• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection

    2016-11-24 11:33:37XiaoTongZHENGLihuiGAOGenLIandYanDU
    Advances in Atmospheric Sciences 2016年4期

    Xiao-Tong ZHENG,Lihui GAO,Gen LI,and Yan DU

    1Key Laboratory of Physical Oceanography,Ministry of Education,and Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of Shandong,Ocean University of China,Qingdao 266100

    2Qingdao Collaborative Innovation Center of Marine Science and Technology,Ocean University of China,Qingdao 266003

    3State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510301

    The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection

    Xiao-Tong ZHENG?1,2,Lihui GAO1,Gen LI3,and Yan DU3

    1Key Laboratory of Physical Oceanography,Ministry of Education,and Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of Shandong,Ocean University of China,Qingdao 266100

    2Qingdao Collaborative Innovation Center of Marine Science and Technology,Ocean University of China,Qingdao 266003

    3State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510301

    Using 20 models of the Coupled Model Intercomparison Project Phase 5(CMIP5),the simulation of the Southwest Indian Ocean(SWIO)thermocline dome is evaluated and its role in shaping the Indian Ocean Basin(IOB)mode following El Ni?no investigated.In most of the CMIP5 models,due to an easterly wind bias along the equator,the simulated SWIO thermocline is too deep,which could further influence the amplitude of the interannual IOB mode.A model with a shallow(deep) thermocline dome tends to simulate a strong(weak)IOB mode,including key attributes such as the SWIO SST warming, antisymmetric pattern during boreal spring,and second North Indian Ocean warming during boreal summer.Under global warming,the thermocline dome deepens with the easterly wind trend along the equator in most of the models.However,the IOB amplitude does not follow such a change of the SWIO thermocline among the models;rather,it follows future changes in both ENSO forcing and local convection feedback,suggesting a decreasing effect of the deepening SWIO thermocline dome on the change in the IOB mode in the future.

    SWIO thermocline dome,Indian Ocean basin mode,global warming,CMIP5,ENSO

    1.Introduction

    The tropical Indian Ocean(TIO)is a crucial region for global climate on intraseasonal,interannual and decadal timescales(Schott et al.,2009).In particular,a thermocline dome,located in the Southwest Indian Ocean(SWIO),is important to the local and remote climate.The variation of SST over this region affects local biological production,the activity of tropical cyclones(Xie et al.,2002,2009),the South Asian monsoon onset(Annamalai et al.,2005;Du et al., 2009),and even remote climate by atmospheric teleconnections(Annamalai et al.,2005,2007;Xie et al.,2009,2010b; Du et al.,2011).Besides the several coastal upwelling regions,the SST variation in the SWIO is relatively large in the TIO due to the shallow thermocline.The interannual SST variability cannot be explained by local heat flux,indicating the ocean dynamics are crucial in this region(Klein et al., 1999;Xie et al.,2002;Li et al.,2015b).

    Previous studies have investigated this thermocline dome using observations and model simulations(Reverdin and Fieux,1987;Woodberry et al.,1989;McCreary et al.,1993; Yokoi et al.,2008,2009,2012;Du et al.,2014).The local winds in the tropical South Indian Ocean(SIO)have been suggested as being responsible for generating Ekman upwelling and shoaling of the SWIO thermocline with westward propagating Rossby waves(Masumoto and Meyers, 1998,Yokoi et al.,2008).This shallow thermocline induces vertical entrainment that influences SST more effectively, leading to larger interannual variance.On the interannual timescale,the variation in the SWIO is affected by oceanic dynamics(Huang and Kinter,2002;Xie et al.,2002).During an El Ni?no event,as the deep convection center moves,equatorial Indian Ocean(EIO)easterlies and related anticyclonic wind anomalies appear during boreal autumn to winter in developing years and excite downwelling Rossby wave in the tropical SIO region(Yu et al.,2005).In the boreal spring following El Ni?no,this downwelling Rossby wave propagates to the SWIO where the mean thermocline is shallow,deepens the local thermocline,and warms SST(Xie et al.,2002).

    The ENSO-induced SWIO warming leads to a series of local air-sea interactions that shape the spatiotemporal struc-tures of the Indian Ocean Basin(IOB)mode.In boreal spring,an atmospheric antisymmetric pattern is induced by the SWIO warming:more(less)rainfall with northwesterly (northeasterly)wind anomalies south(north)of the equator (Wu et al.,2008).The wind-evaporation-SST feedback(Xie and Philander,1994)helps sustain this antisymmetric pattern through early summer,operating on the easterly climatological winds(Kawamura et al.,2001;Wu et al.,2008).When the summer monsoon breaks out in May over the North Indian Ocean(NIO),the anomalous northeasterlies warm the SST there,inducing a second warming over the NIO and maintenance of the IOB warming through boreal summer following El Ni?no(Du et al.,2009).The IOB further affects the climate over the subtropical northwestern Pacific and East Asia via the so-called capacitor effect(Yang et al.,2007;Xie et al., 2009,2010b).

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Due to the importance of the SWIO thermocline to local and remote climate,there have been numerous studies that have evaluated simulations of the thermocline dome and its interannual variation in coupled general circulation models (CGCMs,Saji et al.,2006;Yokoi et al.,2009;Du et al., 2013;Nagura et al.,2013).Yokoi et al.(2009)found that most models capture the dome structure of the thermocline in the tropical SIO and its annual cycle,but the simulated dome is deeper and more eastward than observed.Nagura et al.(2013)pointed out these biases are related to the easterly wind bias over the EIO.Recently,Li et al.(2015a)reported a common equatorial easterly wind bias along the EIO in CGCMs,which is related to errors in the South Asian summer monsoon.This simulated wind bias leads to a SWIO thermocline that is too deep,influencing the IOB amplitude further(Li et al.,2015b).

    TheinterannualSSTvariabilityintheSWIOanditseffect on the TIO climate in CMIP5 models have been evaluated (Du et al.,2013).However,the role of the SWIO thermocline dome in shaping the interannual TIO variability simulation,especially the local air-sea interactions,needs to be examined in detail.Furthermore,the mean states in the TIO, especially that of equatorial wind,change significantly under global warming(Zheng et al.,2010,2013).The responses of the thermocline dome to global warming,as well as its climate effects,should also be examined.

    In this paper,we use coupled models from the Coupled Model Intercomparison Project Phase 5(CMIP5)to evaluate the simulation of the thermocline dome and its response to global warming.Compared with observations,the simulated SWIO thermocline is too deep and shifted eastward in most models.The erroneous simulation is related to the easterly wind bias in the EIO,which affects the local Ekman upwelling effect.In addition,the diversity of the SWIO thermocline depth among models further influences the interannual IOB mode and its key attributes.Under global warming, simulation of the thermocline dome deepens in the SWIO due to the weakened Walker circulation and easterly wind trend along the equator in most of the models.However,the changes of the IOB mode do not follow the SWIO thermocline change among the models,due to the changes in ENSO forcing and local convection feedback in the SWIO.

    The rest of the paper is organized as follows.Section 2 briefly describes the model simulations and observations used in this study.Section 3 reports the simulation of the thermocline dome and related TIO interannual variability in the CMIP5 models.The responses of the SWIO thermocline to global warming are presented in section 4.Section 5 is a summary.

