• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Horizontal Density Advection in Seasonal Deepening of the Mixed Layer in the Subtropical Southeast Pacific

    2016-11-24 11:33:27QinyuLIUandYiqunLUPhysicalOceanographyLaboratoryQingdaoCollaborativeInnovationCenterofMarineScienceandTechnologyKeyLaboratoryofOceanAtmosphereInteractionandClimateinUniversitiesofShandongOceanUniversityofChinaQingdao266100
    Advances in Atmospheric Sciences 2016年4期

    Qinyu LIUand Yiqun LUPhysical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China,Qingdao 266100

    (Received 30 April 2015;revised 20 August 2015;accepted 27 August 2015)

    Role of Horizontal Density Advection in Seasonal Deepening of the Mixed Layer in the Subtropical Southeast Pacific

    Qinyu LIU?and Yiqun LU
    Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China,Qingdao 266100

    (Received 30 April 2015;revised 20 August 2015;accepted 27 August 2015)

    The mechanisms behind the seasonal deepening of the mixed layer(ML)in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012.The region with a deep ML(more than 175 m)was found in the region of(22?-30?S,105?-90?W),reaching its maximum depth(~200 m)near(27?-28?S,100?W)in September.The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively.Downward Ekman pumping is key to determining the eastern boundary of the deep ML region.In addition,zonal density advection by the subtropical countercurrent(STCC)in the subtropical Southwest Pacific determines its western boundary,by carrying lighter water to strengthen the stratification and form a“shallow tongue”of ML depth to block the westward extension of the deep ML in the STCC region.The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific.Finally,the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region:the ocean heat loss at the surface gradually increases from 22?S to 35?S,while the meridional density advection by the subtropical gyre strengthens the stratification south of the maximum ML depth and weakens the stratification to the north.The freshwater flux contribution to deepening the ML during austral winter is limited.The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific.

    mixed layer,seasonal deepening,Southeast Pacific,heat flux,density advection

    1.Introduction

    The ocean mixed layer(ML)plays an important role in air-sea interactions and climate variability.The ML is characterized by its vertical homogeneity in temperature,salinity and density.The ML depth(MLD)determines the transfer of water mass,momentum,and energy between ocean and atmosphere(de Boyer Mont′eGut et al.,2004).The MLD is important for the subduction process from the surface layer to greater depths(Qiu and Huang,1995;Xie et al.,2011;Liu and Huang,2012),and the subduction process plays an important role in climate variability(Williams,1991;Deser et al.,1996;Sato and Suga,2009;Liu and Wang,2014).

    Several mechanisms have been proposed to explain ML formation.Besides Ekman pumping and net surface heat flux,horizontal density advection can also induce change in stratification and MLD(de Boyer Mont′eGut et al.,2004). The Ekman drift in the upper fraction of the ML slides a different water mass over the lower ML,leading to vertical density convection,which,as a possible mechanism for vertical convection,can explain a strong horizontally densitycompensated front south of Australia in winter.Analysis of the seasonal variability of the upper-ocean stratification shows that a specific region with weak stratification in the upper ocean(“stability gap”)detected in the North Pacific central mode water formation region also provides a reliable answer for the“l(fā)ocal feature”of the deep ML formation during winter.In addition,cold Ekman advection and warm geostrophic advection also play crucial roles in determining the eastern and western boundaries of the“stability gap”(Pan et al.,2008).

    Besides the Antarctic circumpolar region and the North Atlantic deep-water formation region,it is clear that there are otherregionswithlocalmaximumMLD(>100m)inthesubtropical Southeast Pacific and South Atlantic,respectively, during austral winter,based on individual conductivitytemperature-depth(CTD)profiles(de BoyerMont′eGutetal., 2004,Fig.5).On the north side of the local maximum MLD in the Southeast Pacific,there is a strong MLD front and anobvioussubductionprocessinaustralwinter,wheretheSouth Pacific eastern subtropical mode water(SPESTMW)forms (Wong and Johnson,2003).After the SPESTMW is formed, it moves northwestward towards the equator,driven by the eastern component of the South Pacific subtropical gyre,and eventually joins the south equatorial current(Nishikawa and Kubokawa,2012).As the climate warms,the SPESTMW,in sharp contrast with the response to the North Pacific mode water,tends to extend southwestward and is significantly increased in volume,which mainly depends on an intensificationofthesoutheasterlytradewind(Luoetal.,2011).Acomparison of the MLD spatial patterns from a series of numerical ocean model experiments suggested that it is the intensified southeasterly trade wind,via generating a stronger buoyancy flux from the ocean to the atmosphere,that results in a deeper ML in the subtropical Southeast Pacific in a warmer climate(Luo et al.,2011).

    It is well known that the MLD is mainly determined by vertical convection and turbulent mixing of the water mass due to wind stress and heat exchange at the air-sea surface (Kara et al.,2003).By using high-quality CTD sections and Argo profile data collected between 1991 and 1996,Wong and Johnson(2003)indicated that the destabilizing of the salinity gradient in the SPESTMW contributes to its formation,with its major subduction region east of 130?W and north of 30?S.The Argo profile data also captured the seasonal changes of the vertical gradients of temperature and salinity at the SPESTMW core with density of 24.5-25.8 kg m?3(Sato and Suga,2009).Although based on few CTD profiles,the seasonal variation of the MLD in the subtropical Southeast Pacific has been shown,but CTD data alone were insufficient and the formation mechanism with respect to a deep ML in subtropical Southeast Pacific has not been mentioned(de Boyer Mont′eGut et al.,2004).On the other hand, observations of net surface heat flux in the Southeast Pacific have been used for examining the heat budget of the upper 250 m in the ocean(Colbo and Weller,2007),indicating that the equatorward heat transport compensates for nearly half of the heat balance,while horizontal eddy heat flux divergence accounts for the rest,with Ekman transport and pumping being negligible.These studies did not directly estimate horizontal density advection,because the authors only focused on the heat budget.

