• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非手性的酞菁銅分子在Bi(111)表面上的手性特征

    2016-11-22 09:49:17陶敏龍涂玉兵謝正波王亞利郝少杰肖華芳王俊忠
    物理化學學報 2016年10期
    關鍵詞:酞菁手性大學物理

    葉 娟 孫 凱 陶敏龍 涂玉兵 謝正波 王亞利郝少杰 肖華芳 王俊忠

    (西南大學物理科學與技術學院,重慶400715)

    非手性的酞菁銅分子在Bi(111)表面上的手性特征

    葉娟孫凱陶敏龍涂玉兵謝正波王亞利郝少杰肖華芳王俊忠*

    (西南大學物理科學與技術學院,重慶400715)

    利用低溫掃描隧道顯微鏡(LT-STM)研究了酞菁銅(CuPc)分子在Bi(111)表面上的吸附和手性自組裝結構。由于較弱的分子-襯底相互作用,我們發(fā)現(xiàn)在液氮溫度(78 K)下吸附在Bi(111)表面上的單個CuPc分子圍繞著分子中心發(fā)生旋轉,直到遇到其他分子形成團簇為止。隨著分子覆蓋度的增加,CuPc分子形成了自組裝分子單層。高分辨STM圖表明,非手性的CuPc分子出現(xiàn)了手性特征:兩個相對的酞菁基團發(fā)生了彎曲。當覆蓋度超過一個分子層,酞菁銅分子的吸附取向由“平躺”轉變到“站立”姿態(tài)。我們認為,酞菁銅分子的手性起源是由兩種因素共同導致的結果:一種是分子-襯底之間的非對稱電荷轉移,另一種是相鄰分子間的非對稱性的范德華力作用。

    酞菁銅;掃描隧道顯微鏡;半金屬Bi(111);手性特征;自組裝

    Significant progress has been achieved in the adsorption and self-assembly of various TMPcs on noble metal surfaces17-21. Because of high spatial resolution capability,scanning tunneling microscopy(STM)has proven a powerful technique for investigating the geometric conformations of TMPc molecules deposited on the substrates in the past few decades owning to the submolecular resolution22-25.This technique has greatly enhanced our understanding of the assemblies of phthalocyanines and their derivatives on various substrates26.The formation of densely packed monolayer on various metal substrates was investigated by many STM studies.However,so far,there have been few studies on the structural evolution of TMPcs on semi-metallic surface from isolated TMPc molecules to full monolayer,and finally to multilayer regime.The flat adsorption orientation of TMPc molecules facilitates the bonding of central magnetic ions with metallic substrate,making the systematic investigation of the molecule-substrate interaction possible27,28.

    In this paper,STM study of CuPc on Bi(111)is presented for structural evolution and molecular orientational transition.Chirality of the self-assembly of the achiral CuPc molecules is attributed to the combined effect of asymmetric charge transfer between CuPc molecules and Bi(111)substrate and the intermolecular van der Waals(vdW)interactions.Furthermore,the chiral feature of filled-state STM images of CuPc molecules is more evident remarkable than the empty-state images,indicating that the chirality origin effect is an electronic effect,not the geometric modification of CuPc molecules.

    2 Experimental

    2.1Preparation of the Bi(111)substrate

    Our experiments were conducted in a Japanese Unisoku ultrahigh vacuum low temperature STM system with a base pressure around 1.3×10-8Pa.The smooth Bi(111)substrate was obtained by depositing nominal 20 molecular layer(ML)of Bi atom onto the Si(111)-7×7 reconstructed surface at room temperature with subsequent annealing at 400 K for nearly 2.5 h29.

    2.2Preparation of the CuPc assemblies

    After overnight degassing,CuPc molecules(Sigma-Aldrich, 99%purity)were thermally sublimated from a Ta boat heated to about 480 K and then were deposited onto Bi(111)film at a rate of 0.45 monolayer per minute.In this paper one monolayer is defined as the amount of depositing CuPc molecules to cover the whole substrate surface.During the deposition,the Bi(111)substrate was kept at room temperature(RT).The constant-current mode and tungsten tips after e-beam heating in the molecular beam epitaxy(MBE)chamber were used for STM measurements. The calibrations of tip state were based on both Si(111)-7×7 reconstructed surface and the atomic resolution image of Bi(111) surface.The bias voltage between the sample and the tip is controlled between-3 and 3 V.All the STM images were obtained at liquid nitrogen temperature(78 K).

