• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非手性的酞菁銅分子在Bi(111)表面上的手性特征

    2016-11-22 09:49:17陶敏龍涂玉兵謝正波王亞利郝少杰肖華芳王俊忠
    物理化學學報 2016年10期
    關鍵詞:酞菁手性大學物理

    葉 娟 孫 凱 陶敏龍 涂玉兵 謝正波 王亞利郝少杰 肖華芳 王俊忠

    (西南大學物理科學與技術學院,重慶400715)

    非手性的酞菁銅分子在Bi(111)表面上的手性特征

    葉娟孫凱陶敏龍涂玉兵謝正波王亞利郝少杰肖華芳王俊忠*

    (西南大學物理科學與技術學院,重慶400715)

    利用低溫掃描隧道顯微鏡(LT-STM)研究了酞菁銅(CuPc)分子在Bi(111)表面上的吸附和手性自組裝結構。由于較弱的分子-襯底相互作用,我們發(fā)現(xiàn)在液氮溫度(78 K)下吸附在Bi(111)表面上的單個CuPc分子圍繞著分子中心發(fā)生旋轉,直到遇到其他分子形成團簇為止。隨著分子覆蓋度的增加,CuPc分子形成了自組裝分子單層。高分辨STM圖表明,非手性的CuPc分子出現(xiàn)了手性特征:兩個相對的酞菁基團發(fā)生了彎曲。當覆蓋度超過一個分子層,酞菁銅分子的吸附取向由“平躺”轉變到“站立”姿態(tài)。我們認為,酞菁銅分子的手性起源是由兩種因素共同導致的結果:一種是分子-襯底之間的非對稱電荷轉移,另一種是相鄰分子間的非對稱性的范德華力作用。

    酞菁銅;掃描隧道顯微鏡;半金屬Bi(111);手性特征;自組裝

    Significant progress has been achieved in the adsorption and self-assembly of various TMPcs on noble metal surfaces17-21. Because of high spatial resolution capability,scanning tunneling microscopy(STM)has proven a powerful technique for investigating the geometric conformations of TMPc molecules deposited on the substrates in the past few decades owning to the submolecular resolution22-25.This technique has greatly enhanced our understanding of the assemblies of phthalocyanines and their derivatives on various substrates26.The formation of densely packed monolayer on various metal substrates was investigated by many STM studies.However,so far,there have been few studies on the structural evolution of TMPcs on semi-metallic surface from isolated TMPc molecules to full monolayer,and finally to multilayer regime.The flat adsorption orientation of TMPc molecules facilitates the bonding of central magnetic ions with metallic substrate,making the systematic investigation of the molecule-substrate interaction possible27,28.

    In this paper,STM study of CuPc on Bi(111)is presented for structural evolution and molecular orientational transition.Chirality of the self-assembly of the achiral CuPc molecules is attributed to the combined effect of asymmetric charge transfer between CuPc molecules and Bi(111)substrate and the intermolecular van der Waals(vdW)interactions.Furthermore,the chiral feature of filled-state STM images of CuPc molecules is more evident remarkable than the empty-state images,indicating that the chirality origin effect is an electronic effect,not the geometric modification of CuPc molecules.

    2 Experimental

    2.1Preparation of the Bi(111)substrate

    Our experiments were conducted in a Japanese Unisoku ultrahigh vacuum low temperature STM system with a base pressure around 1.3×10-8Pa.The smooth Bi(111)substrate was obtained by depositing nominal 20 molecular layer(ML)of Bi atom onto the Si(111)-7×7 reconstructed surface at room temperature with subsequent annealing at 400 K for nearly 2.5 h29.

    2.2Preparation of the CuPc assemblies

    After overnight degassing,CuPc molecules(Sigma-Aldrich, 99%purity)were thermally sublimated from a Ta boat heated to about 480 K and then were deposited onto Bi(111)film at a rate of 0.45 monolayer per minute.In this paper one monolayer is defined as the amount of depositing CuPc molecules to cover the whole substrate surface.During the deposition,the Bi(111)substrate was kept at room temperature(RT).The constant-current mode and tungsten tips after e-beam heating in the molecular beam epitaxy(MBE)chamber were used for STM measurements. The calibrations of tip state were based on both Si(111)-7×7 reconstructed surface and the atomic resolution image of Bi(111) surface.The bias voltage between the sample and the tip is controlled between-3 and 3 V.All the STM images were obtained at liquid nitrogen temperature(78 K).

    Fig.1 STM images of the isolated CuPc molecules on Bi(111)surface

    3 Results and discussion

    3.1Rotation of the isolated CuPc molecules

    A small amount(0.03 ML)of CuPc molecules were deposited onto the Bi(111)surface at room-temperature and individual monomers were observed by LT-STM shown in Fig.1(b).Fig.1(c) is a typical topographic image of the isolated CuPc molecule obtained at low temperature(78 K).The individual CuPc molecules adsorbed on Bi(111)surface like a rotating-disc,which differs from the inherent cross-like molecular structure in Fig.1(a), indicating that the isolated CuPc molecules keep rotating,thus thefour lobes of the molecule cannot be distinguished.The central metal ion of the CuPc molecule appears as a hole in the STM image,which can be attributed to the occupied d-orbitals away from the Fermi energy of the copper ion.This phenomenon differs from the previous reports about the MnPc29and CoPc30on Bi(111), which were rotating around a bright protrusion located at the center.The strong d-orbital occupation-dependent STM images of TMPc on the apparent height of the central metal ion are demonstrated experimentally by Hipps et al.31.

