• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Change of Tropical Cyclone Heat Potential in Response to Global Warming

    2016-11-24 11:33:41RanLIUChanglinCHENandGuihuaWANGStateKeyLaboratoryofSatelliteOceanEnvironmentDynamicsSecondInstituteofOceanographyStateOceanicAdministrationHangzhou310012
    Advances in Atmospheric Sciences 2016年4期

    Ran LIU,Changlin CHEN,and Guihua WANGState Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography, State Oceanic Administration,Hangzhou 310012

    Change of Tropical Cyclone Heat Potential in Response to Global Warming

    Ran LIU,Changlin CHEN?,and Guihua WANG
    State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography, State Oceanic Administration,Hangzhou 310012

    Tropical cyclone heat potential(TCHP)in the ocean can affect tropical cyclone intensityand intensif cation.In this paper, TCHP change under global warming is presented based on 35 models from CMIP5(Coupled Model Intercomparison Project, Phase 5).As the upper ocean warms up,the TCHP of the global ocean is projected to increase by 140.6%in the 21st century under the RCP4.5(+4.5 W m?2Representative Concentration Pathway)scenario.The increase is particularly signif cant in the western Pacif c,northwestern Indian and western tropical Atlantic oceans.The increase of TCHP results from the ocean temperature warming above the depth of the 26?C isotherm(D26),the deepening of D26,and the horizontal area expansion of SST above 26?C.Their contributions are 69.4%,22.5%and 8.1%,respectively.Further,a suite of numerical experiments with an Ocean General Circulation Model(OGCM)is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming.Results show that sea surface warming is the dominant forcing for the TCHP change,while wind stress and sea surface salinity change are secondary.

    tropical cyclone heat potential,global warming,CMIP5,OGCM

    1.Introduction

    The upper ocean sustains tropical cyclone(TC)development by providing a considerable amount of heat and mitigating the sea surface cooling induced by the TC through upwelling and turbulent mixing(Gray,1979;Mei et al.,2015). Tropical cyclone heat potential(TCHP)(Leipper and Volgenau,1972)is a measure of the ocean heat content from the surface down to the depth of the 26?C isotherm(hereafter, D26).Manystudies havereportedthat theTCHP in theocean can affect TC intensity and intensif cation(e.g.,Wada and Usui,2007;Wada and Chan,2008;Goni et al.,2009).The larger the TCHP,the more favorable the ocean conditions are for TC intensif cation(Shay et al.,2000;Lin et al.,2008; Goni et al.,2009;Wada et al.,2012).

    The upper ocean heat content has been shown to have increased in recent decades(Palmer et al.,2007;Domingues et al.,2008;Ishii and Kimoto,2009;Levitus et al.,2012).Levitus et al.(2012)reported that the heat content of the global ocean for the 0-700 m layer increased by 16.7±1.6×1022J during 1955-2010.Consistently,using satellite measurements,Pun et al.(2013)found the TCHP has increased by 10.0%due to the increase in D26 duringthe past two decades inthe westernNorthPacif c Ocean.Ina warmingclimate,the upper ocean could take up half of the heat from the surface to 700 m by the end of the 21st century(Collins et al.,2013). Thus,we expect an increase in TCHP in a warming climate. The structure of the TCHP change,and what determines that change,however,remains unknown.

    In this study,the TCHP change under global warming is analyzed based on 35 models from CMIP5(Coupled Model Intercomparison Project,Phase 5).Then,a suite of numerical experiments with an OGCM is conducted to investigate the relative importance of wind stress and buoyancy forcing for the TCHP change under global warming.

    2.Data and method

    2.1.CMIP5 model outputs

    Themodeloutputsusedinthis studyarefromtheCMIP5. CMIP5 offers a multi-modelperspectiveof simulatedclimate variability and change(Taylor et al.,2012).Historical and RCP4.5(+4.5 W m?2Representative Concentration Pathway)simulations are used to describe the present-dayclimate and warmer climate,respectively.

    Climate change is represented by the difference in the climatological mean between the last 25 years of the 21st century(2076-2100;hereafter,RCP)and the last 25 years of the 20th century(1976-2000;hereafter,HIS).The calculation is similar to that used in previousstudies(e.g.,Sobel and Camargo,2011).A total of35 CMIP5 modelsare used in this study(Table 1).Only one member run(“rlilp1”)is selectedfor each model.We use all 35 models to calculate the multimodel average of each physical parameter.Each model is re-gridded to a common grid before the multi-model average is calculated.The common grid has a uniform 0.5?×0.5?resolution horizontally,and 50 levels vertically.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Table 1.The 35 CMIP5 models used in this study.

    2.2.OGCM

    The OGCM is the OPA(Oc′ean Parall′elis′e)component of the NEMO(Nucleus for European Modeling of the Ocean)modelingframework(Madec,2008).It is a dynamicthermodynamicmodel specif cally designed for climate studies,with a global 1?resolution and a tropical ref nement to 1/3?.The model has 46 levels in the vertical direction,with the layer thickness ranging from 6 m at the surface to 250 m at the bottom.The model integration time step is 1 h.