    Fig.1 STM images of the isolated CuPc molecules on Bi(111)surface

    3 Results and discussion

    3.1Rotation of the isolated CuPc molecules

    A small amount(0.03 ML)of CuPc molecules were deposited onto the Bi(111)surface at room-temperature and individual monomers were observed by LT-STM shown in Fig.1(b).Fig.1(c) is a typical topographic image of the isolated CuPc molecule obtained at low temperature(78 K).The individual CuPc molecules adsorbed on Bi(111)surface like a rotating-disc,which differs from the inherent cross-like molecular structure in Fig.1(a), indicating that the isolated CuPc molecules keep rotating,thus thefour lobes of the molecule cannot be distinguished.The central metal ion of the CuPc molecule appears as a hole in the STM image,which can be attributed to the occupied d-orbitals away from the Fermi energy of the copper ion.This phenomenon differs from the previous reports about the MnPc29and CoPc30on Bi(111), which were rotating around a bright protrusion located at the center.The strong d-orbital occupation-dependent STM images of TMPc on the apparent height of the central metal ion are demonstrated experimentally by Hipps et al.31.

    Furthermore,high-resolution STM image reveals that the circular symmetry becomes an oval shape,which means an asymmetrical rotation for the four lobes of CuPc molecule.The observed rotation of the individual CuPc molecules demonstrates that a quite weak molecule-substrate interaction,thus the molecular rotation stems from the energy provided by inelastic tunnel effects.At high bias voltage,we can observe the rotation of CuPc molecules on Bi(111)surface at liquid nitrogen temperature(78 K);while at the low bias voltage,we noticed that the speed of molecular rotation decreases significantly or even becomes zero at very low bias voltage,as demonstrated in CoPc molecules on Bi(111)surface,whereas on noble metal substrates such as Pb (111)17and Au(111)18,the CuPc rotation is absent due to the considerable molecule-substrate mutual coupling,meanwhile the inelastic effects become less important(almost no tunneling in molecular states).

    Fig.2 Self-assembled thin film of copper-phthalocyanine

    3.2Assemblies of CuPc molecules

    With the CuPc coverage increasing,individual CuPc molecules are preferentially assembled together forming the two-dimensional (2-D)domains with parallel arrangement.Fig.2(a)displays a STM image of self-assembled CuPc thin film in the coverage of 0.45 ML,each CuPc molecule exhibits a cross shape with four perpendicular lobes,consistent with the four-fold symmetry of CuPc molecule shown in Fig.1(a).This indicates that the CuPc molecules adopt a flat-lying adsorption orientation without any rotation on Bi(111)due to the increasing interaction between the neighboring molecules,causing that the degree of freedom of movements is greatly reduced,the original free rotation is completely limited32.Furthermore,the two opposing lobes of each CuPc molecule are aligned at one of the three principal axes of the Bi (111)surface,the atomic resolution image of the underlying Bi (111)surface is shown in the insert.The self-assembled CuPc thin films on Bi(111)surface have identical in-plane orientations, which can be attributed to the mutual coupling of the symmetry of Bi(111)and CuPc33,however the MnPc and CoPc on Bi(111)are aggregated into 2-D domains consisting of two different molecular orientations,denoted as‘A’and‘B’.The white quadrilateral in Fig.2(a)represents a unit cell(denoted as“a1”and“b1”)and the lattice constant are a1=(1.42±0.02)nm,b1=(1.35±0.02)nm, corresponding to a packing density of 0.52 nm-2,which is obviously smaller than the lattice constant(a1=(1.78±0.02)nm,b1= (1.34±0.02)nm)of CoPc on Bi(111).Fig.2(b)is the structural model of the unit cell,the angle α between a1and b1is 90°±2° and the angle β is 30°.The dashed and solid arrows represent the substrate and molecular symmetry at the bottom left corner,respectively.Based on the lattice parameters of Bi(111)substrate c1=c2=0.454 nm,we can deduce the relationship between the CuPc layer and the Bi(111)substrate expressed as the following matrixe:

    Non-integers in the transformation matrix indicate that the same oriented CuPc domain is not commensurate with the Bi(111) substrate.It demonstrates that the intermolecular interaction is strong enough to dominate the quite weak interfacial interaction between the molecules and the substrate due to the semimetal nature of the Bi(111)surface.