    Furthermore,high-resolution STM image reveals that the circular symmetry becomes an oval shape,which means an asymmetrical rotation for the four lobes of CuPc molecule.The observed rotation of the individual CuPc molecules demonstrates that a quite weak molecule-substrate interaction,thus the molecular rotation stems from the energy provided by inelastic tunnel effects.At high bias voltage,we can observe the rotation of CuPc molecules on Bi(111)surface at liquid nitrogen temperature(78 K);while at the low bias voltage,we noticed that the speed of molecular rotation decreases significantly or even becomes zero at very low bias voltage,as demonstrated in CoPc molecules on Bi(111)surface,whereas on noble metal substrates such as Pb (111)17and Au(111)18,the CuPc rotation is absent due to the considerable molecule-substrate mutual coupling,meanwhile the inelastic effects become less important(almost no tunneling in molecular states).

    Fig.2 Self-assembled thin film of copper-phthalocyanine

    3.2Assemblies of CuPc molecules

    With the CuPc coverage increasing,individual CuPc molecules are preferentially assembled together forming the two-dimensional (2-D)domains with parallel arrangement.Fig.2(a)displays a STM image of self-assembled CuPc thin film in the coverage of 0.45 ML,each CuPc molecule exhibits a cross shape with four perpendicular lobes,consistent with the four-fold symmetry of CuPc molecule shown in Fig.1(a).This indicates that the CuPc molecules adopt a flat-lying adsorption orientation without any rotation on Bi(111)due to the increasing interaction between the neighboring molecules,causing that the degree of freedom of movements is greatly reduced,the original free rotation is completely limited32.Furthermore,the two opposing lobes of each CuPc molecule are aligned at one of the three principal axes of the Bi (111)surface,the atomic resolution image of the underlying Bi (111)surface is shown in the insert.The self-assembled CuPc thin films on Bi(111)surface have identical in-plane orientations, which can be attributed to the mutual coupling of the symmetry of Bi(111)and CuPc33,however the MnPc and CoPc on Bi(111)are aggregated into 2-D domains consisting of two different molecular orientations,denoted as‘A’and‘B’.The white quadrilateral in Fig.2(a)represents a unit cell(denoted as“a1”and“b1”)and the lattice constant are a1=(1.42±0.02)nm,b1=(1.35±0.02)nm, corresponding to a packing density of 0.52 nm-2,which is obviously smaller than the lattice constant(a1=(1.78±0.02)nm,b1= (1.34±0.02)nm)of CoPc on Bi(111).Fig.2(b)is the structural model of the unit cell,the angle α between a1and b1is 90°±2° and the angle β is 30°.The dashed and solid arrows represent the substrate and molecular symmetry at the bottom left corner,respectively.Based on the lattice parameters of Bi(111)substrate c1=c2=0.454 nm,we can deduce the relationship between the CuPc layer and the Bi(111)substrate expressed as the following matrixe:

    Non-integers in the transformation matrix indicate that the same oriented CuPc domain is not commensurate with the Bi(111) substrate.It demonstrates that the intermolecular interaction is strong enough to dominate the quite weak interfacial interaction between the molecules and the substrate due to the semimetal nature of the Bi(111)surface.

    3.3Chiral feature of the achiral CuPc molecules in self-assembled monolayer

    With the CuPc coverage approached to 0.86 ML,the highresolution STM image of self-assembled CuPc thin film in Fig.3 (a)reveals different feature,which is acquired at a negative bias voltage of-1.3 V.It can be observed that all the CuPc molecules are revealing a strong chiral feature,for MnPc and CoPc on Bi (111)surface appear achiral at both negative and positive bias voltage.The observed molecular chirality on Bi(111)surface originates from the asymmetric charge transfer between the CuPc molecules and Bi(111),as demonstrated in CuPc molecules onAg (100)surface.The asymmetry is due to the misalignment between the Bi(111)substrate and CuPc molecular symmetry axes.STM image of Fig.3(b)shows the same scanning position of 0.86 ML self-assembled CuPc thin film with the CuPc molecules appearing achiral at positive bias voltage.Fig.3(c)and Fig.3(d)are the enlarged images of the labeled molecules in the STM images of Fig.3 (a,b).By comparison from the images demonstrated that the chiral contrast is strong at negative bias voltage and disappears at the positive bias voltage,which is attributed to the asymmetric electronic interaction of the a1uorbital and of the partially occupied 2egorbital with the Bi(111)states,this effect is similar to CuPc/Ag (100)in Ref.12,leading to a voltage-dependent chiral appearance of CuPc molecules on Bi(111).This behavior suggests that chi-rality in this system can be manifest exclusively at the electronic level due to the asymmetry of electronic orbital occupation,indicating that the original effect of molecular chirality is an electronic effect,not related to the molecular geometric structure,as confirmed by Mugarza et al.16.

    Fig.3 Chirality of the self-assembly of CuPc on Bi(111)and bias-dependent topographic images of the CuPc molecules

    It was also found that the chirality of individual CuPc molecules is related to the intermolecular interactions,as CuPc coverage increases,the intermolecular interaction(that is the attractive van der Waals interactions)becomes stronger and thus the molecules showing chirality are closer to the neighboring molecules relative to the molecules in Fig.2(a).Furthermore,high-resolution STM image shows that the two opposing lobes of each CuPc molecule are twisted toward opposite directions,this differs from the previous reports about TMPc′s rotation in the same direction called a left-handed feature or a right-handed feature(denoted as R and L,respectively),revealing the asymmetric intermolecular vdW interactions.The formation mechanism is attributed to the combined effect of asymmetric charge transfer between CuPc molecules and Bi(111)substrate and the asymmetric intermolecular vdW interactions.

