• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Changes in Mixed Layer Depth and Spring Bloom in the Kuroshio Extension under Global Warming

    2016-11-24 11:33:29RuosiZHANGShangPingXIELixiaoXUandQinyuLIU
    Advances in Atmospheric Sciences 2016年4期

    Ruosi ZHANG,Shang-Ping XIE?2,,Lixiao XU,and Qinyu LIU

    1Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of Shandong,Ocean University of China,Qingdao 266100

    2Scripps Institution of Oceanography,University of California San Diego,La Jolla,California,92093,USA

    Changes in Mixed Layer Depth and Spring Bloom in the Kuroshio Extension under Global Warming

    Ruosi ZHANG1,Shang-Ping XIE?2,1,Lixiao XU1,and Qinyu LIU1

    1Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of Shandong,Ocean University of China,Qingdao 266100

    2Scripps Institution of Oceanography,University of California San Diego,La Jolla,California,92093,USA

    The mixed layer is deep in January-April in the Kuroshio Extension region.This paper investigates the response in this region of mixed layer depth(MLD)and the spring bloom initiation to global warming using the output of 15 models from CMIP5.The models indicate that in the late 21st century the mixed layer will shoal,and the MLD reduction will be most pronounced in spring at about 33?N on the southern edge of the present deep-MLD region.The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models.Associated withtheshoalingmixedlayer,theonsetofspringbloominceptionisprojectedtoadvanceduetothestrengthenedstratification in the warming climate.

    mixed layer depth,global warming,temperature advection,spring bloom

    1.Introduction

    The ocean mixed layer is a surface layer of vertically uniform temperature,salinity,and density,as a result of direct interaction with the atmosphere.The mixed layer depth (MLD)is determined by wind stirring,surface buoyancy forcing(i.e.,freshwater and heat flux),and ocean circulation changes(Kraus and Businger,1967).MLD is one of the most important quantities of the upper ocean,crucial to the substance exchange across the air-sea interface(e.g.,heat flux, surface wave propagation,and ocean biological processes). Variability in oceanic uptake of atmospheric CO2and SST is influenced by the mixed layer changes(Kraus and Businger, 1995).The mixed layer also controls the ocean's absorption of light and utilization of nutrients,two important factors affecting phytoplankton dynamics,and consequently,biological productivity in the ocean(Sverdrup,1953;Yentsch, 1990).

    Much attention has been given to the seasonal cycle of MLD.Kara et al.(2003)described the general features of the seasonal variation of MLD over the world.In the Kuroshio extension(KE)region,MLD is deep from January to April, shoals in summer,and deepens again in winter.Qiu and Kelly (1993)used a three-dimensional bulk mixed layer model of Kraus and Turner(1967)and studied the heat balance of the mixed layer over the KE.They showed that the variability of the heat flux drives the seasonal cycle of MLD.The model uses an assumption that the MLD can be estimated by the heat flux,freshwater flux,and wind stress at the air-sea interface,but neglects horizontal advection.Ocean dynamics plays a critical role in the KE system(Wu et al.,2003;Qiu et al.,2007;Taguchi et al.,2007;Xu et al.,2014).The western boundary currents carry warm water to the midlatitudes,releasing a great quantity of heat and moisture there to heat the atmosphere(Wu et al.,2012).In the KE there is warm temperature advection throughout the year.Since the warm advectionmakestheoceanloseheattotheatmosphere,itcauses the surface density to increase and deepen the MLD.In the heat budget of the mixed layer,ocean heat Ekman transport and geostrophic advection plays a prominent role(Yim et al., 2013).As the ocean circulation changes under global warming,it most likely impacts the spatial distributions of SST and MLD,especially in the Kuroshio current and its extension(Sakamoto et al.,2005;Sato et al.,2006).

    MLD change also affects ocean biological process. Spring bloom refers to the rapid increase in phytoplankton abundance that commonly occurs in the early spring.During winter,wind-driven turbulence and surface cooling allow vertical mixing to replenish nutrients from depth to the mixed layer.Phytoplankton uses these nutrients for photosynthesis. Yet vertical mixing also causes high phytoplankton losseswhen phytoplankton's respiration exceeds primary production below the euphotic zone.For this reason,reduced illumination during winter limits phytoplankton's growth rates.In the spring,more light becomes available and stratification of the water column strengthens.As a result,vertical mixing is suppressed and phytoplankton and nutrients are kept near the surface,which promotes primary production.The definition and mechanism of spring bloom are discussed in Mann and Lazier(2005).The increasing primary production causes a strong growth of phytoplankton in spring.Sverdrup(1953) showed that there must exist a critical depth that blooming can only occur if the depth of mixed layer is less than the critical value.The critical depth was defined as a hypothetical surface mixing depth at which the integrated net growth rate over the water column becomes zero.Recently,studies (Behrenfeld,2010;Boss and Behrenfeld,2010;Taylor and Ferrari,2011;Chiswell et al.,2015)have called this classic work into question,as the spring bloom is not solely caused bytheshoalingmixedlayer.Chiswell(2011)statedthatSverdrup's assumption of an evenly mixed phytoplankton layer was not applicable in most cases.Huisman et al.(1999)used observationaldatatoputforwardacriticalturbulencehypothesis that phytoplankton can bloom near the surface within a deep mixed layer if vertical mixing is low enough.Chiswell (2011)proposed an onset of stratification hypothesis that the spring bloom develops in weakly stratified layers.The initiation of spring bloom will be examined with observations in the context of these hypotheses.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Under global warming,ocean and atmospheric circulations are projected to change significantly(Vecchi and Soden,2007;Xie et al.,2010).MLD would also change because of circulation changes and increased thermal stratification.The winter MLD is generally projected to decrease (Luo et al.,2009).The MLD shoals as the anthropogenic warming is surface intensified,affecting mode waters in the North Pacific Ocean(Luo et al.,2009;Xu et al.,2012).Xie et al.(2010)showed that the circulation change due to weakened mode water formation is more important than local atmospheric heat flux for SST variations in the subtropical gyre of the North Pacific.