    In order to understand the seasonal deepening process of the ML in the subtropical Southeast Pacific,we set out to answer the following questions in the present study:When and where does the local maximum of the MLD in the subtropical Southeast Pacific appear?And what determines the location of the deep ML?As is well known,density is usually greater in the south than it is in the north,and the surface wind is southeasterly,in the subtropical Southeast Pacific. The southwestward Ekman flow and the eastward subtropical countercurrent(STCC)advecting low-density water are not conducive to ML deepening during austral winter.So,we hypothesized that the northwestward subtropical gyre current plays an important role in the seasonal deepening of the ML, because it should advect heavier water northwards from the south and weaken the upper-ocean stratification there.

    In the remainder of the paper,we introduce the data in section 2.We show the location of the maximum MLD and seasonal evolution of the MLD,and discuss the relative importance of each factor in determining the maximum ML location,in section 3.Section 4 summarizes the study's key findings.

    2.Data

    When studying the ML and mode water subduction in the North Pacific,the use of reanalysis data produces different results to Argo data because eddy-resolving model results are closer than non-eddy resolving model results to Argo observations(Xu et al.,2014).The temperature and salinity data used in this study were from Argo profiling floats in the Pacific Ocean from January 2004 to December 2012.Each float descended to a preprogrammed parking depth(typically 1000 m),drifted freely at that depth,and then ascended to the surface at a predetermined interval(usually 10 days)after descendingtothemaximumpressure(2000m).Thesedatawere collected and quality-controlled before being made freely available by the International Argo Program and the national programs that contributed to it(http://www.argo.ucsd.edu, http://argo.jcommops.org).Only profiles with a quality flag of“1”and“2”,indicating“good data”and“probably good data”respectively,were used in this study,resulting in a total of 20 571 profiles in the Pacific region(40?S-20?N, 120?E-60?W)and 1425 profiles in the subtropical Southeast Pacific(20?-40?S,90?-120?W).Further quality control was conducted by the China Argo Real-time Data Center (http://www.argo.org.cn),including interpolating the profile data into vertical standard depths(of 48)by the Akima interpolation method,and then averaging in each 1?×1?bin. Good coverage of Argo floats ensured the viability of our study in this region.The potential temperature and density (called temperature and density henceforth)referred to the surface are calculated from the interpolated temperature and salinity data.

    Themonthlynetsurfaceheatfluxdatafrom2004to2009, at 1?×1?resolution,were acquired from the Objectively Analyzed Air-Sea Fluxes(OAFlux)project at the Woods Hole Oceanographic Institution(Yu et al.,2006).The objective analysis method used in OAFlux combines optimal satellite measurements and model reanalysis data(Yu and Weller, 2007;Yu,2007).According to Large and Yeager(2008)and Liu et al.(2010),the net surface heat flux of OAFlux is overestimatedbyabout5-10Wm?2inthetropicalregion.Therefore,we first removed the extra heat flux from the shortwave radiation(keeping only 94.5%of its shortwave radiation)before we analyzed the net heat flux(Liu et al.,2010).

    The OAFlux monthly 1?×1?evaporation data(in cm yr?1)from January 2004 to December 2009 were also used. Meanwhile,the monthly precipitation data(in mm d?1),on a 2.5?×2.5?grid,were from the CMAP dataset,which merges gauge data with five kinds of satellite estimates,from January 2004 to December 2009(Xie and Arkin,1997).

    The Quick Scatterometer(QuikSCAT)winds were used to calculate the wind stress curl and Ekman pumping velocity.QuikSCAT consists of weekly-mean scalar ocean surface wind speed,ocean surface wind direction,and a rain flag/ collocated radiometer rain rate combination value,at a resolution of 0.25?×0.25?.For averaged QuikSCAT data,wind speeds are scalar-averaged,while wind directions are vectoraveraged.

    The monthly-mean dynamic topography from 2004 to 2012 was obtained from the Archiving,Validation,and Interpretation of Satellite Oceanographic(AVISO)data(AVISO, 2008),whose horizontal resolution is 0.25?×0.25?.

    The MLD was defined as the depth at which the ocean potential density is different from the 5-m density by 0.125 kg m?3,following de Boyer Mont′eGut et al.(2004).The geostrophic current and sea surface height were calculated using the monthly-mean Argo temperature and salinity data relative to 1200 m.

    3.Seasonal deepening of the ML

    3.1.Seasonal ML deepening processes and Ekman pumping

    The climatology was defined using the average during the period 2004-12.Figure 1 shows the seasonal ML deepening processesinthesubtropicalSoutheastPacificfromaustralfall to spring.During austral fall(April and May),the MLD is only about 50-75 m(Figs.1a and b)in the whole subtropical South Pacific.The ML deepens gradually in the approximate area(20?-30?S,120?-90?W)during June to August,which is spatially non-uniform(Figs.1c-e).The deep ML(>175 m)islocatedinthearea(22?-32?S,105?-90?W),reachingits maximum(~200 m)near(27?S,100?W)in September(early austral spring)(Fig.1f).There is also a“shallow tongue”of the MLD(zonal band with shallow MLD)in the area (20?-30?N,180?-120?W)(Figs.2d-f).Similar features of the MLD seasonal cycle have been reported before,based on float observation data(Wong and Johnson,2003)and limited CTD data(de Boyer Mont′eGut et al.,2004).After September,the MLD becomes shallower,since the deep winter ML is quickly replaced by a shallow seasonal thermocline as the surface temperature rises.As indicated by Sato and Suga (2009),the northern part of the deepest MLD in the subtropical Southeast Pacific is the formation region of the South Pacific eastern subtropical mode water.

    Fig.1.Climatology of monthly-mean MLD(showing contours of 50,75,100,125,150 and 175 m)and surface wind (arrows;m s?1)in(a)April,(b)May,(c)June,(d)July,(e)August,and(f)September.

    Corresponding to the seasonal deepening of the ML,the sea surface wind is shown in Fig.1.There is a trade wind near the equator and a westerly jet in the middle latitudes in the subtropical South Pacific.There is negative(downwards) Ekman pumping in the whole basin,and larger absolute val-ues of negative Ekman pumping are located in the west and east of the subtropical South Pacific(about 20?S),respectively.The negative Ekman pumping is key to determining the eastern boundary of the subtropical gyre,where the seasonal thermocline outcrops and the ventilated thermocline location is controlled by the Ekman pumping.Considering the upwelling near the west coast of South America,the Ekman pumpingisthemajorfactordeterminingtheeasternboundary of the deep ML region(Huang,2010).

