| 啪啪无遮挡十八禁网站| 欧美日韩亚洲综合一区二区三区_| 免费在线观看完整版高清| 国产又色又爽无遮挡免费看| 老司机深夜福利视频在线观看| 十分钟在线观看高清视频www| 欧美在线一区亚洲| 美女高潮喷水抽搐中文字幕| 亚洲伊人色综图| 欧美日韩瑟瑟在线播放| 久9热在线精品视频| 黑丝袜美女国产一区| 久久亚洲精品不卡| 亚洲精品国产区一区二| 中文字幕高清在线视频| 夫妻午夜视频| 午夜老司机福利片| 免费搜索国产男女视频| 亚洲熟妇中文字幕五十中出 | 国产aⅴ精品一区二区三区波| 制服诱惑二区| 欧美激情高清一区二区三区| 国产真人三级小视频在线观看| 精品一区二区三区视频在线观看免费 | 看黄色毛片网站| 午夜成年电影在线免费观看| 中亚洲国语对白在线视频| 黄色视频,在线免费观看| 88av欧美| 丁香欧美五月| 成人特级黄色片久久久久久久| 亚洲 欧美一区二区三区| 99久久综合精品五月天人人| 国产色视频综合| 99精国产麻豆久久婷婷| 男女床上黄色一级片免费看| 亚洲精品一区av在线观看| 久久国产精品影院| 一级毛片精品| 最新在线观看一区二区三区| 国产黄色免费在线视频| 欧美激情极品国产一区二区三区| 99re在线观看精品视频| 亚洲中文字幕日韩| 日韩免费高清中文字幕av| 久久久久久久久免费视频了| 久久久国产成人精品二区 | 首页视频小说图片口味搜索| 国产黄色免费在线视频| 久久久精品欧美日韩精品| 欧美午夜高清在线| 天天影视国产精品| 欧美一区二区精品小视频在线| 国产精品99久久99久久久不卡| 香蕉久久夜色| 亚洲 欧美一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| av片东京热男人的天堂| 亚洲五月婷婷丁香| 97人妻天天添夜夜摸| 伦理电影免费视频| 色婷婷av一区二区三区视频| cao死你这个sao货| 极品教师在线免费播放| 亚洲av第一区精品v没综合| 免费看十八禁软件| 99香蕉大伊视频| 女人被狂操c到高潮| 无人区码免费观看不卡| 人成视频在线观看免费观看| 狠狠狠狠99中文字幕| 亚洲熟妇中文字幕五十中出 | 久久午夜亚洲精品久久| 男女之事视频高清在线观看| 国产免费av片在线观看野外av| 日韩欧美一区二区三区在线观看| 国产男靠女视频免费网站| 成人av一区二区三区在线看| 一级黄色大片毛片| 高清欧美精品videossex| 国产亚洲精品综合一区在线观看 | 亚洲国产精品999在线| 男人舔女人的私密视频| 国产一区二区三区视频了| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久久毛片| 国产熟女xx| 在线观看免费高清a一片| 久久久久久久久免费视频了| 久久人妻av系列| 男人的好看免费观看在线视频 | 欧美大码av| 日韩欧美在线二视频| 18美女黄网站色大片免费观看| 亚洲五月天丁香| 午夜亚洲福利在线播放| 男女之事视频高清在线观看| 90打野战视频偷拍视频| 99在线人妻在线中文字幕| 在线免费观看的www视频| 久热这里只有精品99| 国产xxxxx性猛交| 最好的美女福利视频网| 国产精品影院久久| 黄网站色视频无遮挡免费观看| 99精国产麻豆久久婷婷| 色精品久久人妻99蜜桃| 夜夜夜夜夜久久久久| 高清av免费在线| 免费av毛片视频| 久久久久亚洲av毛片大全| 国产成人欧美| 高潮久久久久久久久久久不卡| 最新美女视频免费是黄的| 中出人妻视频一区二区| 国产成人欧美在线观看| 99在线视频只有这里精品首页| 亚洲国产欧美一区二区综合| cao死你这个sao货| 亚洲国产精品一区二区三区在线| 香蕉丝袜av| 成人免费观看视频高清| 免费高清视频大片| 精品人妻在线不人妻| 亚洲自拍偷在线| 日本免费一区二区三区高清不卡 | 亚洲av日韩精品久久久久久密| 久久天堂一区二区三区四区| 国产三级黄色录像| 久久久久久久精品吃奶| 久久中文字幕一级| 88av欧美| 日韩三级视频一区二区三区| 巨乳人妻的诱惑在线观看| 嫩草影视91久久| av中文乱码字幕在线| 不卡一级毛片| 一级黄色大片毛片| 亚洲五月色婷婷综合| 一本大道久久a久久精品| 国产亚洲欧美精品永久| 在线观看日韩欧美| 午夜精品久久久久久毛片777| videosex国产| 19禁男女啪啪无遮挡网站| 