    3.3Chiral feature of the achiral CuPc molecules in self-assembled monolayer

    With the CuPc coverage approached to 0.86 ML,the highresolution STM image of self-assembled CuPc thin film in Fig.3 (a)reveals different feature,which is acquired at a negative bias voltage of-1.3 V.It can be observed that all the CuPc molecules are revealing a strong chiral feature,for MnPc and CoPc on Bi (111)surface appear achiral at both negative and positive bias voltage.The observed molecular chirality on Bi(111)surface originates from the asymmetric charge transfer between the CuPc molecules and Bi(111),as demonstrated in CuPc molecules onAg (100)surface.The asymmetry is due to the misalignment between the Bi(111)substrate and CuPc molecular symmetry axes.STM image of Fig.3(b)shows the same scanning position of 0.86 ML self-assembled CuPc thin film with the CuPc molecules appearing achiral at positive bias voltage.Fig.3(c)and Fig.3(d)are the enlarged images of the labeled molecules in the STM images of Fig.3 (a,b).By comparison from the images demonstrated that the chiral contrast is strong at negative bias voltage and disappears at the positive bias voltage,which is attributed to the asymmetric electronic interaction of the a1uorbital and of the partially occupied 2egorbital with the Bi(111)states,this effect is similar to CuPc/Ag (100)in Ref.12,leading to a voltage-dependent chiral appearance of CuPc molecules on Bi(111).This behavior suggests that chi-rality in this system can be manifest exclusively at the electronic level due to the asymmetry of electronic orbital occupation,indicating that the original effect of molecular chirality is an electronic effect,not related to the molecular geometric structure,as confirmed by Mugarza et al.16.

    Fig.3 Chirality of the self-assembly of CuPc on Bi(111)and bias-dependent topographic images of the CuPc molecules

    It was also found that the chirality of individual CuPc molecules is related to the intermolecular interactions,as CuPc coverage increases,the intermolecular interaction(that is the attractive van der Waals interactions)becomes stronger and thus the molecules showing chirality are closer to the neighboring molecules relative to the molecules in Fig.2(a).Furthermore,high-resolution STM image shows that the two opposing lobes of each CuPc molecule are twisted toward opposite directions,this differs from the previous reports about TMPc′s rotation in the same direction called a left-handed feature or a right-handed feature(denoted as R and L,respectively),revealing the asymmetric intermolecular vdW interactions.The formation mechanism is attributed to the combined effect of asymmetric charge transfer between CuPc molecules and Bi(111)substrate and the asymmetric intermolecular vdW interactions.

    3.4Standing-up orientation of CuPc molecules

    To investigate the growth behavior of CuPc molecules on Bi (111)surface with coverage-dependence,we continue to increase the molecular coverage.The STM image in Fig.4(a)shows the CuPc thin film of 1.6 ML,consisting of the upper-layer CuPc molecules adopted the on-top adsorption rather than the planar orientation on the underlying layer.The CuPc coverage calibration was achieved using a STM to count the number of surface features as a function of deposition time,thus we can define it as the second CuPc layer.By measurement of the unit cell,the lattice constants are a2=(1.18±0.02)nm,b2=(0.45±0.02)nm,corresponding to a packing density of 1.87 nm-2,which is 27.8% larger than that of the flat-lying CuPc domain of 0.52 nm-2in Fig.2 (a),because of the reduction of steric hindrance among the CuPc molecules in the standing-up domain relative to the flat-lying domain.Based on the fact that two-layered films of CuPc are very interesting,the growth process for standing-up CuPc configuration on Bi(111),is dominated by intramolecular interactions,is distinguished from the two-layer film of rubrene onAu(111)surface. A study of orientational transformation in films of copperphthalocyanine molecules on Bi(111)demonstrates that the molecule-substrate interaction can be ignored owing to the decoupling of the first CuPc layer,whereas the intermolecular interaction becomes predominant,similar behavior was observed for SnPc adsorption on NaCl,intermolecular interactions dominate over the molecule-NaCl coupling and result in a tilted adsorption configuration34,revealing that it is the energetically favorable adsorption configuration.

    Fig.4 STM images of the second CuPc layer

    The corresponding zoomed-in STM image of the standing-up CuPc chains is shown in Fig.4(b),all the CuPc molecules are arranged closely to the adjacent molecules within the CuPc chain. This arrangement is commonly called face-to-face alignment,marked by the superposed structural models.The pure domain are composed of a series of parallel CuPc chains,the appearance of the parallel chains reveals that the intermolecular interaction within the CuPc chain is obviously stronger than that in the neighboring chains because of a smaller intra-chain distance and a larger inter-chain distance.Fig.4(c)is the simulated structural model of the unit cell in Fig.4(a),which reveals the molecular adsorption orientation of the second CuPc layer onto the first CuPc layer.The colored atoms refer to the first CuPc layer,which is adopted a flat-lying adsorption orientation on Bi(111)surface.

    4 Conclusions

    In summary,we have studied the adsorption and chiral assembly of CuPc molecules on Bi(111)surface by using a LT-STM. Individual CuPc molecules keep rotating at 78 K due to the weak molecule-substrate interaction.As coverage increases,CuPc molecules show a structural evolution and molecular orientational transformation in films on Bi(111)surface.Most importantly,the self-assembled CuPc domains with each molecule revealing a chiral feature are observed.The chiral contrast is strong at negative bias voltage and disappears at positive bias voltage,leading to a voltage-dependent chiral appearance of CuPc molecules on Bi(111)surface.These findings provide insight into further studying the growth mechanism of transition-metal phthalocyanine molecules on semi-metallic surfaces.