    3.4Standing-up orientation of CuPc molecules

    To investigate the growth behavior of CuPc molecules on Bi (111)surface with coverage-dependence,we continue to increase the molecular coverage.The STM image in Fig.4(a)shows the CuPc thin film of 1.6 ML,consisting of the upper-layer CuPc molecules adopted the on-top adsorption rather than the planar orientation on the underlying layer.The CuPc coverage calibration was achieved using a STM to count the number of surface features as a function of deposition time,thus we can define it as the second CuPc layer.By measurement of the unit cell,the lattice constants are a2=(1.18±0.02)nm,b2=(0.45±0.02)nm,corresponding to a packing density of 1.87 nm-2,which is 27.8% larger than that of the flat-lying CuPc domain of 0.52 nm-2in Fig.2 (a),because of the reduction of steric hindrance among the CuPc molecules in the standing-up domain relative to the flat-lying domain.Based on the fact that two-layered films of CuPc are very interesting,the growth process for standing-up CuPc configuration on Bi(111),is dominated by intramolecular interactions,is distinguished from the two-layer film of rubrene onAu(111)surface. A study of orientational transformation in films of copperphthalocyanine molecules on Bi(111)demonstrates that the molecule-substrate interaction can be ignored owing to the decoupling of the first CuPc layer,whereas the intermolecular interaction becomes predominant,similar behavior was observed for SnPc adsorption on NaCl,intermolecular interactions dominate over the molecule-NaCl coupling and result in a tilted adsorption configuration34,revealing that it is the energetically favorable adsorption configuration.

    Fig.4 STM images of the second CuPc layer

    The corresponding zoomed-in STM image of the standing-up CuPc chains is shown in Fig.4(b),all the CuPc molecules are arranged closely to the adjacent molecules within the CuPc chain. This arrangement is commonly called face-to-face alignment,marked by the superposed structural models.The pure domain are composed of a series of parallel CuPc chains,the appearance of the parallel chains reveals that the intermolecular interaction within the CuPc chain is obviously stronger than that in the neighboring chains because of a smaller intra-chain distance and a larger inter-chain distance.Fig.4(c)is the simulated structural model of the unit cell in Fig.4(a),which reveals the molecular adsorption orientation of the second CuPc layer onto the first CuPc layer.The colored atoms refer to the first CuPc layer,which is adopted a flat-lying adsorption orientation on Bi(111)surface.

    4 Conclusions

    In summary,we have studied the adsorption and chiral assembly of CuPc molecules on Bi(111)surface by using a LT-STM. Individual CuPc molecules keep rotating at 78 K due to the weak molecule-substrate interaction.As coverage increases,CuPc molecules show a structural evolution and molecular orientational transformation in films on Bi(111)surface.Most importantly,the self-assembled CuPc domains with each molecule revealing a chiral feature are observed.The chiral contrast is strong at negative bias voltage and disappears at positive bias voltage,leading to a voltage-dependent chiral appearance of CuPc molecules on Bi(111)surface.These findings provide insight into further studying the growth mechanism of transition-metal phthalocyanine molecules on semi-metallic surfaces.

    References

    (1) Jiang,P.;Ma,X.C.;Ning,Y.X.;Song,C.L.;Chen,X.;Jia,J. F.;Xue,Q.K.J.Am.Chem.Soc.2008,130,7790.doi:10.1021/ ja801255w

    (2)Guo,Q.M.;Qin,Z.H.;Zang,K.;Liu,C.D.;Yu,Y.H.;Cao,G. Y.Langmuir 2010,26,11804.doi:10.1021/la1019907

    (3)Rehman,R.A.;Dou,W.D.;Qian,H.Q.;Mao,H.Y.;Frederik, F.;Zhang,H.J.;Li,H.Y.;Pimo,H.;Bao,S.N.Surf.Sci.2012, 606,1749.doi:10.1016/j.susc.2012.07.021

    (4) Atodiresei,N.;Brede,J.;Lazic,P.;Caciuc,V.;Hoffmann,G.; Wiesendanger,R.;Blugel,S.Phys.Rev.Lett.2010,105, 066601.doi:10.1103/PhysRevLett.105.066601

    (5)Zhao,A.D.;Li,Q.X.;Chen,L.;Xiang,H.J.;Wang,W.H.; Pan,S.;Wang,B.;Xiao,X.D.;Yang,J.L.;Hou,J.G.;Zhu,Q. S.Science 2005,309,1542.doi:10.1126/science.1113449

    (6)Liu,L.W.;Yang,K.;Jiang,Y.H.;Song,B.Q.;Xiao,W.D.;Li, L.F.;Zhou,H.T.;Wang,Y.L.;Du,S.X.;Ouyang,M.;Werner, A.H.;Antonio,H.C.N.;Gao,H.J.Scientific Reports 2013,3, 1210.doi:10.1038/srep01210

    (7) Fu,Y.S.;Zhang,T.;Ji,S.H.;Chen,X.;Ma,X.C.;Jia,J.F.; Xue,Q.K.Phys.Rev.Lett.2009,103,257202.doi:10.1103/ PhysRevLett.103.257202

    (8) Chen,X.;Fu,Y.S.;Ji,S.H.;Zhang,T.;Cheng,P.;Ma,X.C.; Zou,X.L.;Duan,W.H.;Jia,J.F.;Xue,Q.K.Phys.Rev.Lett. 2008,101,197208.doi:10.1103/PhysRevLett.101.197208

    (9) Gao,L.;Ji,W.;Hu,Y.B.;Cheng,Z.H.;Deng,Z.T.;Liu,Q.; Jiang,N.;Lin,X.;Guo,W.;Du,S.X.;Hofer,W.A.;Xie,X.C.; Gao,H.J.Phys.Rev.Lett.2007,99,106402.doi:10.1103/ PhysRevLett.99.106402

    (10) Liu,J.;Chen,T.;Deng,X.;Wang,D.;Pei,J.;Wan,L.J.J.Am. Chem.Soc.2011,133,21010.doi:10.1021/ja209469d