    To reach the quasi-equilibrium state,the model is f rst integrated for 100 years using the forcing of climatological monthly CORE2(Coordinated Ocean-ice Reference Experiments,version 2)data(Large and Yeager,2009).Then, the monthly wind stress,SST,and sea surface salinity(SSS) f elds from 1976to 2100,fromthe CMIP 35-modelensemble mean,are used to drive the ocean model.The SST and SSS are strongly restored toward the CMIP5 f elds,with a relaxation time scale of 20 days(for a 50 m layer).Five experiments are conducted in the study(Table 2).The average of the last 25 years of each experiment is used for analysis.The differences between the four sensitivity experiments and the control experiment are used to represent the TCHP change forced by(1)the combined effects of wind stress,SST and SSS change,(2)the effect of wind stress change,(3)the effect of SST change,and(4)the effect of SSS change,respectively.

    2.3.Method

    In this study,TCHP is def ned as follows,as in Leipper and Volgenau(1972):

    whereρhis the potential density of the sea water in each layer,cpis the specif c heat capacity at constant pressure,This the ocean temperature in each layer,?Zhis the thickness of each layer,H is D26,and h is the number of a particular verticallayer.WhenThis below26?C,the TCHP in that layer is assumed to be zero.

    3.Results

    3.1.Projected changes of TCHP in CMIP5

    Figure1ashowstheclimatologicaldistribution(contours) of the TCHP in the WOA13(World Ocean Atlas,2013) dataset(Locarnini et al.,2013).The TCHP is high in the Indo-Pacif c warm pool area,with the maximum in the tropical central Pacif c Ocean.The TCHP in the tropical Atlantic Ocean is smaller than that in the tropical Pacif c Ocean.Figure 1b shows the climatological distribution of the TCHP inHIS of CMIP5(contours).Generally,the TCHP distribution from CMIP5(Fig.1b)is similar to the observation(Fig. 1a),althoughtheirdifferencesaresignif cantinsomeregions. Their spatial correlation reaches 0.88.The TCHP magnitude in CMIP5 is smaller than that in WOA13 in most regions (Fig.1a,shading),especially in the areas where the climatological TCHP is large,e.g.,the Indo-Pacif c warm pool area and the western tropical Atlantic Ocean.Smaller TCHP in CMIP5 is also found in the Northwest Pacif c Ocean around 15?N.Globally,the TCHP in CMIP5 underestimates the observed TCHP by 9.8%.This underestimation may be partially due to the cold SST bias in the tropical ocean in CMIP5 (Wang et al.,2014).

    Table 2.Forcing set for the NEMO-OPA experiments.An overbar means the monthly climatology from CMIP5 historical experiments (1976-2000),and a prime means the change of each variable in each year from 1976 to 2100 with respect to the mean of 1976-2000.

    Fig.1.(a)The TCHP(units:108J m?2)in WOA13 data(white contours)and the difference in TCHP between the ensemble mean of the CMIP5 HIS simulation and WOA13(color shading).(b)The TCHP in the HIS simulation(white contours)and the change in TCHP(color shading).(c)The TCHP in RCP (color shading),and the white contour lines of SST for 26?C in the HIS simulation.Basin classif cation is represented by black boxes.The seven ocean basins are:the North Indian Ocean(NIO);Northwest Pacif c(NWP);Northeast Pacif c(NEP);North Atlantic(NAT);South Atlantic(SAT);South Indian Ocean(SIO);South Pacif c(SP).

    The high correlation between the historical experiments and observations suggests that the ensemble mean of the CMIP5 models can be a useful dataset for the projection ofTCHP under climate change.Figure 1b shows the TCHP change in CMIP5 between the RCP and HIS simulations (shading).As the upperoceanwarms up,the TCHP increases globally.The increase is particularly signif cant in the western Pacif c,northwestern Indian,and western tropical Atlantic oceans.Globally,the TCHP increases by 129.4%.The changemagnitudevaries with ocean basin.The magnitudeof increase for the North Atlantic and South Atlantic oceans can reach 312.9%and 287.1%,respectively.The South Pacif c Ocean has the smallest magnitude of increase,at 104.4%. The magnitudes of TCHP change in the rest of the basins areas follows:NortheastPacif c(163.3%);NorthwestPacif c (108%);North Indian Ocean(136.1%);South Indian Ocean (122.1%).Figure 1c shows the TCHP in RCP.As the SST warms up,the 26?C SST contour line extends a few degrees poleward.The horizontal area of SST above 26?C increases by30.7%in RCP with respecttoHIS.Addingtheareaexpansion part,the TCHP of the global ocean increases by 140.6% in RCP with respect to HIS.

    To better understand the TCHP change under global warming,we decompose it into three parts(Fig.2)as follows:

    Fig.2.D26 distributions(units:m)along 160?E in the HIS and RCP simulations.The numerals I-III indicate the three parts of TCHP change:the ocean temperature warming above D26, the deepening of D26,and the horizontal area expansion of SST above 26?C.