    References

    (1) Jiang,P.;Ma,X.C.;Ning,Y.X.;Song,C.L.;Chen,X.;Jia,J. F.;Xue,Q.K.J.Am.Chem.Soc.2008,130,7790.doi:10.1021/ ja801255w

    (2)Guo,Q.M.;Qin,Z.H.;Zang,K.;Liu,C.D.;Yu,Y.H.;Cao,G. Y.Langmuir 2010,26,11804.doi:10.1021/la1019907

    (3)Rehman,R.A.;Dou,W.D.;Qian,H.Q.;Mao,H.Y.;Frederik, F.;Zhang,H.J.;Li,H.Y.;Pimo,H.;Bao,S.N.Surf.Sci.2012, 606,1749.doi:10.1016/j.susc.2012.07.021

    (4) Atodiresei,N.;Brede,J.;Lazic,P.;Caciuc,V.;Hoffmann,G.; Wiesendanger,R.;Blugel,S.Phys.Rev.Lett.2010,105, 066601.doi:10.1103/PhysRevLett.105.066601

    (5)Zhao,A.D.;Li,Q.X.;Chen,L.;Xiang,H.J.;Wang,W.H.; Pan,S.;Wang,B.;Xiao,X.D.;Yang,J.L.;Hou,J.G.;Zhu,Q. S.Science 2005,309,1542.doi:10.1126/science.1113449

    (6)Liu,L.W.;Yang,K.;Jiang,Y.H.;Song,B.Q.;Xiao,W.D.;Li, L.F.;Zhou,H.T.;Wang,Y.L.;Du,S.X.;Ouyang,M.;Werner, A.H.;Antonio,H.C.N.;Gao,H.J.Scientific Reports 2013,3, 1210.doi:10.1038/srep01210

    (7) Fu,Y.S.;Zhang,T.;Ji,S.H.;Chen,X.;Ma,X.C.;Jia,J.F.; Xue,Q.K.Phys.Rev.Lett.2009,103,257202.doi:10.1103/ PhysRevLett.103.257202

    (8) Chen,X.;Fu,Y.S.;Ji,S.H.;Zhang,T.;Cheng,P.;Ma,X.C.; Zou,X.L.;Duan,W.H.;Jia,J.F.;Xue,Q.K.Phys.Rev.Lett. 2008,101,197208.doi:10.1103/PhysRevLett.101.197208

    (9) Gao,L.;Ji,W.;Hu,Y.B.;Cheng,Z.H.;Deng,Z.T.;Liu,Q.; Jiang,N.;Lin,X.;Guo,W.;Du,S.X.;Hofer,W.A.;Xie,X.C.; Gao,H.J.Phys.Rev.Lett.2007,99,106402.doi:10.1103/ PhysRevLett.99.106402

    (10) Liu,J.;Chen,T.;Deng,X.;Wang,D.;Pei,J.;Wan,L.J.J.Am. Chem.Soc.2011,133,21010.doi:10.1021/ja209469d

    (11) Sun,R.R.;Wang,L.;Tian,J.;Zhang,X.M.;Jiang,J.Z. Nanoscale 2012,4,6990.doi:10.1039/c2nr31525d

    (12) Mugarza,A.;Lorente,N.;Ordejion,P.;Krull,C.;Stepanow,S.; Bocquet,M.L.;Fraxedas,J.;Ceballos,G.;Gambardella,P. Phys.Rev.Lett.2010,105,115702.doi:10.1103/ PhysRevLett.105.115702

    (13) Barlow,S.M.;Raval,R.Surf.Sci.Rep.2003,50,201. doi:10.1016/s0167-5729(03)00015-3

    (14) Schock,M.;Otero,R.;Stojkovic,S.;Hummelink,F.;Gourdon, A.;Laegsgaard,E.;Stensgaard,I.;Joachim,C.;Besenbacher,F. J.Phys.Chem.B 2006,110,12835.doi:10.1021/jp0619437

    (16) Mugarza,A.;Krull,C.;Korytar,R.;Lorente,N.;Gambardella, P.Phys.Rev.B 2012,85,155437.doi:10.1103/ PhysRevB.85.155437

    (17)Hao,D.;Song,C.;Ning,Y.;Wang,Y.;Wang,L.;Ma,X.C.; Chen,X.;Xue,Q.K.J.Chem.Phys.2011,134,154703. doi:10.1063/1.3579493

    (18) Jiang,Y.H.;Xiao,W.D.;Liu,L.W.;Zhang,L.Z.;Yang,C.K.; Du,S.X.;Gao,H.J.J.Phys.Chem.C 2011,115,21750. doi:10.1021/jp203462f

    (19)Hipps,K.W.;Lu,X.;Wang,X.D.;Mazur,U.J.Phys.Chem. 1996,100,11207.doi:10.1021/jp960422o

    (20) Li,Q.X.;Yang,J.L.;Yuan,L.F.;Hou,J.G.;Zhu,Q.S.Chin. Phys.Lett.2001,18,1234.