    (11) Sun,R.R.;Wang,L.;Tian,J.;Zhang,X.M.;Jiang,J.Z. Nanoscale 2012,4,6990.doi:10.1039/c2nr31525d

    (12) Mugarza,A.;Lorente,N.;Ordejion,P.;Krull,C.;Stepanow,S.; Bocquet,M.L.;Fraxedas,J.;Ceballos,G.;Gambardella,P. Phys.Rev.Lett.2010,105,115702.doi:10.1103/ PhysRevLett.105.115702

    (13) Barlow,S.M.;Raval,R.Surf.Sci.Rep.2003,50,201. doi:10.1016/s0167-5729(03)00015-3

    (14) Schock,M.;Otero,R.;Stojkovic,S.;Hummelink,F.;Gourdon, A.;Laegsgaard,E.;Stensgaard,I.;Joachim,C.;Besenbacher,F. J.Phys.Chem.B 2006,110,12835.doi:10.1021/jp0619437

    (16) Mugarza,A.;Krull,C.;Korytar,R.;Lorente,N.;Gambardella, P.Phys.Rev.B 2012,85,155437.doi:10.1103/ PhysRevB.85.155437

    (17)Hao,D.;Song,C.;Ning,Y.;Wang,Y.;Wang,L.;Ma,X.C.; Chen,X.;Xue,Q.K.J.Chem.Phys.2011,134,154703. doi:10.1063/1.3579493

    (18) Jiang,Y.H.;Xiao,W.D.;Liu,L.W.;Zhang,L.Z.;Yang,C.K.; Du,S.X.;Gao,H.J.J.Phys.Chem.C 2011,115,21750. doi:10.1021/jp203462f

    (19)Hipps,K.W.;Lu,X.;Wang,X.D.;Mazur,U.J.Phys.Chem. 1996,100,11207.doi:10.1021/jp960422o

    (20) Li,Q.X.;Yang,J.L.;Yuan,L.F.;Hou,J.G.;Zhu,Q.S.Chin. Phys.Lett.2001,18,1234.

    (21) Lippel,P.H.;Miller,M.D.;Wilson,R.J.Phys.Rev.Lett.1989, 62,171.doi:10.1103/PhysRevLett.62.171

    (22) Berner,S.;Wild,M.D.;Ramoino,L.;Ivan,S.;Baratoff,A.; Guntherodt,H.J.;Suzuki,H.;Schlettwein,D.;Jung,T.A.Phys. Rev.B 2003,68,115410.doi:10.1103/PhysRevB.68.115410

    (23) Takada,M.;Tada,H.Chem.Phys.Lett.2004,392,265. doi:10.1016/j.cplett.2004.04.121

    (24) Mannsfeld,S.C.B.;Fritz,T.Phys.Rev.B 2005,71,235405. doi:10.1103/PhysRevB.71.235405

    (25) Koudia,M.;Abel,M.;Maurel,C.;Bliek,A.;Catalin,D.; Mossoyan,M.;Mossoyan,J.C.;Porte,L.J.Phys.Chem.B 2006,110,10058.doi:10.1021/jp0571980

    (26)Wang,Y.F.;Zhang,X.R.;Ye,Y.C.;Liang,D.J.;Wang,Y.;Wu, K.Acta Phys.-Chim.Sin.2010,26,933.[王永峰,張鑫然,葉迎春,梁德建,王遠,吳凱.物理化學學報,2010,26,933.] doi:10.3866/PKU.WHXB20100419

    (27) Du,S.X.;Zhang,Y.Y.;Gao,H.J.Phys.Rev.B 2011,84, 125446.doi:10.1103/PhysRevB.84.125446

    (28) Larsson,J.A.;Baran,J.D.;Cafolla.A.A.;Schulte,K.;Dhanak, V.R.Phys.Rev.B 2010,81,075413.doi:10.1103/PhysRevB.81.075413

    (29) Zhang,T.T.;Wang,C,J.;Sun,K.;Yuan,H.K.;Wang,J.Z. Appl.Surf.Sci.2014,317,1047.doi:10.1016/j. apsusc.2014.08.198

    (30) Tao,M.L.;Tu,Y.B.;Sun,K.;Zhang,Y.;Zhang,X.;Li,Z.B.; Hao,S.J.;Xiao,H.F.;Ye,J.;Wang,J.Z.J.Phys.D:Appl. Phys.2016,49,015307.doi:10.1088/0022-3727/49/1/015307

    (31)Hipps,K.W.;Lu,X.;Wang,X.D.;Mazur,U.J.Phys.Chem. 1996,100,11207.doi:10.1021/jp960422o

    (32) Du,X.Q.;Li,H.Q.;Zhu,Q.R.;Zou,Z.Q.;Liang,Q.Acta Phys.-Chim.Sin.2011,27,2457.[杜曉清,李慧琴,朱齊榮,鄒志強,梁齊.物理化學學報,2011,27,2457.]doi:10.3866/ PKU.WHXB20111010

    (33)Huang,H.;Wong,S.L.;Chen,W.;Wee,A.T.S.J.Phys.D: Appl.Phys.2011,44,464005.doi:10.1088/0022-3727/44/46/ 464005

    (34) Wang,Y.F.;Kroger,J.;Berndt,R.;Tang,H.J.Am.Chem.Soc. 2010,132,12546.doi:10.1021/ja105110d

    Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111)Surface

    YE JuanSUN KaiTAO Min-LongTU Yu-BingXIE Zheng-BoWANG Ya-Li HAO Shao-JieXIAO Hua-FangWANG Jun-Zhong*
    (School of Physical Science and Technology,Southwest University,Chongqing 400715,P.R.China)

    The adsorption and chiral features of a self-assembled CuPc monolayer on a semi-metallic Bi(111) surface have been evaluated using the low temperature scanning tunneling microscopy(LT-STM).Under low coverage conditions,the individual CuPc molecules rotated around the molecular center at 78 K until they interacted with other molecule to form clusters,because of the relatively weak interfacial interactions between the CuPc molecules and the Bi(111)surface.As the level of molecular coverage increased,the CuPc molecules self-assembled into two-dimensional domains with each molecule exhibiting chiral features.Beyond one monolayer,the CuPc molecules underwent an orientational transition from a flat-lying to a standing-up configuration.The chiral features of the CuPc molecules were attributed to the combined effect of asymmetric charge transfer between the CuPc molecules and the Bi(111)substrate and the formation of asymmetric intermolecular van der Waals interactions.