    GCMs are an important tool to investigate the changes of MLD and the impact on biological processes under global warming.Most previous results were based on only one single coupled model and need to be verified in other models. Here,we take a multi-model approach to address the following questions:How does the MLD change under global warming?How do the CMIP5 results compare with previous studies?Besides a general shoaling under global warming,does the seasonal cycle of MLD also change?Does the inception of spring bloom start earlier?We will show that under global warming,MLD shoals and changes its seasonal cycle.This study considers both atmospheric and oceanic variables in the KE and examines the dominant mechanisms fortheMLDchanges.Wediagnosethestarttimeofthespring bloom in the KE and investigate how it changes in response to global warming.As the mixed layer shoals under global warming,the ability of the ocean to draw nutrient-rich water to the surface is reduced.

    The rest of the paper is arranged as follows:Section 2 describes the data and methods.Section 3 investigates the MLD changes under global warming,while section 4 diagnoses which variable is more important for the MLD change. Section 5 discusses the relationship between the mixed layer change and the spring bloom.Section 6 is a summary with discussion.

    2.Data and methods

    2.1.Data

    This paper uses the output from 15 CMIP5 coupled climate models(Table 1),which offer a multimodel perspective of simulated climate change and variability(Taylor et al.,2012).Both the historical(20th century with all forcing) simulation and the RCP4.5 scenario run(radiative forcing of~4.5 W m?2by the year 2100,relative to preindustrial conditions)are used.The model output was obtained from the PCMDI at the Lawrence Livermore national laboratory.

    The resolution of atmospheric and oceanic variables is different within the same model and varies between models. We interpolated them on a 1?×1?grid.Both the ensemble mean and the differences among models are investigated in the paper.We focus on the MLD variability and oceanic dynamics.The present-day climatology is based on the time average from 1951 to 2000 in the historical run,while the future mean state is calculated from 2051 to 2100 in the RCP4.5 run.A 50-year period is believed to be long enough to filter out the interannual variability.The change due to global warming is defined as the future mean state(RCP4.5 run,2051-2100)minus the present-day climatology(historical run,1951-2000).We only examine one member run of each model.The average of all models is defined as the ensemble mean.For example,we first calculate the MLD in each model,and then average for 15 models.The methods used here to process the data are the same as those employed by Xu et al.(2012).

    For studying the spring bloom,we use the MODIS ocean color data(available from http://oceancolor.gsfc.nasa.gov/), including the daily chlorophyll-a and the photosynthetically active radiation,mapped at a resolution of 9 km,from 2004 to 2009.The daily net heat flux data from 2004 to 2009 is derived from the WHOI's OAFlux project(Yu et al.,2006). The weekly temperature and salinity data were downloaded from the China Argo real-time data center(http://www.argo. org.cn/).All the observational results presented in this paper are the mean state from 2004 to 2009.Only four models (CanESM2,GFDL-ESM2M,IPSL-CM5A-LR,MPI-ESMLR)out of the 15 have both chlorophyll-a data and daily data of MLD and radiation.We use these four models in the study of the spring bloom.

    2.2.Methods

    There are various methods for determining MLD.Here, we regard both salinity and temperature as having effects onstratification.We use a fixed density criterion to calculate MLD.The MLD is defined as the depth where the increase in density from the surface value equals 0.03 kg m?3(Xu et al., 2012).The vertical structure of the upper ocean in the KE was examined by 30 randomly selected profiles(not shown here),and it was found that this density criterion of 0.03 kg m?3is suitable for defining the MLD.

    The net heat flux is the sum of longwave radiation,shortwave radiation,latent heat flux,and sensible heat flux at the surface.The temperature advection,u(?T/?x)+v(?T/?y), in the mixed layer is calculated as the temperature advection at a depth of 50 m.In this formula,u,v are the horizontal velocity components,T is the SST,?/?x+?/?y is the horizontal gradient operators.

    Table 1.The 15 models from CMIP5 analyzed in this study.

    3.Seasonal change of MLD

    This section studies changes in the seasonal cycle of MLD in response to global warming.The analysis region is (25?-45?N,131?E-160?W).Figure 1a shows the present-day winter(January-March)climatological MLD(1951-2000). The MLD in the KE is deep and its maximum exceeds 200 m. According to Xu et al.(2014),the deep mixed layer near the KE shows significant differences between observations and current climate models.In observations,there are two MLD maxima deeper than 150 m to the north and south of the KE, respectively.Sandwiched between is a shallower mixed layer along the KE jet.By contrast,CMIP5 models do not capture this feature,with one single broad pool of deep MLD and a sharp MLD front to the south that slants northeastward.The present study will only focus on the deep MLD changes as a whole,ignoring its detailed structures.

    Figure 1b shows the seasonal cycle of the zonal mean (135?-175?E)MLD for the present-day climatology and its change under global warming.The seasonal cycle of MLD in present-day climatology is obvious:the mixed layer is deep in January-April,and the deepest MLD(about 250 m)is located at about 33?N;the MLD shoals after April,to less than 50 m,and then deepens again in November-December.

    The MLD change under global warming shows seasonal variability.The biggest change,almost?40 m,takes place in April.The maximum change of MLD under global warming is collocated with the maximum MLD in the present-day climatology in April at 33?N.The MLD change in March is less than that in April.The pattern of the MLD change is different between March and April:the MLD change in March peaks near the northeast-slanted MLD front of the present-day climatology,while the April change is flatter(Figs.1c and d). While the ensemble mean results show a clear seasonality in MLD change in response to global warming,different models may have different characteristics.Figure 2 shows the inter-model standard deviation of winter mean MLD among the 15 models.Large inter-model bias(>25 m)appears between 25?N and 30?N,to the south of the winter deep mixed layer front.But the difference is relatively small(<15 m) in the deep mixed layer region,where it shows a significant seasonal change of MLD(>30 m).

    All of the 15 models show a shoaling MLD in response to global warming.Ten models(BCC CSM1.1,CanESM2, CCSM4,HadGEM2-CC,MIROC5,MIROC-ESM,MPIESM-LR,CMCC-CM,CSIRO Mk3.6.0,NorESM1-M)have similar results as the ensemble mean,but the other five (ACCESS1.3,GFDL-CM3,GFDL-ESM2M,IPSL-CM5ALR,MRI-CGCM3)do not show similar MLD changes.In these five models,the maximum change of MLD under global warming is collocated with the maximum MLD in the present-day climatology in both March and April.The MLDchange in March is more than that in April.The reason why these five models do not have the same characteristics needs further research but will not be discussed in this paper.We focus on the ensemble mean results in the following sections.