    Fig.2.Climatology of Ekman pumping velocity(shading;positive upward;m s?1)and MLD(showing contours of 50, 75,100,125,150 and 175 m)in(a)April,(b)May,(c)June,(d)July,(e)August,and(f)September.

    3.2.Net surface heat flux,freshwater flux and horizontal density advection

    Ocean heat loss is an important factor for ML deepening. The negative net surface heat flux(ocean losing heat)during April to August is located between 22?S and 50?S,which contributes to deepening the ML in the whole ocean basin (Figs.3a-f).However,a larger absolute value of negative net surface heat flux with a zonal band pattern appears around the southwest of,rather than southeast of,the subtropical Pacific, and its pattern corresponds to a shallower ML,meaning there may be other processes supporting the loss of heat by the ocean in the subtropical Southwest Pacific.In the subtropical Southeast Pacific,the ocean surface heat loss increases gradually from 22?S to 35?S in May and June(Figs.3b and c), and the deepest ML(over 175 m)is located in the area(22?-32?S,105?-90?W).According to the above discussion,we can conclude that the deep ML is constricted to the south of 22?S because the ocean heat loss occurs south of 22?S(Figs. 3a-e)during May to August.Since the heat loss is larger in the south of the maximum MLD region than in the north (Figs.3b-e),itmeansthereareotherfactorsblockingtheconvective mixing process in the relatively shallow MLD region when the heat loss increases during June,July and August.

    According to Figs.1c-e,the northward Ekman current corresponding to the westerly jet south of 30?S carries denser ocean surface water northwards in the shallow surface(<50 m;not shown),which contributes to vertical mixing between 30?S and 40?S during June to August.Since the Ekman current is stronger in the south than it is in the north,it can be inferred that the Ekman current has a negative effect on the northward deepening of the MLD in the area(30?-40?S, 120?-90?W).On the other hand,the southwestward Ekman current corresponding to the trade wind north of 20?S carries the light water southwestwards,which blocks the deepening of the ML south of 20?S.Thus,according to the horizontal density advection by the Ekman currents,we are unable to explain why the local maximum of the MLD appears in the area(22?-32?S,105?-90?W).

    As we know,the South Pacific convergence zone extends southeastward from Northeast Australia,which can inducea precipitation belt.In order to identify the freshwater flux contribution to ML deepening in austral winter,the freshwater flux(evaporation minus precipitation;E-P)is shown in Figs.3g-l.We can see that negative E-P flux,where fresher oceansurfacewaterweakenstheverticalmixingprocess,corresponds well to a shallower ML(Figs.3g-l).During austral winter(June to September),larger positive E-P flux,which gives denser ocean surface water and enhances the vertical mixing process,appears in the subtropical shallower ML region west of the dateline and north of 20?S(Figs.3i-l). Therefore,the freshwater flux only contributes to determine the pattern of the ML during austral fall,and its contribution is limited during austral winter.

    3.2.1.Role of the STCC in zonal density advection

    Theroleofpotential-densityhorizontaladvection(PDHA) transported by the geostrophic currents is investigated in this section.PHDA is defined as

    whereρis sea water potential density relative to the surface, ugand vgare the zonal and meridional components of the geostrophic current velocity,respectively.Note that negative (positive)PDHA means heavier(lighter)water replaces the local water via horizontal advection.

    Fig.3.Climatology of monthly-mean(a-f)net surface heat flux(shading;positive downward;W m?2),(g-l)freshwater flux(shading;positive means evaporation is larger than precipitation),and MLD(as in Fig.2)in(a,g)April,(b,h) May,(c,i)June,(d,j)July,(e,k)August,and(f,l)September.

    In order to show whether the zonal density advection by the STCC can induce the“shallow tongue”of the MLD,the geostrophic current(0-100 m)and the standard deviation of the surface steric height are shown in Fig.4.The STCC between 20?S and 30?S west of 100?W takes the light water from the warm pool in the subtropical Southwest Pacific to the subtropical Southeast Pacific(positive zonal PDHA) in the upper 100 m between 22?S and 30?S,across 130?-140?W.It is worth noting that the larger PDHA is in the upper layer(Fig.5),which corresponds to a shallower ML,inducing a more stable stratification and weakening the mixing process.In addition,the positive advection in the upper layer contributes to the larger heat loss west of 100?W than east of 100?W between 22?S and 30?S,causing the maximum of negative net surface heat flux to locate around the subtropical Southwest Pacific.During austral winter,the MLD is deeperthan 80 m within 130?-140?W,which means the freshwater flux has a limited role(Figs.5c-f).

    Fig.4.Map of MLD in September(as in Fig.2f),standard deviation of surface steric height (shading;units:m)and geostrophic current(averaged within 0-100 m,relative to 1200 m, vectors in m s?1)in the South Pacific Ocean.

    Fig.5.Depth-latitude section of zonal PDHA along 130?-140?W(shading;light shading for“zero”;kg m?3s?1)in(a) April,(b)May,(c)June,(d)July,(e)August,and(f)September.Superimposed are the MLD(red line)and isopycnals (black dashed lines).

    Therefore,ocean heat loss contributes to deepening the ML,but the zonal PDHA by the STCC west of 100?W constrains the ML deepening process west of the deep ML region bytransportinglighterwaterintheupperlayerandstabilizing the stratification.The STCC blocks the westward extension of the deep ML,and its advection is the main mechanism behind the formation of the MLD“shallow tongue”.In addition,the heat advection by the STCC is the main source of heat that forms a zonal band of large surface heat loss in the subtropical Southwest Pacific.

    3.2.2.Meridional PDHA

    The effect of PDHA on ocean stratification in the deep ML region(22?-32?S,105?-90?W)is investigated in this subsection.Since the ocean loses heat south of 22?S,the northern boundary of the deep ML region should be 22?S. However,the maximum heat loss region is south of the maximum ML region during June to August(Figs.3c-e)and the role of the Ekman current cannot determine the deep ML region within 22?-32?S.This inconsistency has not been discussed before.Since the meridional gradient of density is larger than the zonal gradient,the absolute value of the zonal PDHA is much smaller than that of the meridional PDHA in the deep ML region.In order to find out what determines the southern boundary of the deep ML region,the zonal-mean meridional PDHA along the eastern section(90?-95?W)and that along the western section(104?-107?W)of the maximum MLD region are shown in Figs.6 and 7,respectively.