    CuPc;Scanning tunneling microscopy;Semi-metallic Bi(111);Chiral feature;Self-assembly

    1 Introduction

    In the past decades,transition-metal phthalocyanines(TMPc) molecules,have received considerable interest because of their unprecedented ability of self-assembly of ordered nanostructures on various metals1-3.Due to their relatively simple,stable,and symmetrical cross-like structure in Fig.1(a),TMPcs are consideredas a prototype of the single molecule magnet4.The magnetic properties of transition metal atoms in a host molecule can be detected by controlling charge states,spin states,and the Kondo effect at the single molecule level in cryogenic scanning tunneling5-9.The interaction of molecules with the corresponding substrate governs the self-assembly of TMPc molecules.In particular, chirality of the self-assembly of the achiral TMPc molecules deposited on metallic surfaces has been a hot research topic in recent years10-16.Chirality plays a fundamental role in molecular adsorption and self-assembly13.Highly symmetric molecules adsorbed on a substrate with dissimilar point-group symmetry have also been shown to develop chiral feature through asymmetric intermolecular interactions14,15.

    June 1,2016;Revised:July 7,2016;Published online:July 7,2016.

    .Email:jzwangcn@swu.edu.cn;Tel:+86-13883734915.

    O647

    10.3866/PKU.WHXB201607071

    The project was supported by the National Natural Science Foundation of China(10974156,21173170,91121013,11574253).國家自然科學資金(10974156,21173170,91121013,11574253)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (15) Richardson,N.V.New J.Phys.2007,9,395.10.1088/1367-2630/9/10/395