    Fig.1.(a)Present-day winter(January-March)climatology(1951-2000)of MLD(colored scale bar;units:m).(b)Seasonal cycle of the MLD for present-day climatology(1951-2000)and its change[RCP4.5 run(2051-2100)minus historical run(1951-2000)]. The zonal mean(135?-175?E)MLD is shown by black contours in intervals of 50 m,and the MLD change is shown by the coloring in units of m.(c,d)Historical mean MLD(1951-2000;colored scale bar)and 21st century mean MLD(2051-2100;blue contours) in(c)March and(d)April[MLD change is superimposed(black dotted contours at 10 m intervals)].

    Fig.2.Inter-model standard deviation(colored scale bar;units: m)of the winter mean MLD for January-March.

    4.Atmospheric and oceanic effects on MLD change

    This section investigates why MLD changes under global warming.Following Qiu and Kelly(1993),we diagnose atmospheric and oceanic factors influencing MLD,including the important role of the western boundary currents in the KE.

    4.1.Atmospheric variables and MLD

    Figure 3 shows the changes of MLD and heat flux in March and April in response to global warming,with positive meaning the ocean is absorbing more heat.The heat flux change varies from?15 W m?2to 15 W m?2.In March,the ocean tends to release more heat in most of the area,but it absorbs more heat in a long and narrow strip between 25?N and 30?N(Fig.3a).In April,the ocean absorbs more heat from the atmosphere,and the area of negative heat flux becomes smaller(Fig.3b).The ocean absorbing more heat from the atmosphere in April than March explains why the MLD shoals more in April under global warming.However,the heat flux change under global warming in March and April cannot explain the spatial pattern of the MLD change.

    4.2.Oceanic variables and MLD

    IntheKE,oceancurrentsarestrongandplayanimportant role in the formation of the deep mixed layer(Wu et al.,2012; Yim et al.,2013).The western boundary currents carry warm water to the midlatitudes.The warm advection makes the ocean lose a large quantity of heat to the atmosphere,causing a deep MLD.Figure 4 shows the change of temperature advection in the mixed layer in March and April in response to global warming.The shoaling MLD seems spatially well correlated with the warm advection in the mixed layer both in March and April.A warm mixed layer temperature advection shoals the MLD because it enhances stratification.

    We further investigate which term dominates the temperature advection:changes in potential temperature,or ocean currents?By dividing velocity and potential temperature into climatology and anomalies,andwe decompose the temperature advection intothe following components:

    Fig.3.Change in net heat flux(future flux minus present-day flux;colored scale bar;units: W m?2),where positive means increased heat into the ocean,for(a)March and(b)April. MLD change is superimposed(black dotted contours at 10 m intervals).

    Fig.4.Future minus present-day change in temperature advection(colored scale bar;units: 10?8?C s?1)in(a)March and(b)April.Negative values mean warm advection.MLD change is superimposed(black dotted contours in 10 m intervals).

    Fig.5.Temperature advection in March(colored scale bar;units:10?8?C s?1)(a)by holding potential temperature constant in the present day and changing ocean currents under global warming,and(b)by holding ocean currents constant in the present day and changing potential temperature under global warming.MLD change is superimposed(black contours at 10 m intervals).

    Figure 6 shows the longitude-depth section of temperature advection change and potential temperature change under global warming,averaged in 25?-30?N in March.The maximum warm advection is in the 100 m upper layer,with a maximum from 150?E to 180?E.The maximum increase of potential temperature is in the 100 m upper layer,with a maximum near 150?E.East of 150?E,temperature warming decreases gradually,but the eastward background currents cause a warm advection.At 170?E,where both the anomalous temperature gradient and mean currents are strong,the mixed layer shoals the most.The distribution of potential temperature change below 100 m is small.

    5.Spring blooms under global warming

    The shoaling mixed layer under global warming has an important influence on the ecosystem.Many variables,such as organic carbon,nitrate,nitrite,and chlorophyll,can affect phytoplankton production(Yentsch,1990).This section investigates the spring blooms under global warming,based on the CMIP5 models.Having examined various observational indicators of spring bloom,we focus here on surface chlorophyll,for which satellite data are readily available.

    Fig.6.Longitude-depth section of the meridional mean(25?-30?N)change in temperature advection(colored scale bar; units:10?8?Cs?1)inMarch.Temperaturechange(blacklines; units:?C)and currents(black arrows;m s?1)of present-day climatology(1951-2000)are superimposed.

    From autumn to winter,the ocean loses heat to the atmosphere,and the mixed layer gradually deepens.Strong mixing happens throughout the whole depth of the mixed layer, entraining new nutrients into the mixed layer and leading to an increase in production.In winter,the MLD reaches its deepest value at t1and the convective overturn is strong(Fig. 7a).At the end of winter,the slow convective overturn cannotmaintain a deep mixed layer,with reduced turbulence;the mixed layer begins to shoal slightly,lightly increasing phytoplankton concentrations at the surface.The transition from strong mixing to low turbulence occurs at about t1(Fig.7a), the time(t1)after the mixed layer reaches its deepest point. Aftert1,thenetheatfluxbeginstorise(Fig.7b),whichmeans that the ocean loses less heat to atmosphere,and after t2it starts to absorb heat from the atmosphere.Meanwhile,the MLD starts to shoal sharply and the rate of increase in surface chlorophyll begins to accelerate.Figure 7c shows the buoyancy frequency,defined as N=[?g(?ρ/?z)/ρ]1/2,where g is the gravitational acceleration,z denotes geometric height andρis the potential density.The sharp increase in N acts as a barrier for the downward turbulence generated in the surface mixed layer by atmospheric disturbances(Gill,1982). At the time of t1,the MLD starts to shoal and surface chlorophyll begins to increase,but the net heat flux at the surface remains negative(upward).A weak stratification supports a weak spring bloom at the surface.At the time of t2,surface chlorophyll increases to the second peak and the net heat flux turns positive,while MLD has already shoaled sharply with N continuing to increase.A strong stratification supports an intense bloom.The net heat flux is not the only determinant of MLD in the KE(Qiu et al.,2007;Taguchi et al.,2007), so there is a 60-day lag between t1and t2.Thus,overall,the MLD shoaling is a good indicator for the timing of the spring bloom,and the time of zero net heat flux is a sign to expedite the spring bloom in the KE.

