• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氣體在無定型聚異戊二烯中擴(kuò)散的分子動(dòng)力學(xué)模擬

    2016-11-22 09:48:59汪亞順譚源源高木子源
    物理化學(xué)學(xué)報(bào) 2016年10期
    關(guān)鍵詞:力場(chǎng)異戊二烯阿爾伯

    魯 相 陳 循 汪亞順 譚源源 高木子源

    (1國防科學(xué)技術(shù)大學(xué)機(jī)電工程與自動(dòng)化學(xué)院,裝備綜合保障技術(shù)重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙410073;2阿爾伯塔大學(xué)化學(xué)與材料工程系,埃德蒙頓T6G0X6,加拿大)

    氣體在無定型聚異戊二烯中擴(kuò)散的分子動(dòng)力學(xué)模擬

    魯相1,*陳循1汪亞順1譚源源1高木子源2

    (1國防科學(xué)技術(shù)大學(xué)機(jī)電工程與自動(dòng)化學(xué)院,裝備綜合保障技術(shù)重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙410073;2阿爾伯塔大學(xué)化學(xué)與材料工程系,埃德蒙頓T6G0X6,加拿大)

    采用分子動(dòng)力學(xué)模擬方法研究了多個(gè)溫度下氧氣、氮?dú)饧凹淄樵跓o定型順式1,4-聚異戊二烯中的擴(kuò)散系數(shù)。在模擬過程中,使用COMPASS力場(chǎng)作為分子力場(chǎng)。應(yīng)用COMPASS力場(chǎng)的勢(shì)能函數(shù),聚合物的密度及玻璃化轉(zhuǎn)變溫度的計(jì)算結(jié)果與實(shí)驗(yàn)值有較好吻合。在278-378 K的溫度范圍內(nèi),通過3或1.5 ns時(shí)長(zhǎng)的正則系綜動(dòng)力學(xué)模擬,計(jì)算了不同溫度下氧氣、氮?dú)饧凹淄榈臄U(kuò)散系數(shù)。結(jié)果表明,根據(jù)愛因斯坦關(guān)系式計(jì)算得到的擴(kuò)散系數(shù)與實(shí)驗(yàn)結(jié)果比較接近。對(duì)氣體擴(kuò)散系數(shù)與溫度的關(guān)系進(jìn)一步研究,發(fā)現(xiàn)在278-378 K溫度范圍內(nèi),甲烷的擴(kuò)散系數(shù)隨溫度變化的半對(duì)數(shù)曲線圖是非線性的,而氧氣和氮?dú)獾臄U(kuò)散系數(shù)隨溫度變化的半對(duì)數(shù)曲線圖是線性的。本文研究結(jié)果有助于理解溫度對(duì)氣體擴(kuò)散的影響機(jī)制,并為高溫下氣體在天然橡膠中擴(kuò)散系數(shù)的測(cè)定及天然橡膠熱氧老化建模分析提供依據(jù)。

    氣體;擴(kuò)散系數(shù);聚異戊二烯;分子動(dòng)力學(xué);分子模擬

    1 Introduction

    The transport(diffusion)of gas in polymers has been a subject of ongoing interest for several decades.Many important practical applications depend on the information of transport phenomena, such as protective coatings,food packaging materials,and selective membranes for separation technology1-3.In addition,the diffusion data of oxygen are vital parameters for understanding and modeling the thermo oxidative degradation of polymers4,5. However,experimental measurements of the diffusion coefficients of gas over a wide temperature range are difficult and expensive, especially for the case of high temperatures4,6.When the temperature exceeds 373 K,elastomers begin to give off gas and the traditional measurements could not be continued6.Moreover, oxygen inevitably reacts with the polymer during the diffusion process at sufficiently high temperatures,thus the measured diffusion rate without special correction will not increase but decrease with temperatures under these conditions4.

    By reasonable solutions of Fick′s law,the process of gas transport in polymers can be well depicted from a macroscopic point of view7,8.In order to get a better understanding of the phenomena of gas diffusion in polymers,the elucidation of diffusion mechanism on a microscopic level is necessary.Unfortunately,although there are many theoretical models at present, including the free-volume9and the dual-mode sorption10models, the elucidations based on these models are not satisfactory11-13.The chemical structure of polymers can be considered to be the predominant factor which controls the magnitude of permeability(or diffusion)coefficient14.However,even if knowledge on the polymer structure is obtained,the diffusion coefficient can not be estimated by these theoretical models because the unknown parameters in these models are not directly related to the polymer structure.

    To overcome the above-mentioned obstacles existing in the experiment and theory,computer modeling is increasingly used as a standard tool in the investigation of gas diffusion in polymeric materials.MD simulation based on computer modeling has been proven to be a useful tool for exploring the structure-property relationship of amorphous polymeric materials15-17.Due to the fast development of high-speed computational facilities in recent years,MD becomes a powerful tool for predicting diffusion constants of gas in natural and synthetic polymers at room temperature,and it can be utilized to describe the complex transport mechanism18,19.For example,Tao et al.20discussed the effect of polymerization degree of polypropylene on the diffusion coefficient of oxygen.Lü et al.21calculated the diffusion coefficients of the oxygen molecules in NaOH and KOH solutions.Liu and Huang22studied the transport properties of oxygen and nitrogen in the para-substituted polystyrenes.

    Much work on MD simulation of gas diffusion through rubbery and glassy polymers has been reported15-18,22-28,but only a few studies deal with the temperature dependence of diffusion coefficients and diffusion mechanism29-32.Gee and Boyd29employed MDsimulation to estimate the methane diffusion in amorphous cis-1,4-polybutadiene(rubbery polymer)in the temperature range of 250-450 K.Their study showed a decrease of activation energy with the temperature for methane.Mozaffari et al.32performed MD simulation to study the gas diffusion in polystyrene over a wide range of temperatures,300-500 K.For the logarithm of diffusivity versus inverse temperature data,their calculated results showed that a discontinuity in slope of these data was seen at the glass transition temperature for some gases.But the plot was linear over the whole temperature range for some other light gases.The diffusion coefficients calculated by their model were in good agreement with the experimental data.

    The cis-1,4-polyisoprene(natural rubber)is selected as the polymer system in this study.It is still a widely used rubber at present and many experimental studies with regard to its physical properties and diffusivity to gases have been carried out14.Experimental data concerning the diffusion of nitrogen have been obtained over a temperature range of 293-373 K33.For comparison with experimental data,MD simulations are performed for the calculation of diffusion of gases(oxygen,nitrogen and methane)at temperatures ranging from 278 to 378 K.Meanwhile the calculated density and glass transition temperature are used to validate the availability of the utilized force field in the simulation. Finally,the temperature dependence of diffusion coefficients and diffusion mechanism are examined.