    Fig.6.Depth-latitude section of meridional PDHA along 91?-95?W(shading;light shading for“zero”;kg m?3s?1) in(a)April,(b)May,(c)June,(d)July,(e)August,and(f)September.Superimposed are the MLD(red line)and isopycnals(black dashed lines).

    In the eastern section,the maximum MLD(~180 m) is located at 27?S in September(Fig.6f).The meridional PDHA between 22?S and 27?S along this section is negative (approximately?6×10?4kg m?3s?1)in the upper isopycnal layers(<25.5 kg m?3;called the“upper layer”hereafter)and positive(<4×10?4kg m?3s?1)in the lowerisopycnal layers(≥25.5 kg m?3;called the“l(fā)ower layer”hereafter),because of the opposite meridional PDHAs between the two layers(Fig.6).The largest vertical gradient of the meridional PDHA is about 10?3kg m?3s?1in July (Fig.6d),which weakens the ocean stratification significantly and strengthens the vertical mixing between 22?S and 27?S, where the southwestward Ekman current corresponding to the trade wind north of 20?S can strengthen the ocean stratification.The meridional PDHA is mostly negative(?2×10?4to?4×10?4kg m?3s?1)south of 27?S,with its large absolute values in the layer beneath the ML and its maximum at 35?S during June to September(Figs.6c-f).This strengthens the ocean stratification and weakens the vertical mixing, even though the ocean loses more heat south of 27?S,where the Ekman current corresponding to the westerly jet south of 30?S weakens the ocean stratification.Therefore,the combined effect of meridional PDHA and ocean heat loss determines the northern and southern boundaries in the western section of the maximum MLD region and sets the deepest MLD at 27?S.

    Fig.7.As in Fig.6 but along 104?-107?W.

    Along the 104?-107?W section(western section),the maximum MLD is located between 27?and 28?S,and is about 190 m in September(Fig.7f).During May to August,theverticalgradientofmeridionalPDHAalongthissection induces a weaker stratification with negative meridional PDHA in the upper layer and positive meridional PDHA in the lower layer north of 27?S(Figs.7b-e),similar to those along the eastern section(Fig.6).There is,however,an obvious difference between the eastern and western sections in that a positive meridional PDHA exists between 28?S and 32?S in all months along the western section,and its difference between the lower and upper layers is only about 4×10?4kg m?3s?1(Fig.7).Although the vertical gradient is much less than that in the north,it also weakens the ocean stratification.This is the reason why the maximum ML(about 190 m)region is wider in the meridional direction along the western section than along the eastern section. The meridional PDHA is negative south of 32?S,and larger absolute values lie beneath the ML,strengthening the ocean stratification and weakening the mixing process.This sets the southern boundary of the deep ML region at 32?S(Fig.7).It is worth mentioning that the positive PDHA around 30?S ispresumed to be related to a southward eddy-induced current (Fig.4).In other words,the combined effect of meridional PDHA and net surface heat flux determines the northern and southern boundaries in the eastern section of the maximum MLD region and sets the deepest ML location at 27?S.Along this section,the effect of the Ekman current on ocean stratification is also opposite to that of the geostrophic current.

    Based on the above analysis,we can conclude that there are two factors determining the northern and southern boundaries of the deep MLD region:the gradually increasing ocean heat loss from 22?S to 35?S,and the meridional PDHA, which induces a stable stratification south of the deep ML region.These two factors combine to determine the location of the maximum MLD region along 27?-28?S.The northern boundary of the deep ML region is 22?S,and the southern boundary is 32?S.

    4.Conclusions and discussion

    A qualitative investigation of the relative importance of Ekman pumping,net surface heat flux,freshwater flux,and horizontal density advection in the seasonal deepening of the ML in the subtropical Southeast Pacific was conducted in this study using the Argo profile data during 2004-12.During austral fall and winter,the ML deepens gradually around (20?-32?S,120?-90?W).The deep ML(>175 m)is located in the area(22?-32?S,105?-90?W),reaching its seasonal maximum(~200 m)near(27?-28?S,100?W)in September.

    The downward Ekman pumping has two local maximum regions in the west and east subtropical South Pacific,respectively.The eastern boundary of the downward Ekman pumping is key in determining the eastern boundary location of the deep ML region.

    The freshwater flux only contributes to the ML pattern during austral fall,and its contribution is limited during austral winter.

    The zonal PDHA by the STCC places a warm,freshwater cap in the upper layer,which strengthens the upperocean stratification and determines the western boundary of the deep ML region.The STCC blocks the westward extension of the deep ML region and forms an MLD“shallow tongue”along the STCC.This discovery implies a close relationship between the STCC and the ML in the subtropical Southeast Pacific,and explains the dynamic mechanism for the zonal band of large heat.The northern and southern boundariesofthedeepMLregionaredeterminedbythecombined effect of net surface heat flux and meridional PDHA in the subtropical Southeast Pacific.The gradual increase in ocean heat loss from 22?S to 33?S deepens the ML,while the meridional PDHA by the subtropical gyre strengthens the upper-ocean stratification south of 27?-28?S and weakens the stratification north of 27?-28?S,which sets the boundaries in the north and south.

    Although yielding far more profiles than historical CTD collections,the Argo coverage is not sufficient for a quantitative study on the seasonal variation of the ML.This is because,to date,there have not been any good-quality measurements of the seasonal variation of the vertical velocity and entrainment velocity at the bottom of the ML in the subtropical southeast Pacific Ocean.Unfortunately,both vertical velocity and entrainment velocity calculated based on the geostrophic current contain large errors.In addition,given the deficiency in vertical velocity and entrainment velocity observation,we cannot determine which ocean numerical models have the greater ability to simulate the mixing process successfully.Thus,the present-reported results are merely qualitative.Quantitativestudies using long-termoceanobservations and high-quality simulations from numerical models are necessary in the future.