    (21) Lippel,P.H.;Miller,M.D.;Wilson,R.J.Phys.Rev.Lett.1989, 62,171.doi:10.1103/PhysRevLett.62.171

    (22) Berner,S.;Wild,M.D.;Ramoino,L.;Ivan,S.;Baratoff,A.; Guntherodt,H.J.;Suzuki,H.;Schlettwein,D.;Jung,T.A.Phys. Rev.B 2003,68,115410.doi:10.1103/PhysRevB.68.115410

    (23) Takada,M.;Tada,H.Chem.Phys.Lett.2004,392,265. doi:10.1016/j.cplett.2004.04.121

    (24) Mannsfeld,S.C.B.;Fritz,T.Phys.Rev.B 2005,71,235405. doi:10.1103/PhysRevB.71.235405

    (25) Koudia,M.;Abel,M.;Maurel,C.;Bliek,A.;Catalin,D.; Mossoyan,M.;Mossoyan,J.C.;Porte,L.J.Phys.Chem.B 2006,110,10058.doi:10.1021/jp0571980

    (26)Wang,Y.F.;Zhang,X.R.;Ye,Y.C.;Liang,D.J.;Wang,Y.;Wu, K.Acta Phys.-Chim.Sin.2010,26,933.[王永峰,張鑫然,葉迎春,梁德建,王遠,吳凱.物理化學學報,2010,26,933.] doi:10.3866/PKU.WHXB20100419

    (27) Du,S.X.;Zhang,Y.Y.;Gao,H.J.Phys.Rev.B 2011,84, 125446.doi:10.1103/PhysRevB.84.125446

    (28) Larsson,J.A.;Baran,J.D.;Cafolla.A.A.;Schulte,K.;Dhanak, V.R.Phys.Rev.B 2010,81,075413.doi:10.1103/PhysRevB.81.075413

    (29) Zhang,T.T.;Wang,C,J.;Sun,K.;Yuan,H.K.;Wang,J.Z. Appl.Surf.Sci.2014,317,1047.doi:10.1016/j. apsusc.2014.08.198

    (30) Tao,M.L.;Tu,Y.B.;Sun,K.;Zhang,Y.;Zhang,X.;Li,Z.B.; Hao,S.J.;Xiao,H.F.;Ye,J.;Wang,J.Z.J.Phys.D:Appl. Phys.2016,49,015307.doi:10.1088/0022-3727/49/1/015307

    (31)Hipps,K.W.;Lu,X.;Wang,X.D.;Mazur,U.J.Phys.Chem. 1996,100,11207.doi:10.1021/jp960422o

    (32) Du,X.Q.;Li,H.Q.;Zhu,Q.R.;Zou,Z.Q.;Liang,Q.Acta Phys.-Chim.Sin.2011,27,2457.[杜曉清,李慧琴,朱齊榮,鄒志強,梁齊.物理化學學報,2011,27,2457.]doi:10.3866/ PKU.WHXB20111010

    (33)Huang,H.;Wong,S.L.;Chen,W.;Wee,A.T.S.J.Phys.D: Appl.Phys.2011,44,464005.doi:10.1088/0022-3727/44/46/ 464005

    (34) Wang,Y.F.;Kroger,J.;Berndt,R.;Tang,H.J.Am.Chem.Soc. 2010,132,12546.doi:10.1021/ja105110d

    Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111)Surface

    YE JuanSUN KaiTAO Min-LongTU Yu-BingXIE Zheng-BoWANG Ya-Li HAO Shao-JieXIAO Hua-FangWANG Jun-Zhong*
    (School of Physical Science and Technology,Southwest University,Chongqing 400715,P.R.China)

    The adsorption and chiral features of a self-assembled CuPc monolayer on a semi-metallic Bi(111) surface have been evaluated using the low temperature scanning tunneling microscopy(LT-STM).Under low coverage conditions,the individual CuPc molecules rotated around the molecular center at 78 K until they interacted with other molecule to form clusters,because of the relatively weak interfacial interactions between the CuPc molecules and the Bi(111)surface.As the level of molecular coverage increased,the CuPc molecules self-assembled into two-dimensional domains with each molecule exhibiting chiral features.Beyond one monolayer,the CuPc molecules underwent an orientational transition from a flat-lying to a standing-up configuration.The chiral features of the CuPc molecules were attributed to the combined effect of asymmetric charge transfer between the CuPc molecules and the Bi(111)substrate and the formation of asymmetric intermolecular van der Waals interactions.