    猜你喜歡
    酞菁手性大學物理
    手性磷酰胺類化合物不對稱催化合成α-芳基丙醇類化合物
    分子催化(2022年1期)2022-11-02 07:10:30
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    利奈唑胺原料藥中R型異構體的手性HPLC分析
    脂肪酶Novozyme435手性拆分(R,S)-扁桃酸
    纖維素纖維負載鈷酞菁對活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對Li/SOCl2電池催化活性的影響
    應用化工(2014年10期)2014-08-16 13:11:29
    現(xiàn)代信息技術在大學物理教學中的應用探討
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    大學物理與高中物理銜接教育的探討
    物理與工程(2012年1期)2012-03-25 10:04:59
    大學物理實驗教學創(chuàng)新模式的探索與實踐
    物理與工程(2012年1期)2012-03-25 10:04:51
    亚洲中文日韩欧美视频| 国产精品久久视频播放| 成年人黄色毛片网站| www国产在线视频色| 丰满人妻熟妇乱又伦精品不卡| 午夜日韩欧美国产| 亚洲精品国产区一区二| 长腿黑丝高跟| 在线观看日韩欧美| 国产精品一区二区免费欧美| 精品福利观看| av视频免费观看在线观看| 国产亚洲精品久久久久5区| 中文字幕人妻熟女乱码| 久久青草综合色| 水蜜桃什么品种好| 一区二区日韩欧美中文字幕| 午夜福利欧美成人| 亚洲精品粉嫩美女一区| 久久香蕉激情| 伦理电影免费视频| 欧美成人午夜精品| 精品乱码久久久久久99久播| 亚洲五月天丁香| 欧美一级毛片孕妇| 亚洲一区中文字幕在线| 精品一品国产午夜福利视频| 淫秽高清视频在线观看| 无人区码免费观看不卡| 看黄色毛片网站| 老司机靠b影院| 亚洲成人国产一区在线观看| 久久亚洲真实| 国产高清国产精品国产三级| 中文字幕精品免费在线观看视频| 国产伦一二天堂av在线观看| 久久人人爽av亚洲精品天堂| 精品久久久久久久久久免费视频 | 在线播放国产精品三级| 成人影院久久| 国产欧美日韩综合在线一区二区| 亚洲精华国产精华精| 久久九九热精品免费| 我的亚洲天堂| 久久婷婷成人综合色麻豆| 又紧又爽又黄一区二区| 久久久久亚洲av毛片大全| 在线视频色国产色| 宅男免费午夜| 天天添夜夜摸| 最近最新免费中文字幕在线| 国产麻豆69| www.精华液| 久久久久久久久中文| 一边摸一边做爽爽视频免费| 久久国产精品男人的天堂亚洲| 亚洲久久久国产精品| 亚洲精品中文字幕一二三四区| a级毛片在线看网站| 久9热在线精品视频| tocl精华| 99久久国产精品久久久| 亚洲人成伊人成综合网2020| 首页视频小说图片口味搜索| 熟女少妇亚洲综合色aaa.| 久久午夜综合久久蜜桃| 啦啦啦在线免费观看视频4| 91九色精品人成在线观看| 无限看片的www在线观看| 757午夜福利合集在线观看| 久久香蕉精品热| 老熟妇仑乱视频hdxx| 精品人妻在线不人妻| videosex国产| 久久精品91无色码中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产精品影院久久| 欧美日韩亚洲综合一区二区三区_| 亚洲人成伊人成综合网2020| 好看av亚洲va欧美ⅴa在| 男女午夜视频在线观看| 极品教师在线免费播放| 亚洲精品国产一区二区精华液| 国产精品乱码一区二三区的特点 | 他把我摸到了高潮在线观看| 这个男人来自地球电影免费观看| 精品国产乱码久久久久久男人| 欧美日韩视频精品一区| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久男人| 老司机午夜十八禁免费视频| 搡老熟女国产l中国老女人| 女人高潮潮喷娇喘18禁视频| 国内毛片毛片毛片毛片毛片| 中文字幕色久视频| 曰老女人黄片| 亚洲男人天堂网一区| 青草久久国产| 国产97色在线日韩免费| 午夜免费激情av| 日韩成人在线观看一区二区三区| 午夜精品国产一区二区电影| 美女午夜性视频免费| 欧美黑人欧美精品刺激| 男女做爰动态图高潮gif福利片 | 免费av中文字幕在线| 最新美女视频免费是黄的| 中文字幕av电影在线播放| 国产精品99久久99久久久不卡| 久久久久久免费高清国产稀缺| 亚洲国产欧美日韩在线播放| 久久国产乱子伦精品免费另类| 久久中文看片网| 亚洲精品美女久久久久99蜜臀| 99精国产麻豆久久婷婷| 1024视频免费在线观看| 视频区图区小说| 欧美另类亚洲清纯唯美| 国产精品野战在线观看 | 精品国产乱码久久久久久男人| 高清毛片免费观看视频网站 | 搡老熟女国产l中国老女人| 国产99白浆流出| 日本欧美视频一区| 国产精品久久视频播放| xxxhd国产人妻xxx| 伊人久久大香线蕉亚洲五| 免费高清在线观看日韩| 精品欧美一区二区三区在线| 亚洲 欧美 日韩 在线 免费| 国产一区二区三区综合在线观看| 极品人妻少妇av视频| 国产免费男女视频| 国产av一区二区精品久久| 一区二区三区精品91| 亚洲在线自拍视频| 亚洲美女黄片视频| 一个人观看的视频www高清免费观看 | 人成视频在线观看免费观看| 正在播放国产对白刺激| 乱人伦中国视频| 欧美日韩乱码在线| 最新美女视频免费是黄的| 午夜视频精品福利| 亚洲一码二码三码区别大吗| 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠躁躁| 亚洲av第一区精品v没综合| 欧洲精品卡2卡3卡4卡5卡区| 丰满饥渴人妻一区二区三| 老汉色av国产亚洲站长工具| 色婷婷av一区二区三区视频| 亚洲一区中文字幕在线| 岛国视频午夜一区免费看| 操出白浆在线播放| 曰老女人黄片| 久久久国产精品麻豆| 精品欧美一区二区三区在线| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久久久99蜜臀| 精品久久久久久电影网| 亚洲色图av天堂| 欧美黄色片欧美黄色片| 亚洲一区高清亚洲精品| 老司机在亚洲福利影院| 日韩 欧美 亚洲 中文字幕| 精品免费久久久久久久清纯| 两性夫妻黄色片| 中出人妻视频一区二区| 国产熟女xx| 悠悠久久av| 国产一区在线观看成人免费| 国产欧美日韩精品亚洲av| 免费女性裸体啪啪无遮挡网站| 久久久国产成人免费| 一级片'在线观看视频| 9191精品国产免费久久| 12—13女人毛片做爰片一| 久久精品aⅴ一区二区三区四区| 亚洲人成77777在线视频| 欧美日韩视频精品一区| 亚洲精品国产色婷婷电影| 