    2 Methodology

    The transmission of gas through polymer films is defined as permeability P.Permeability is in nature the normalized permeating flux with reference to thickness and pressure.Fick′s law and Henry′s law apply to the actual process of gas permeation through nonporous polymer film.The permeability coefficient P can also be referred to as the product of the diffusivity and solubility,that is P=DS,where D stands for diffusion coefficient and S stands for the solubility coefficient.The value of diffusivity could be determined by the product.Consequently,the error in values of D comprises the experimental error in measurements of P and S,and it may be very large under the worst case1,6.A more accurate diffusivity is derived from the lag time of the permeation6.

    In MD simulation,the trajectories of an ensemble of particles are tracked by iteratively solving Newton′s equation of motion. For the sake of calculation of the diffusion coefficient,the particle center-of-mass mean-square displacement(MSD)has to be calculated using the obtained trajectory.When the long-time limit has been reached,the MSD is linear in time,and then the diffusion coefficient of penetrants can be calculated by means of the Einstein equation11,32

    where ridenotes the cartesian position vector of atom i,N is the total number of identical atoms,t is the simulation time and the bracket denotes the average over all possible time origins alongthe trajectory.It deserves notice that the diffusion coefficient calculated from Eq.(1)is designated as the self diffusion coefficient,whereas the experimental measurements yield mutual diffusion coefficients1,7.However,the self diffusion coefficient is equal to the mutual diffusion coefficient in the limit of infinite dilution7,26.The gas concentration is usually very low both in the simulation and measurement for the diffusion of gas molecules. Thus the discrepancy between calculated diffusion coefficient and experimental value should be small.

    In general,the plot of MSD can be divided into three distinct parts.The first part is characterized by the short-time ballistic motion.Then the case of anomalous diffusion occurs,which is first reported by Müller-Plathe2,and the slope of log-log representation of MSD versus time is smaller than unity.Finally when the simulation time is long enough,the case of normal diffusion occurs and the mean square displacement is proportional to the time t.Eq.(1)depends on the assumption that the penetrant follows a random walk in the simulation runs.For a short simulation time, the motion of penetrant at various times may be correlated and this may lead to the anomalous diffusion18.In the case of anomalous diffusion,the Einstein equation is no longer valid and it will lead to an overestimation of diffusion constants.To ensure that the system has reached the normal diffusion regimes,the slope of loglog plot of MSD versus time must approach to unity11,22.

    According to the free volume model,there is a volume unoccupied by the polymeric molecules(namely free volume)in the polymer matrix.Gas molecules could reside in the suitable microcavities of free volume.With the motion of segments of the polymer chain,a microcavity adjacent to the gas molecule may be created during the redistribution of the free volume.From time to time,the molecule obtains sufficient thermal energy to be able to jump into the neighboring cavity.If the microcavity is vacant and capable of holding the molecule simultaneously,a diffusive motion is completed by the successful jump of the molecule to the cavity.

    When polymer system with penetrant is at equilibrium,the jumping model of diffusion stated above may also be related to the stochastic equation proposed by Bueche25,31

    where δ is the average jump displacement or hopping distance and τ is the average residence time between jumps.For sufficient statistics used in the calculation of diffusion coefficient,10 jump occurrences for a single gas molecule may need to be sampled from the trajectory of dynamics simulation.

    3 Simulation details

    The Materials Studio(MS)software of Accelrys Inc.was used to perform the MD simulation.To successfully predict the transport property by MD simulation,the choice of proper force filed type is of great importance.United-atom(UA)force field has been commonly used in the past simulations to reduce the computational time.However,the obtained calculation results often differ from the experimental value by 1-2 orders of magnitude, which shows that the UA is not detailed enough to describe the local barrier to the penetrant motion15.In contrast,COMPASS force field represents all atoms explicitly,and it has been well validated in prediction of transport properties of small molecules in polymers26.Therefore,the COMPASS force field was used in all the simulations in this study.The detailed atom parameters and potential function are included in the validation of COMPASS34.

    Previous studies on the polymer chain length effect have indicated that many free ends always lead to an overestimation of diffusivity11,22.To reduce such effect of chain ends on the simulation results,the cis-1,4-polyisoprene was modeled by a single chain consisting of 100 monomer units.The length of sides of the cubic unit cell was about 2.3 nm.The generated polymer chain was subsequently subjected to geometry optimization by the Forcite module.Then the cubic amorphous cell of the single chain was developed using the Amorphous module in MS.cis-1,4-polyisoprene is a kind of simple flexible chain polymers,and the original density of the amorphous cell was set to be the measured density 0.913 g·cm-3at 298 K.It should be noted that the atoms contained in the simulated system is much smaller than that in a real molecular system.If simulation is carried out on this isolated system containing such a small quantity of atoms,significant surface effect would be evident.Consequently,periodic boundary conditions were imposed on the cubic cell to avoid surface effects while the number of atoms was still tractable11.The construction of the amorphous cell was based on the“self-avoiding”randomwalk method of Theodorou and Suter35and on the Meirovitch scanning method36.During the construction process,the length of the backbone chain was increased stepwisely under periodic boundary conditions.A total of 10 cells have been constructed using this method.

    The gas diffusion under low temperatures is slow,and the hop of gas in the polymer matrix is rare.Reliable prediction of the diffusion coefficient needs more statistics under this case. Therefore,four molecules of gas(oxygen,nitrogen,and methane) were inserted into each cell to improve sampling from the subsequent dynamic trajectories at various temperatures.

    The initial microstructures constructed by the procedure stated above were usually not distributed uniformly in the cubic unit cell. Because of the overlap of atoms,the total potential energy of the initial system was abnormally higher than that of practical system1. Therefore,the geometry optimization of the Forcite module was used to minimize the potential energy of the initial system.After geometry optimization on ten cells,the specific cell with the lowest energy is taken as the representative of the simulated system.Fig.1 shows the cubic cell for the system of polyisoprene and oxygen.

    Next the microstructure was equilibrated to make sure that the system is close to the state of equilibrium before the production runs of the simulation.Annealing was performed by the isothermal-isobaric(NPT)dynamic runs at 1.013×105Pa using Annealing procedure of the Forcite module.During an annealingcycle,the cell was first heated by a step of 20 K from 278 to 378 K,and then the cell was cooled back to 298 K using the same step increments.There are 2 to 3 cycles in the entire annealing process and the duration for the NPT dynamic run at each temperature was 10 ps.The annealed cell was further relaxed by a NPT dynamic run of 250-350 ps at a target temperature(278-378 K)and a pressure of 1.013×105Pa.The fluctuations of potential and kinetic energies with the simulation time were plotted.The small deviation from the average of the plot needs to be verified to ensure the microstructure in equilibrium.