    Acknowledgements.This work was supported by the National Basic Research Program of China(Grant No.2012CB955603), the National Natural Science Foundation of China(Grant Nos. 41176006 and 41490643),and the Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401).

    REFERENCES

    AVISO,2008:SSALTO/DUACS User Handbook:(M)SLA and (M)ADT Near-Real Time and Delayed Time Products.Collecte Localisation Satellites,Agne,France,39 pp.

    Colbo,K.,and R.Weller,2007:The variability and heat budget of the upper ocean under the Chile-Peru stratus.J.Mar.Res.,65, 607-637.

    de Boyer Mont′eGut,C.,G.Madec,A.S.Fischer,A.Lazar,and D. Iudicone,2004:Mixed layer depth over the global ocean:An examination of profile data and a profile-based climatology. J.Geophys.Res,109,C12003,481-497.

    Deser,C.,M.A.Alexander,and M.S.Timlin,1996:Upper ocean thermal variations in the North pacific during 1970-1991.J. Climate,9,1840-1855.

    Huang,R.X.,2010.Oceanic Circulation:Wind-driven and Thermohaline Processes.Cambridge University Press,Cambridge,360-369.

    Kara,A.B.,P.A.Rochford,and H.E.Hurlburt,2003:Mixed layer depth variability over the global ocean.J.Geophys.Res.: Oceans(1978-2012),108(C3),209.

    Large,W.G.,and S.G.Yeager,2008:The global climatology of an interannually varying air-sea flux data set.Climate Dyn., 24,341-364,doi:10.1007/s00382-008-0441-3.

    Liu,C.Y.,and Z.M.Wang,2014:On the response of the global subduction rate to global warming in coupled climate models. Adv.Atmos.Sci.,31(1),211-218,doi:10.1007/s00376-013-2323-9.

    Liu,H.L.,W.Y.Lin,and M.H.Zhang,2010:Heat budget of the upper ocean in the south-central Equatorial Pacific.J.Climate,23(7),1779-1792.doi:10.1175/2009JCLI3135.1

    Liu,L.L.,and R.X.Huang,2012:The global subduction/obduction rates:Their interannual and decadal variability.J.Climate,25(4),1096-1115.

    Luo,Y.Y.,Q.Y.Liu,and L.M.Rothstein,2011:Increase of South Pacific eastern subtropical mode water under global warming. Geophys.Res.Lett.,38,L01601.

    Nishikawa,S.,and A.Kubokawa,2012:Mixed layer depth front andsubductionoflowpotentialvorticitywaterunderseasonal forcings in an idealized OGCM.Journal of Oceanography,68(1),53-62.

    Pan,A.J.,Q.Y.Liu,and Z.Y.Liu,2008:Formation mechanism of the“Stability Gap”and the North Pacific central mode water. Chinese Journal of Geophysics,51(1),77-87.(in Chinese)

    Qiu,B.,and R.X.Huang,1995:Ventilation of the North Atlantic and North Pacific:Subduction versus obduction.J.Phys. Oceanogr.,25,2374-2390.

    Sato,K.,and T.Suga,2009:Structure and modification of the South Pacific eastern subtropical mode water.J.Phys. Oceanogr.,39,1700-1714.

    Williams,R.G.,1991:Theroleofthemixedlayerinsettingthepotential vorticity of the main thermocline.J.Phys.Oceanogr., 21,1803-1814.

    Wong,A.P.S.,and G.C.Johnson,2003:South Pacific eastern subtropical mode water.J.Phys.Oceanogr.,33(7),1493-1509.

    Xie,P.P.,and P.A.Arkin,1997:Global precipitation:A 17-year monthly analysis based on gauge observations,satellite estimates,andnumericalmodeloutputs.Bull.Amer.Meteor.Soc., 78,2539-2558.

    Xie,S.P.,L.X.Xu,Q.Y.Liu,and F.Kobashi,2011:Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific.J.Climate,24, 1212-1225.

    Xu,L.X.,S.P.Xie,J.L.McClean,Q.Y.Liu,and H.Sasaki, 2014:Mesoscale eddy effects on the subduction of North Pacific mode waters.J.Geophys.Res.-Oceans,119,4867-4886, doi:10.1002/2014JC009861.

    Yu,L.S.,2007:Global variations in oceanic evaporation(1958-2005):The role of the changing wind speed.J.Climate, 20(21),5376-5390.

    Yu,L.S.,and R.A.Weller,2007:Objectively analyzed air-sea heat fluxes for the global ice-free oceans(1981-2005).Bull. Amer.Meteor.Soc.,88(4),527-539.

    Yu,L.S.,X.Z.Jin,and R.A.Weller,2006:Role of net surface heat flux in seasonal evolutions of sea surface temperature in the tropical Atlantic Ocean.J.Climate,19,6153-6169.

    Liu,Q.Y.,and Y.Q.Lu,2016:Role of horizontal density advection in seasonal deepening of the mixed layer in the subtropical Southeast Pacific.Adv.Atmos.Sci.,33(4),442-451,

    10.1007/s00376-015-5111-x.