欧美日韩国产mv在线观看视频| 丁香欧美五月| 日韩大码丰满熟妇| 久久久久久久久中文| 国产不卡一卡二| 国产av又大| 欧美日韩国产mv在线观看视频| 两个人免费观看高清视频| 欧美色视频一区免费| av电影中文网址| 黄色女人牲交| 十分钟在线观看高清视频www| 九色亚洲精品在线播放| 国产亚洲精品久久久久5区| 成人亚洲精品av一区二区 | 久久精品亚洲av国产电影网| 国产熟女xx| 午夜免费观看网址| 99久久综合精品五月天人人| 亚洲精品在线美女| 狠狠狠狠99中文字幕| xxx96com| av欧美777| 桃红色精品国产亚洲av| 国产免费男女视频| 国产一区二区在线av高清观看| 亚洲欧美激情综合另类| 美国免费a级毛片| 精品国产国语对白av| 国产精品久久电影中文字幕| 黑人操中国人逼视频| av免费在线观看网站| 久久久久亚洲av毛片大全| 久久精品人人爽人人爽视色| 国产成人欧美在线观看| 黄色成人免费大全| 黄片小视频在线播放| 亚洲欧美一区二区三区黑人| 成人三级做爰电影| 在线观看66精品国产| 国产91精品成人一区二区三区| 99香蕉大伊视频| 9191精品国产免费久久| 在线视频色国产色| 精品久久久久久久毛片微露脸| 99riav亚洲国产免费| 久久影院123| 亚洲国产精品合色在线| 国产无遮挡羞羞视频在线观看| 亚洲 国产 在线| 亚洲精品一二三| 性色av乱码一区二区三区2| 青草久久国产| 国产在线精品亚洲第一网站| 欧美久久黑人一区二区| 高清毛片免费观看视频网站 | 国产欧美日韩综合在线一区二区| 男女高潮啪啪啪动态图| 成年版毛片免费区| 神马国产精品三级电影在线观看 | 亚洲中文av在线| 如日韩欧美国产精品一区二区三区| 天堂影院成人在线观看| 精品福利观看| 国产av一区二区精品久久| 亚洲黑人精品在线| 两人在一起打扑克的视频| 啦啦啦在线免费观看视频4| 久久久久久免费高清国产稀缺| 日韩 欧美 亚洲 中文字幕| 国内毛片毛片毛片毛片毛片| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 男人舔女人的私密视频| 在线天堂中文资源库| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合一区二区三区| 亚洲狠狠婷婷综合久久图片| 级片在线观看| 亚洲第一av免费看| 热99re8久久精品国产| 精品福利观看| 久久人妻福利社区极品人妻图片| 亚洲情色 制服丝袜| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 男男h啪啪无遮挡| 国产av一区二区精品久久| 操出白浆在线播放| 中文亚洲av片在线观看爽| 亚洲狠狠婷婷综合久久图片| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人不卡在线观看播放网| 一级片免费观看大全| 免费观看精品视频网站| 另类亚洲欧美激情| 成人国语在线视频| 欧美亚洲日本最大视频资源| 亚洲精品中文字幕一二三四区| 黄色怎么调成土黄色| 国产成人系列免费观看| bbb黄色大片| 老司机在亚洲福利影院| 国内毛片毛片毛片毛片毛片| 日韩大尺度精品在线看网址 | 啦啦啦 在线观看视频| 亚洲激情在线av| 满18在线观看网站| 在线观看免费高清a一片| 亚洲激情在线av| 欧美成人免费av一区二区三区| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 免费日韩欧美在线观看| 久久人妻福利社区极品人妻图片| 美女福利国产在线| 国产一区二区在线av高清观看| 制服人妻中文乱码| 80岁老熟妇乱子伦牲交| 人妻久久中文字幕网| 亚洲精品一区av在线观看| 真人一进一出gif抽搐免费| 亚洲专区国产一区二区| 日韩av在线大香蕉| 两性午夜刺激爽爽歪歪视频在线观看 | 桃红色精品国产亚洲av| 亚洲五月色婷婷综合| 午夜亚洲福利在线播放| netflix在线观看网站| 日本黄色日本黄色录像| 人人妻人人添人人爽欧美一区卜| 国产av一区二区精品久久| 中出人妻视频一区二区| 国产成人系列免费观看| 老司机午夜福利在线观看视频| 91字幕亚洲| 久久久久九九精品影院| 亚洲欧美日韩另类电影网站| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 国产伦人伦偷精品视频| 美国免费a级毛片| 国产三级黄色录像| 看免费av毛片| 老汉色av国产亚洲站长工具| 亚洲在线自拍视频| 欧美黑人欧美精品刺激| 成人18禁高潮啪啪吃奶动态图| 国产主播在线观看一区二区| 久久久国产一区二区| 在线视频色国产色| 大码成人一级视频| 亚洲国产看品久久| 女生性感内裤真人,穿戴方法视频| 亚洲精品美女久久av网站| 91国产中文字幕| 日本撒尿小便嘘嘘汇集6| 黑人操中国人逼视频| 丰满饥渴人妻一区二区三| av有码第一页| 精品一区二区三区四区五区乱码| 国产亚洲精品一区二区www| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 午夜91福利影院| 国产精品久久久人人做人人爽| 免费av毛片视频| 男女午夜视频在线观看| 国产精品爽爽va在线观看网站 | 亚洲成国产人片在线观看| 欧美最黄视频在线播放免费 | 男女之事视频高清在线观看| 校园春色视频在线观看| 热re99久久精品国产66热6| 欧美日韩乱码在线| 成人18禁高潮啪啪吃奶动态图| 自线自在国产av| 国产成人精品久久二区二区91| 淫妇啪啪啪对白视频| 国产男靠女视频免费网站| 中亚洲国语对白在线视频| 在线观看免费高清a一片| 亚洲片人在线观看| 在线观看免费午夜福利视频| 欧美日韩瑟瑟在线播放| 免费高清视频大片| 精品欧美一区二区三区在线| 国产精品一区二区精品视频观看| 电影成人av| 亚洲一区中文字幕在线| 久久久久久久精品吃奶| 曰老女人黄片| 视频在线观看一区二区三区| 国产区一区二久久| 国产深夜福利视频在线观看| 国产麻豆69| 99久久人妻综合| 很黄的视频免费| 久久欧美精品欧美久久欧美| 操美女的视频在线观看| 波多野结衣av一区二区av| 国产97色在线日韩免费| 国产真人三级小视频在线观看| 欧美中文日本在线观看视频| 美女午夜性视频免费| 校园春色视频在线观看| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3 | 国产亚洲精品久久久久久毛片| 一级,二级,三级黄色视频| 国产精品免费视频内射| 久久精品亚洲av国产电影网| 12—13女人毛片做爰片一| 国产熟女午夜一区二区三区| 亚洲 国产 在线| 精品无人区乱码1区二区| 神马国产精品三级电影在线观看 | 一区二区日韩欧美中文字幕| 国内久久婷婷六月综合欲色啪| 精品国产美女av久久久久小说| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看网址| 亚洲精品久久午夜乱码| 女性生殖器流出的白浆| 久久精品亚洲精品国产色婷小说| 久久久久久久精品吃奶| 久久香蕉精品热| 中文欧美无线码| 国产无遮挡羞羞视频在线观看| 久9热在线精品视频| 男人舔女人的私密视频| 欧美黄色淫秽网站| 久久狼人影院| 国产精品一区二区在线不卡| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 99精品在免费线老司机午夜| 黑丝袜美女国产一区| 国产熟女xx| 一夜夜www| 国产乱人伦免费视频| 麻豆av在线久日| 精品一区二区三区视频在线观看免费 | www.