    Fig.1 Acubic cell for the system of cis-1,4-polyisoprene and oxygen

    The summation method for nonbond interactions has great effect on the accuracy and efficiency of the energy calculation11. The commonly used summation method includes Ewald and group based summation method.Ewald summation method may provide better accuracy for the calculation of coulombic terms than other summation methods,but it is more computationally intensive26. Thus group-based and Ewald summation method were used for the van der Waals and electrostatic interactions respectively in the present study.This manner could take advantages of both the accuracy of Ewald and the efficiency of group-based summation method.The cutoffs are used in group-based summation method to increase the speed of calculation of nonbond interactions.It is crucial to note that the cutoff distance must be less than one half of the shortest side length of the cell11,12.The spline function is simultaneously employed to avoid the discontinuities caused by the direct cutoffs.During the simulations,a cutoff distance of 1 nm with a spline function of 0.1 nm was applied to the energy calculation.The accuracy of Ewald was 0.004 kJ·mol-1.The time step of 1 fs was employed throughout the simulations.

    A short simulation time may lead to the overestimation of diffusivity and an overlong simulation time induces a waste of the computational facilities.To obtain accurate predictions of diffusion coefficients at reasonable cost,the length of production run at each temperature should be determined in advance.According to Eq.(3),if D is considered to be 1.5×10-10m2·s-1,a 3-ns simulation will meet 10 jump occurrences on the assumption thatδis 0.5 nm.Based on this fact and the measured diffusion coefficients of gases at 298 and 315 K,the arrangement on the production run time is shown in Table 1.In all simulation runs,both the temperature and pressure was controlled by the Berendsen′s method37, where the decay constant was 0.1 ps.

    Table 1 Settings for the simulation time of production runs at various temperatures

    4 Results and discussion

    4.1Model verification

    The density of polymers greatly affects the diffusion coefficient of penetrant within the polymeric materials16,18.Correspondingly, the predictions of density at various temperatures should be close to the available experimental values.As a validation,the specific volume is determined from NPT dynamic runs with a stepwise cooling procedure.The plot of the obtained specific volume versus temperature is shown in Fig.2.

    The simulation data falling above and below the reported glass transition temperature was fitted by the least-square fitting method. Then volumetric thermal expansion coefficient can be derived from the obtained fitting equation combined with the expression38

    whereαdenotes the thermal expansion coefficient andυis the specific volume at one temperature.Large change in density is found at the glass transition temperature Tgdue to the drastic change in the local movement of polymer chains at this temperature.Thus glass transition temperature is determined as the temperature at the intersection of the two line segments in Fig.239. Simulation results and corresponding experimental data at 298 K are shown in Table 2.

    Fig.2 Specific volume versus temperature for amorphous cis-1,4-polyisoprene

    Table 2 shows that the relevant experimental data are reproduced well by the results calculated from the model used in this study,especially for the case of glass transition temperature.Dueto the finite chain length effect,the estimated density is a little smaller than the experimental value31.It is also noticeable that the experimental values of density and glass transition temperature are subject to some uncertainties.In summary,the simulation result of density is accurate enough to be expected to have a minor effect on the calculation of diffusion coefficient.

    Table 2 Comparison of estimated and experimental properties

    4.2Motion of gas molecules

    One of the simple ways of qualitatively studying the motion of individual gas molecules is to monitor the trace of the molecule. Fig.3(a)and(b)show the typical trace of an oxygen molecule diffusing through amorphous cis-1,4-polyisoprene at 298 and 358 K,respectively.Two types of motion can be identified in the diffusion process described by the picture.On the one hand,the gas molecules stay in the microcavities in the polymer for a long period of time.When they are confined in the microcavities,their motions cover most regions of the microcavity because of their randomly oscillatory motion.The amplitude of oscillations depends on the size of the visited microcavities.On the other hand, the gas molecules occasionally stop to perform a quick hop from one microcavity to another neighboring microcavity.The length of the trajectory in Fig.3(b)is apparently larger than that in Fig.3 (a).This discrepancy between Fig.3(a)and 3(b)implies that the gas molecules move faster at high temperatures,which is also an indication of the faster redistribution of the free volume at high temperatures.

    Fig.3 Typical trajectories of an oxygen molecule in amorphous cis-1,4-polyisoprene(a)at 298 K and(b)at 358 K during a period of 1.5 ns

    According to the procedure described in the second section of this study,the MSD of all gas molecules is calculated over a wide range of temperatures 278-378 K.Fig.4 displays the mean square displacement of oxygen molecules at 298 and 318 K respectively. It can be seen that each MSD is indeed a linear function over a period of time in this plot.The slopes of the straight lines fitted for the log-log plot of MSD versus time at 298 and 318 K are 1.05 and 1.08,respectively,which confirm the case of normal diffusion. Fig.4 is characterized with different starting times of normal diffusion at various temperatures.Further investigation of the MSD at various temperatures in Fig.4 reveals that the transition from abnormal diffusion to Einstein diffusion takes place earlier at high temperatures.

    Based on the definition in Eq.(2),MSD is calculated by averaging the square displacements over all gas molecules and all possible time origins along the time trajectory.However,the total number of possible time origins is much less at long simulation times.This event leads to an increase of statistics error towards the end of the trajectory2,29.Consequently,the resultant nonlinear part adjacent to the end of the run is abandoned during the calculation of diffusion coefficients.A linear regression is performed on the remaining linear portion of MSD to calculate the diffusion coefficients.The calculated diffusion coefficients of gas molecules at 298 K are summarized in Table 3,together with the experimental data.The calculation results are in good agreement with experimental data.To the best of our knowledge,there are few studies on diffusion of gas molecules in amorphous cis-1,4-polyisoprene at various temperatures.Attention is paid to theprevious study of Meunier on diffusion of gas molecules in similar polymer amorphous cis-1,4-polybutadiene31.The agreement between calculation results and experimental data is better in the present study than that in former simulation study of Meunier,due to the differences in summation method and polymer chain length.

    Fig.4 MSD of oxygen molecules in amorphous cis-1,4-polyisoprene at 298 and 318 K

    Table 3 Comparison of the calculated diffusion coefficients with experimental data for oxygen,nitrogen,and methane at 298 K

    4.3Temperature dependence of diffusion coefficients

    Many experimental observations suggest that the diffusion coefficients increase exponentially with increasing temperature on a narrow range of temperatures.The temperature dependence of diffusion coefficient can be expressed by means of Arrhenius equation

    where D0is a pre-exponential factor,EDis the apparent activation energy and R is gas constant.Eq.(5)indicates that diffusion of small molecules in polymer is visualized as a thermal-activated process,which is first proposed by Barrer40.However,according to free volume models of diffusion,the temperature dependence is of the Williams-Landel-Ferry(WLF)form41.Regardless of the existing difference in detailed description of the diffusion process, both models suggest activation energy decreases with increasing temperature.