    2.Model simulations and observations

    To examine the capability of simulating the thermocline dome and its interannual variability,we use the 20 model outputs from the World Climate Research Program CMIP5 multi-model ensemble organized by the Program for Climate Model Diagnosis and Intercomparison for the Intergovernmental Panel on Climate Change Fifth Assessment Report (Table 1).In this study,two sets of simulations from the 20 CMIP5 models are analyzed(Taylor et al.,2012).We use historical climate experiments(historical run)to examine the simulation of the thermocline dome in the models,and compare them with the+8.5 W m?2Representative Concentration Pathway(RCP8.5)experiments to investigate how the SWIO thermocline and its interannual variability change under global warming.The historical experiments are forced by historical greenhouses gases,aerosols,and other radiative forcing;and the RCP8.5 experiments are run under the radiative forcing reaching~8.5 W m?2near 2100(equivalent to>1370 ppm CO2in concentration).Here,we choose 50 years separately in the 20th(1950-99)and 21st(2045-94) centuries to represent present-day and future climate for our investigation.

    To assess the skills of the CMIP5 models in SWIO thermocline dome simulation,we use the observed SST from the National Oceanic and Atmospheric Administration Extended Reconstructed SST version 3b dataset(Smith et al.,2008). The surface wind and precipitation are from the National Centers for Environmental Prediction-National Center for Atmospheric Research atmospheric reanalysis(Kalnay et al., 1996)and the Center for Climate Prediction Merged Analysis of Precipitation(CMAP)(Xie and Arkin,1996),respectively. We also use the ocean temperature from the Simple Ocean Data Assimilation(SODA)product(Carton and Giese,2008) from 1979 to 2010(limited by CMAP and SODA).

    In this study,we use the variables averaged from 5?to 10?S and 50?to 80?E,referred to as the indices in the SWIO dome region.To illustrate the interannual variability,we perform a three-month running average to reduced intraseasonal variability and calculate a 9-year running mean to remove decadal and longer variations,which are also significant over the TIO(Deser et al.,2004).

    3.Simulations of the thermocline dome and its effect on TIO interannual variability

    This section examines the simulations of the thermocline dome in the CMIP5 models and its roles in the persistence ofIOB warming.We start with the simulation of the thermocline dome in the models and then follow with an investigation of each related attribution of the IOB mode,including local SST variability in the SWIO,the antisymmetric atmospheric pattern associated with the SWIO warming,and the second warming in the NIO during boreal summer.

    Table 1.CMIP5 models used in this study.

    3.1.Thermocline dome simulation in the CMIP5 models

    In observations,the thermocline dome is located in the SWIO at approximately(5?-10?S,50?-80?E)(Xie et al., 2002).Figure 1 shows the climatology(1950-99)of the thermocline depth in the 20th century,represented by the 20?C isotherm(Z20),in the historical runs of the 20 CMIP5 models and SODA outputs.Most of the CMIP5 models capture the features of the thermocline dome seen in SODA,such as its location and depth.However,as reported in previous studies,there is an eastward displacement bias in the mutli-model ensemble(MME;Fig.1b).This bias mainly appears in six of the models;namely,bcc-csm1-1,CNRM-CM5,GFDLCM3,HadGEM2-CC,HadGEM2-ES and MRI-CGCM3.In addition,compared with observations,the thermocline is too deep in several of the models,such as FGOALS-s2 and MRICGCM3,but too shallow in others,such as CSIRO-Mk3-6-0 and GFDL-ESM2G.In general,simulation of the thermocline depth is too deep in the MME(Fig.2c).The annual mean of Z20 in the SWIO reaches about 94 m,while it is only 83 m in observations.

    The thermocline bias in the models is related to that of surface wind,which is crucial for the formation of the dome. Previous studies have suggested that the shallow thermocline in the SWIO is related to the cyclonic wind stress curls over the southern TIO(Xie et al.,2002).Here,we examine the relationship between the surface wind along the EIO and the thermocline depth in the SWIO.Both in the observation and MME,there are upwelling Ekman pumping velocities over the entire tropical SIO region with the thermocline dome in the SWIO(Figs.2a and b).However,there is a pronounced easterly wind bias in the MME over the central EIO(CEIO) region(Fig.2d),which is consistent with previous studies (Cai and Cowan,2013;Li et al.,2015a,b).This corresponds to an Ekman pumping velocity in the SIO that is too weak (Fig.2e),deepening the thermocline in the SWIO(Fig.2c).

    The agreement among the simulations of the thermocline depth,zonal wind and Ekman pumping velocity is pronounced in the inter-model analysis.The inter-model scatterplot between zonal wind in the EIO and Ekman pumping velocity over the SIO shows a high correlation at r=0.72 (Fig.3a).Furthermore,the inter-model zonal wind along the equator is also highly correlated with the thermocline depth along the equator at r=?0.59(Fig.3b).These results support the hypothesis of the origin of the deep SWIO thermocline in coupled models(Li et al.,2015b);that is,when the easterly wind bias appears in a model,the simulated thermocline dome tends to be deepened with weakened cyclonic wind curls over the tropical SIO region.

    3.2.Thermocline depth and SWIO interannual SST variability

    The interannual variability of SWIO SST is largely induced by an oceanic downwelling Rossby wave,which isforced by El Ni?no(Xie et al.,2002;Du et al.,2009).When propagating to the SWIO during MAM(1),the downwelling Rossby wave suppresses the local entrainment and increases the SST[MAM:March-April-May;numerals in parentheses denote ENSO developing(0)and decay(1)years].This is why the surface heat flux cannot explain the SST warming in this region(Klein et al.,1999;Yokoi et al.,2012).Here, we examine the importance of the SWIO thermocline depth to the local SST variability.Since the SWIO thermocline is too deep in MRI-CGCM3 compared with observations and other models,we exclude MRI-CGCM3 from the following inter-model analyses.

    Fig.1.Annual mean Z20(unit:m;gray shading<100)in(a)observations,(b)the MME simulation and(c-v) the 20 CMIP5 model historical runs.Red boxes show the SWIO.

    Because the SWIO interannual warming is mainly forced byElNi?no,theinter-modelamplitudeofSWIOSSTishighly correlated with ENSO amplitude(r=0.76),which is represented by the standard deviation of Ni?no3.4 SST duringNovember-December-January(NDJ).In addition,the local thermocline depth does indeed influence the SWIO SST variability.As shown in Fig.4a,the correlation of inter-model variability in SWIO SST amplitude with Z20 is?0.39,exceeding the 90%confidence level based on the t-test.Furthermore,the regression of SWIO SST upon Ni?no3.4 anomalies,R(TSWIO,Ni?no3.4),is also significantly correlated with thermocline depth(r=?0.48;Fig.4b).This relationship indicates the importance of the SWIO thermocline to local SST variability:when the thermocline is shallow(deep)in the SWIO,ENSO influences the SWIO SST more(less)effectively.

    Fig.1.(Continued.)

    3.3.Impact of thermocline dome on antisymmetric pattern and the second NIO warming

    Following an El Ni?no event,an antisymmetric atmospheric pattern always appears over the TIO region during boreal spring,with more(less)rainfall and northwesterly(northeasterly)wind anomalies in the southern(northern) TIO.Previous studies have suggested that this antisymmetric pattern is maintained by wind-evaporation-SST feedback (Xie and Philander,1994),with prevailing southeasterly wind in the southern TIO(Kawamura et al.,2001;Wu et al.,2008; Du et al.,2009).The SWIO warming,which is related to the ENSO-induced oceanic downwelling Rossby wave,is important to the antisymmetric wind pattern(Du et al.,2009). This SST warming intensifies local convection and induces a cross-equatorial SST gradient,leading to the antisymmetric precipitation/surface wind pattern due to the Coriolis force acting on the northerly wind crossing the equator induced by SWIO warming.

    Fig.2.Annual mean Z20(unit:m;contours),surface wind velocity(units:m s?1;vectors)and Ekman pumping velocity(units:m s?1;color scale)in(a)observations and(b)the MME simulation for the historical run. Dashed contours in(a,b)represent 90 m.The observed(blue line)and MME simulation(red dashed line) of annual mean Z20 in the SIO(averaged in 5?-10?S),equatorial zonal wind(averaged in 3?S-3?N)and Ekman pumping velocity(averaged in 6?-9?S)are shown in(c-e),respectively.The shading in(c-e)shows one standard deviation of inter-model variability.