熟女人妻精品国产| 国产成年人精品一区二区 | 亚洲九九香蕉| 女性被躁到高潮视频| 久久精品91无色码中文字幕| 欧美亚洲日本最大视频资源| 免费在线观看亚洲国产| 亚洲第一av免费看| 级片在线观看| 51午夜福利影视在线观看| 精品国产亚洲在线| 亚洲人成77777在线视频| 黄色丝袜av网址大全| 国产高清视频在线播放一区| 黑丝袜美女国产一区| 9色porny在线观看| 亚洲av成人不卡在线观看播放网| 俄罗斯特黄特色一大片| 国产高清国产精品国产三级| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 99在线人妻在线中文字幕| 亚洲,欧美精品.| 亚洲性夜色夜夜综合| 搡老熟女国产l中国老女人| 色综合站精品国产| 91老司机精品| 一区福利在线观看| 99久久综合精品五月天人人| 黑人巨大精品欧美一区二区蜜桃| 99精品久久久久人妻精品| 黄网站色视频无遮挡免费观看| 久久99一区二区三区| 精品高清国产在线一区| 一进一出好大好爽视频| 成年女人毛片免费观看观看9| 欧美日韩黄片免| 夜夜爽天天搞| 怎么达到女性高潮| av欧美777| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区在线不卡| 亚洲精品国产区一区二| 国产精品久久久久久人妻精品电影| 两个人看的免费小视频| 免费看a级黄色片| 久久精品91无色码中文字幕| 免费观看精品视频网站| 一区二区日韩欧美中文字幕| 国产亚洲欧美98| 纯流量卡能插随身wifi吗| 久久精品成人免费网站| 欧美乱色亚洲激情| 中文字幕人妻丝袜制服| 中文亚洲av片在线观看爽| 女警被强在线播放| 国产又色又爽无遮挡免费看| 精品一区二区三区av网在线观看| 国产成人精品在线电影| 国产乱人伦免费视频| 后天国语完整版免费观看| 乱人伦中国视频| 亚洲男人的天堂狠狠| 亚洲av美国av| 亚洲av片天天在线观看| 老鸭窝网址在线观看| 国产无遮挡羞羞视频在线观看| 极品人妻少妇av视频| 神马国产精品三级电影在线观看 | 久久久久久久久久久久大奶| www日本在线高清视频| 90打野战视频偷拍视频| 精品一区二区三区av网在线观看| 97碰自拍视频| 一区二区三区精品91| 水蜜桃什么品种好| 视频区欧美日本亚洲| 成人18禁高潮啪啪吃奶动态图| 亚洲三区欧美一区| 男女午夜视频在线观看| 88av欧美| 男女高潮啪啪啪动态图| 久久久久亚洲av毛片大全| 麻豆av在线久日| 午夜激情av网站| 最近最新中文字幕大全免费视频| 国产精品久久久久成人av| 日韩三级视频一区二区三区| 久久久国产一区二区| 村上凉子中文字幕在线| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼 | 午夜91福利影院| 露出奶头的视频| 法律面前人人平等表现在哪些方面| 国产精品影院久久| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 18禁裸乳无遮挡免费网站照片 | 久久人妻熟女aⅴ| 久久久久久久久中文| 成人亚洲精品一区在线观看| 久久精品亚洲av国产电影网| 国产精品98久久久久久宅男小说| 母亲3免费完整高清在线观看| 黄色成人免费大全| 亚洲狠狠婷婷综合久久图片| 免费人成视频x8x8入口观看| 不卡av一区二区三区| 久久久久久久精品吃奶| 久久国产精品影院| 亚洲一区二区三区欧美精品| 欧美乱码精品一区二区三区| 黑丝袜美女国产一区| 可以在线观看毛片的网站| 国产精品一区二区免费欧美| 女性被躁到高潮视频| 亚洲aⅴ乱码一区二区在线播放 | 黄网站色视频无遮挡免费观看| 亚洲精品中文字幕一二三四区| 日韩免费高清中文字幕av| 99国产极品粉嫩在线观看| 久久香蕉激情| 色在线成人网| 国产精品 欧美亚洲| 免费高清视频大片| 欧美乱码精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 99国产极品粉嫩在线观看| 国产精品成人在线| 欧美日韩黄片免| 成人黄色视频免费在线看| 亚洲色图av天堂| 在线观看午夜福利视频| 水蜜桃什么品种好| av网站免费在线观看视频| 黄色成人免费大全| 一级,二级,三级黄色视频| 久久国产精品影院| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| 满18在线观看网站| 亚洲五月色婷婷综合| 亚洲黑人精品在线| 侵犯人妻中文字幕一二三四区| 成年人黄色毛片网站| 亚洲 国产 在线| 中文字幕人妻熟女乱码| 日本五十路高清| 久久精品国产99精品国产亚洲性色 | 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 国产1区2区3区精品| 亚洲性夜色夜夜综合| 欧美激情久久久久久爽电影 | 国产精华一区二区三区| 免费看a级黄色片| 人人妻人人添人人爽欧美一区卜| 人成视频在线观看免费观看| 人人妻,人人澡人人爽秒播| 国产精品一区二区免费欧美| 高清黄色对白视频在线免费看| 久久人人97超碰香蕉20202| 国产高清国产精品国产三级| 国内毛片毛片毛片毛片毛片| 亚洲精品一卡2卡三卡4卡5卡| 制服诱惑二区| 国产三级在线视频| 黑人欧美特级aaaaaa片| 18禁美女被吸乳视频| 亚洲专区中文字幕在线| 国产激情久久老熟女| 亚洲人成77777在线视频| 热re99久久精品国产66热6| 操出白浆在线播放| 午夜影院日韩av| 久久草成人影院| 欧美激情极品国产一区二区三区| 在线观看66精品国产| 亚洲成a人片在线一区二区| 在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 香蕉丝袜av| 亚洲国产欧美日韩在线播放| √禁漫天堂资源中文www| 久久人妻福利社区极品人妻图片| 欧美日韩亚洲高清精品|