    CuPc;Scanning tunneling microscopy;Semi-metallic Bi(111);Chiral feature;Self-assembly

    1 Introduction

    In the past decades,transition-metal phthalocyanines(TMPc) molecules,have received considerable interest because of their unprecedented ability of self-assembly of ordered nanostructures on various metals1-3.Due to their relatively simple,stable,and symmetrical cross-like structure in Fig.1(a),TMPcs are consideredas a prototype of the single molecule magnet4.The magnetic properties of transition metal atoms in a host molecule can be detected by controlling charge states,spin states,and the Kondo effect at the single molecule level in cryogenic scanning tunneling5-9.The interaction of molecules with the corresponding substrate governs the self-assembly of TMPc molecules.In particular, chirality of the self-assembly of the achiral TMPc molecules deposited on metallic surfaces has been a hot research topic in recent years10-16.Chirality plays a fundamental role in molecular adsorption and self-assembly13.Highly symmetric molecules adsorbed on a substrate with dissimilar point-group symmetry have also been shown to develop chiral feature through asymmetric intermolecular interactions14,15.

    June 1,2016;Revised:July 7,2016;Published online:July 7,2016.

    .Email:jzwangcn@swu.edu.cn;Tel:+86-13883734915.

    O647

    10.3866/PKU.WHXB201607071

    The project was supported by the National Natural Science Foundation of China(10974156,21173170,91121013,11574253).國家自然科學資金(10974156,21173170,91121013,11574253)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (15) Richardson,N.V.New J.Phys.2007,9,395.10.1088/1367-2630/9/10/395