    Here,we perform an EOF analysis of precipitation anomaliesovertheTIOinMAM(1)forobservationsandeach model(Fig.5).As shown in a previous study(Wu et al., 2008),the antisymmetric pattern emerges as the first EOF mode(Fig.5a).About half of the CMIP5 models can reproduce the antisymmetric pattern as the first EOF mode in MAM(Figs.5b-u),consistent with a previous multi-model analysis(Du et al.,2013).The spatial correlation of the first EOF mode in observations with that simulated exceeds 0.6 in 10 of the 20 models(Fig.4c).

    SincetheantisymmetricpatternisrelatedtoSWIOwarm-ing,its simulation should also be influenced by the SWIO thermocline in the models.Indeed,we find that the intermodeldiversityofspatialcorrelationishighlycorrelatedwith thermocline depth(r=?0.46),illustrating the importance of the dome on the antisymmetric pattern(Fig.4c).This intermodel relationship indicates that models with a shallower thermocline in the SWIO tend to reproduce a more realistic antisymmetric pattern.Furthermore,the inter-model diversity of the explained variance of the first EOF mode is also significantly correlated with SWIO thermocline depth (r=?0.47),indicating that the models with a deep dome explain fewer of the ENSO-induced precipitation anomalies (Fig.4d).This confirms the role of the dome in the interannual variability of TIO SST,especially in terms of the local air-sea interactions.

    Fig.3.Scatterplots of the annual mean CEIO[averaged in(3?S-3?N,70?-90?E)]zonal wind(units:m s?1)with(a)the Ekman pumping velocity(units:m s?1)over the SIO and(b)the SWIO Z20(unit:m)among observations and 20 CMIP5 models.(c,d)As in(a,b)but for the annual mean SWIO Z20(unit:m)with the standard deviation of TIO SST anomalies (?C)in MAM and JJA,respectively.The solid line denotes the linear regression.The inter-model correlation and p value are shown in each panel.

    When the Indian summer monsoon breaks out in late spring,the antisymmetric pattern,especially the northeasterly anomalies over the NIO(0?-20?N,40?-100?E),are opposite to the prevailing southwesterly wind and act to warm the ocean,inducing a second warming over the NIO and extending the IOB mode through June-July-August(JJA)following El Ni?no(Du et al.,2009).But is the dome simulation also related to the NIO SST variability in JJA(1)?Comparing the inter-model variability of NIO SST interannual variance in JJA(1)with SWIO thermocline depth,we find a negative correlation of r=?0.41(Fig.4e).There is also a negative correlation of r=?0.45 between the inter-model regression of NIO SST anomalies upon Ni?no3.4 index,R(TNIO, Ni?no3.4),and thermocline depth(Fig.4f),indicative of the SWIO thermocline influencing the second NIO warming in the IOB mode.

    According to the above analyses,we find that the dome simulation in the CMIP5 models is important to the IOB warming following El Ni?no-especially in terms of the local air-sea interactions,including the local interannual SST variability,antisymmetric pattern and the second NIO warming-maintaining the IOB mode to boreal summer.As a result,the diversity of the SWIO thermocline in the models, which is related to the easterly wind bias,truly affects the interannual variability in the TIO(20?S-20?N,40?-100?E).As shown in Figs.3c and d,the models with a shallower thermocline dome have a stronger interannual variance of TIO SST in MAM and JJA,with?0.47 and?0.40 inter-model correlations,respectively.These results are consistent with Li et al. (2015b),indicating the important role of the dome simulation in TIO interannual variability.

    4.Changes of the thermocline dome under global warming

    In most models,an easterly wind bias leads to a deep thermocline dome.The diversity of the thermocline depth among the models further influences the IOB amplitude.Coincidentally,the zonal wind in the EIO shows an easterly trend in CMIP5 future projections with a pronounced IOD-like SST warming pattern(Zheng et al.,2010,2013;Cai et al.,2013)(IOD:Indian Ocean Dipole).This change indicatesaweakeningWalkercirculationandarobustresponseto greenhouse gas warming in CGCM projections(Vecchi and Soden,2007).The trend of zonal wind in the EIO influences the subsurface thermal structure by dynamic adjustment.Under global warming,the thermocline shoals significantly in the eastern EIO,whereas it deepens slightly in the western EIO in spite of thermodynamic shoaling effects on the thermocline due to surface warming intensification(Zheng et al., 2013).

    Since the Z20 deepens and cannot represent the thermocline depth under global warming,here,we use the depth of maximum temperature gradient(Zmax)to represent the dynamical thermocline,following previous studies(Vecchi and Soden,2007;Zheng et al.,2010,2013).Figure 6a shows the MME mean states of Zmax,SST and surface wind in the TIO for the historical simulation(1950-99).The pattern of the thermocline represented by Zmaxis similar to that of Z20 (Fig.2a),even though the thermocline dome in the SWIO shifts eastward slightly.By contrast,the thermocline dome moves more eastward in RCP8.5 simulations(Fig.6b),showing the importance of zonal wind to the location of the thermocline dome(Nagura et al.,2013).Figure 6c shows the MME mean state changes between the 21st century and 20th century.Consistent with previous studies(Zheng et al.,2010, 2013),theSSTwarmingpatterndisplaysanIOD-likepattern: more warming in the Northwest Indian Ocean and less warming along the Sumatran coast,with an easterly wind trend along the equator.The change of the thermocline is coupled with SST and surface wind,shoaling in the eastern EIO and deepening in the western TIO.

    Similar to the effect of equatorial zonal wind on the SWIO thermocline simulation in the models,the SWIO thermocline is influenced by the changes of zonal wind in the CEIO too.We find that,due to the easterly wind trend,the SWIO thermocline deepens slightly in the MME simulation (from 69 to 72 m)and most(13 of 20)of the models,despite a thermodynamic shoaling effect on the thermocline under global warming(Fig.7a).Figure 7b shows the scatterplot of inter-model variability in changes of SWIO Zmaxand zonal wind in the EIO.The changes of Zmaxand zonal wind are highly correlated at r=?0.69,indicating that if there is an easterly wind trend along the equator in a particular model, more(less)than the MME,the SWIO thermocline deepens (shoals)in this model.

    Fig.4.Scatterplots of annual mean SWIO Z20(unit:m)with the(a)standard deviation of SWIO SST anomalies(unit:?C)in MAM, (b)regression of the MAM(1)SWIO SST upon the NDJ(0)ENSO index,(c)spatial correlation of precipitation EOF1 in observations with each model,(d)explained variance of precipitation EOF1(%),(e)standard deviation of NIO SST anomalies(unit:?C)in JJA and(f)regression of the JJA(1)NIO SST upon the NDJ(0)ENSO index among observations and 20 CMIP5 models.The solid line denotes the linear regression.The inter-model correlation and p value are shown in each panel.MRI-CGCM3 is excluded from the correlation calculation.

    But does the change of the SWIO thermocline influence the amplitude of the IOB mode under global warming?We find that the SWIO SST amplitude and R(TSWIO,Ni?no3.4) decrease under global warming with the deepening thermo-cline in the MME(Figs.8a and b),indicating a weakened interannual variability in the SWIO.However,the inter-model change in amplitude of SWIO SST,as well as the IOB, does not follow the change in the Zmaxunder global warming among the models.The correlations of the changes in SWIOSSTamplitudeandR(TSWIO,Ni?no3.4)withthechange in SWIO Zmaxare both insignificant(Figs.8a and b).The changes in amplitude of TIO SST during MAM and NIO SSTduring JJA are also not correlated with the change in Zmaxin the SWIO among the models(Figs.8c and d).This indicates a decreasing effect of the deepening SWIO thermocline on the change in IOB amplitude under global warming.