    Diffusion coefficients of oxygen,nitrogen,and methane molecules in amorphous cis-1,4-polyisoprene are shown in Figs.5-7 as a function of temperature.Calculated activation energies are 36.0 and 30.1 kJ·mol-1for oxygen and nitrogen respectively in the temperature range of 278-378 K.Experimental activation energies are 31.4-33.5 and 31.4-36.4 kJ·mol-1for oxygen and nitrogen respectively in the temperature range of 293-323 K6,14. The calculation results for oxygen and nitrogen compare well with the experimental data in the same temperature range.As for the activation energy of methane,it decreases with the temperature, as shown in Fig.7.The linearity in Arrhenius plots of diffusion coefficients for oxygen and nitrogen is distinctly different from the curvature in the similar plot for methane.This discrepancy may be attributed to the differences in penetrant size and intermolecular interactions.

    Fig.5 Temperature dependence of diffusion coefficients for oxygen in amorphous cis-1,4-polyisoprene

    Fig.6 Temperature dependence of diffusion coefficients for nitrogen in amorphous cis-1,4-polyisoprene

    Fig.7 Temperature dependence of diffusion coefficients for methane in amorphous cis-1,4-polyisoprene

    Some literature has reported that the curvature is also observed for nitrogen diffusion through natural rubber over 293-373 K4,6. The curvature is gradually evident with the increase of the combined sulfur content in the previous study42.However,it should be noticed that the early experimental measurements are taken on the natural rubber vulcanizates,while the effect of vulcanization is not considered in this simulation.Further,the linearity is also reported by previous simulation for oxygen and nitrogen diffusion through polybutadiene and polystyrene,together with the nonlinearity for methane over a wide range of temperatures29-32.Consequently,the simulation results of diffusion for oxygen and nitrogen are still reasonable at high temperatures.From the results of our research and previous simulation study,it is concluded that for methane and other large-size penetrants in most amorphous polymers(except polyisobutylene),the temperature dependence of diffusion coefficients is of the WLF type over a large temperature regime.But for oxygen and nitrogen,theArrhenius-type temperature dependence appears to be valid for the diffusion coefficients over the whole temperature studied.

    Fig.8 exhibits the displacements of methane in amorphous cis-1,4-polyisoprene at 318 and 358 K.The displacement of methane increases with the temperature.In addition,the jumps of gas molecules are more frequent and the jump size is larger at 358 Kthan that at 318 K.In fact,the movement of the polymer chain is slow at low temperatures,thus the formation and closing of those microcavities are infrequent.Moreover,the higher density of polymer at lower temperatures causes a small probability of largesize microcavities.Small probability of successful jump may correspond to the increase of activation energy at low temperature for large-size gas molecules.According to free volume models, gas molecules follow a liquidlike mechanism at high temperatures. When the temperature increases,the total accessible free volume for gas molecules increases and gas molecules can move more freely within amorphous polymers.Temperature greatly affects the motion of methane molecules,and the change of diffusion mechanism comes with the decrease of activation energy for methane molecules.To be more specific,the diffusion mechanism changes from jumping mechanism at low temperatures to the liquidlike mechanism at high temperatures for methane molecules. In contrast,the diffusion of oxygen and nitrogen molecules follows the hopping mechanism over the temperature range investigated.

    Fig.8 Displacements of a methane molecule fromits initial position at 318 and 358 K

    5 Conclusions

    MD simulations were used to study the diffusion of oxygen, nitrogen,and methane in amorphous cis-1,4-polyisoprene.The starting structures for classical MD simulations were generated and equilibrated using the full atomistic potential of COMPASS force filed.The model used in this study accurately reproduced the experimental values of density and glass transition temperature. The diffusion coefficients of gas molecules were calculated by MD simulations over a wide range of temperatures,278-378 K. The calculation results were in good agreement with available experimental data.Simulation results show that the higher the temperature,the earlier the transition from abnormal diffusion to normal diffusion will be.

    As the calculation results at high and low temperatures show, the Arrhenius plot of diffusivity versus inverse temperature is nearly linear over the investigated temperatures for oxygen and nitrogen.But for the case of diffusion for methane,significant curvature to lower activation energy is observed in the Arrhenius plot as the temperature increases,which is consistent with the analysis based on the free volume model and Barrer′s theory.The change in the slope of Arrhenius plot indicates a gradual transition of diffusion mechanism,that is,a crossover from jumping mechanism at low temperatures to the liquidlike mechanism at high temperatures.

    References

    (1) Charati,S.G.;Stern,S.A.Macromolecules 1998,31(16),5529. doi:10.1021/ma980387e

    (2) Müller-Plathe,F.J.Chem.Phys.1991,94(4),3192. doi:10.1063/1.459788

    (3) Kucukpinar,E.;Doruker,P.Polymer 2003,44(12),3607. doi:10.1016/S0032-3861(03)00166-6

    (4) Celina,M.;Gillen,K.T.Macromolecules 2005,38(7),2754. doi:10.1021/ma0487913

    (5) Wise,J.;Gillen,K.T;Clough,R.L.Polymer 1997,38(8), 1929.doi:10.1016/S0032-3861(96)00716-1

    (7) Frish,H.L.;Stern,S.A.CRC Crit.Rev.Solid State Mater.Sci. 1983,11(2),123.doi:10.1080/01611598308244062

    (8) Crank,J.The Mathematics of Diffusion,2nd ed.;Clarendon Press:Oxford,1975;pp 2-8.

    (9) Fujita,H.Fortschr.Hochpolym.-Forsch.1961,3,1. doi:10.1007/BFb0050514

    (10) Stern,S.A.;Frisch,H.L.Annu.Rev.Mater.Sci.1981,11,523. doi:10.1146/annurev.ms.11.080181.002515

    (11) Hofmann,D.;Fritz,L.;Ulbrich,J.;Schepers,C.;Bohning,M. Macromol.Theory Simul.2000,9(6),293.doi:10.1002/1521-3919(20000701)9:6<293::AID-MATS293>3.0.CO;2-1

    (12) Hofmann,D.;Fritz,L.;Ulbrich,J.;Paul,D.Comput.Theor. Polym.Sci.2000,10(5),419.doi:10.1016/S1089-3156(00) 00007-6

    (13) Guevara-Carrion,G.;Nieto-Draghi,C.;Vrabec,J.;Hasse,H.J. Phys.Chem.B 2008,112(51),16664.doi:10.1021/jp805584d

    (14) Furuta,I.;Kimura,S.I.;Iwama,M.Physical Contants of Rubbery Polymers.In Polymer Handbook,4th ed.;Brandrup,J., Immergut,E.H.,Crulke,E.A.Eds.;Wiley:New York,1998;pp V5-V6.