    Fig.7.Regional average(30?-40?N,140?-160?E)of(a)MLD (blue line;units:m)and surface chlorophyll concentration (green line;units:mg m?3)from satellite data,(b)net heat flux from OAFlux(blue line;units:W m?2;negative means ocean is losing heat)and chlorophyll concentration(green line; units:mg m?3),and(c)buoyancy frequency(s?1)from Argo. The dashed vertical lines mark the first and second chlorophyll blooms.The time axis starts on 1 January.

    Figure 8 compares the climatological distribution of surface chlorophyll concentration between observations and the models.The model simulations capture the overall spatial pattern but are biased(too high)in terms of surface chlorophyll concentration,especially in the midlatitudes(35?-45?N).

    Figure 9 compares the daily variation of surface chlorophyll concentration at present and under global warming. Compared to the current climatology,the spring increase in chlorophyll shows a tendency to start earlier by about 10 days under global warming in the KE,accompanied by a decrease in MLD due to the surface warming trend(Fig 9a).In Fig. 9b,surface chlorophyll increases to the second peak earlier by about 15 days under global warming,with the net heat flux turning positive ahead of time(Fig.9b).In the CMIP5 models,the shoaling trend of MLD is consistent with the early onset of the spring bloom under global warming.

    6.Summary and discussion

    This paper examines the change in the seasonal cycle of MLD in the KE in response to global warming,based on the output of 15 CMIP5 models.The MLD becomes shallower, especially in March and April.Under global warming,the MLD in April shoals mostly in the region where the MLD is presently large;while in March,it shoals the most in the region of the steep mean MLD gradient.This characteristic of MLD change varies somewhat among models and further studies are needed to determine the factors responsible for the different model behavior.

    Changes in both surface heat flux and ocean warm temperature advection contribute to the spring shoaling of the mixed layer.The advection of temperature change in the upper 100 m by the mean eastward current explains the spatialpattern of MLD change in spring.The spatial distribution of mixed layer temperature change-large in the west and reduced in the east-is the main reason for temperature advection change under global warming.This result highlights the importance of the ocean surface warming pattern(Xie et al.,2010).It also raises another question as to what causes this spatial distribution of potential temperature change.In the extra-tropics,wind stress forcing and ocean heat transport may be important.Diagnostic methods based on the mixed layer heat budget need to be developed to investigate the underlying mechanism of the temperature pattern formation.

    Fig.8.(a)Satellite-derived chlorophyll distribution(units:mg m?3)obtained from MODIS for 2004-09.(b)Simulated climatological distribution of chlorophyll(units:mg m?3)in the historical simulation.(c)Differences in chlorophyll concentration(units:mg m?3;simulated minus observation).

    The triggering mechanisms for spring bloom in the KE were examined using satellite data,and it was found that the strengthened stratification and mixed layer shoaling can cause a surface bloom of chlorophyll,and the net heat flux turning to positive from negative also causes a second peak of chlorophyll in the current climate.Under global warming, model projections suggest an early onset of the spring phytoplankton bloom-a change that is consistent with the shoaling of the mixed layer in the warming climate.This result still needs to be tested with observations and model output of the vertical dimension of chlorophyll concentration lacking of liability data.Hashioka et al.(2009)obtained a similar result that the spring bloom initiates earlier by about 10 to 20 days under global warming,although the physical processes were not investigated in detail.The chlorophyll concentra-tion can alter solar penetration through the ocean(Nakamoto et al.,2001;Murtugudde et al.,2002).Thus,there may be feedback between physical and biological changes.

    The total radiative forcing begins to stabilize around 2070 under RCP4.5(Taylor et al.,2012).The ocean response comprises a fast response of the mixed layer warming(10-year timescale,approximately)and a slow response involving the deeper ocean(Held et al.,2010).The fast response dominates as the radiative forcing increases,while the slow response takes over after the radiative forcing has stabilized.The fast response is associated with increased upper-ocean stratification and shoaling of the mixed layer,as discussed here.The slow response is associated with a slightly reduced upper ocean stratification(Long et al.,2014)and a weak increase in MLD in the KE(Xu et al.,2013),despite the continued increase in surface temperature.In future work,we intend to investigate the distinct fast and slow responses in the spring bloom.

    Acknowledgements.This work was supported by the National Basic Research Program of China(Grant No.2012CB955602), the National Natural Science Foundation of China(Grant Nos. 41476002,41490643,41176006 and 41221063),and the Fundamental Research Funds for the Central Universities(Grant No. 201503029).

    REFERENCES

    Behrenfeld,M.J.,2010:Abandoning Sverdrup's critical depth hypothesis on phytoplankton blooms.Ecology,91(4),977-989.

    Boss,E.,and M.Behrenfeld,2010:In situ evaluation of the initiation of the North Atlantic phytoplankton bloom.Geophys. Res.Lett.,37,L18603,doi:10.1029/2010GL044174.

    Chiswell,S.M.,2011:Annual cycles and spring blooms in phytoplankton:Don't abandon Sverdrup completely.Marine Ecology Progress Series,443,39-50.

    Chiswell,S.M.,P.H.R.Calil,and P.W.Boyd,2015:Spring blooms and annual cycles of phytoplankton:a unified perspective.Journal of Plankton Research,37(3),500-508.

    Gill,A.E.,1982:Atmosphere-Ocean Dynamics.Academic press, 662 pp.

    Hashioka,T.,T.T.Sakamoto,and Y.Yamanaka,2009:Potential impact of global warming on north Pacific spring blooms projected by an eddy-permitting 3-D ocean ecosystem model. Geophys.Res.Lett.,36,L20604.

    Held,I.M.,M.Winton,K.Takahashi,T.Delworth,F.R.Zeng,and G.K.Vallis,2010:Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J.Climate,23(9),2418-2427.

    Huisman,J.E.F.,P.van Oostveen,and F.J.Weissing,1999:Critical depth and critical turbulence:Two different mechanisms forthedevelopmentofphytoplanktonblooms.Limnologyand Oceanography,44(7),1781-1787.

    Kara,A.B.,P.A.Rochford,and H.E.Hurlburt,2003:Mixed layer depth variability over the global ocean.J.Geophys.Res.,108, 3079,doi:10.1029/2000C000736.