    Fig.6.Annual mean states of SST(unit:?C;contours),Zmax(unit:m;color scale)and surface wind(units:m s?1;vectors)in the(a)historical run,(b)RCP8.5 run,and(c)their differences.

    Fig.7.(a)Scatterplot of Zmax(unit:m)between 1950-99 and 2045-94.(b)Scatterplot of Zmax(unit: m)and CEIO zonal wind(units:m s?1)differences between 1950-99 and 2045-94.The solid line denotes the linear regression.The inter-model correlation and p value are shown in each panel.

    Fig.8.Scatterplots of the Zmaxdifferences(unit:m)between 1950-99 and 2045-94 with that of(a)SWIO SST amplitude(unit:?C)in MAM,(b)R(TSWIO,Ni?no3.4),(c)IOB amplitude(unit:?C)in MAM and(d)NIO SST amplitude(unit:?C)in JJA.The solid line denotes the linear regression.The inter-model correlation and p value are shown in each panel.

    Fig.9.Scatterplots of(a)TIO SST amplitude(unit:?C)and(b)SWIO SST amplitude(unit:?C)in MAM with that of ENSO(unit:?C)in NDJ.(c,d)As in(a,b)but for the differences between 1950-99 and 2045-94.The solid line denotes the linear regression.The inter-model correlation and p value are shown in each panel.

    Fig.10.Scatterplot of the SWIO SST warming magnitude(unit:?C)with(a)the trend of CEIO zonal wind(units:m s?1)and(b)SWIO percentage precipitation change ΔP/P(unit:%)between 1950-99 and 2045-94.(c)Scatterplot of the change in the SWIO convection feedback parameter(units:mm d?1?C?1)with that of NIO SST amplitude(unit:?C)in JJA.The solid line denotes the linear regression.The inter-model correlation and p value are shown in each panel.

    But why is it that the change in the SWIO thermocline cannot influence the IOB mode in future projections,given the relationship between IOB amplitude and the SWIO thermocline depth in historical simulations?Since the ENSO simulation is closely related with the IOB mode(Du et al., 2013),we first suppose that the change in IOB amplitude is mainly induced by changes in ENSO instead of the SWIO thermocline.Indeed,the ENSO amplitude is highly correlated with TIO and SWIO amplitude in the historical simulation among the models,at r=0.75 and 0.76,respectively (Figs.9a and b).Furthermore,the changes in amplitude of IOB and SWIO SST are also highly correlated with change in ENSO amplitude,at r=0.78 and 0.76,respectively(Figs.9c and d),indicating that the ENSO response to global warming is an effective indicator of the IOB in future projections.Previous studies have suggested that the simulation of ENSO is related to the mean SST bias in the tropical Pacific in coupled models(Wittenberg et al.,2006;Xiang et al.,2012).On the other hand,the mean SST bias in the tropical Pacific identified in previous studies(Li and Xie,2012,2014)could also influence the zonal wind in the EIO via the Walker circulation,further influencing the simulations of the SWIO thermocline dome,as well as the IOB mode.So,the SST bias in the tropical Pacific could affect the IOB mode through two ways: by modulating the ENSO variance,and by changing the zonal windalongtheequatorandtheSWIOthermoclinedepth.The potential inter-basin relationship between the mean state and interannual variability in the Indo-Pacific region needs further investigation.

    We also suppose the enhanced air-sea interaction reportedinpreviousstudies(Zhengetal.,2011;Huetal.,2014) is an additional possible explanation for the inconsistency between changes in the SWIO thermocline and IOB amplitude. In addition to influencing the change in the SWIO thermocline,the trend of CEIO zonal wind is also associated with a dipole-like pattern of SST,including an enhanced warming in the SWIO.The inter-model variability in SWIO SST warming also shows negative correlation with the trend of CEIO zonal wind,at r=?0.48(Fig.10a).This enhanced SST warming increases local precipitation following the“warmerget-wetter”mechanism of Xie et al.(2010a),with a high inter-model correlation between SST warming and the percentage precipitation change in the SWIO,at r=0.62(Fig. 10b).The increased precipitation can further intensify the local air-sea interaction.Indeed,the change in SWIO convection feedback represented by the regression of precipitation upon SST,R(PSWIO,TSWIO),is correlated with changes in amplitude of NIO SST(Fig.10c).Hence,the second NIO warming during boreal summer strengthens in the MME and in most(13 of 20)of the models,even though the SWIO thermocline deepens(Fig.8d).This possible strengthening of the atmospheric response counteracts the effect of the deepening thermocline.The total effect of the mean state changes in the SWIO on IOB amplitude under global warming needs further investigation.

    5.Summary

    In this study,we have investigated the SWIO thermocline dome simulation and its response to global warming based on historical simulations and future climate projections by 20 CMIP5 models.Compared with observations,an easterly equatorial zonal wind bias exists in the MME and most of the models.As a result,the simulated dome in the MME is too deep and east-displaced with a weaker surface wind stress curl over the southern TIO region.This relationship between thesimulatedzonalwindandSWIOthermoclinedepthisalso clear in the multi-model variability:a model with an easterly wind bias in the EIO tends to simulate a SWIO thermocline that is too deep,indicating the importance of equatorial wind simulation to the dome simulation.

    Similar to the results of Li et al.(2015b),our inter-model analysis suggests that the dome simulation is important for the interannual amplitude of SST in the TIO during boreal spring and summer.In addition,compared with the Li et al. (2015b)study,our further examination found that the simulatedSWIOthermoclinedepthmodulatesthekeyattributesof the IOB mode.Firstly,the SWIO thermocline depth is correlated with local SST amplitude and R(TSWIO,Ni?no3.4)during boreal spring.Secondly,the thermocline depth is related to the simulations of the antisymmetric atmospheric pattern in the models.In a model with a shallow(deep)thermocline dome,the first EOF mode of precipitation during MAM(1) explains more(less)interannual variance,and is more(less) similar to that in observations,which shows an antisymmetric pattern across the equator.Thirdly,we also found a close inter-model relationship between the thermocline depth and the second warming in the NIO during JJA(1).These close inter-model relationships suggest that the dome simulation is important to the formation and persistence of the IOB mode following El Ni?no.Recently,Guo et al.(2015)reported a new type of IOD following El Nino,which is related with the SWIO warming and east-west SST contrast.So,the dome simulation could also influence the IOD simulation in coupled models,which is an idea we plan to investigate in the future.

    We also explored the responses of the SWIO thermocline to global warming based on CMIP5 RCP8.5 projections.Because of the weakened Walker circulation and easterly wind trend along the equator under global warming,the dome displaces eastward and the SWIO thermocline deepens slightly in the MME,in spite of a thermodynamic shoaling effect.A close relationship between the changes of the SWIO thermocline depth and equatorial zonal wind among the models confirms the importance of zonal wind to the SWIO thermocline. However,the inter-model variability of thermocline change in the SWIO shows no correlation with changes in amplitude of SWIO SST and the IOB mode,inconsistent with the thermocline depth-IOB amplitude relationship in historical runs.The inter-model diversity of future changes in both ENSO forcing and SWIO convection feedback could be responsible for that in the IOB mode,suggesting a decreasing role of the SWIO thermocline dome in maintaining the IOB mode in the future.