    ?Qinyu LIU

    Email:liuqy@ouc.edu.cn

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    成年版毛片免费区| 国产精品,欧美在线| 美女xxoo啪啪120秒动态图| 男人和女人高潮做爰伦理| 直男gayav资源| 亚洲国产精品合色在线| 村上凉子中文字幕在线| 国产一区二区三区在线臀色熟女| 国产成人aa在线观看| 中文字幕精品亚洲无线码一区| 久久久久久久亚洲中文字幕| 你懂的网址亚洲精品在线观看 | av黄色大香蕉| 黄色日韩在线| 日韩制服骚丝袜av| 欧美一区二区亚洲| 99热这里只有是精品在线观看| 国产激情偷乱视频一区二区| 亚洲av中文av极速乱| 床上黄色一级片| 日本一二三区视频观看| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| 亚洲av.av天堂| 免费看美女性在线毛片视频| 午夜激情欧美在线| 天堂网av新在线| 亚洲人成网站在线播放欧美日韩| 亚洲av免费在线观看| 日韩高清综合在线| 老师上课跳d突然被开到最大视频| 成年版毛片免费区| 美女黄网站色视频| 欧美色视频一区免费| 老女人水多毛片| 在线观看66精品国产| 热99在线观看视频| 男人的好看免费观看在线视频| 亚洲国产精品国产精品| 国语自产精品视频在线第100页| 欧美日韩精品成人综合77777| 一个人免费在线观看电影| 亚洲成a人片在线一区二区| 国产欧美日韩精品一区二区| av中文乱码字幕在线| 丰满乱子伦码专区| 欧美色欧美亚洲另类二区| 国产伦精品一区二区三区四那| 国产免费一级a男人的天堂| 亚洲18禁久久av| 亚洲最大成人手机在线| 国产精品电影一区二区三区| 国产三级中文精品| 校园人妻丝袜中文字幕| 成人亚洲精品av一区二区| 内射极品少妇av片p| 日韩欧美精品v在线| 深爱激情五月婷婷| 97超级碰碰碰精品色视频在线观看| 小蜜桃在线观看免费完整版高清| 午夜影院日韩av| 观看美女的网站| 麻豆av噜噜一区二区三区| 日韩成人伦理影院| 少妇丰满av| 两个人视频免费观看高清| 欧美中文日本在线观看视频| 白带黄色成豆腐渣| 亚洲av免费在线观看| 男女视频在线观看网站免费| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线观看播放| 精品人妻视频免费看| 久久久精品欧美日韩精品| 夜夜夜夜夜久久久久| 日韩在线高清观看一区二区三区| 欧美日韩精品成人综合77777| 亚洲国产精品成人综合色| 亚洲av电影不卡..在线观看| 免费无遮挡裸体视频| 久久这里只有精品中国| 久久国内精品自在自线图片| 成人精品一区二区免费| 国产精品福利在线免费观看| 丝袜美腿在线中文| 久久久久久久亚洲中文字幕| 亚洲av中文av极速乱| 亚洲性夜色夜夜综合| 女人被狂操c到高潮| 久久精品国产亚洲av涩爱 | 偷拍熟女少妇极品色| 国产亚洲欧美98| 看免费成人av毛片| 国产高清激情床上av| 性色avwww在线观看| 天堂影院成人在线观看| 我的老师免费观看完整版| 亚洲精品粉嫩美女一区| 亚洲一区高清亚洲精品| av福利片在线观看| 久久精品国产清高在天天线| 亚洲欧美日韩高清专用| 看黄色毛片网站| 日本五十路高清| 校园人妻丝袜中文字幕| 久久精品国产亚洲av天美| 高清午夜精品一区二区三区 | 欧美色视频一区免费| 国产激情偷乱视频一区二区| www日本黄色视频网| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 日产精品乱码卡一卡2卡三| 黄色视频,在线免费观看| 久久精品国产99精品国产亚洲性色| 日韩,欧美,国产一区二区三区 | 亚洲av中文av极速乱| 在线观看美女被高潮喷水网站| 蜜桃亚洲精品一区二区三区| 你懂的网址亚洲精品在线观看 | 日韩欧美三级三区| 日韩 亚洲 欧美在线| 亚洲无线观看免费| 亚洲av.av天堂| 亚洲精品久久国产高清桃花| 欧美最黄视频在线播放免费| 人人妻,人人澡人人爽秒播| 超碰av人人做人人爽久久| 欧美成人免费av一区二区三区| 三级经典国产精品| 长腿黑丝高跟| 久久久国产成人精品二区| 成人高潮视频无遮挡免费网站| 久久这里只有精品中国| 一进一出抽搐动态| h日本视频在线播放| 国产精品,欧美在线| 人妻少妇偷人精品九色| 特级一级黄色大片| 亚洲国产欧洲综合997久久,| 欧美色欧美亚洲另类二区| 黄色一级大片看看| 国产精品国产三级国产av玫瑰| 99在线视频只有这里精品首页| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久精品电影| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| 欧美日韩在线观看h| 嫩草影院新地址| 在线播放国产精品三级| 国产高清视频在线播放一区| 两个人视频免费观看高清| 国产 一区 欧美 日韩| 成人毛片a级毛片在线播放| 国产精品爽爽va在线观看网站| 男人狂女人下面高潮的视频| 在线观看免费视频日本深夜| 乱人视频在线观看| 国产aⅴ精品一区二区三区波| 99久久久亚洲精品蜜臀av| 亚洲av一区综合| 内地一区二区视频在线| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 又黄又爽又刺激的免费视频.| 国产精品久久久久久亚洲av鲁大| 成人无遮挡网站| 日韩一区二区视频免费看| 色在线成人网| 在现免费观看毛片| 又黄又爽又免费观看的视频| 有码 亚洲区| 亚洲欧美精品综合久久99| av.