    Fig.3.TCHPchange(units:108Jm?2)due to(a)theocean temperature warmingabove D26,(b)thedeepening of D26,and(c)the horizontal area expansion of SST above 26?C.

    The three parts describe the TCHP change due to temperature change above D26(term I),the D26 deepening(term II),and the horizontal area change(term III).Figure 3 shows the three parts of the TCHP change.The TCHP increases signif cantly due to the ocean warming above D26(Fig.3a). The spatial pattern is very similar to the total TCHP change (Fig.1b),characterized by a signif cant increase in the western Pacif c,northwestern Indian,and western tropical At-lantic oceans.On average,this part of the TCHP change accounts for 69.4%of the total TCHP change,suggesting ocean warming above D26 is the most important part in total TCHP change.The warmingof ocean temperaturealso deepens D26,and enlarges the horizontal area of SST above 26?C (Figs.3b and c).The TCHP changes due to the deepening of D26 and due to the area expansion account for 22.5%and 8.1%of the total TCHP change,respectively.

    Although the ensemble mean provides some useful information on TCHP change,it is necessary to examine the TCHP change in individual models.Figure 4 shows the globaltotalTCHPandits changesbasedontheresultsofboth individual models and their ensemble mean.The ensemblemean TCHP is close to the observation,although the former is relatively smaller than the latter(also shown in Fig.1a). For individual models,the TCHP ranges from 1.30×1022J (EC-EARTH)to 5.89×1022J(CESM1-BGC).As the global ocean warms up,the TCHP is projected to increase in all models.Generally,the TCHP change is proportional to the total TCHP,with a linear f t slope of 0.4.We also calculated the TCHP and its change in individual ocean basins for these models.All ocean basins demonstrate similar features(not shown).

    Fig.4.Scatterplot betweentheglobaltotalTCHP(units:1022J) and its change for the 35 CMIP5 models.The ensemble mean is plotted as a black dot.The red line indicates the total TCHP in WOA13.The blue line is the linear f t.

    Fig.5.Changes of TCHP(units:108J m?2)in different OGCM experiments forced by(a)wind stress,SST and SSS change;(b)SST change only;(c)wind stress change only;and(d)SSS change only.

    3.2.Forcing mechanisms

    Here,we use an OGCM to test the impact of wind stress, SST andSSS onTCHP changeunderglobalwarming.Figure 5a shows the spatial pattern of TCHP change in the FULL-forcing experiment.The pattern is quite similar to the ensemble mean of CMIP5(Fig.1b).They both show that the TCHP increases in all regions,but with larger magnitudes in the western Pacif c,northwestern Indian,and western tropical Atlantic oceans.Generally,the OGCM captures the main features of the TCHP response to climate change in CMIP5. The OGCM experiment forced only by SST change(Fig.5b) also reproduces the results of the FULL-forcing experiment (Fig.5a).Their spatial correlation reaches 0.95,with almost the same magnitude.Compared to the SST-only experiment, the TCHP changes in the WIND-only and SSS-only experiments are weak(Figs.5c and d).The TCHP change in the four sensitivity experiments are 4.15×1022J,4.24×1022J,?5.99×1020J,and 2.47×1019J,respectively.These experiments highlight the dominant role of SST forcing in the TCHP response to global warming.

    4.Summary and discussion

    The TCHP change under future global warming was investigated based on 35 CMIP5 models.As the upper ocean warms up,the TCHP increases globally.The increase is particularly signif cant in the western Pacif c,northwestern Indian,and western tropical Atlantic oceans.The TCHP of the global ocean is projected to increase by 140.6%under the RCP4.5 scenario.Further analysis showed that the projected increase of TCHP mainly results from the ocean warming above D26,which accounts for 69.4%of the total change.

    A suite of OGCM experiments was conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming.The experiments showed that SST forcing is dominant in the TCHP response to global warming.The effects of wind stress and SSS on TCHP change are secondary.

    Although SST plays an important role in TC genesis,the ocean heat content,e.g.,TCHP,has been shown to play a more important role in TC intensity and intensif cation(Shay et al.,2000;Wada and Usui,2007;Goni et al.,2009).The projected increase of TCHP under global warming suggests the ocean may become more favorable for TC intensif cation, although it is still highly debated as to whether the accompanying changes in the ocean subsurface temperature prof le may partially oppose this effect(Knutson et al.,2013;Huang et al.,2015).Meanwhile,the long-term effect of increased TC intensity can in turn further strengthen the ocean warming by pumping heat into the ocean,possibly leading to positive feedback(Emanuel,2001;Sriver and Huber,2007;Mei, 2013).

    Acknowledgements.This study was supported by the National Basic Research Program of China(Grant No.2012CB 955601),the National Natural Science Foundation of China(Grant Nos.41206021 and 41125019),and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11010103).The CMIP5 model outputs were obtained from the Program for Climate Model Diagnosis and Intercomparison(PCMDI)at the Lawrence Livermore National Laboratory (http://pcmdi9.llnl.gov).