    Acknowledgements.We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling,which is responsible for CMIP,and we thank the climate modeling groups for producing and making available their model output.For CMIP, the U.S.Department of Energy's Program for Climate Model DiagnosisandIntercomparisonprovidescoordinatingsupportandleddevelopment of software infrastructure in partnership with the Global Organization for Earth System Science Portals.We wish to thank S. M.LONG for data preparation.This work was supported by the NationalBasicResearchProgramofChina(GrantNos.2012CB955600 and 2015CB954300),the National Natural Science Foundation of China(Grant Nos.41106010 and 41476003),the State Key Laboratory of Tropical Oceanography,Chinese Academy of Sciences(Grant Nos.LTO1206 and LTOZZ1202),and a China Meteorological Public Welfare Science Research Project(Grant No. GYHY201306027).

    REFERENCES

    Annamalai,H.,P.Liu and S.-P.Xie,2005:Southwest Indian Ocean SST variability:Its local effect and remote influence on Asian monsoons.J.Climate,18,4150-4167.

    Annamalai,H.,H.Okajima,and M.Watanabe,2007:Possible impact of the Indian Ocean SST on the Northern Hemisphere during El Ni?no.J.Climate,20,3164-3189.

    Cai,W.J.,and T.Cowan,2013:Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models?Geophys.Res.Lett.,40,1200-1205.

    Cai,W.J.,X.-T.Zheng,E.Weller,M.Collins,T.Cowan,M. Lengaigne,W.D.Yu,and T.Yamagata,2013:Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience,6,999-1007.

    Carton,J.A.and B.S.Giese,2008:A reanalysis of ocean climate using simple ocean data assimilation(SODA).Mon. Wea.Rev.,136,2999-3017.

    Deser,C.,A.S.Phillips,and J.W.Hurrell,2004:Pacific interdecadal climate variability:Linkages between the tropics and the North Pacific during boreal winter since 1900.J.Climate, 17,3109-3124.

    Du,Y.,S.-P.Xie,G.Huang,and K.M.Hu,2009:Role of air-sea interaction in the long persistence of El Ni?no-induced North Indian Ocean warming.J.Climate,22,2023-2038.

    Du,Y.,L.Yang,and S.-P.Xie,2011:Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Ni?no.J.Climate,24,315-322.

    Du,Y.,S.-P.Xie,Y.-L.Yang,X.-T.Zheng,L.Liu,and G.Huang, 2013:Indian Ocean variability in the CMIP5 multi-model ensemble:The basin mode.J.Climate,26,7240-7266.

    Du,Y.,J.J.Xiao,and K.F.Yu,2014:Tropical Indian Ocean Basin Mode recorded in coral oxygen isotope data from the Seychellesoverthepast148years.ScienceChinaEarthSciences, 57,2597-2605,doi:10.1007/s11430-014-4956-7.

    Guo,F.Y.,Q.Y.Liu,S.Sun,and J.L.Yang,2015:Three types of Indian Ocean dipoles.J.Climate,28,3073-3092.

    Hu,K.M.,G.Huang,X.-T.Zheng,S.-P.Xie,X.Qu,Y.Du,and L.Liu,2014:Interdecadal variations in ENSO influences on Northwest Pacific-East Asian summertime climate simulated in CMIP5 models.J.Climate,27,5982-5998.

    Huang,B.H.,and J.L.Kinter III,2002:Interannual variability in the tropical Indian Ocean.J.Geophys.Res.,107,3319,doi: 10.1029/2001JC001278.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-Year reanalysis project.Bull.Amer.Meteor.Soc.,77,437-471.

    Kawamura,R.,T.Matsuura,and S.Iizuka,2001:Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Ni?no-Southern Oscillation coupling.J.Geophys.Res.,106,4681-4693.

    Klein,S.A.,B.J.Soden,and N.-C.Lau,1999:Remote sea surface temperature variations during ENSO:Evidence for a tropical atmospheric bridge.J.Climate,12,917-932.

    Li,G.,and S.-P.Xie,2012:Origins of tropical-wide SST biases in CMIP multi-model ensembles.Geophys.Res.Lett.,39, L22703,doi:10.1029/2012GL053777.

    Li,G.,and S.-P.Xie,2014:Tropical biases in CMIP5 multimodel ensemble:The excessive equatorial Pacific cold tongue and double ITCZ problems.J.Climate,27,1765-1780.

    Li,G.,S.-P.Xie,and Y.Du,2015a:Monsoon-induced biases of climate models over the tropical Indian Ocean with implications for regional climate projection.J.Climate,28,3058-3072.

    Li,G.,S.-P.Xie,and Y.Du,2015b:Climate model errors over the South Indian Ocean thermocline dome and their effect on the basin mode of interannual variability.J.Climate,28,3093-3098.

    Masumoto,Y.,and G.Meyers,1998:Forced Rossby waves in the southern tropical Indian Ocean.J.Geophys.Res.,103(C12), 27 589-27 602.

    McCreary,J.P.,P.K.Kundu,and R.L.Molinari,1993:A numerical investigation of dynamics,thermodynamics and mixedlayer processes in the Indian Ocean.Progress in Oceanography,31,181-244.

    Nagura,M.,W.Sasaki,T.Tozuka,J.-J.Luo,S.K.Behera,and T. Yamagata,2013:Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models.J.Geophys.Res.,118,831-846,doi:10.1029/ 2012JC008352.

    Reverdin,G.,and M.Fieux,1987:Sections in the western Indian Ocean-variability in the temperature structure.Deep-Sea Res.,34,601-626.

    Saji,N.H.,S.-P.Xie,and T.Yamagata,2006:Tropical Indian Ocean variability in the IPCC Twentieth-century climate simulations.J.Climate,19,4397-4417.

    Schott,F.A.,S.-P.Xie,and J.P.McCreary Jr.,2009:Indian Ocean circulationandclimatevariability.ReviewsofGeophysics,47, RG1002,doi:10.1029/2007RG000245.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Lawrimore,2008:Improvements to NOAA's historical merged land-ocean surface temperature analysis(1880-2006).J.Climate,21,2283-2296.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485-498.

    Vecchi,G.A.,and B.J.Soden,2007:Global warming and the weakening of the tropical circulation.J.Climate,20,4316-4340.

    Wittenberg,A.T.,A.Rosati,N.-C.Lau,and J.J.Ploshay,2006: GFDL's CM2 global coupled climate models.Part III:Tropical Pacific climate and ENSO.J.Climate,19,698-722.

    Woodberry,K.E.,M.E.Luther,and J.J.O'Brien,1989:The wind-driven seasonal circulation in the southern tropical Indian Ocean.J.Geophys.Res.,94(C12),17985-18002.

    Wu,R.G.,B.P.Kirtman,and V.Krishnamurthy,2008:An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring.J.Geophys.Res.,113,D05104,doi:10.1029/ 2007JD009316.

    Xiang,B.Q.,B.Wang,Q.H.Ding,F.-F.Jin,X.H.Fu,and H.-J. Kim,2012:Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation.Climate Dyn.,39, 1413-1430,doi:10.1007/s00382-011-1164-4.

    Xie,P.P.,and P.A.Arkin,1996:Analyses of global monthly precipitation using gauge observations,satellite estimates,and numerical model predictions.J.Climate,9,840-858.

    Xie,S.-P.,and S.G.H.Philander,1994:A coupled oceanatmosphere model of relevance to the ITCZ in the eastern Pacific.Tellus,46,340-350.

    Xie,S.-P.,H.Annamalai,F.A.Schott,and J.P.McCreary Jr., 2002:Structure and mechanisms of South Indian Ocean climate variability.J.Climate,15,864-878.

    Xie,S.-P.,K.M.Hu,J.Hafner,H.Tokinaga,Y.Du,G.Huang, and T.Sampe,2009:Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Ni?no.J.Climate,22,730-747.