    Kraus,E.B.,and J.S.Turner,1967:A one-dimensional model of the seasonal thermocline II.The general theory and its consequences.Tellus,19(1),98-106.

    Kraus,E.B.,and J.A.Businger,1995:Atmosphere-Ocean Interaction,2nd ed.,Oxford University Press,362 pp.

    Long,S.-M.,S.-P.Xie,X.-T.Zheng,and Q.Y.Liu,2014:Fast and slow responses to global warming:Sea surface temperature and precipitation patterns.J.Climate,27(1),285-299.

    Luo,Y.Y.,Q.Y.Liu,and L.M.Rothstein,2009:Simulated response of north Pacific mode waters to global warming.Geophys.Res.Lett.,36,L23609,doi:10.1029/2009GL040906.

    Mann,K.,and J.Lazier,2005:Dynamics of Marine Ecosystems:Biological-Physical Interactions in the Oceans.Wiley-Blackwell,496 pp.

    Murtugudde,R.,J.Beauchamp,C.R.McClain,M.Lewis,and A. J.Busalacchi,2002:Effects of penetrative radiation on the upper tropical Ocean circulation.J.Climate,15(5),470-486.

    Nakamoto,S.,S.P.Kumar,J.M.Oberhuber,J.Ishizaka,K. Muneyama,and R.Frouin,2001:Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model.Geophys.Res.Lett.,28(10), 2021-2024.

    Qiu,B.,and K.A.Kelly,1993:Upper-ocean heat balance in the Kuroshio extension region.J.Phys.Oceanogr.,23(9),2027-2041.

    Qiu,B.,N.Schneider,and S.M.Chen,2007:Coupled decadal variability in the north pacific:An observationally constrained idealized model.J.Climate,20(14),3602-3620.

    Sakamoto,T.T.,H.Hasumi,M.Ishii,S.Emori,T.Suzuki,T. Nishimura,and A.Sumi,2005:Responses of the Kuroshio and the Kuroshio extension to global warming in a highresolution climate model.Geophys.Res.Lett.,32,L14617, doi:10.1029/2005GL023384.

    Sato,Y.,S.Yukimoto,H.Tsujino,H.Ishizaki,and A.Noda,2006: Response of North Pacific Ocean circulation in a Kuroshioresolving ocean model to an Arctic Oscillation(AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing.J.Meteor.Soc.Japan,84,295-309.

    Sverdrup,H.U.,1953:On conditions for the vernal blooming of phytoplankton.Journal du Conseil International Pour l'Exploration de la Mer,18(3),287-295.

    Taguchi,B.,S.-P.Xie,N.Schneider,M.Nonaka,H.Sasaki,and Y.Sasai,2007:Decadal variability of the Kuroshio extension:observations and an eddy-resolving model hindcast.J. Climate,20(11),2357-2377.

    Taylor,J.R.,and R.Ferrari,2011:Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms.Limnology and Oceanography,56(6),2293-2307.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93(4),485-498.

    Vecchi,G.A.,and B.J.Soden,2007:Global warming and the weakening of the tropical circulation.J.Climate,20(17), 4316-4340.

    Wu,L.,Z.Liu,R.Gallimore,R.Jacob,D.Lee,and Y.Zhong, 2003:Pacific decadal variability:The tropical Pacific mode and the north Pacific mode.J.Climate,16(8),1101-1120.

    Wu,L.X.,and Coauthors,2012:Enhanced warming over the global subtropical western boundary currents.Nature Climate Change,2(3),161-166.

    Xie,S.-P.,C.Deser,G.A.Vecchi,J.Ma,H.Y.Teng,and A.T. Wittenberg,2010:Global warming pattern formation:Sea surface temperature and rainfall.J.Climate,23(4),966-986.

    Xu,L.X.,S.-P.Xie,and Q.Y.Liu,2012:Mode water ventila-tion and subtropical countercurrent over the north Pacific in CMIP5 simulations and future projections.J.Geophys.Res.-Oceans,117,C12009,doi:10.1029/2012JC008377.

    Xu,L.X.,S.-P.Xie,and Q.Y.Liu,2013:Fast and slow responses of the north Pacific mode water and subtropical countercurrenttoglobalwarming.JournalofOceanUniversityofChina, 12(2),216-221.

    Xu,L.X.,S.-P.Xie,J.L.McClean,Q.Y.Liu,and H.Sasaki, 2014:Mesoscale eddy effects on the subduction of north Pacific mode waters.J.Geophys.Res.,119,4867-4886,doi: 10.1002/2014JC009861.

    Yentsch,C.S.,1990:Estimates of‘new production'in the Mid-North Atlantic.Journal of Plankton Research,12,717-734.

    Yim,B.Y.,Y.Noh,S.W.Yeh,J.S.Kug,H.S.Min,and B.Qiu, 2013:Ocean mixed layer processes in the Pacific decadal oscillation in coupled general circulation models.Climate Dyn., 41(5-6),1407-1417.

    Yu,L.,X.Jin,and R.A.Weller,2006:Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean.J.Climate,19(23),6153-6169.

    Zhang,R.S.,S.-P.Xie,L.X.Xu,and Q.Y.Liu,2016:Changes in mixed layer depth and spring bloom in the Kuroshio extension under global warming.Adv.Atmos.Sci.,33(4),452-461,

    10.1007/s00376-015-5113-8.