    (15) Tamai,Y.;Tanaka,H.;Nakanishi,K.Macromolecules 1994,27 (16),4498.doi:10.1021/ma00094a011

    (16) Cuthbert,T.R.;Wagner,N.J.;Paulaitis,M.E.;Murgia,G.; D′Aguanno,B.Macromolecules 1999,32(15),5017. doi:10.1021/ma980997e

    (17) Fried,J.R.;Goyal,D.K.J.Polym.Sci.:Part B:Polym.Phys. 1998,36(3),519.doi:10.1002/(SICI)1099-0488(199802)36:3< 519::AID-POLB13>3.0.CO;2-J

    (18) Müller-Plathe,F.J.Chem.Phys.1992,96(4),3200. doi:10.1063/1.461963

    (19) Feng,H.J.;Gao,W.;Sun,Z.F.;Lei,B.X.;Li,G.N.;Chen,L. P.J.Phys.Chem.B 2013,117(41),12525.doi:10.1021/ jp401824d

    (20) Tao,C.G.;Feng,H.J.;Zhou,J.;Lü,L.H.;Lu,X.H.Acta Phys.-Chim.Sin.2009,25(7),1373.[陶長(zhǎng)貴,馮海軍,周健,呂玲紅,陸小華.物理化學(xué)學(xué)報(bào),2009,25(7),1373.] doi:10.3866/PKU.WHXB20090719

    (21) Lü,Y.Q.;Zheng,S.L.;Wang,S.N.;Du,H.;Zhang,Y.Acta Phys.-Chim.Sin.2015,31(6),1045.[呂頁清,鄭詩禮,王少娜,杜浩,張懿.物理化學(xué)學(xué)報(bào),2015,31(6),1045.] doi:10.3866/PKU.WHXB201504071

    (22) Liu,Q.L.;Huang,Y.J.Phys.Chem.B 2006,110(35),17375. doi:10.1021/jp063174x

    (23) Fried,J.R.;Ren,P.Comput.Theor.Polym.Sci.2000,10(5), 447.doi:10.1016/S1089-3156(00)00005-2

    (24) Lim,S.Y.;Tsotsis,T.T.;Sahimi,M.J.Chem.Phys.2003,119, 496.doi:10.1063/1.1576755

    (26) Fried,J.R.;Sadat-Akhavi,M.;Mark,J.E.J.Membr.Sci.1998, 149(1),115.doi:10.1016/S0376-7388(98)00151-3

    (27) Tocci,E.;Bellacchio,E.;Russo,N.;Diroli,E.J.Membr.Sci. 2002,206(1-2),389.doi:10.1016/S0376-7388(01)00784-0

    (28)Wang,X.Y.;Willmore,F.T.;Raharjo,R.D.;Wang,X.C.; Freeman,B.D.;Hill,A.J.;Sanchez,I.C.J.Phys.Chem.B 2006,110(33),16685.doi:10.1021/jp0622334

    (29) Gee,R.H.;Boyd,R.H.Polymer 1995,36(7),1435. doi:10.1016/0032-3861(95)95922-N

    (30) Pant,P.V.K.;Boyd,R.H.Macromolecules 1993,26(4),679. doi:10.1021/ma00056a019

    (32) Mozaffari,F.;Eslami,H.;Moghadasi,J.Polymer 2010,51(1), 300.doi:10.1016/j.polymer.2009.10.072

    (33) VanAmerongen,G.J.J.Polym.Sci.1950,5(3),307. doi:10.1002/pol.1950.120050304

    (35) Theodorou,D.N.;Suter,U.W.Macromolecules 1985,18(7), 1467.doi:10.1021/ma00149a018

    (36) Meirovitch,H.J.J.Chem.Phys.1983,79(1),502.doi:10.1063/ 1.445549

    (37) Berendsen,H.J.C.;Postama,J.P.M.;Van Gunsteren,W.F.; DiNola,A.;Haak,J.R.J.Chem.Phys.1984,81(8),3684. doi:10.1063/1.448118

    (38) Fried,J.R.;Ren,P.Comput.Theor.Polym.Sci.1999,9(2),111. doi:10.1016/S1089-3156(99)00002-1

    (39) Yu,K.Q.;Li,Z.S.;Sun,J.Z.Macromol.Theory Simul.2001, 10(6),624.doi:10.1002/1521-3919(20010701)10:6<624::AIDMATS624>3.0.CO;2-K

    (41) Williams,M.L.;Landel,R.F.;Ferry,J.D.J.Am.Chem.Soc. 1955,77(14),3701.doi:10.1021/ja01619a008

    (42) Barrer,R.M.;Skirrow,G.J.Polym.Sci.1948,3(4),549. doi:10.1002/pol.1948.120030410

    Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene

    LU Xiang1,*CHEN Xun1WANG Ya-Shun1TAN Yuan-Yuan1GAOMU Zi-Yuan2
    (1Laboratory of Science and Technology on Integrated Logistics Support,College of Mechatronic Engineering and Automation,National University of Defense Technology,Changsha 410073,P.R.China;2Department of Chemical and Materials Engineering,University of Alberta,Edmonton T6G0X6,Canada)

    Molecular dynamics(MD)simulations were performed to study the transport properties of gases (oxygen,nitrogen,and methane)in amorphous cis-1,4-polyisoprene over a wide range of temperatures.The COMPASS force field was used as the molecular mechanics force field in the simulations.Experimental values of density and glass transition temperature were successfully reproduced using the atomistic potentials determined by COMPASS.Diffusion coefficients were determined from long NVT simulation times(up to 3 or 1.5 ns)in the temperature range of 278-378 K.The diffusion coefficients calculated fromthe Einstein relationship agree well with available experimental data.Further studies on the temperature dependence of diffusion coefficients indicate that curvature is observed in the Arrhenius plot of diffusivity versus inverse temperature for methane,but the plots are linear over the investigated temperature range for oxygen and nitrogen.These simulation results are useful to understand the temperature dependence of diffusion coefficients,and provide a basis for the determination of diffusion coefficients at high temperatures and the modeling of thermo-oxidative degradation of polyisoprene.

    Gas;Diffusion coefficient;Polyisoprene;Molecular dynamics;Molecular simulation

    April 28,2016;Revised:June 29,2016;Published online:June 29,2016.

    .Email:luxiang9014@126.com;Tel:+86-13549681943.