    Xie,S.-P.,C.Deser,G.A.Vecchi,J.Ma,H.Y.Teng,and A.T. Wittenberg,2010a:Global warming pattern formation:Sea surface temperature and rainfall.J.Climate,23,966-986.

    Xie,S.-P.,Y.Du,G.Huang,X.-T.Zheng,H.Tokinaga,K.M.Hu, and Q.Y.Liu,2010b:Decadal shift in El Ni?no influences on Indo-Western Pacific and East Asian climate in the 1970s.J. Climate,23(12),3352-3368.

    Yang,J.L.,Q.Y.Liu,S.-P.Xie,Z.Y.Liu,and L.X.Wu, 2007:Impact of the Indian Ocean SST basin mode on the Asian summer monsoon.Geophys.Res.Lett.,34,L02708, doi:10.1029/2006GL028571.

    Yokoi,T.,T.Tozuka,and T.Yamagata,2008:Seasonal variation of the Seychelles Dome.J.Climate,21,3740-3754.

    Yokoi,T.,T.Tozuka,and T.Yamagata,2009:Seasonal variations of the Seychelles Dome simulated in the CMIP3 models.J. Phys.Oceanogr.,39,449-457.

    Yokoi,T.,T.Tozuka,and T.Yamagata,2012:Seasonal and interannual variations of the SST above the Seychelles Dome.J. Climate,25,800-814.

    Yu,W.D.,B.Q.Xiang,L.Liu,and N.Liu,2005:Understanding the origins of interannual thermocline variations in the tropical Indian Ocean.Geophys.Res.Lett.,32,L24706,doi: 10.1029/2005GL024327.

    Zheng,X.-T.,S.-P.Xie,G.A.Vecchi,Q.Y.Liu,and J.Hafner, 2010:IndianOceandipoleresponsetoglobalwarming:Analysis of ocean-atmospheric feedbacks in a coupled model.J. Climate,23,1240-1253.

    Zheng,X.-T.,S.-P.Xie,and Q.Y.Liu,2011:Response of the Indian Ocean basin mode and its capacitor effect to global warming.J.Climate,24,6146-6164.

    Zheng,X.-T.,S.-P.Xie,Y.Du,L.Liu,G.Huang,and Q.Y.Liu, 2013:Indian Ocean Dipole response to global warming in the CMIP5 multi-model ensemble.J.Climate,26,6067-6080.

    Zheng,X.-T.,L.H.Gao,G.Li,and Y.Du,2015:The Southwest Indian Ocean thermocline dome in CMIP5 models:Historical simulation and future projection.Adv.Atmos.Sci.,33(4),489-503,

    10.1007/s00376-015-5076-9.