    30 April 2015;revised 16 October 2015;accepted 27 October 2015)

    ?Shang-Ping XIE

    Email:sxie@ucsd.edu

    色播在线永久视频| 午夜精品久久久久久毛片777| 黑人猛操日本美女一级片| 精品卡一卡二卡四卡免费| 亚洲精品国产区一区二| 亚洲男人天堂网一区| 亚洲av熟女| 久久久国产成人精品二区 | 悠悠久久av| 午夜免费观看网址| a级毛片在线看网站| 狂野欧美激情性xxxx| 韩国av一区二区三区四区| 18禁观看日本| 捣出白浆h1v1| 欧美人与性动交α欧美精品济南到| 亚洲欧洲精品一区二区精品久久久| 国产精品国产高清国产av | 伦理电影免费视频| 亚洲三区欧美一区| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 久久热在线av| 12—13女人毛片做爰片一| 亚洲av美国av| 91国产中文字幕| 国产aⅴ精品一区二区三区波| 亚洲午夜精品一区,二区,三区| 精品久久久久久,| 一个人免费在线观看的高清视频| 亚洲免费av在线视频| 亚洲av片天天在线观看| 伊人久久大香线蕉亚洲五| 国产精品九九99| 国产av又大| 丰满迷人的少妇在线观看| 国产精品98久久久久久宅男小说| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 精品一区二区三区av网在线观看| 亚洲全国av大片| 日韩熟女老妇一区二区性免费视频| 久久香蕉激情| 亚洲午夜理论影院| 91字幕亚洲| 宅男免费午夜| 免费在线观看黄色视频的| 日日夜夜操网爽| 一进一出抽搐gif免费好疼 | 热99re8久久精品国产| 免费观看精品视频网站| 999精品在线视频| 亚洲久久久国产精品| 91国产中文字幕| 久久人人爽av亚洲精品天堂| 亚洲国产欧美日韩在线播放| 90打野战视频偷拍视频| 首页视频小说图片口味搜索| 欧美激情久久久久久爽电影 | www.自偷自拍.com| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 美女福利国产在线| 无遮挡黄片免费观看| 欧美激情高清一区二区三区| 国产激情久久老熟女| 老司机在亚洲福利影院| 美女高潮喷水抽搐中文字幕| 久久这里只有精品19| 黑人操中国人逼视频| 午夜免费成人在线视频| 最近最新中文字幕大全免费视频| 国产aⅴ精品一区二区三区波| 日韩中文字幕欧美一区二区| 久久香蕉国产精品| 日韩一卡2卡3卡4卡2021年| 免费在线观看日本一区| 日本五十路高清| 精品国产乱码久久久久久男人| 国产单亲对白刺激| 午夜激情av网站| 精品人妻在线不人妻| 老鸭窝网址在线观看| 国产男女内射视频| 亚洲五月色婷婷综合| 成年动漫av网址| 中亚洲国语对白在线视频| 黑人猛操日本美女一级片| 国产亚洲av高清不卡| 宅男免费午夜| 可以免费在线观看a视频的电影网站| 不卡av一区二区三区| 天天影视国产精品| 99riav亚洲国产免费| 国产成人av激情在线播放| 悠悠久久av| 欧美日韩中文字幕国产精品一区二区三区 | 老汉色∧v一级毛片| 亚洲精品美女久久av网站| 欧美日韩一级在线毛片| 看黄色毛片网站| 日本五十路高清| 亚洲精品中文字幕一二三四区| 亚洲国产中文字幕在线视频| 身体一侧抽搐| 19禁男女啪啪无遮挡网站| 中国美女看黄片| 亚洲人成伊人成综合网2020| bbb黄色大片| 日韩欧美在线二视频 | 在线视频色国产色| 黄色怎么调成土黄色| 如日韩欧美国产精品一区二区三区| 国产精品久久视频播放| 国产精品久久电影中文字幕 | 免费久久久久久久精品成人欧美视频| netflix在线观看网站| 成人永久免费在线观看视频| av天堂在线播放| 国产精品一区二区在线观看99| 黄色片一级片一级黄色片| 中文字幕av电影在线播放| 国产亚洲精品久久久久久毛片 | e午夜精品久久久久久久| 黄色怎么调成土黄色| 少妇 在线观看| 免费少妇av软件| 一个人免费在线观看的高清视频| 男人操女人黄网站| 制服人妻中文乱码| 欧美激情久久久久久爽电影 | 在线观看免费高清a一片| 国产亚洲av高清不卡| avwww免费| 免费女性裸体啪啪无遮挡网站| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 久久国产精品影院| 久久精品aⅴ一区二区三区四区| 亚洲性夜色夜夜综合| 男人操女人黄网站| 丰满迷人的少妇在线观看| 水蜜桃什么品种好| 国产精品久久久av美女十八| 午夜福利免费观看在线| 成人黄色视频免费在线看| 亚洲欧洲精品一区二区精品久久久| 欧美日韩瑟瑟在线播放| 99久久人妻综合| 99re6热这里在线精品视频| 人成视频在线观看免费观看| 性少妇av在线| 精品第一国产精品| 女性被躁到高潮视频| 亚洲伊人色综图| 欧美日本中文国产一区发布| 狠狠婷婷综合久久久久久88av| 久久精品亚洲av国产电影网| 中文字幕色久视频| 久久 成人 亚洲| 亚洲熟女毛片儿| 免费少妇av软件| 国产精品一区二区在线观看99| 青草久久国产| 多毛熟女@视频| 国产精品乱码一区二三区的特点 | 超色免费av| 欧美日韩亚洲国产一区二区在线观看 | 99久久综合精品五月天人人| 国产成人精品久久二区二区免费| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 日韩视频一区二区在线观看| 久久久国产成人免费| 国产在线精品亚洲第一网站| a级毛片黄视频| 村上凉子中文字幕在线| 久久久久久久午夜电影 | 精品福利永久在线观看| 国产亚洲欧美98| 一级毛片精品| 激情视频va一区二区三区| 日韩欧美一区视频在线观看| 国产一区二区三区在线臀色熟女 | 国产黄色免费在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 少妇猛男粗大的猛烈进出视频| 国产亚洲av高清不卡| 成年动漫av网址| 天堂中文最新版在线下载| 精品一区二区三区四区五区乱码| 怎么达到女性高潮| 亚洲熟女毛片儿| 国产免费av片在线观看野外av| 少妇裸体淫交视频免费看高清 | 一级毛片高清免费大全| 亚洲精品在线美女| 1024香蕉在线观看| 国产精品 国内视频| 91麻豆av在线| 