免费搜索国产男女视频| 大型av网站在线播放| 色精品久久人妻99蜜桃| a在线观看视频网站| 欧美人与性动交α欧美精品济南到| 97超级碰碰碰精品色视频在线观看| 桃色一区二区三区在线观看| 精品久久久久久成人av| av国产精品久久久久影院| 色播在线永久视频| 亚洲自偷自拍图片 自拍| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩瑟瑟在线播放| 国产精品国产高清国产av| 九色亚洲精品在线播放| 亚洲三区欧美一区| 天天躁夜夜躁狠狠躁躁| 动漫黄色视频在线观看| 日韩免费av在线播放| 午夜影院日韩av| 久久国产乱子伦精品免费另类| 最好的美女福利视频网| 免费少妇av软件| 国产av一区二区精品久久| 国产精品久久久人人做人人爽| 99国产精品免费福利视频| 亚洲第一av免费看| 色在线成人网| 午夜福利欧美成人| 日本 av在线| 精品国产美女av久久久久小说| 人人妻人人爽人人添夜夜欢视频| 长腿黑丝高跟| 长腿黑丝高跟| 在线天堂中文资源库| 88av欧美| 巨乳人妻的诱惑在线观看| 国产一区在线观看成人免费| 国产99白浆流出| 亚洲精品成人av观看孕妇| 又紧又爽又黄一区二区| 欧美久久黑人一区二区| 久久草成人影院| 99在线视频只有这里精品首页| 69精品国产乱码久久久| 久久香蕉激情| а√天堂www在线а√下载| 成人亚洲精品一区在线观看| 叶爱在线成人免费视频播放| 久久精品国产亚洲av高清一级| 一个人免费在线观看的高清视频| 久久久国产精品麻豆| 亚洲av电影在线进入| 国产精品自产拍在线观看55亚洲| 国产高清激情床上av| 日韩欧美一区视频在线观看| 欧美激情 高清一区二区三区| www.999成人在线观看| 99国产精品免费福利视频| 国产一区二区三区综合在线观看| 亚洲熟妇熟女久久| 亚洲少妇的诱惑av| 国产精品影院久久| 国产主播在线观看一区二区| а√天堂www在线а√下载| 午夜福利欧美成人| 老司机在亚洲福利影院| 国产精品一区二区免费欧美| 黄色丝袜av网址大全| 久久国产亚洲av麻豆专区| 亚洲中文日韩欧美视频| 色综合婷婷激情| 色老头精品视频在线观看| 亚洲一区二区三区不卡视频| 老熟妇乱子伦视频在线观看| 最好的美女福利视频网| 俄罗斯特黄特色一大片| 美女 人体艺术 gogo| 中文字幕av电影在线播放| 老司机靠b影院| 国产一区二区激情短视频| 视频区图区小说| 又黄又粗又硬又大视频| 91成人精品电影| 女人精品久久久久毛片| 国产精品电影一区二区三区| 一级片'在线观看视频| 亚洲精品av麻豆狂野| 国产乱人伦免费视频| 国产深夜福利视频在线观看| 免费在线观看影片大全网站| 欧美一区二区精品小视频在线| www.自偷自拍.com| 免费看a级黄色片| 欧美性长视频在线观看| 又黄又爽又免费观看的视频| 女同久久另类99精品国产91| 欧美日韩黄片免| 超碰成人久久| 久久久久国产精品人妻aⅴ院| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品中文字幕看吧| 久热爱精品视频在线9| 身体一侧抽搐| 欧美丝袜亚洲另类 | 亚洲国产精品合色在线| 精品卡一卡二卡四卡免费| 国产成人精品久久二区二区免费| 日日摸夜夜添夜夜添小说| 日日夜夜操网爽| 91在线观看av| 岛国在线观看网站| 九色亚洲精品在线播放| 欧美成人午夜精品| 亚洲 欧美 日韩 在线 免费| 亚洲成人免费电影在线观看| 丁香六月欧美| 国产成人精品久久二区二区免费| 精品高清国产在线一区| 一级毛片高清免费大全| 亚洲中文日韩欧美视频| 国产1区2区3区精品| 50天的宝宝边吃奶边哭怎么回事| 日韩一卡2卡3卡4卡2021年| 在线观看免费午夜福利视频| 欧美日韩一级在线毛片| 久久精品亚洲av国产电影网| 精品国产一区二区久久| 精品无人区乱码1区二区| 老司机午夜十八禁免费视频| av网站在线播放免费| 黄片播放在线免费| 丝袜美足系列| 美女国产高潮福利片在线看| 久久婷婷成人综合色麻豆| 国产高清视频在线播放一区| 亚洲国产精品合色在线| 99久久久亚洲精品蜜臀av| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷六月久久综合丁香| 