    19 March 2015;revised 27 May 2015;accepted 4 June 2015)

    ?Xiao-Tong ZHENG

    Email:zhengxt@ouc.edu.cn

    99国产综合亚洲精品| 天堂8中文在线网| 中文欧美无线码| 免费高清在线观看日韩| 老熟女久久久| 亚洲人与动物交配视频| 热re99久久国产66热| 高清不卡的av网站| 9色porny在线观看| 国产熟女午夜一区二区三区 | 亚洲人成77777在线视频| 免费黄频网站在线观看国产| 久久久久网色| 丰满迷人的少妇在线观看| 看非洲黑人一级黄片| 亚洲经典国产精华液单| 新久久久久国产一级毛片| 久久久久精品性色| 亚洲av电影在线观看一区二区三区| 最黄视频免费看| 肉色欧美久久久久久久蜜桃| 国产午夜精品一二区理论片| 亚洲国产成人一精品久久久| 亚洲精品国产av成人精品| 免费久久久久久久精品成人欧美视频 | 极品人妻少妇av视频| 久久久久精品久久久久真实原创| 中文字幕人妻丝袜制服| 日本欧美视频一区| 日韩一区二区三区影片| 国产欧美日韩一区二区三区在线 | 免费观看av网站的网址| 免费高清在线观看日韩| 久久国产精品大桥未久av| 久久国产精品大桥未久av| 肉色欧美久久久久久久蜜桃| 国产熟女欧美一区二区| 不卡视频在线观看欧美| 少妇精品久久久久久久| 在线亚洲精品国产二区图片欧美 | 黄色一级大片看看| 亚洲欧美一区二区三区黑人 | 99热6这里只有精品| 在线观看免费高清a一片| 国产精品免费大片| 一本色道久久久久久精品综合| 午夜日本视频在线| 国产精品99久久久久久久久| 狂野欧美白嫩少妇大欣赏| 中文字幕精品免费在线观看视频 | 亚洲综合精品二区| 亚洲av电影在线观看一区二区三区| 超色免费av| 亚洲第一区二区三区不卡| 波野结衣二区三区在线| 国产免费现黄频在线看| 看十八女毛片水多多多| 欧美最新免费一区二区三区| 女性生殖器流出的白浆| 国产不卡av网站在线观看| 夜夜爽夜夜爽视频| 欧美精品高潮呻吟av久久| 国产免费又黄又爽又色| 精品视频人人做人人爽| 亚洲精品一区蜜桃| 日韩 亚洲 欧美在线| 国产成人免费无遮挡视频| 高清av免费在线| av播播在线观看一区| 免费观看av网站的网址| 人人妻人人爽人人添夜夜欢视频| av黄色大香蕉| 免费黄色在线免费观看| 在线观看免费高清a一片| 欧美国产精品一级二级三级| 人人妻人人澡人人看| 亚洲精品日韩在线中文字幕| 国产高清不卡午夜福利| 考比视频在线观看| av在线app专区| 久久精品久久久久久久性| 一本大道久久a久久精品| 色视频在线一区二区三区| 国产一区亚洲一区在线观看| 婷婷色综合大香蕉| 99视频精品全部免费 在线| 99re6热这里在线精品视频| 国产又色又爽无遮挡免| 久久av网站| 99re6热这里在线精品视频| 狠狠精品人妻久久久久久综合| 久久久久国产精品人妻一区二区| 中文字幕精品免费在线观看视频 | 国产成人免费无遮挡视频| 日本爱情动作片www.在线观看| 亚洲欧洲精品一区二区精品久久久 | 伦理电影免费视频| xxx大片免费视频| 久久ye,这里只有精品| 精品少妇久久久久久888优播| 久久影院123| 搡老乐熟女国产| 一区二区三区免费毛片| 91精品国产国语对白视频| 人人妻人人添人人爽欧美一区卜| 久久精品久久精品一区二区三区| 久久午夜福利片| 国产片特级美女逼逼视频| 免费看av在线观看网站| 最近2019中文字幕mv第一页| 美女福利国产在线| 精品一区在线观看国产| 97超视频在线观看视频| 国产一区二区在线观看日韩| 亚洲精品自拍成人| 制服丝袜香蕉在线| 三级国产精品欧美在线观看| 免费观看在线日韩| 亚洲精华国产精华液的使用体验| 又黄又爽又刺激的免费视频.| 欧美亚洲日本最大视频资源| 亚洲五月色婷婷综合| av不卡在线播放| 一区二区三区乱码不卡18| 一本大道久久a久久精品| 一级黄片播放器| 亚洲国产欧美日韩在线播放| 最后的刺客免费高清国语| 久久影院123| 在线观看免费高清a一片| 亚洲欧美中文字幕日韩二区| 亚洲精品456在线播放app| 热re99久久精品国产66热6| 国语对白做爰xxxⅹ性视频网站| 久久人人爽av亚洲精品天堂| 大码成人一级视频| 免费大片18禁| 一级毛片我不卡| 老司机影院成人| 人妻少妇偷人精品九色| 一本一本综合久久| 久久久久国产精品人妻一区二区| 自线自在国产av| 两个人免费观看高清视频| 国产免费现黄频在线看| 伊人久久精品亚洲午夜| 免费少妇av软件| 亚洲av成人精品一区久久| 国产精品久久久久久精品古装| 婷婷成人精品国产| 香蕉精品网在线| 18禁动态无遮挡网站| 18禁动态无遮挡网站| 久久久久久久国产电影| 黄色欧美视频在线观看| 精品人妻熟女毛片av久久网站| 波野结衣二区三区在线| 免费高清在线观看日韩| 国产欧美亚洲国产| www.av在线官网国产| 日韩,欧美,国产一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av在线观看美女高潮| 黑人巨大精品欧美一区二区蜜桃 | 少妇人妻精品综合一区二区| 狂野欧美激情性bbbbbb| 亚洲人与动物交配视频| 少妇 在线观看| 久久久久国产精品人妻一区二区| 水蜜桃什么品种好| 免费黄色在线免费观看| 99热6这里只有精品| 久久精品国产亚洲网站| 999精品在线视频| 免费看av在线观看网站| 国产在线一区二区三区精| 国产成人午夜福利电影在线观看| 国产精品 国内视频| 最黄视频免费看| 午夜久久久在线观看| 日韩免费高清中文字幕av| 国产精品熟女久久久久浪| 日本爱情动作片www.在线观看| 久久97久久精品| 国产精品熟女久久久久浪| 亚洲精品乱码久久久v下载方式| 成年人免费黄色播放视频| 国产永久视频网站| 五月伊人婷婷丁香| 自拍欧美九色日韩亚洲蝌蚪91| 日本猛色少妇xxxxx猛交久久| 黑人猛操日本美女一级片| 精品少妇久久久久久888优播| 国产亚洲精品久久久com| 国产无遮挡羞羞视频在线观看| 青春草视频在线免费观看| 色网站视频免费| 国产 一区精品| √禁漫天堂资源中文www| 18禁在线无遮挡免费观看视频| 国产成人aa在线观看| 日日啪夜夜爽| 久久鲁丝午夜福利片| a级毛片在线看网站| 午夜av观看不卡| 亚洲av福利一区| 18禁在线无遮挡免费观看视频| 成人二区视频| 国产av一区二区精品久久| 日本黄大片高清| 亚洲美女黄色视频免费看| 久久久久久久久大av| 2018国产大陆天天弄谢| 久久ye,这里只有精品| 性色avwww在线观看| 久久久精品区二区三区| 亚洲丝袜综合中文字幕| 国产av精品麻豆| 成人亚洲欧美一区二区av| 国产成人精品久久久久久| 一区在线观看完整版| 久久久国产一区二区| 日日爽夜夜爽网站| 麻豆精品久久久久久蜜桃| 亚洲丝袜综合中文字幕| 肉色欧美久久久久久久蜜桃| 成人国产麻豆网| 国产精品欧美亚洲77777| 18禁在线播放成人免费| 国产精品久久久久久av不卡| 99久久精品国产国产毛片| 97精品久久久久久久久久精品| 在线观看www视频免费| 精品99又大又爽又粗少妇毛片| 久久婷婷青草| 日本免费在线观看一区| 国产极品粉嫩免费观看在线 | 在线观看美女被高潮喷水网站| 久久 成人 亚洲| 欧美 亚洲 国产 日韩一| 青春草国产在线视频| 国产免费又黄又爽又色| 我的老师免费观看完整版| 成人国语在线视频| 亚洲精品av麻豆狂野| 亚洲成人一二三区av| 久久av网站| 日本黄大片高清| 男女啪啪激烈高潮av片| 国产极品粉嫩免费观看在线 | 国产片特级美女逼逼视频| 丝袜在线中文字幕| 一个人看视频在线观看www免费| 汤姆久久久久久久影院中文字幕| 男女国产视频网站| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 久久女婷五月综合色啪小说| 2022亚洲国产成人精品| xxx大片免费视频| 热99国产精品久久久久久7| 国产欧美日韩一区二区三区在线 | 免费不卡的大黄色大毛片视频在线观看| 在线观看美女被高潮喷水网站| 少妇熟女欧美另类| 午夜免费观看性视频| 国产永久视频网站| 亚洲av男天堂| 日本猛色少妇xxxxx猛交久久| 国产av国产精品国产| 一本大道久久a久久精品| 五月天丁香电影| 欧美成人精品欧美一级黄| 欧美97在线视频| 九草在线视频观看| 亚洲精品aⅴ在线观看| 免费观看a级毛片全部| xxx大片免费视频| 国产日韩一区二区三区精品不卡 | 乱人伦中国视频| 久久狼人影院| 亚洲人成77777在线视频| 搡女人真爽免费视频火全软件| 日日爽夜夜爽网站| 熟妇人妻不卡中文字幕| 亚洲av二区三区四区| 亚洲精品aⅴ在线观看| 午夜av观看不卡| 日韩中文字幕视频在线看片| 免费观看的影片在线观看| 成人综合一区亚洲| 国产精品 国内视频| 国产精品欧美亚洲77777| 51国产日韩欧美| 日韩一区二区视频免费看| 女性生殖器流出的白浆| 国产成人精品久久久久久| 国产精品人妻久久久影院| 中文乱码字字幕精品一区二区三区| 精品一区二区三卡| av网站免费在线观看视频| 