欧美乱色亚洲激情| 日韩欧美国产一区二区入口| 久久久久精品人妻al黑| 男人的好看免费观看在线视频 | 久久国产精品男人的天堂亚洲| 黄色视频,在线免费观看| 精品久久久久久电影网| 亚洲午夜理论影院| 女人高潮潮喷娇喘18禁视频| 99精国产麻豆久久婷婷| 夜夜夜夜夜久久久久| 一本综合久久免费| 搡老岳熟女国产| 国产成人精品无人区| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 久久国产精品男人的天堂亚洲| 满18在线观看网站| 久久精品国产99精品国产亚洲性色 | 身体一侧抽搐| 欧美日本中文国产一区发布| 操出白浆在线播放| 99国产精品99久久久久| av线在线观看网站| 国产精品自产拍在线观看55亚洲 | 新久久久久国产一级毛片| 满18在线观看网站| 久久久久国产一级毛片高清牌| 无限看片的www在线观看| 久久国产精品男人的天堂亚洲| 国产有黄有色有爽视频| 大码成人一级视频| 搡老熟女国产l中国老女人| 免费看a级黄色片| 亚洲九九香蕉| 一级片'在线观看视频| 日本撒尿小便嘘嘘汇集6| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线美女| 天堂√8在线中文| 欧美日韩一级在线毛片| 午夜日韩欧美国产| av天堂在线播放| 日本a在线网址| 中文字幕最新亚洲高清| 精品一品国产午夜福利视频| 精品一区二区三区四区五区乱码| 婷婷成人精品国产| 又大又爽又粗| 老熟妇乱子伦视频在线观看| 欧美日韩乱码在线| 亚洲午夜理论影院| 久久久久久久午夜电影 | 日韩中文字幕欧美一区二区| 日韩人妻精品一区2区三区| 99国产精品99久久久久| 欧美黑人欧美精品刺激| 国产人伦9x9x在线观看| 两个人免费观看高清视频| 国产亚洲欧美98| 身体一侧抽搐| 久久性视频一级片| 久久香蕉精品热| 男女免费视频国产| 亚洲一区二区三区不卡视频| 免费高清在线观看日韩| 人妻丰满熟妇av一区二区三区 | 在线av久久热| 久久精品国产a三级三级三级| 在线观看免费日韩欧美大片| 久久国产精品影院| 最近最新免费中文字幕在线| 欧美人与性动交α欧美软件| 叶爱在线成人免费视频播放| 热re99久久国产66热| 91麻豆精品激情在线观看国产 | 色婷婷久久久亚洲欧美| 大陆偷拍与自拍| 夜夜躁狠狠躁天天躁| 亚洲片人在线观看| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看 | 精品午夜福利视频在线观看一区| 精品人妻1区二区| 成人黄色视频免费在线看| 国产精品1区2区在线观看. | 欧美人与性动交α欧美软件| 亚洲九九香蕉| 精品久久久精品久久久| 亚洲人成77777在线视频| 怎么达到女性高潮| 十八禁网站免费在线| 多毛熟女@视频| 日韩成人在线观看一区二区三区| 国产亚洲欧美98| 大型黄色视频在线免费观看| 操出白浆在线播放| 在线观看www视频免费| 大型av网站在线播放| 亚洲av片天天在线观看| 人人妻人人澡人人爽人人夜夜| xxxhd国产人妻xxx| 捣出白浆h1v1| av国产精品久久久久影院| 一进一出好大好爽视频| 欧美国产精品一级二级三级| 亚洲精品久久成人aⅴ小说| 少妇的丰满在线观看| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 男女高潮啪啪啪动态图| 丁香欧美五月| 欧美成狂野欧美在线观看| 超碰成人久久| 狠狠狠狠99中文字幕| 好看av亚洲va欧美ⅴa在| 久久久久久久午夜电影 | 日韩免费av在线播放| 如日韩欧美国产精品一区二区三区| 在线观看66精品国产| 久久久久久久精品吃奶| 欧美日韩瑟瑟在线播放| cao死你这个sao货| 欧美不卡视频在线免费观看 | 亚洲成国产人片在线观看| 老熟妇仑乱视频hdxx| 久久午夜亚洲精品久久| 老司机靠b影院| 一区二区三区精品91| 777久久人妻少妇嫩草av网站| 五月开心婷婷网| 亚洲精品久久午夜乱码| 日韩欧美三级三区| 50天的宝宝边吃奶边哭怎么回事| 日本精品一区二区三区蜜桃| 久久青草综合色| 日本精品一区二区三区蜜桃| 看免费av毛片| 日本黄色日本黄色录像| 国产人伦9x9x在线观看| 美女午夜性视频免费| 亚洲成国产人片在线观看| 国产男靠女视频免费网站| 国产麻豆69| 18禁观看日本| 一进一出抽搐动态| 一区二区三区激情视频| 99riav亚洲国产免费| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片| 欧美亚洲日本最大视频资源| 在线观看免费午夜福利视频| 亚洲 国产 在线| 国产精品美女特级片免费视频播放器 | xxx96com| 老汉色av国产亚洲站长工具| 国产激情欧美一区二区| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久午夜乱码| 亚洲中文av在线| 久久 成人 亚洲| 欧美激情极品国产一区二区三区| 热re99久久国产66热| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费 | 少妇裸体淫交视频免费看高清 | 午夜两性在线视频| 亚洲av第一区精品v没综合| 精品久久久精品久久久| 亚洲七黄色美女视频| 超碰成人久久| 国产成人精品久久二区二区91| 超碰成人久久| 国产精品久久久久久人妻精品电影| av不卡在线播放| 免费女性裸体啪啪无遮挡网站| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久男人| 一本综合久久免费| 大型av网站在线播放| 老熟妇乱子伦视频在线观看| 高清黄色对白视频在线免费看| 欧美激情久久久久久爽电影 | 99精国产麻豆久久婷婷| av不卡在线播放| 久久99一区二区三区| 激情在线观看视频在线高清 | 欧美日韩亚洲高清精品| 日韩大码丰满熟妇| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 伊人久久大香线蕉亚洲五| 国产麻豆69| 精品亚洲成a人片在线观看| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 人妻 亚洲 视频| 亚洲精品国产色婷婷电影| 亚洲,欧美精品.