    REFERENCES

    Collins,M.,and Coauthors,2013:Long-term climatechange:projections,commitments and irreversibility,1029-1136.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,T.F.Stocker,et al., Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA.

    Domingues,C.M.,J.A.Church,N.J.White,P.J.Gleckler,S.E. Wijffels,P.M.Barker,and J.R.Dunn,2008:Improved estimates of upper-ocean warming and multi-decadal sea-level rise.Nature,453,1090-1093.

    Emanuel,K.A.,2001:The contribution of tropical cyclones to meridional heat transport by the oceans.J.Geophys.Res., 106(D14),14 771-14 781.

    Goni,G.,and Coauthors,2009:Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography,22,190-197.

    Gray,W.M.,1979:Hurricanes:Their formation,structure,and likely role in the tropical circulation.Meteorology over the Tropical Oceans,D.B.Shaw,Eds.,James Glaisher House, 155-218.

    Huang,P.,I.-I.Lin,C.Chou,and R.H.Huang,2015:Change in ocean subsurface environment tosuppress tropical cyclone intensif cation under global warming.Nature Communications, 6,7188,doi:10.1038/ncomms8188.

    Ishii,M.,and M.Kimoto,2009:Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections.Journal Oceanography,65,287-299.

    Knutson,T.R.,and Coauthors,2013:Dynamical downscaling projections of twenty-f rst-century Atlantic hurricane activity:CMIP3 and CMIP5 model-based scenarios.J.Climate, 26,6591-6617.

    Large,W.G.,and S.Yeager,2009:The global climatology of an interannually varying air-sea f ux data set.Climate Dyn.,33, 341-364,doi:10.1007/s00382-008-0441-3.

    Leipper,D.F.,and L.D.Volgenau,1972:Hurricane heat potential of the Gulf of Mexico.J.Phys.Oceanogr.,2,218-224.

    Levitus,S.,and Coauthors,2012:World ocean heat content and thermosteric sea level change(0-2000 m)1955-2010.Geophys.Res.Lett.,39,L10603.

    Lin,I.-I.,C.-C.Wu,I.-F.Pun,and D.-S.Ko,2008:Upperocean thermal structure and the western North Pacif c category 5 typhoons.Part I:Ocean features and the category 5 typhoons'intensif cation.Mon.Wea.Rev.,136,3288-3306, doi:10.1175/2008MWR2277.1.

    Locarnini,R.A.,and Coauthors,2013:World Ocean Atlas 2013, Vol.1:Temperature.S.Levitus,Ed.,A.Mishonov Technical Ed.;NOAA Atlas NESDIS 73,40 pp.

    Madec,G.,2008:NEMO ocean engine.Note du P?ole de mod′elisation,Institut Pierre-Simon Laplace(IPSL),France, No 27,ISSN No 1288-1619.

    Mei,W.,F.Primeau,J.C.McWillams,and C.Pasquero,2013: Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.Proceedings of the National Academy of Sciences of the United States of America, 110(38),15 207-15 210.

    Mei,W.,S.P.Xie,F.Primeau,J.C.McWilliams,and C.Pasquero,2015:Northwestern Pacif c typhoon intensity controlled by changes in ocean temperatures.Science Advances, 1,e1500014.

    Palmer,M.D.,K.Haines,S.F.B.Tett,and T.J.Ansell,2007: Isolating the signal of ocean global warming.Geophys.Res. Lett.,34,L23610.

    Pun,I.-F.,I.-I.Lin,and M.-H.Lo,2013:Recent increase in high tropical cyclone heat potential area in the Western NorthPacif cOcean.Geophys.Res.Lett.,40,4680-4884,doi: 10.1002/grl.50548.

    Shay,L.K.,G.J.Goni,and P.G.Black,2000:Effects of a warmoceanic featureonhurricaneOpal.Mon.Wea.Rev.,128, 1366-1383.

    Sobel,A.H.,and S.J.Camargo,2011:Projected future seasonal changes in tropical summer climate.J.Climate,24,473-487, doi:10.1175/2010JCLI3748.1.

    Sriver,R.L.,and M.Huber,2007:Observational evidence for an ocean heat pump induced by tropical cyclones.Nature,447, 577-580.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485-498.

    Wada,A.,and N.Usui,2007:Importance of tropical cyclone heat potential for tropical cyclone intensity and intensif cation in thewesternNorthPacif c.Journal ofOceanography,63,427-447,doi:10.1007/s10872-007-0039-0.

    Wada,A.,and J.C.L.Chan,2008:Relationship between typhoon activityand upper ocean heat content.Geophys.Res.Lett.,35, L17603,doi:10.1029/2008GL035129.

    Wada,A.,N.Usui,and K.Sato,2012:Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacif c Ocean.J.Geophys.Res.,117,D11118,doi:10.1029/2012JD017583.

    Wang,C.Z.,L.P.Zhang,S.-K.Lee,L.X.Wu,and C.R.Mechoso, 2014:A global perspective on CMIP5 climate model biases.Nature Climate Change,4,201-205,doi:10.1038/nclimate2118.