女生性感内裤真人,穿戴方法视频| 日韩欧美免费精品| 99国产精品一区二区蜜桃av| 午夜精品久久久久久毛片777| 夜夜夜夜夜久久久久| 国产精品偷伦视频观看了| 长腿黑丝高跟| 久久中文字幕人妻熟女| 电影成人av| 久久久久久亚洲精品国产蜜桃av| 欧美日韩亚洲国产一区二区在线观看| 国产精品 欧美亚洲| 97超级碰碰碰精品色视频在线观看| 男女高潮啪啪啪动态图| 男人的好看免费观看在线视频 | av网站免费在线观看视频| 一区二区三区精品91| 国产麻豆69| av福利片在线| 成人18禁在线播放| 黄色毛片三级朝国网站| 欧美激情久久久久久爽电影 | 女人高潮潮喷娇喘18禁视频| 免费在线观看完整版高清| 亚洲专区中文字幕在线| xxx96com| ponron亚洲| 久久99一区二区三区| 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 狠狠狠狠99中文字幕| 久久久久精品国产欧美久久久| 日本免费一区二区三区高清不卡 | 久久久国产精品麻豆| 久久久国产成人精品二区 | 夜夜爽天天搞| 国产精品一区二区免费欧美| 国产精品99久久99久久久不卡| 国产又爽黄色视频| 久久精品亚洲av国产电影网| 99久久99久久久精品蜜桃| 国产高清激情床上av| 中文欧美无线码| 美女福利国产在线| 日韩 欧美 亚洲 中文字幕| 成年人黄色毛片网站| 国产亚洲精品一区二区www| 久久精品国产亚洲av香蕉五月| 欧美精品一区二区免费开放| 黑人操中国人逼视频| 亚洲第一青青草原| 视频区图区小说| 美女国产高潮福利片在线看| 久久久水蜜桃国产精品网| 狂野欧美激情性xxxx| 999精品在线视频| 久久精品国产亚洲av高清一级| 黄色a级毛片大全视频| 国产一区在线观看成人免费| 国产精品成人在线| av电影中文网址| 欧美激情 高清一区二区三区| 免费在线观看亚洲国产| 亚洲欧美激情在线| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 亚洲 国产 在线| 夜夜爽天天搞| 久久午夜综合久久蜜桃| 欧美一区二区精品小视频在线| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 男人舔女人下体高潮全视频| 久9热在线精品视频| 精品卡一卡二卡四卡免费| 欧美老熟妇乱子伦牲交| 亚洲一区高清亚洲精品| 亚洲欧美精品综合一区二区三区| 国产精品日韩av在线免费观看 | 精品午夜福利视频在线观看一区| 亚洲精品成人av观看孕妇| 亚洲人成77777在线视频| 久久人妻av系列| 免费少妇av软件| 操出白浆在线播放| 一二三四在线观看免费中文在| 淫秽高清视频在线观看| 国产高清videossex| 亚洲成人精品中文字幕电影 | 一级毛片精品| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 女同久久另类99精品国产91| 久久久久久久午夜电影 | 亚洲精品久久成人aⅴ小说| 99久久国产精品久久久| 亚洲欧美激情在线| 精品国产乱码久久久久久男人| 淫妇啪啪啪对白视频| 国产主播在线观看一区二区| 久久久精品国产亚洲av高清涩受| 女同久久另类99精品国产91| 51午夜福利影视在线观看| 中文字幕高清在线视频| 狂野欧美激情性xxxx| 老汉色∧v一级毛片| 一个人观看的视频www高清免费观看 | 亚洲国产中文字幕在线视频| 日韩免费av在线播放| 18美女黄网站色大片免费观看| 韩国av一区二区三区四区| www.999成人在线观看| 精品久久久久久成人av| 免费看a级黄色片| 一级作爱视频免费观看| 午夜激情av网站| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 国产又色又爽无遮挡免费看| 操美女的视频在线观看| 精品电影一区二区在线| 国产黄色免费在线视频| 岛国在线观看网站| 成人免费观看视频高清| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 中亚洲国语对白在线视频| 超碰成人久久| 久久久精品欧美日韩精品| 人人妻人人添人人爽欧美一区卜| 在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 