    O641

    10.3866/PKU.WHXB201606292

    The project was supported by the National Natural Science Foundation of China(51375487,51205402).國家自然科學(xué)基金(51375487,51205402)資助項(xiàng)目?Editorial office ofActa Physico-Chimica Sinica

    (6) VanAmerongen,G.J.J.Appl.Phys.1946,17,972. 10.1063/1.1707667

    (25) Hu,N.;Fried,J.R.Polymer 2005,46(12),4330.10.1016/j. polymer.2005.03.017

    (31) Meunier,M.J.Chem.Phys.2005,123,134906.10.1063/ 1.2049274

    (34) Sun,H.J.Phys.Chem.B 1998,102(38),7338.10.1021/ jp980939v

    (40) Barrer,R.M.J.Phys.Chem.1957,61(2),178.10.1021/ j150548a012

    猜你喜歡
    力場(chǎng)異戊二烯阿爾伯
    基于物理模型的BaZrO3鈣鈦礦機(jī)器學(xué)習(xí)力場(chǎng)
    力場(chǎng)防護(hù)罩:并非只存在于科幻故事中
    調(diào)性的結(jié)構(gòu)力場(chǎng)、意義表征與聽覺感性先驗(yàn)問題——以貝多芬《合唱幻想曲》為例
    脫氧核糖核酸柔性的分子動(dòng)力學(xué)模擬:Amber bsc1和bsc0力場(chǎng)的對(duì)比研究?
    良心
    Biogenic isoprene emissions over China: sensitivity to the CO2inhibition effect
    蒲公英種子的大夢(mèng)想
    一種室溫硫化聚異戊二烯橡膠的制備方法
    良 心
    中外文摘(2015年22期)2015-11-22 23:08:52
    一種制備異戊二烯聚合物的方法
    石油化工(2015年9期)2015-08-15 00:43:05
    999久久久国产精品视频| 日韩av在线免费看完整版不卡| 别揉我奶头~嗯~啊~动态视频 | 国产av码专区亚洲av| 中文欧美无线码| 777米奇影视久久| 啦啦啦在线免费观看视频4| 亚洲精品成人av观看孕妇| tube8黄色片| av有码第一页| 久久这里只有精品19| 久久97久久精品| 国产精品免费视频内射| 免费看不卡的av| 尾随美女入室| 欧美黄色片欧美黄色片| 1024香蕉在线观看| 在线观看一区二区三区激情| 伊人久久国产一区二区| 亚洲国产毛片av蜜桃av| 欧美日韩亚洲高清精品| 老熟女久久久| 亚洲精品久久成人aⅴ小说| 久久久欧美国产精品| 男女之事视频高清在线观看 | 国产精品香港三级国产av潘金莲 | 精品酒店卫生间| 99国产精品免费福利视频| 日本黄色日本黄色录像| 国产av码专区亚洲av| 人人妻人人澡人人看| 亚洲 欧美一区二区三区| 国产精品国产三级国产专区5o| 精品一品国产午夜福利视频| 51午夜福利影视在线观看| 女人精品久久久久毛片| 在现免费观看毛片| 欧美97在线视频| 欧美xxⅹ黑人| 欧美另类一区| 免费看av在线观看网站| 国产一区二区激情短视频 | 美女大奶头黄色视频| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲 | 国产视频首页在线观看| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 免费日韩欧美在线观看| 久久久欧美国产精品| 这个男人来自地球电影免费观看 | 19禁男女啪啪无遮挡网站| 国产一区二区三区av在线| 国产精品一区二区在线不卡| 亚洲五月色婷婷综合| kizo精华| 欧美日韩视频精品一区| 色播在线永久视频| 午夜精品国产一区二区电影| 黄色一级大片看看| 女人精品久久久久毛片| 777久久人妻少妇嫩草av网站| 日韩电影二区| 只有这里有精品99| 久久青草综合色| 黄色 视频免费看| 不卡视频在线观看欧美| 精品一区二区免费观看| a级毛片黄视频| 久久精品熟女亚洲av麻豆精品| 亚洲欧美精品自产自拍| 大片电影免费在线观看免费| 777久久人妻少妇嫩草av网站| 赤兔流量卡办理| 麻豆av在线久日| 又粗又硬又长又爽又黄的视频| 午夜激情av网站| 制服人妻中文乱码| 一区二区三区四区激情视频| 精品卡一卡二卡四卡免费| 在线观看免费高清a一片| 日日爽夜夜爽网站| 久久韩国三级中文字幕| 韩国av在线不卡| 日本欧美视频一区| 亚洲精品自拍成人| 久久久久久久精品精品| 国产欧美日韩一区二区三区在线| 国产成人精品在线电影| 狠狠精品人妻久久久久久综合| www.自偷自拍.com| 国产成人免费观看mmmm| 亚洲视频免费观看视频| 国产片特级美女逼逼视频| 亚洲国产精品一区三区| bbb黄色大片| 亚洲久久久国产精品| 七月丁香在线播放| 十八禁网站网址无遮挡| 亚洲美女搞黄在线观看| 国产黄色视频一区二区在线观看| 免费av中文字幕在线| 老鸭窝网址在线观看| 国产精品av久久久久免费| 国产男女超爽视频在线观看| videos熟女内射| 9热在线视频观看99| 亚洲精品av麻豆狂野| 精品午夜福利在线看| av在线观看视频网站免费| 国产熟女欧美一区二区| 国产午夜精品一二区理论片| 男人爽女人下面视频在线观看| av一本久久久久| 看非洲黑人一级黄片| 久久天躁狠狠躁夜夜2o2o | 人人妻人人添人人爽欧美一区卜| 精品国产乱码久久久久久小说| 亚洲第一区二区三区不卡| 亚洲成人国产一区在线观看 | xxxhd国产人妻xxx| 女人精品久久久久毛片| 色精品久久人妻99蜜桃| 国产欧美亚洲国产| 考比视频在线观看| 亚洲欧美日韩另类电影网站| av不卡在线播放| 91精品伊人久久大香线蕉| 我的亚洲天堂| 亚洲精品乱久久久久久| 欧美日韩福利视频一区二区| 欧美日韩一区二区视频在线观看视频在线| 亚洲精华国产精华液的使用体验| 少妇精品久久久久久久| 飞空精品影院首页| 激情视频va一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 精品国产超薄肉色丝袜足j| 一边摸一边抽搐一进一出视频| 99精品久久久久人妻精品| 男女之事视频高清在线观看 | 午夜av观看不卡| av在线观看视频网站免费| 又大又爽又粗| 国产熟女欧美一区二区| av.