    猜你喜歡
    酞菁手性大學物理
    手性磷酰胺類化合物不對稱催化合成α-芳基丙醇類化合物
    分子催化(2022年1期)2022-11-02 07:10:30
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    利奈唑胺原料藥中R型異構體的手性HPLC分析
    脂肪酶Novozyme435手性拆分(R,S)-扁桃酸
    纖維素纖維負載鈷酞菁對活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對Li/SOCl2電池催化活性的影響
    應用化工(2014年10期)2014-08-16 13:11:29
    現(xiàn)代信息技術在大學物理教學中的應用探討
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    大學物理與高中物理銜接教育的探討
    物理與工程(2012年1期)2012-03-25 10:04:59
    大學物理實驗教學創(chuàng)新模式的探索與實踐
    物理與工程(2012年1期)2012-03-25 10:04:51
    只有这里有精品99| 嫩草影院入口| 欧美性感艳星| 精品一区二区免费观看| 日韩av在线免费看完整版不卡| 欧美最新免费一区二区三区| 伦理电影大哥的女人| 国产午夜精品一二区理论片| 免费少妇av软件| videos熟女内射| 蜜桃亚洲精品一区二区三区| a级毛色黄片| 97精品久久久久久久久久精品| 久久国内精品自在自线图片| 久久99热这里只频精品6学生| 大片电影免费在线观看免费| www.色视频.com| 99热网站在线观看| 一区二区av电影网| 亚洲精品成人久久久久久| 1000部很黄的大片| 国产午夜福利久久久久久| 国产欧美亚洲国产| 免费看不卡的av| 国产在线男女| 久久这里有精品视频免费| 天堂网av新在线| 久久精品国产鲁丝片午夜精品| 成年免费大片在线观看| 免费观看的影片在线观看| 美女内射精品一级片tv| 免费av毛片视频| 久久精品久久久久久噜噜老黄| 久久鲁丝午夜福利片| 久久精品国产亚洲av天美| 丝瓜视频免费看黄片| 别揉我奶头 嗯啊视频| 久久久久久久国产电影| 亚洲久久久久久中文字幕| 高清毛片免费看| 内地一区二区视频在线| 亚洲精品乱码久久久v下载方式| 国产在线一区二区三区精| 亚洲图色成人| 成年av动漫网址| 伊人久久国产一区二区| 国产综合懂色| 成年女人在线观看亚洲视频 | 欧美bdsm另类| 亚洲成人中文字幕在线播放| 亚洲天堂av无毛| 黄片wwwwww| 九九久久精品国产亚洲av麻豆| 免费电影在线观看免费观看| 国产一区亚洲一区在线观看| 亚洲自偷自拍三级| 国产精品人妻久久久影院| 国产欧美另类精品又又久久亚洲欧美| 老女人水多毛片| 内地一区二区视频在线| 又爽又黄a免费视频| 午夜精品一区二区三区免费看| 国产一区有黄有色的免费视频| 观看免费一级毛片| 国产亚洲av片在线观看秒播厂| 亚洲天堂国产精品一区在线| 久久久a久久爽久久v久久| 国产乱人偷精品视频| 久久久a久久爽久久v久久| 少妇熟女欧美另类| 综合色丁香网| 国产成人91sexporn| 22中文网久久字幕| 午夜视频国产福利| 亚洲成人一二三区av| 精品久久久久久久末码| 久久久久久伊人网av| 亚洲欧美一区二区三区黑人 | 国产爱豆传媒在线观看| 人妻 亚洲 视频| 简卡轻食公司| 一级毛片电影观看| 只有这里有精品99| 成人亚洲精品一区在线观看 | 国产成人精品婷婷| 欧美另类一区| 久久人人爽av亚洲精品天堂 | 王馨瑶露胸无遮挡在线观看| 国语对白做爰xxxⅹ性视频网站| 春色校园在线视频观看| 热99国产精品久久久久久7| 日本一二三区视频观看| 亚洲最大成人手机在线| 在线免费十八禁| 亚洲精品成人av观看孕妇| 美女视频免费永久观看网站| 欧美日韩亚洲高清精品| 亚洲av在线观看美女高潮| 中文在线观看免费www的网站| 国产色婷婷99| 欧美变态另类bdsm刘玥| 亚洲,欧美,日韩| 亚洲经典国产精华液单| 免费观看在线日韩| 日韩一本色道免费dvd| 亚洲熟女精品中文字幕| 成人国产麻豆网| 99热网站在线观看| 麻豆国产97在线/欧美| 午夜亚洲福利在线播放| 精品久久久久久久末码| 中文乱码字字幕精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲成人一二三区av| 直男gayav资源| 大又大粗又爽又黄少妇毛片口| 中文资源天堂在线| 国产成人精品福利久久| 精品国产露脸久久av麻豆| 欧美精品一区二区大全| 欧美亚洲 丝袜 人妻 在线| 哪个播放器可以免费观看大片| 成人黄色视频免费在线看| 最近最新中文字幕免费大全7| 精品一区在线观看国产| 欧美少妇被猛烈插入视频| 亚洲欧洲日产国产| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜爱| 亚洲高清免费不卡视频| 春色校园在线视频观看| 少妇人妻精品综合一区二区| 一级av片app| 在线观看人妻少妇| 欧美老熟妇乱子伦牲交| 亚洲色图av天堂| 九九在线视频观看精品| 久久久亚洲精品成人影院| 婷婷色综合大香蕉| 日韩大片免费观看网站| 色哟哟·www| 校园人妻丝袜中文字幕| 欧美成人一区二区免费高清观看| 美女cb高潮喷水在线观看| 一级黄片播放器| 熟妇人妻不卡中文字幕| 国产成人精品一,二区| kizo精华| 亚洲av二区三区四区| 中文天堂在线官网| 精品久久久久久久久亚洲| 午夜激情久久久久久久| 69人妻影院| 成人二区视频| 99久久精品国产国产毛片| 麻豆乱淫一区二区| 国产久久久一区二区三区| av在线老鸭窝| 久久亚洲国产成人精品v| 久久久久久久久久人人人人人人| 交换朋友夫妻互换小说| 国产一区二区在线观看日韩| 亚洲自偷自拍三级| 亚洲精品久久午夜乱码| 