    Liu,R.,C.L.Chen,and G.H.Wang,2016:Change of tropical cyclone heat potential in response to global warming.Adv.Atmos.Sci.,33(4),504-510,

    10.1007/s00376-015-5112-9.

    30 April 2015;revised 20 August 2015;accepted 21 August 2015)

    ?Changlin CHEN

    Email:clchen@sio.org.cn

    久久久成人免费电影| 桃红色精品国产亚洲av| 老司机午夜福利在线观看视频| 精品久久久久久久人妻蜜臀av| 亚洲av二区三区四区| 国产免费一级a男人的天堂| 一进一出好大好爽视频| 色播亚洲综合网| 一进一出抽搐动态| 看片在线看免费视频| 麻豆成人av在线观看| 12—13女人毛片做爰片一| 亚洲成人免费电影在线观看| 欧美最新免费一区二区三区 | 午夜精品在线福利| 别揉我奶头~嗯~啊~动态视频| 男人的好看免费观看在线视频| 久9热在线精品视频| 三级毛片av免费| 欧美黄色淫秽网站| 欧美一级毛片孕妇| 亚洲第一电影网av| 高清在线国产一区| 欧美+日韩+精品| 亚洲 欧美 日韩 在线 免费| www.色视频.com| 久久6这里有精品| 亚洲人成伊人成综合网2020| 少妇的逼水好多| 免费在线观看影片大全网站| 床上黄色一级片| 欧美成狂野欧美在线观看| 黄色丝袜av网址大全| 精品福利观看| 免费av毛片视频| 久久亚洲真实| 午夜久久久久精精品| 老司机在亚洲福利影院| 国产精品久久久人人做人人爽| 夜夜爽天天搞| 日本一本二区三区精品| 12—13女人毛片做爰片一| 波多野结衣高清作品| 男人的好看免费观看在线视频| 午夜久久久久精精品| 精品不卡国产一区二区三区| 91麻豆精品激情在线观看国产| 免费人成视频x8x8入口观看| 精品人妻一区二区三区麻豆 | 最近视频中文字幕2019在线8| 操出白浆在线播放| netflix在线观看网站| 国产精品综合久久久久久久免费| 综合色av麻豆| 欧美中文日本在线观看视频| 香蕉久久夜色| 少妇丰满av| 最近最新中文字幕大全免费视频| 亚洲男人的天堂狠狠| 欧美精品啪啪一区二区三区| 国产三级在线视频| 综合色av麻豆| 精品日产1卡2卡| 少妇的逼水好多| 国产精品久久久久久亚洲av鲁大| 制服丝袜大香蕉在线| 最新在线观看一区二区三区| 日韩精品中文字幕看吧| 香蕉av资源在线| 亚洲aⅴ乱码一区二区在线播放| 婷婷丁香在线五月| 全区人妻精品视频| 19禁男女啪啪无遮挡网站| 国产欧美日韩一区二区精品| 亚洲午夜理论影院| 午夜福利在线在线| 亚洲av熟女| h日本视频在线播放| 亚洲电影在线观看av| 色吧在线观看| 无人区码免费观看不卡| 国产探花极品一区二区| 五月伊人婷婷丁香| 免费看十八禁软件| 免费人成在线观看视频色| 人妻夜夜爽99麻豆av| 国产成人福利小说| 色视频www国产| 欧美日韩国产亚洲二区| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频| 天堂av国产一区二区熟女人妻| 男人舔奶头视频| 少妇的逼好多水| 男女视频在线观看网站免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 一二三四社区在线视频社区8| 在线观看日韩欧美| 国产熟女xx| 精品久久久久久,| 日本a在线网址| 人妻久久中文字幕网| 国产毛片a区久久久久| 国产精品香港三级国产av潘金莲| 欧美成人a在线观看| 黄色丝袜av网址大全| 国产极品精品免费视频能看的| 日韩欧美三级三区| 三级毛片av免费| 国产伦在线观看视频一区| 在线视频色国产色| 亚洲欧美日韩卡通动漫| 欧美国产日韩亚洲一区| 欧美+日韩+精品| 亚洲精品成人久久久久久| 69av精品久久久久久| 99热这里只有精品一区| 三级国产精品欧美在线观看| 国产伦人伦偷精品视频| 亚洲不卡免费看| 国产视频一区二区在线看| 久久久久久久久久黄片| 亚洲欧美激情综合另类| 国产精品98久久久久久宅男小说| 亚洲熟妇熟女久久| 欧美黄色淫秽网站| 成年女人看的毛片在线观看| 免费看美女性在线毛片视频| 高清在线国产一区| 精品人妻偷拍中文字幕| 日日干狠狠操夜夜爽| 国产成人啪精品午夜网站| 又紧又爽又黄一区二区| 欧美一区二区国产精品久久精品| 国产97色在线日韩免费| 小说图片视频综合网站| 亚洲国产欧美人成| 美女高潮的动态| 日本熟妇午夜| 精品人妻1区二区| 啦啦啦免费观看视频1| 亚洲精品色激情综合| 欧美激情在线99| 美女高潮的动态| 窝窝影院91人妻| 女同久久另类99精品国产91| 男人舔奶头视频| 