大码成人一级视频| 校园人妻丝袜中文字幕| 亚洲av免费高清在线观看| 亚洲欧美日韩另类电影网站| 男人添女人高潮全过程视频| 我的老师免费观看完整版| 有码 亚洲区| 韩国高清视频一区二区三区| 亚洲精品美女久久av网站| 天天躁夜夜躁狠狠久久av| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 三上悠亚av全集在线观看| 熟女av电影| 男女啪啪激烈高潮av片| 久久人人爽人人爽人人片va| 亚洲欧美清纯卡通| 精品亚洲乱码少妇综合久久| 十八禁网站网址无遮挡| 日产精品乱码卡一卡2卡三| 免费久久久久久久精品成人欧美视频 | 尾随美女入室| 亚洲国产精品一区二区三区在线| 欧美bdsm另类| 成人18禁高潮啪啪吃奶动态图 | 女的被弄到高潮叫床怎么办| 国产又色又爽无遮挡免| 大话2 男鬼变身卡| 国产成人91sexporn| 久久精品久久精品一区二区三区| 国产一级毛片在线| 亚洲,欧美,日韩| 日韩伦理黄色片| 欧美少妇被猛烈插入视频| 国产在视频线精品| 黑人巨大精品欧美一区二区蜜桃 | av线在线观看网站| 欧美人与善性xxx| 街头女战士在线观看网站| 欧美日韩视频高清一区二区三区二| 欧美成人午夜免费资源| 色网站视频免费| 日本色播在线视频| 97在线视频观看| 国产精品99久久99久久久不卡 | 国产午夜精品一二区理论片| 亚洲美女黄色视频免费看| 久久韩国三级中文字幕| 99久久人妻综合| 国产伦理片在线播放av一区| 超色免费av| 亚洲内射少妇av| 免费日韩欧美在线观看| 少妇 在线观看| 久久婷婷青草| 天天操日日干夜夜撸| 大香蕉久久成人网| 久久久精品94久久精品| 欧美3d第一页| videosex国产| 亚州av有码| 国产乱来视频区| 伦精品一区二区三区| 久久久午夜欧美精品| 国产精品女同一区二区软件| 久久久久久久久久久丰满| 边亲边吃奶的免费视频| 国产国拍精品亚洲av在线观看| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 欧美日韩在线观看h| 免费观看的影片在线观看| 午夜视频国产福利| 最新中文字幕久久久久| 亚洲精品日本国产第一区| 亚洲久久久国产精品| 久久精品国产自在天天线| 午夜福利视频精品| 国产片特级美女逼逼视频| 亚洲美女搞黄在线观看| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| av不卡在线播放| 久久国产精品男人的天堂亚洲 | 寂寞人妻少妇视频99o| 日韩强制内射视频| 欧美丝袜亚洲另类| 欧美激情极品国产一区二区三区 | 国产欧美另类精品又又久久亚洲欧美| 欧美精品亚洲一区二区| 久久久久国产网址| 日韩三级伦理在线观看| 亚洲av综合色区一区| 夫妻性生交免费视频一级片| 国产成人免费观看mmmm| 午夜91福利影院| 亚洲美女搞黄在线观看| 成人亚洲欧美一区二区av| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| 新久久久久国产一级毛片| 一级毛片黄色毛片免费观看视频| 日韩大片免费观看网站| 国产精品熟女久久久久浪| 大又大粗又爽又黄少妇毛片口| 成人毛片a级毛片在线播放| 精品久久久久久久久av| 日韩 亚洲 欧美在线| 国产精品99久久久久久久久| 免费观看a级毛片全部| 性色avwww在线观看| 国产淫语在线视频| 欧美bdsm另类| 亚洲国产色片| 黄色一级大片看看| 国产男女内射视频| 亚洲欧美一区二区三区国产| 精品人妻在线不人妻| 亚洲精品久久久久久婷婷小说| 在线观看美女被高潮喷水网站| 久久久久久人妻| 男的添女的下面高潮视频| 丝袜美足系列| 97超碰精品成人国产| 一级片'在线观看视频| 婷婷色av中文字幕| 人妻夜夜爽99麻豆av| 人人澡人人妻人| videos熟女内射| 天天躁夜夜躁狠狠久久av| 日本爱情动作片www.在线观看| 久久精品国产a三级三级三级| 免费观看在线日韩| 免费大片18禁| 亚洲欧美色中文字幕在线| 黄片无遮挡物在线观看| 亚洲av免费高清在线观看| 亚洲国产日韩一区二区| 欧美精品国产亚洲| 久久久久久久国产电影| 久久热精品热| av卡一久久| 成人午夜精彩视频在线观看| 久久精品久久久久久噜噜老黄| 51国产日韩欧美| 中文字幕人妻丝袜制服| 综合色丁香网| 少妇被粗大的猛进出69影院 | 老女人水多毛片| 午夜av观看不卡| 97精品久久久久久久久久精品| 人体艺术视频欧美日本| 久久久久久久精品精品| 亚洲欧洲日产国产| 黄片无遮挡物在线观看| 丝袜美足系列| 免费人成在线观看视频色| 亚洲精品,欧美精品| 亚洲成人手机| kizo精华| 日韩大片免费观看网站| 三级国产精品片| 在线精品无人区一区二区三| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品中文字幕在线视频| 大话2 男鬼变身卡| 毛片一级片免费看久久久久| 97超碰精品成人国产| 亚洲av福利一区| 午夜精品国产一区二区电影| 国产免费一级a男人的天堂| 久久综合国产亚洲精品| 精品亚洲乱码少妇综合久久| 色网站视频免费| 一级毛片电影观看| 久久久a久久爽久久v久久| 亚洲精品,欧美精品| 成人无遮挡网站| 亚洲精品一区蜜桃| 午夜福利网站1000一区二区三区| 午夜老司机福利剧场| tube8黄色片| 永久免费av网站大全| 国产高清有码在线观看视频| 日韩精品免费视频一区二区三区 | 另类亚洲欧美激情| 午夜激情久久久久久久| 亚洲美女搞黄在线观看| 22中文网久久字幕| 好男人视频免费观看在线| 80岁老熟妇乱子伦牲交| 看非洲黑人一级黄片| 久久久久国产精品人妻一区二区| 日本黄大片高清| 能在线免费看毛片的网站| 一个人看视频在线观看www免费| 亚洲欧洲日产国产| 国产高清三级在线| 观看av在线不卡| a 毛片基地| 人体艺术视频欧美日本| 久久综合国产亚洲精品| 国产免费又黄又爽又色| 精品久久久久久久久亚洲| 简卡轻食公司| 99精国产麻豆久久婷婷| 观看美女的网站| av专区在线播放| 99热网站在线观看| 婷婷成人精品国产| 精品人妻偷拍中文字幕| 亚洲国产最新在线播放| 久久久久久久久久成人| 午夜久久久在线观看| 高清毛片免费看| 汤姆久久久久久久影院中文字幕| 久久久久网色| 日本免费在线观看一区| 制服人妻中文乱码| 少妇精品久久久久久久| 69精品国产乱码久久久| 最近2019中文字幕mv第一页| 国产成人精品在线电影| 91久久精品国产一区二区三区| 国产日韩欧美亚洲二区| 亚洲色图 男人天堂 中文字幕 | 久久99蜜桃精品久久| 2021少妇久久久久久久久久久| 国产欧美亚洲国产| 黑人猛操日本美女一级片| 久久精品国产鲁丝片午夜精品| 国产黄频视频在线观看| 美女国产高潮福利片在线看| 亚洲成色77777| 色视频在线一区二区三区| 午夜免费观看性视频| av免费在线看不卡| 亚洲国产成人一精品久久久| 亚洲精品亚洲一区二区| 免费观看的影片在线观看| av有码第一页| 在线观看国产h片| 国产成人精品一,二区| 极品人妻少妇av视频| 特大巨黑吊av在线直播| 久久免费观看电影| 免费观看的影片在线观看| 一级毛片黄色毛片免费观看视频| 午夜91福利影院| 人人妻人人澡人人爽人人夜夜| 黄色毛片三级朝国网站| 久久久久国产网址| xxxhd国产人妻xxx| 欧美人与善性xxx| 日韩强制内射视频| 精品视频人人做人人爽| 七月丁香在线播放| 国产精品蜜桃在线观看| 欧美精品一区二区免费开放| 午夜激情福利司机影院| 国产永久视频网站| 少妇 在线观看| freevideosex欧美| 性色av一级| 久久久久网色| av.在线天堂| 一本一本综合久久| 久久人妻熟女aⅴ| 亚洲精品国产av成人精品| 精品国产露脸久久av麻豆| 丝袜美足系列| 亚洲经典国产精华液单| 午夜福利视频精品| 日韩一区二区视频免费看| 有码 亚洲区| 99久久精品一区二区三区| 亚洲综合色网址| 在线观看人妻少妇| 一本色道久久久久久精品综合| 又黄又爽又刺激的免费视频.| 爱豆传媒免费全集在线观看| 日本欧美视频一区| 一级a做视频免费观看| 国产午夜精品一二区理论片| 男女国产视频网站| 国产伦理片在线播放av一区| 久久午夜综合久久蜜桃| 80岁老熟妇乱子伦牲交| 久久久国产一区二区| 亚洲精品久久成人aⅴ小说 | 成人无遮挡网站| 日本黄大片高清| 在线 av 中文字幕| 国产有黄有色有爽视频| 好男人视频免费观看在线| 精品国产一区二区三区久久久樱花| 国产亚洲精品久久久com| 国产免费一级a男人的天堂| 午夜激情av网站| 这个男人来自地球电影免费观看 | 亚洲av免费高清在线观看| 精品国产一区二区三区久久久樱花| 丝袜美足系列| 女人久久www免费人成看片| 日本av手机在线免费观看| 亚洲在久久综合| 久久精品久久精品一区二区三区| 五月开心婷婷网| 国语对白做爰xxxⅹ性视频网站| 高清午夜精品一区二区三区| 在现免费观看毛片| 久久热精品热| 99热这里只有是精品在线观看| 哪个播放器可以免费观看大片|