| 国产精品一区二区免费欧美| 美女高潮到喷水免费观看| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密| 亚洲av成人一区二区三| а√天堂www在线а√下载 | 欧美日韩福利视频一区二区| 亚洲伊人色综图| 国产精品亚洲av一区麻豆| 国产xxxxx性猛交| 午夜久久久在线观看| 久久精品国产亚洲av香蕉五月 | 免费高清在线观看日韩| 在线十欧美十亚洲十日本专区| 亚洲一码二码三码区别大吗| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| 男女午夜视频在线观看| 免费久久久久久久精品成人欧美视频| 国产一卡二卡三卡精品| av国产精品久久久久影院| 91成年电影在线观看| 欧美乱色亚洲激情| 久久天躁狠狠躁夜夜2o2o| 天堂俺去俺来也www色官网| 男人操女人黄网站| 人人妻,人人澡人人爽秒播| 国产单亲对白刺激| 国产主播在线观看一区二区| 黑人欧美特级aaaaaa片| 视频区欧美日本亚洲| 色播在线永久视频| 大型av网站在线播放| 少妇 在线观看| 成年人黄色毛片网站| 美女视频免费永久观看网站| 大香蕉久久成人网| 黄色成人免费大全| 亚洲av第一区精品v没综合| 成人精品一区二区免费| 高清视频免费观看一区二区| 多毛熟女@视频| 一a级毛片在线观看| 国产亚洲欧美98| 99国产极品粉嫩在线观看| 欧美乱妇无乱码| 97人妻天天添夜夜摸| 大陆偷拍与自拍| 亚洲色图综合在线观看| 亚洲国产看品久久| 亚洲免费av在线视频| 成人av一区二区三区在线看| 男人的好看免费观看在线视频 | 亚洲国产中文字幕在线视频| 日本五十路高清| 成人手机av| 亚洲精品一卡2卡三卡4卡5卡| 一夜夜www| 窝窝影院91人妻| 99国产精品免费福利视频| 91大片在线观看| avwww免费| 精品久久蜜臀av无| 亚洲少妇的诱惑av| 人人妻人人澡人人看| 午夜视频精品福利| 日韩欧美一区二区三区在线观看 | 亚洲人成伊人成综合网2020| 国产成人av教育| 美女视频免费永久观看网站| 大香蕉久久成人网| 国产精品一区二区精品视频观看| 狠狠婷婷综合久久久久久88av| 色播在线永久视频| 日本黄色日本黄色录像| 久久热在线av| 久久天堂一区二区三区四区| 国产精品欧美亚洲77777| 国产不卡一卡二| 18禁裸乳无遮挡动漫免费视频| 婷婷精品国产亚洲av在线 | 国产乱人伦免费视频| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 极品教师在线免费播放| 丝袜美足系列| 亚洲中文av在线| 看片在线看免费视频| 成年人免费黄色播放视频| 亚洲精品久久午夜乱码| 亚洲av成人av| 一级毛片女人18水好多| 一本一本久久a久久精品综合妖精| 91老司机精品| 欧美激情高清一区二区三区| 亚洲三区欧美一区| 亚洲人成电影免费在线| 99久久人妻综合| 亚洲人成伊人成综合网2020| 99国产极品粉嫩在线观看| av片东京热男人的天堂| 亚洲第一av免费看| 久久人人爽av亚洲精品天堂| 欧美激情高清一区二区三区| 天堂俺去俺来也www色官网| 性少妇av在线| 国产欧美日韩一区二区三| 一区二区三区国产精品乱码| 老鸭窝网址在线观看| 午夜视频精品福利| 欧美日韩亚洲国产一区二区在线观看 | 中亚洲国语对白在线视频| ponron亚洲| 久久久国产一区二区| 国产精品二区激情视频| 超碰成人久久| 波多野结衣一区麻豆| 91成人精品电影| 黄色丝袜av网址大全| 午夜福利免费观看在线| 国产精品免费视频内射| 很黄的视频免费| 丰满的人妻完整版| 午夜91福利影院| 这个男人来自地球电影免费观看| av天堂在线播放| 成人影院久久| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美精品综合一区二区三区| 精品国产一区二区久久| 欧美黑人精品巨大| 国产激情欧美一区二区| 精品福利永久在线观看| 大型黄色视频在线免费观看| 免费av中文字幕在线| 女人久久www免费人成看片| 欧美日韩av久久| 女警被强在线播放| av视频免费观看在线观看| 在线国产一区二区在线| 99riav亚洲国产免费| videos熟女内射| 久久影院123| 欧美激情高清一区二区三区| 欧美日韩黄片免| 婷婷丁香在线五月| 国产午夜精品久久久久久| 黄片小视频在线播放| 高潮久久久久久久久久久不卡| 精品免费久久久久久久清纯 | 亚洲精品乱久久久久久| 十八禁网站免费在线| 老司机亚洲免费影院| 欧美日韩视频精品一区| 一a级毛片在线观看| 黄色毛片三级朝国网站| av超薄肉色丝袜交足视频| 老熟女久久久| 国产精品一区二区在线不卡| 国产有黄有色有爽视频| 身体一侧抽搐| 国产男女内射视频| 人人妻人人澡人人爽人人夜夜| 女同久久另类99精品国产91| 亚洲一区高清亚洲精品| 国产欧美日韩精品亚洲av| 国产在视频线精品| 久久久国产成人免费| 国产主播在线观看一区二区| 王馨瑶露胸无遮挡在线观看| 欧美日韩成人在线一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 50天的宝宝边吃奶边哭怎么回事| 亚洲aⅴ乱码一区二区在线播放 | 大陆偷拍与自拍| 动漫黄色视频在线观看| 99久久综合精品五月天人人| 女人久久www免费人成看片| 又紧又爽又黄一区二区| 首页视频小说图片口味搜索| 亚洲熟妇熟女久久| 一级a爱视频在线免费观看| 亚洲成a人片在线一区二区| 99热只有精品国产| 成年人午夜在线观看视频| 一进一出抽搐动态| 亚洲精品一二三| 国产精品久久久久成人av| 亚洲熟女精品中文字幕| 欧美黑人精品巨大| 精品久久久精品久久久| 国产熟女午夜一区二区三区| 久久亚洲精品不卡| 亚洲一区二区三区不卡视频| 麻豆国产av国片精品| 国产蜜桃级精品一区二区三区 | 十八禁人妻一区二区| 搡老岳熟女国产| 男男h啪啪无遮挡| 又大又爽又粗| 搡老岳熟女国产| 中文字幕高清在线视频| 在线观看免费日韩欧美大片| 一a级毛片在线观看| 久久精品国产综合久久久| 成年人黄色毛片网站| 久久亚洲精品不卡| 午夜福利影视在线免费观看| 中文字幕人妻熟女乱码| 国产免费av片在线观看野外av| 国产精品久久久久成人av| 一进一出抽搐动态| 在线免费观看的www视频| 老熟妇乱子伦视频在线观看| 亚洲成a人片在线一区二区|