久久中文看片网| 一夜夜www| 毛片女人毛片| 亚洲人成网站在线播| 欧美日本视频| 我的老师免费观看完整版| 日本 av在线| 我要搜黄色片| 少妇人妻精品综合一区二区 | 老司机午夜福利在线观看视频| 三级男女做爰猛烈吃奶摸视频| 波多野结衣高清作品| 99久久精品国产亚洲精品| 成人高潮视频无遮挡免费网站| 精品国产美女av久久久久小说| 亚洲欧美日韩高清专用| 757午夜福利合集在线观看| 九九久久精品国产亚洲av麻豆| 欧美乱妇无乱码| 亚洲国产欧美网| 啦啦啦免费观看视频1| 桃红色精品国产亚洲av| 伊人久久精品亚洲午夜| 长腿黑丝高跟| 狂野欧美激情性xxxx| 又紧又爽又黄一区二区| 免费大片18禁| 国内精品久久久久精免费| 日本与韩国留学比较| 啪啪无遮挡十八禁网站| 在线播放无遮挡| 国内揄拍国产精品人妻在线| 日本撒尿小便嘘嘘汇集6| 国产精品99久久99久久久不卡| 波多野结衣高清作品| 欧美黄色淫秽网站| 99久久久亚洲精品蜜臀av| 69人妻影院| 最新美女视频免费是黄的| 色哟哟哟哟哟哟| 黄色视频,在线免费观看| 国产成人啪精品午夜网站| 一区二区三区高清视频在线| 亚洲欧美日韩卡通动漫| 99久久99久久久精品蜜桃| 欧美bdsm另类| 国产成人av教育| 国产黄片美女视频| 俄罗斯特黄特色一大片| 久久人妻av系列| 久久久久亚洲av毛片大全| 日韩av在线大香蕉| 人妻丰满熟妇av一区二区三区| 2021天堂中文幕一二区在线观| 天天躁日日操中文字幕| netflix在线观看网站| 免费av毛片视频| 午夜激情福利司机影院| 欧美日韩黄片免| 免费看美女性在线毛片视频| 99久久精品一区二区三区| eeuss影院久久| 国产精品嫩草影院av在线观看 | 久久久国产成人精品二区| 夜夜看夜夜爽夜夜摸| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 欧美日本亚洲视频在线播放| 午夜福利18| 亚洲精品影视一区二区三区av| 精品久久久久久久人妻蜜臀av| 久久这里只有精品中国| 亚洲成人久久爱视频| h日本视频在线播放| 久久精品综合一区二区三区| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 在线看三级毛片| av天堂中文字幕网| 亚洲av一区综合| 久久国产精品人妻蜜桃| 日本 av在线| 一级黄片播放器| 三级男女做爰猛烈吃奶摸视频| 国产精品爽爽va在线观看网站| svipshipincom国产片| 亚洲 国产 在线| 亚洲五月天丁香| 99精品在免费线老司机午夜| 国产乱人视频| 在线观看美女被高潮喷水网站 | 色综合婷婷激情| 日韩欧美精品v在线| 嫩草影院入口| 99热精品在线国产| 亚洲真实伦在线观看| 91久久精品国产一区二区成人 | 成年版毛片免费区| 免费电影在线观看免费观看| 国产淫片久久久久久久久 | 久久人妻av系列| 亚洲精品亚洲一区二区| 国产精品久久久久久人妻精品电影| 国产成人a区在线观看| 97碰自拍视频| 久久精品91无色码中文字幕| 亚洲欧美精品综合久久99| 一区二区三区激情视频| 久久久久久久午夜电影| 成人亚洲精品av一区二区| 不卡一级毛片| 午夜福利免费观看在线| 国产成人欧美在线观看| 欧美日韩精品网址| АⅤ资源中文在线天堂| 日本撒尿小便嘘嘘汇集6| 老司机在亚洲福利影院| 亚洲熟妇中文字幕五十中出| 成人性生交大片免费视频hd| 99国产精品一区二区三区| 丰满的人妻完整版| 久久久国产成人免费| 国产亚洲精品综合一区在线观看| 日本五十路高清| 男女之事视频高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 色老头精品视频在线观看| 男女下面进入的视频免费午夜| 99久久无色码亚洲精品果冻| 精品99又大又爽又粗少妇毛片 | 欧美日韩福利视频一区二区| 欧美一级a爱片免费观看看| 99久久久亚洲精品蜜臀av| 亚洲无线在线观看| 国产中年淑女户外野战色| 国产亚洲精品一区二区www| 欧美bdsm另类| 给我免费播放毛片高清在线观看| 欧美最黄视频在线播放免费| 日韩人妻高清精品专区| 久久久国产精品麻豆| xxxwww97欧美| 欧美最新免费一区二区三区 | 日本黄大片高清| 欧美最黄视频在线播放免费| 日本黄大片高清| 一区福利在线观看| 99国产精品一区二区蜜桃av| 老司机福利观看| 精品福利观看| 97超视频在线观看视频| 一级作爱视频免费观看| 99久久99久久久精品蜜桃| 丁香欧美五月| 最后的刺客免费高清国语| 夜夜躁狠狠躁天天躁| 成人国产一区最新在线观看| 69人妻影院| 精品久久久久久久久久久久久| 熟女电影av网| 国产精品三级大全| 欧美黄色淫秽网站| 国产亚洲精品久久久久久毛片| 日本精品一区二区三区蜜桃| 国产日本99.