在线天堂| 久久久精品欧美日韩精品| 蜜桃久久精品国产亚洲av| 精品不卡国产一区二区三区| 成人漫画全彩无遮挡| 亚洲av不卡在线观看| 国产成人精品久久久久久| 亚洲最大成人av| 欧美高清性xxxxhd video| av在线蜜桃| 免费观看人在逋| 老女人水多毛片| 国产av在哪里看| 午夜福利在线观看吧| 99热精品在线国产| 亚洲综合色惰| 夜夜夜夜夜久久久久| 精品不卡国产一区二区三区| a级毛片a级免费在线| 蜜桃久久精品国产亚洲av| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 免费人成在线观看视频色| 国产一区二区三区av在线 | 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| 99久久精品国产国产毛片| 久久久久免费精品人妻一区二区| 国产精品免费一区二区三区在线| 精品午夜福利视频在线观看一区| 日韩人妻高清精品专区| 一边摸一边抽搐一进一小说| 搞女人的毛片| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| 女同久久另类99精品国产91| 欧美性感艳星| 国产激情偷乱视频一区二区| 日韩三级伦理在线观看| 欧美3d第一页| 亚洲第一区二区三区不卡| 我要搜黄色片| av专区在线播放| 看非洲黑人一级黄片| 精品一区二区三区视频在线| 波野结衣二区三区在线| 免费观看人在逋| 天堂网av新在线| 精华霜和精华液先用哪个| 99在线视频只有这里精品首页| 黄色配什么色好看| АⅤ资源中文在线天堂| 欧美另类亚洲清纯唯美| 日产精品乱码卡一卡2卡三| 一级毛片我不卡| 久久久久免费精品人妻一区二区| 精品久久国产蜜桃| 成人美女网站在线观看视频| 精品一区二区免费观看| 久久精品国产99精品国产亚洲性色| 永久网站在线| 六月丁香七月| 成人高潮视频无遮挡免费网站| 国产成人福利小说| 国产在线精品亚洲第一网站| 国产高清激情床上av| 少妇熟女欧美另类| 我的老师免费观看完整版| 免费人成视频x8x8入口观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩强制内射视频| 亚洲在线观看片| 亚洲成人中文字幕在线播放| 熟女人妻精品中文字幕| av.在线天堂| 最近中文字幕高清免费大全6| 精品久久久噜噜| 欧美bdsm另类| 日本黄色片子视频| 亚洲精品亚洲一区二区| 欧美色视频一区免费| 免费无遮挡裸体视频| 噜噜噜噜噜久久久久久91| 精品久久久久久久久久久久久| 欧美日本亚洲视频在线播放| 男人和女人高潮做爰伦理| 看十八女毛片水多多多| 国产高清有码在线观看视频| 在线国产一区二区在线| 亚洲av成人av| 精品一区二区三区av网在线观看| 日韩制服骚丝袜av| 欧美高清性xxxxhd video| 日本五十路高清| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 激情 狠狠 欧美| 国产成人a区在线观看| 亚洲成人中文字幕在线播放| 啦啦啦啦在线视频资源| 91久久精品电影网| 午夜老司机福利剧场| 精品少妇黑人巨大在线播放 | 久久久成人免费电影| 桃色一区二区三区在线观看| 欧美又色又爽又黄视频| 久久精品夜色国产| 国产爱豆传媒在线观看| 99riav亚洲国产免费| 国产免费男女视频| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 麻豆国产97在线/欧美| 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| 国产日本99.免费观看| 不卡一级毛片| 久久久久九九精品影院| 女同久久另类99精品国产91| 国模一区二区三区四区视频| 亚洲经典国产精华液单| 偷拍熟女少妇极品色| 天堂av国产一区二区熟女人妻| 99热只有精品国产| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| 在现免费观看毛片| av.在线天堂| 亚洲婷婷狠狠爱综合网| 国产精品乱码一区二三区的特点| 欧美一区二区亚洲| 国产成人一区二区在线| 99九九线精品视频在线观看视频| 一级毛片aaaaaa免费看小| 美女黄网站色视频| 男女那种视频在线观看| 国产成年人精品一区二区| 欧美国产日韩亚洲一区| 精品一区二区免费观看| 又爽又黄a免费视频| 一a级毛片在线观看| 日本黄色片子视频| 日韩欧美精品v在线| 精品无人区乱码1区二区| 日韩欧美 国产精品| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 久久天躁狠狠躁夜夜2o2o| 色综合色国产| 久久韩国三级中文字幕| 国产毛片a区久久久久| 听说在线观看完整版免费高清| 精品久久久久久久人妻蜜臀av| 五月玫瑰六月丁香| 国产在线精品亚洲第一网站| 天堂动漫精品| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 免费人成在线观看视频色| 亚洲18禁久久av| 观看免费一级毛片| 精品乱码久久久久久99久播| 成人亚洲精品av一区二区| 国产精品福利在线免费观看| 免费在线观看成人毛片| 亚洲成人av在线免费| 欧美zozozo另类| 伊人久久精品亚洲午夜| 搡老妇女老女人老熟妇| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 国产精品99久久久久久久久| а√天堂www在线а√下载| 国产在线精品亚洲第一网站| 99久久中文字幕三级久久日本| 成熟少妇高潮喷水视频| 草草在线视频免费看| 欧美成人精品欧美一级黄| 国产精品无大码| 麻豆乱淫一区二区| 亚洲欧美日韩无卡精品| 成人鲁丝片一二三区免费| 亚洲乱码一区二区免费版| 国产视频内射| 自拍偷自拍亚洲精品老妇| 日本撒尿小便嘘嘘汇集6| 亚洲激情五月婷婷啪啪| 三级毛片av免费| 国产三级中文精品| 最新在线观看一区二区三区| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 国产精品无大码| 久久精品国产99精品国产亚洲性色| 亚洲美女黄片视频| 欧美极品一区二区三区四区| www.色视频.com| 精品午夜福利视频在线观看一区| 久久精品国产自在天天线| 麻豆乱淫一区二区| 日韩精品青青久久久久久| 午夜精品在线福利| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 国产av在哪里看| 夜夜夜夜夜久久久久| 久久欧美精品欧美久久欧美| 又爽又黄无遮挡网站| 亚洲成人中文字幕在线播放| 亚洲国产精品久久男人天堂| 亚洲一级一片aⅴ在线观看| 成熟少妇高潮喷水视频| 男女做爰动态图高潮gif福利片| 亚洲久久久久久中文字幕| 国产一区二区在线观看日韩| 国产av一区在线观看免费| 九九久久精品国产亚洲av麻豆| 九九爱精品视频在线观看| 国产蜜桃级精品一区二区三区| av黄色大香蕉| 国产亚洲91精品色在线| 国产伦精品一区二区三区四那| 亚洲无线在线观看| 一个人看视频在线观看www免费| 日韩成人av中文字幕在线观看 | 午夜免费激情av| 国产亚洲精品久久久久久毛片| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 麻豆乱淫一区二区| 黄片wwwwww| 国产久久久一区二区三区| www.