精品少妇一区二区三区视频日本电影| 国产成人精品在线电影| 精品久久久久久久久久免费视频 | 男女之事视频高清在线观看| 真人做人爱边吃奶动态| www.999成人在线观看| 国产精品一区二区在线不卡| 美女午夜性视频免费| 久久久精品国产亚洲av高清涩受| 999精品在线视频| 久久久久国内视频| 亚洲av五月六月丁香网| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 18禁国产床啪视频网站| 精品久久久久久成人av| 亚洲欧美日韩无卡精品| 在线观看日韩欧美| 午夜两性在线视频| 久久亚洲真实| 欧美性长视频在线观看| 亚洲性夜色夜夜综合| 制服人妻中文乱码| 国产三级在线视频| 国产成人一区二区三区免费视频网站| 老司机靠b影院| 中文欧美无线码| 岛国在线观看网站| 国产有黄有色有爽视频| xxxhd国产人妻xxx| 日韩欧美三级三区| 91国产中文字幕| 欧美成人午夜精品| 最近最新中文字幕大全免费视频| 黄片播放在线免费| 久久亚洲精品不卡| 操美女的视频在线观看| 日韩免费av在线播放| 中文欧美无线码| 欧美不卡视频在线免费观看 | 久久九九热精品免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美网| 视频区欧美日本亚洲| 丁香六月欧美| 欧美黑人欧美精品刺激| 亚洲精品国产色婷婷电影| 日本 av在线| 日本三级黄在线观看| 精品人妻在线不人妻| 欧美黄色淫秽网站| 纯流量卡能插随身wifi吗| 99在线视频只有这里精品首页| 侵犯人妻中文字幕一二三四区| 交换朋友夫妻互换小说| 99国产精品一区二区三区| 91av网站免费观看| 男男h啪啪无遮挡| 99在线人妻在线中文字幕| 午夜免费鲁丝| 99精品欧美一区二区三区四区| 黄片播放在线免费| 亚洲熟妇中文字幕五十中出 | 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 日韩欧美一区视频在线观看| 黄色丝袜av网址大全| 欧美午夜高清在线| 精品日产1卡2卡| 欧美日本亚洲视频在线播放| 精品久久久久久电影网| 91字幕亚洲| 欧美人与性动交α欧美精品济南到| 久久精品91蜜桃| 久9热在线精品视频| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 悠悠久久av| 人人妻人人澡人人看| 日本五十路高清| 成人国语在线视频| 亚洲成人免费av在线播放| 少妇的丰满在线观看| 国产一区在线观看成人免费| www.精华液| 国产av一区二区精品久久| 正在播放国产对白刺激| 99精品欧美一区二区三区四区| 看免费av毛片| 午夜福利免费观看在线| 韩国av一区二区三区四区| 少妇裸体淫交视频免费看高清 | 国产成人一区二区三区免费视频网站| 亚洲熟女毛片儿| 如日韩欧美国产精品一区二区三区| 老司机靠b影院| 美女 人体艺术 gogo| 午夜免费成人在线视频| 超色免费av| 欧美不卡视频在线免费观看 | 亚洲九九香蕉| 亚洲专区字幕在线| 男女之事视频高清在线观看| 日韩国内少妇激情av| 欧美成人性av电影在线观看| 欧美不卡视频在线免费观看 | 桃色一区二区三区在线观看| 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色 | 久久香蕉激情| 欧美精品啪啪一区二区三区| 亚洲黑人精品在线| 在线观看免费视频日本深夜| 制服诱惑二区| 嫩草影视91久久| 亚洲免费av在线视频| av欧美777| 91大片在线观看| 国产午夜精品久久久久久| 久久国产亚洲av麻豆专区| 久久久精品欧美日韩精品| 在线十欧美十亚洲十日本专区| 最近最新中文字幕大全免费视频| 欧美精品亚洲一区二区| 欧美精品一区二区免费开放| 国产精品综合久久久久久久免费 | 天天添夜夜摸| 757午夜福利合集在线观看| 18美女黄网站色大片免费观看| 精品国产超薄肉色丝袜足j| 一进一出抽搐动态| 亚洲成人免费av在线播放| 高清av免费在线| 亚洲视频免费观看视频| 99精品在免费线老司机午夜| 99国产综合亚洲精品| 色婷婷久久久亚洲欧美| 亚洲黑人精品在线| 天堂俺去俺来也www色官网| 波多野结衣一区麻豆| 三上悠亚av全集在线观看|