免费观看| 在线十欧美十亚洲十日本专区| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 色综合婷婷激情| 99久久精品热视频| 国产成人av教育| 激情在线观看视频在线高清| 久久婷婷人人爽人人干人人爱| 亚洲欧美激情综合另类| av天堂在线播放| 99精品久久久久人妻精品| 午夜两性在线视频| 性色avwww在线观看| 亚洲av二区三区四区| 成人午夜高清在线视频| 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| 国产伦在线观看视频一区| 久久久久久大精品| 亚洲午夜理论影院| 综合色av麻豆| 欧美乱码精品一区二区三区| 麻豆国产97在线/欧美| 久久国产精品人妻蜜桃| 欧美黑人欧美精品刺激| 亚洲国产精品久久男人天堂| 日韩欧美一区二区三区在线观看| 午夜久久久久精精品| 国产免费av片在线观看野外av| 亚洲精品456在线播放app | 国产亚洲精品av在线| 久久久久久久午夜电影| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女| 欧美日本视频| 国产精品一区二区三区四区久久| 成人亚洲精品av一区二区| 美女大奶头视频| 69av精品久久久久久| 脱女人内裤的视频| 长腿黑丝高跟| 国产激情偷乱视频一区二区| 露出奶头的视频| 日日摸夜夜添夜夜添小说| 波多野结衣高清作品| 精品一区二区三区av网在线观看| 五月玫瑰六月丁香| 九色国产91popny在线| av欧美777| 欧美成人免费av一区二区三区| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 给我免费播放毛片高清在线观看| 1000部很黄的大片| 99在线视频只有这里精品首页| 色哟哟哟哟哟哟| 国产欧美日韩一区二区精品| 亚洲专区中文字幕在线| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 两人在一起打扑克的视频| 此物有八面人人有两片| 免费在线观看亚洲国产| 国产av在哪里看| 最近在线观看免费完整版| 成年女人看的毛片在线观看| 99精品久久久久人妻精品| ponron亚洲| 亚洲国产色片| 久久精品人妻少妇| 国产日本99.免费观看| 欧美日本亚洲视频在线播放| 婷婷丁香在线五月| 99久久精品热视频| 亚洲人成网站高清观看| 亚洲国产欧美人成| 好看av亚洲va欧美ⅴa在| 嫩草影院精品99| 欧美日韩国产亚洲二区| 69av精品久久久久久| 老司机在亚洲福利影院| 黄片大片在线免费观看| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 欧美一区二区精品小视频在线| 18禁黄网站禁片午夜丰满| 波多野结衣高清无吗| 少妇人妻精品综合一区二区 | 一区福利在线观看| 中文在线观看免费www的网站| 亚洲,欧美精品.| 怎么达到女性高潮| 欧美一区二区国产精品久久精品| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| 激情在线观看视频在线高清| 久久久久九九精品影院| 国产精品综合久久久久久久免费| 国产视频内射| 国产不卡一卡二| 国产精品 欧美亚洲| 宅男免费午夜| 国产av麻豆久久久久久久| 露出奶头的视频| 国产精品亚洲美女久久久| 午夜亚洲福利在线播放| 波野结衣二区三区在线 | 激情在线观看视频在线高清| 性色avwww在线观看| 国产一级毛片七仙女欲春2| 久9热在线精品视频| 好男人电影高清在线观看| 中文字幕精品亚洲无线码一区| 国产av在哪里看| 狂野欧美激情性xxxx| 国产精品香港三级国产av潘金莲| 午夜久久久久精精品| 中文字幕人妻丝袜一区二区| 少妇的逼水好多| 国内毛片毛片毛片毛片毛片| 激情在线观看视频在线高清| 午夜老司机福利剧场| 国产午夜福利久久久久久| 可以在线观看的亚洲视频| 此物有八面人人有两片| 精品日产1卡2卡| 国产欧美日韩一区二区三| 男女那种视频在线观看| 久久久久久大精品| 色老头精品视频在线观看| 久久久久国内视频| 12—13女人毛片做爰片一| 亚洲欧美激情综合另类| 一区福利在线观看| 亚洲欧美日韩高清在线视频| av在线天堂中文字幕| 天天一区二区日本电影三级| 久久久久九九精品影院| 日韩人妻高清精品专区| 51国产日韩欧美| 成人特级黄色片久久久久久久| 免费人成视频x8x8入口观看| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出| 在线播放国产精品三级| 欧美又色又爽又黄视频| 亚洲av熟女| 中文字幕久久专区| 国产91精品成人一区二区三区| 特大巨黑吊av在线直播| 2021天堂中文幕一二区在线观| tocl精华| 在线观看66精品国产| 