在线天堂| 国产一区二区激情短视频 | 久久久久人妻精品一区果冻| 久久久久视频综合| 少妇人妻久久综合中文| 操出白浆在线播放| 午夜老司机福利片| 欧美97在线视频| a 毛片基地| 久久97久久精品| 国产精品久久久久久久久免| 亚洲视频免费观看视频| 国产精品一二三区在线看| 老司机影院成人| 国产精品久久久久久精品电影小说| 欧美成人午夜精品| 欧美成人精品欧美一级黄| 国产精品久久久久久久久免| 熟妇人妻不卡中文字幕| 女的被弄到高潮叫床怎么办| 极品少妇高潮喷水抽搐| 极品少妇高潮喷水抽搐| 国产精品香港三级国产av潘金莲 | 久久久久久久国产电影| 涩涩av久久男人的天堂| 国产免费又黄又爽又色| 国产午夜精品一二区理论片| 宅男免费午夜| 久久久国产精品麻豆| 免费女性裸体啪啪无遮挡网站| 满18在线观看网站| 制服丝袜香蕉在线| 亚洲精品视频女| 国产成人精品久久二区二区91 | 纵有疾风起免费观看全集完整版| 1024视频免费在线观看| 国产一区二区激情短视频 | av国产精品久久久久影院| 99久国产av精品国产电影| 国产成人欧美| 日韩一区二区视频免费看| 亚洲在久久综合| 纵有疾风起免费观看全集完整版| 亚洲欧美成人综合另类久久久| 国产视频首页在线观看| 热99国产精品久久久久久7| 久久久久久人妻| 成年动漫av网址| 最近中文字幕2019免费版| 如日韩欧美国产精品一区二区三区| 2018国产大陆天天弄谢| 卡戴珊不雅视频在线播放| 亚洲熟女毛片儿| 亚洲第一av免费看| 亚洲av电影在线进入| 久久性视频一级片| 爱豆传媒免费全集在线观看| 亚洲,一卡二卡三卡| 亚洲欧美中文字幕日韩二区| www.自偷自拍.com| 99国产精品免费福利视频| 亚洲精品自拍成人| 777米奇影视久久| 王馨瑶露胸无遮挡在线观看| 韩国高清视频一区二区三区| 日韩视频在线欧美| 午夜福利在线免费观看网站| 国产精品成人在线| 欧美中文综合在线视频| 国语对白做爰xxxⅹ性视频网站| 国产一级毛片在线| 久久狼人影院| 欧美激情高清一区二区三区 | 99久国产av精品国产电影| av线在线观看网站| a级片在线免费高清观看视频| 欧美xxⅹ黑人| 最新在线观看一区二区三区 | 桃花免费在线播放| 久久 成人 亚洲| 久久久精品区二区三区| 午夜福利一区二区在线看| 美女脱内裤让男人舔精品视频| 欧美日韩一级在线毛片| 欧美日韩亚洲国产一区二区在线观看 | 黄片播放在线免费| 一区二区三区乱码不卡18| 国产乱来视频区| 国产精品国产av在线观看| 这个男人来自地球电影免费观看 | av在线老鸭窝| 久久国产精品大桥未久av| 人人妻人人澡人人看| 伦理电影免费视频| 老司机在亚洲福利影院| 免费黄频网站在线观看国产| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图 男人天堂 中文字幕| 欧美少妇被猛烈插入视频| 老司机影院成人| 精品亚洲成国产av| 久久鲁丝午夜福利片| 免费人妻精品一区二区三区视频| 亚洲欧洲精品一区二区精品久久久 | 人人妻人人添人人爽欧美一区卜| 一区二区三区激情视频| 熟女av电影| 久久久久久久久久久久大奶| 亚洲国产欧美在线一区| 无遮挡黄片免费观看| 色网站视频免费| 最近最新中文字幕免费大全7| 欧美日韩视频高清一区二区三区二| 一区二区三区激情视频| 蜜桃在线观看..| 久久99精品国语久久久| 久久影院123| 侵犯人妻中文字幕一二三四区| 国产精品久久久人人做人人爽| 午夜福利网站1000一区二区三区| 中文字幕色久视频| 日韩欧美精品免费久久| 日日啪夜夜爽| 日韩熟女老妇一区二区性免费视频| 69精品国产乱码久久久| 久久综合国产亚洲精品| 激情视频va一区二区三区| 国产又色又爽无遮挡免| 国产福利在线免费观看视频| xxx大片免费视频| 中文乱码字字幕精品一区二区三区| 精品亚洲成a人片在线观看| 精品国产一区二区三区久久久樱花| 看非洲黑人一级黄片| 制服人妻中文乱码| 国产精品国产三级国产专区5o| 1024香蕉在线观看| 一区二区三区精品91| 人人澡人人妻人| 亚洲精品成人av观看孕妇| h视频一区二区三区| 久久人妻熟女aⅴ| 777米奇影视久久| 国产老妇伦熟女老妇高清| 国产野战对白在线观看| 亚洲国产精品一区二区三区在线| av又黄又爽大尺度在线免费看| 一边摸一边抽搐一进一出视频| 免费看不卡的av| 波野结衣二区三区在线| bbb黄色大片| 人妻人人澡人人爽人人| 新久久久久国产一级毛片| 你懂的网址亚洲精品在线观看| 一级毛片 在线播放| 超碰成人久久| 国产日韩欧美在线精品| 亚洲国产精品一区二区三区在线| 大片电影免费在线观看免费| 水蜜桃什么品种好| 亚洲欧美成人精品一区二区| 久久性视频一级片| 久久 成人 亚洲| 波多野结衣av一区二区av| 国产有黄有色有爽视频| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 少妇被粗大的猛进出69影院| 久久99精品国语久久久| 天美传媒精品一区二区| 欧美日韩亚洲高清精品| 国产成人一区二区在线| 日韩av不卡免费在线播放| 欧美国产精品一级二级三级| 国产亚洲av高清不卡| 国产淫语在线视频| 欧美日韩成人在线一区二区| 午夜免费鲁丝| 乱人伦中国视频| 老司机影院毛片| 啦啦啦在线观看免费高清www| 777久久人妻少妇嫩草av网站| 欧美黄色片欧美黄色片| 婷婷色综合大香蕉| 少妇猛男粗大的猛烈进出视频| 人人妻,人人澡人人爽秒播 | 国产成人系列免费观看| 国产福利在线免费观看视频| 亚洲av电影在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 女性生殖器流出的白浆| 亚洲成国产人片在线观看| 亚洲欧美一区二区三区国产| 中文字幕人妻丝袜制服| 七月丁香在线播放| 黄色视频在线播放观看不卡| 美女中出高潮动态图| 亚洲av中文av极速乱| 最近中文字幕高清免费大全6| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 成年女人毛片免费观看观看9 | 精品免费久久久久久久清纯 | 国产av码专区亚洲av| 操美女的视频在线观看| 欧美国产精品va在线观看不卡| 午夜免费男女啪啪视频观看| 国产 一区精品| 无限看片的www在线观看| 秋霞伦理黄片| 成人手机av| 99久久综合免费| 青春草视频在线免费观看| 免费高清在线观看视频在线观看| 亚洲 欧美一区二区三区| 午夜福利视频在线观看免费| 国产成人精品久久久久久| 在线观看国产h片| 熟妇人妻不卡中文字幕| 国产福利在线免费观看视频| 亚洲情色 制服丝袜| 日日啪夜夜爽| 亚洲欧美一区二区三区黑人| 国产视频首页在线观看| 亚洲国产成人一精品久久久| 亚洲成人av在线免费| 黑人猛操日本美女一级片| 亚洲国产欧美日韩在线播放| 国产精品一区二区在线观看99| 一级片'在线观看视频| 一区二区三区激情视频| 午夜福利免费观看在线| 国产激情久久老熟女| 亚洲精品国产区一区二| 黑丝袜美女国产一区| 亚洲国产欧美在线一区| 久久人人爽人人片av| 丝袜喷水一区| www.av在线官网国产| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 亚洲精品日本国产第一区| 