色视频.com| 又黄又爽又刺激的免费视频.| 国产欧美日韩精品亚洲av| 免费观看精品视频网站| 激情 狠狠 欧美| 国产免费男女视频| 18禁在线无遮挡免费观看视频 | 成人av在线播放网站| 中文字幕av成人在线电影| 狂野欧美白嫩少妇大欣赏| 人人妻,人人澡人人爽秒播| 麻豆精品久久久久久蜜桃| 欧美日本亚洲视频在线播放| 国产精品久久电影中文字幕| 黑人高潮一二区| 黄色欧美视频在线观看| 91久久精品国产一区二区三区| 亚洲性久久影院| 成人午夜高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 最近手机中文字幕大全| 国内少妇人妻偷人精品xxx网站| 久久久久性生活片| 久久精品久久久久久噜噜老黄 | 亚洲人成网站在线播| 91av网一区二区| 亚洲图色成人| 欧美精品国产亚洲| 日韩一区二区视频免费看| 最近视频中文字幕2019在线8| 国产探花极品一区二区| 久久久久国内视频| 1000部很黄的大片| 亚洲成a人片在线一区二区| 欧美日韩精品成人综合77777| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 国产美女午夜福利| 2021天堂中文幕一二区在线观| 如何舔出高潮| 日韩欧美三级三区| 日韩欧美在线乱码| av在线播放精品| .国产精品久久| 久久久久九九精品影院| 免费观看在线日韩| 麻豆乱淫一区二区| 成人三级黄色视频| 国产乱人偷精品视频| 亚洲av美国av| 亚洲成av人片在线播放无| 最近中文字幕高清免费大全6| 成人亚洲欧美一区二区av| 午夜精品在线福利| 国产精品福利在线免费观看| 国内久久婷婷六月综合欲色啪| 十八禁网站免费在线| 97超碰精品成人国产| 最近中文字幕高清免费大全6| 日本成人三级电影网站| 最近2019中文字幕mv第一页| 搡老岳熟女国产| 女的被弄到高潮叫床怎么办| 97超视频在线观看视频| 日韩在线高清观看一区二区三区| 夜夜爽天天搞| ponron亚洲| 久久99热6这里只有精品| 国产高清激情床上av| 亚洲三级黄色毛片| 综合色丁香网| 亚洲中文字幕日韩| aaaaa片日本免费| 成人国产麻豆网| 国产成人a区在线观看| 久久人人精品亚洲av| 久久久国产成人精品二区| 丰满的人妻完整版| 日韩一区二区视频免费看| 男女之事视频高清在线观看| 熟女电影av网| 美女 人体艺术 gogo| 美女免费视频网站| 亚洲在线观看片| 国产精品女同一区二区软件| 欧美区成人在线视频| 久久精品夜色国产| 亚洲欧美成人综合另类久久久 | 亚洲天堂国产精品一区在线| 长腿黑丝高跟| 可以在线观看毛片的网站| 日本a在线网址| 成人高潮视频无遮挡免费网站| 免费观看的影片在线观看| 国产av在哪里看| 国产av一区在线观看免费| 国产精品日韩av在线免费观看| 国产成人freesex在线 | 婷婷精品国产亚洲av在线| 老司机福利观看| 亚洲国产欧洲综合997久久,| 国产探花极品一区二区| 亚洲欧美清纯卡通| 免费看a级黄色片| 级片在线观看| 中国国产av一级| 欧美日韩综合久久久久久| 最近的中文字幕免费完整| 色噜噜av男人的天堂激情| 青春草视频在线免费观看| 天美传媒精品一区二区| 寂寞人妻少妇视频99o| 夜夜夜夜夜久久久久| 日韩制服骚丝袜av| 亚洲av成人精品一区久久| 一级毛片久久久久久久久女| 欧美三级亚洲精品| 免费看日本二区| 国产高清视频在线观看网站| 免费看光身美女| 欧美xxxx黑人xx丫x性爽| 97碰自拍视频| 国产91av在线免费观看| 97在线视频观看| 白带黄色成豆腐渣| 51国产日韩欧美| 搡女人真爽免费视频火全软件 | 亚洲一级一片aⅴ在线观看| 日韩成人伦理影院| 美女cb高潮喷水在线观看| av中文乱码字幕在线| 午夜久久久久精精品| 国产精品精品国产色婷婷| 熟女电影av网| 又爽又黄无遮挡网站| 国产高清视频在线观看网站| 看免费成人av毛片| 欧美zozozo另类| 日本免费一区二区三区高清不卡| 国产91av在线免费观看| 亚洲国产欧洲综合997久久,| 国内精品一区二区在线观看| 国产欧美日韩一区二区精品| 91av网一区二区| 联通29元200g的流量卡| 卡戴珊不雅视频在线播放| 成人毛片a级毛片在线播放| 免费黄网站久久成人精品| 成人特级av手机在线观看| 伊人久久精品亚洲午夜| 国产真实乱freesex| 最新中文字幕久久久久| 国产av麻豆久久久久久久| 亚洲五月天丁香| 亚洲第一区二区三区不卡| 亚洲国产色片| 久久亚洲精品不卡| 97超碰精品成人国产| 亚洲欧美清纯卡通| 一级a爱片免费观看的视频| 久久人妻av系列| 超碰av人人做人人爽久久| 精品一区二区三区人妻视频| 国产精品久久电影中文字幕| 激情 狠狠 欧美| 精品熟女少妇av免费看| 女的被弄到高潮叫床怎么办| 久久久精品94久久精品| 中文亚洲av片在线观看爽| 老司机午夜福利在线观看视频| 久久精品影院6| h日本视频在线播放| 久久精品国产亚洲网站| 亚州av有码| 国产精品国产高清国产av| 可以在线观看的亚洲视频| 亚洲综合色惰| 两性午夜刺激爽爽歪歪视频在线观看| 在线免费十八禁| 久久婷婷人人爽人人干人人爱| 18+在线观看网站| 国产亚洲精品久久久com| 欧美bdsm另类| 日韩在线高清观看一区二区三区| 成人午夜高清在线视频| 天天躁夜夜躁狠狠久久av| 亚洲第一电影网av| 免费大片18禁| 老熟妇仑乱视频hdxx| 国产在视频线在精品| 观看美女的网站| 22中文网久久字幕| 国内久久婷婷六月综合欲色啪| 日韩欧美免费精品| 寂寞人妻少妇视频99o| 九九爱精品视频在线观看| 99九九线精品视频在线观看视频| 我的老师免费观看完整版| 国内久久婷婷六月综合欲色啪| 少妇裸体淫交视频免费看高清| 成人毛片a级毛片在线播放| 精品人妻一区二区三区麻豆 | 午夜日韩欧美国产| 亚洲欧美清纯卡通| 最新中文字幕久久久久| 尾随美女入室| 亚洲国产色片| 国产私拍福利视频在线观看| 久久久久国产网址|