久久久久久久精品吃奶| 内射极品少妇av片p| 国产精品爽爽va在线观看网站| 亚洲欧美日韩高清在线视频| 欧美一级毛片孕妇| 女人高潮潮喷娇喘18禁视频| 成人av在线播放网站| 亚洲 欧美 日韩 在线 免费| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播放欧美日韩| bbb黄色大片| 97人妻精品一区二区三区麻豆| 国产av一区在线观看免费| 国产高清视频在线观看网站| 香蕉久久夜色| 亚洲精品久久国产高清桃花| 久久久久久九九精品二区国产| 久久久国产成人精品二区| 丰满的人妻完整版| 精品久久久久久久人妻蜜臀av| 69人妻影院| 亚洲 欧美 日韩 在线 免费| 97超级碰碰碰精品色视频在线观看| 国产一区在线观看成人免费| 天堂网av新在线| or卡值多少钱| 黄色日韩在线| 99精品久久久久人妻精品| 国产真实伦视频高清在线观看 | 好男人在线观看高清免费视频| 日本与韩国留学比较| 丰满人妻熟妇乱又伦精品不卡| 国产黄a三级三级三级人| 久久久久免费精品人妻一区二区| 亚洲精品久久国产高清桃花| 波多野结衣高清无吗| 国产精品久久电影中文字幕| 亚洲av成人av| 久久精品亚洲精品国产色婷小说| 十八禁人妻一区二区| 亚洲av成人不卡在线观看播放网| 亚洲国产精品久久男人天堂| 成年女人永久免费观看视频| 手机成人av网站| 一级作爱视频免费观看| 国产一区在线观看成人免费| 日韩大尺度精品在线看网址| 日本a在线网址| 999久久久精品免费观看国产| 亚洲欧美激情综合另类| 精品国产美女av久久久久小说| 一区二区三区国产精品乱码| 日本 欧美在线| 亚洲专区中文字幕在线| 欧美中文综合在线视频| 亚洲精品美女久久久久99蜜臀| 欧美乱色亚洲激情| 亚洲成av人片免费观看| 日本与韩国留学比较| 欧美大码av| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 可以在线观看的亚洲视频| 少妇丰满av| 国产欧美日韩精品一区二区| 色播亚洲综合网| 午夜福利高清视频| 亚洲av电影不卡..在线观看| 国产精品三级大全| 国产精品99久久99久久久不卡| 国产美女午夜福利| 草草在线视频免费看| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 99久久久亚洲精品蜜臀av| 亚洲av不卡在线观看| 变态另类丝袜制服| 免费无遮挡裸体视频| 欧美日韩一级在线毛片| 国产主播在线观看一区二区| 波多野结衣巨乳人妻| 99久久无色码亚洲精品果冻| 久久久久久人人人人人| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲欧美在线一区二区| 波野结衣二区三区在线 | 精品一区二区三区人妻视频| 又爽又黄无遮挡网站| 国产精品一区二区三区四区久久| 757午夜福利合集在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品香港三级国产av潘金莲| 精品久久久久久久人妻蜜臀av| 精品久久久久久久末码| 男人舔奶头视频| 欧美大码av| 午夜亚洲福利在线播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲久久久久久中文字幕| 亚洲无线在线观看| 国产亚洲精品久久久久久毛片| 亚洲一区高清亚洲精品| 长腿黑丝高跟| 深夜精品福利| 国产免费男女视频| 别揉我奶头~嗯~啊~动态视频| 国产主播在线观看一区二区| 9191精品国产免费久久| 性色avwww在线观看| 无遮挡黄片免费观看| 免费在线观看日本一区| 精品免费久久久久久久清纯| 12—13女人毛片做爰片一| 日韩欧美在线二视频| 乱人视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 性欧美人与动物交配| 亚洲熟妇中文字幕五十中出| 免费无遮挡裸体视频| 亚洲欧美激情综合另类| 五月玫瑰六月丁香| 亚洲色图av天堂| 午夜激情福利司机影院| 免费电影在线观看免费观看| 国产精品乱码一区二三区的特点| 麻豆成人午夜福利视频| 亚洲片人在线观看| 国产熟女xx| 亚洲国产色片| 国产精品久久久人人做人人爽| 香蕉久久夜色| 别揉我奶头~嗯~啊~动态视频| 久久99热这里只有精品18| 国产亚洲精品av在线| 一本一本综合久久| 色噜噜av男人的天堂激情| 亚洲国产欧美网| 国产精品嫩草影院av在线观看 | 变态另类成人亚洲欧美熟女| 国产69精品久久久久777片| 国产精品一区二区三区四区久久| 免费无遮挡裸体视频| e午夜精品久久久久久久| 国产欧美日韩精品亚洲av| av福利片在线观看| www国产在线视频色| 欧美日韩中文字幕国产精品一区二区三区| 在线观看66精品国产| 中出人妻视频一区二区|