亚洲精品美女久久久久99蜜臀 | 极品人妻少妇av视频| 最近2019中文字幕mv第一页| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 日本猛色少妇xxxxx猛交久久| 嫩草影视91久久| 肉色欧美久久久久久久蜜桃| 青青草视频在线视频观看| 久久久久久久国产电影| 亚洲视频免费观看视频| 69精品国产乱码久久久| 精品一区在线观看国产| 青春草国产在线视频| 天天添夜夜摸| 男女国产视频网站| 黄色 视频免费看| 精品国产露脸久久av麻豆| 成人18禁高潮啪啪吃奶动态图| 韩国精品一区二区三区| 一级片免费观看大全| 亚洲国产欧美网| 久久精品aⅴ一区二区三区四区| 国产欧美日韩综合在线一区二区| 一边摸一边抽搐一进一出视频| 日韩,欧美,国产一区二区三区| 七月丁香在线播放| 黄网站色视频无遮挡免费观看| 成人亚洲欧美一区二区av| 久久午夜综合久久蜜桃| 精品亚洲乱码少妇综合久久| 久久久亚洲精品成人影院| 嫩草影院入口| 欧美老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 激情视频va一区二区三区| 久久国产精品大桥未久av| 制服人妻中文乱码| 国产野战对白在线观看| 欧美亚洲 丝袜 人妻 在线| 一区二区三区四区激情视频| 日本欧美视频一区| 在线观看免费日韩欧美大片| 女人爽到高潮嗷嗷叫在线视频| 国产不卡av网站在线观看| 性少妇av在线| 少妇 在线观看| 国产有黄有色有爽视频| 天堂8中文在线网| 亚洲第一av免费看| 免费在线观看黄色视频的| 一级毛片 在线播放| 久久韩国三级中文字幕| kizo精华| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区三区在线| 亚洲精品视频女| 国产精品熟女久久久久浪| 国产一区二区激情短视频 | 成年人免费黄色播放视频| 国产精品三级大全| 免费黄频网站在线观看国产| 国产欧美日韩综合在线一区二区| 水蜜桃什么品种好| 中文字幕另类日韩欧美亚洲嫩草| 久久97久久精品| 亚洲久久久国产精品| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 日本一区二区免费在线视频| 在线观看www视频免费| 男女之事视频高清在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 免费看不卡的av| 日韩中文字幕视频在线看片| 日韩制服丝袜自拍偷拍| 免费人妻精品一区二区三区视频| 久久久久精品性色| 在线天堂最新版资源| 日日摸夜夜添夜夜爱| 欧美人与善性xxx| 国产视频首页在线观看| avwww免费| 国产成人91sexporn| 三上悠亚av全集在线观看| 亚洲熟女精品中文字幕| 亚洲五月色婷婷综合| 国产精品久久久久久人妻精品电影 | 成人三级做爰电影| 亚洲成人免费av在线播放| 精品国产一区二区久久| 美女视频免费永久观看网站| 色精品久久人妻99蜜桃| 女性被躁到高潮视频| 午夜福利在线免费观看网站| 看免费av毛片| 亚洲国产精品999| 久久ye,这里只有精品| 赤兔流量卡办理| 丰满乱子伦码专区| h视频一区二区三区| av网站在线播放免费| 日本91视频免费播放| 日韩精品有码人妻一区| 亚洲精品国产区一区二| 国产极品天堂在线| 欧美精品亚洲一区二区| 中文天堂在线官网| 成年人午夜在线观看视频| 99精国产麻豆久久婷婷| 精品国产国语对白av| 久久女婷五月综合色啪小说| 亚洲精品久久午夜乱码| 尾随美女入室| 国产亚洲午夜精品一区二区久久| 国产精品久久久av美女十八| 免费在线观看黄色视频的| 亚洲精品国产区一区二| 亚洲色图 男人天堂 中文字幕| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 婷婷色综合www| 大陆偷拍与自拍| 91精品国产国语对白视频| 中文字幕人妻丝袜一区二区 | 天天影视国产精品| 新久久久久国产一级毛片| 亚洲欧洲国产日韩| 一级黄片播放器| 母亲3免费完整高清在线观看| 国产精品嫩草影院av在线观看| 狠狠婷婷综合久久久久久88av| netflix在线观看网站| 亚洲av电影在线进入| 午夜日韩欧美国产| 亚洲av日韩精品久久久久久密 | 日本午夜av视频| 青春草国产在线视频| 18在线观看网站| 水蜜桃什么品种好| 亚洲av日韩在线播放| 日韩免费高清中文字幕av| 国产av码专区亚洲av| 美国免费a级毛片| 99精国产麻豆久久婷婷| 咕卡用的链子| 黄色一级大片看看| 美女扒开内裤让男人捅视频| 99久久人妻综合| 又大又黄又爽视频免费| 国产精品久久久久久精品电影小说| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 美女高潮到喷水免费观看| 国产1区2区3区精品| 欧美日本中文国产一区发布| 久久久久久久精品精品| 亚洲欧美成人精品一区二区| 丰满迷人的少妇在线观看| 欧美激情 高清一区二区三区| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 欧美中文综合在线视频| 在线观看免费视频网站a站| 高清av免费在线| 日韩一区二区视频免费看| 大片电影免费在线观看免费| 日韩电影二区| www.精华液| 日韩 欧美 亚洲 中文字幕| 成人三级做爰电影| 午夜福利一区二区在线看| av一本久久久久| 欧美老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 亚洲,欧美,日韩| 久久99热这里只频精品6学生| 国产伦理片在线播放av一区| 亚洲情色 制服丝袜| 亚洲国产日韩一区二区| 一二三四中文在线观看免费高清| 19禁男女啪啪无遮挡网站| 毛片一级片免费看久久久久| 人人妻人人澡人人爽人人夜夜| av一本久久久久| 免费在线观看完整版高清| 天美传媒精品一区二区| 国产一区二区激情短视频 | 国产成人精品无人区| 黄色视频在线播放观看不卡| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 汤姆久久久久久久影院中文字幕| 另类精品久久| 久久精品久久久久久噜噜老黄| 嫩草影视91久久| 色吧在线观看| 国产xxxxx性猛交| 欧美中文综合在线视频| 久久天堂一区二区三区四区| 在线观看国产h片| 国产在线视频一区二区| 男男h啪啪无遮挡| 一级毛片黄色毛片免费观看视频| 女性被躁到高潮视频| 婷婷色麻豆天堂久久| 亚洲成人一二三区av| bbb黄色大片| 国产野战对白在线观看| av网站在线播放免费| 另类亚洲欧美激情| 黄色怎么调成土黄色| 久久国产精品大桥未久av| 欧美国产精品va在线观看不卡| 电影成人av| 免费看av在线观看网站| 国产欧美日韩综合在线一区二区| videos熟女内射| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 日本av手机在线免费观看| 国产高清不卡午夜福利|