午夜福利视频1000在线观看| 狂野欧美激情性bbbbbb| 中文字幕免费在线视频6| 在线观看一区二区三区激情| 久久久欧美国产精品| 久久久久久久久久人人人人人人| 国产永久视频网站| 少妇被粗大猛烈的视频| 国产成人福利小说| 免费观看无遮挡的男女| 国产 精品1| 欧美 日韩 精品 国产| 最近最新中文字幕大全电影3| kizo精华| 欧美日韩综合久久久久久| av福利片在线观看| 日本黄大片高清| 国产极品天堂在线| 搡女人真爽免费视频火全软件| 亚洲精品国产成人久久av| 性插视频无遮挡在线免费观看| 日韩 亚洲 欧美在线| 高清毛片免费看| 另类亚洲欧美激情| 国产熟女欧美一区二区| 国产精品成人在线| 一本色道久久久久久精品综合| 免费大片18禁| 男人爽女人下面视频在线观看| 蜜桃久久精品国产亚洲av| av专区在线播放| 亚洲欧美日韩东京热| 国产高潮美女av| 亚洲怡红院男人天堂| 18禁在线播放成人免费| 日本欧美国产在线视频| 香蕉精品网在线| 欧美潮喷喷水| 不卡视频在线观看欧美| 国产有黄有色有爽视频| av播播在线观看一区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产色婷婷99| 亚洲经典国产精华液单| 国产亚洲5aaaaa淫片| 丰满人妻一区二区三区视频av| 色视频在线一区二区三区| 免费观看的影片在线观看| 国产91av在线免费观看| 免费av观看视频| 永久网站在线| 黄片wwwwww| 亚洲国产欧美人成| 自拍欧美九色日韩亚洲蝌蚪91 | 国产av不卡久久| 97超视频在线观看视频| 欧美亚洲 丝袜 人妻 在线| 成人免费观看视频高清| 国产探花极品一区二区| 久热这里只有精品99| tube8黄色片| 国产综合懂色| 高清在线视频一区二区三区| 如何舔出高潮| 丝瓜视频免费看黄片| 如何舔出高潮| 最近2019中文字幕mv第一页| 国产日韩欧美亚洲二区| 免费看光身美女| 亚洲精品久久久久久婷婷小说| 久久久久精品久久久久真实原创| 深爱激情五月婷婷| 乱系列少妇在线播放| 欧美成人午夜免费资源| 亚洲精品国产av蜜桃| 亚洲av一区综合| 国产亚洲av嫩草精品影院| 午夜激情福利司机影院| 夜夜爽夜夜爽视频| 又爽又黄a免费视频| 欧美+日韩+精品| 只有这里有精品99| 狂野欧美激情性xxxx在线观看| 久久久久精品性色| 男女无遮挡免费网站观看| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲av片在线观看秒播厂| 免费av不卡在线播放| 国产一区二区在线观看日韩| 亚洲国产欧美人成| 99久久精品国产国产毛片| 直男gayav资源| 免费看光身美女| 1000部很黄的大片| 成人国产av品久久久| 综合色av麻豆| 中文乱码字字幕精品一区二区三区| 男女那种视频在线观看| 国产精品久久久久久久电影| 精品一区二区免费观看| av在线播放精品| 久久久久久久大尺度免费视频| 国产精品一区二区三区四区免费观看| 街头女战士在线观看网站| 听说在线观看完整版免费高清| 国产视频内射| 亚洲精华国产精华液的使用体验| 天天躁夜夜躁狠狠久久av| 国国产精品蜜臀av免费| 国产免费一区二区三区四区乱码| 国产精品久久久久久精品古装| 欧美激情国产日韩精品一区| av播播在线观看一区| 中国国产av一级| 亚洲人与动物交配视频| 久久精品国产亚洲网站| 可以在线观看毛片的网站| 亚洲av日韩在线播放| 国产一区亚洲一区在线观看| 国产精品一及| 国产免费视频播放在线视频| 一区二区三区乱码不卡18| 亚洲精品中文字幕在线视频 | 亚洲精品日韩av片在线观看| 一级二级三级毛片免费看| 建设人人有责人人尽责人人享有的 | 日韩精品有码人妻一区| 亚洲最大成人av| 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 婷婷色麻豆天堂久久| 久久影院123| 三级国产精品片| 欧美日本视频| 一区二区三区精品91| 一级二级三级毛片免费看| 三级国产精品片| av在线亚洲专区| 日日啪夜夜撸| 国产黄a三级三级三级人| 丝袜脚勾引网站| 欧美变态另类bdsm刘玥| freevideosex欧美| 国产精品精品国产色婷婷| 国产乱来视频区| 国产精品99久久久久久久久| 欧美日韩在线观看h| 免费大片18禁| 极品教师在线视频| 人人妻人人爽人人添夜夜欢视频 | 男女国产视频网站| 成年免费大片在线观看| 午夜视频国产福利| 欧美亚洲 丝袜 人妻 在线| 青青草视频在线视频观看| 国产一级毛片在线| 久久久久国产网址| 国产一区二区在线观看日韩| 久久97久久精品| 亚洲人成网站在线播| 美女脱内裤让男人舔精品视频| 大码成人一级视频| 国产成人aa在线观看| 另类亚洲欧美激情| av在线观看视频网站免费| 18禁在线播放成人免费| 美女视频免费永久观看网站| 日韩国内少妇激情av| 最新中文字幕久久久久| av国产久精品久网站免费入址| 精品人妻一区二区三区麻豆| 国产免费福利视频在线观看| 国产成年人精品一区二区| 亚洲国产精品成人久久小说| 国产亚洲av片在线观看秒播厂| 日本黄大片高清| 综合色av麻豆| 欧美成人精品欧美一级黄| 成年版毛片免费区| 国产成人免费观看mmmm| 亚洲四区av| 国产成人午夜福利电影在线观看| 中文欧美无线码| 免费观看无遮挡的男女| 国产综合懂色| 久久热精品热| 视频中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 色网站视频免费| 精品久久久久久久久av| 99热6这里只有精品| 天天一区二区日本电影三级| 亚洲av成人精品一二三区| 男男h啪啪无遮挡| 亚洲国产精品国产精品| 三级国产精品欧美在线观看| 久久久久久国产a免费观看| 简卡轻食公司| 欧美+日韩+精品| 又大又黄又爽视频免费| 亚洲高清免费不卡视频| 欧美97在线视频| 亚洲一区二区三区欧美精品 | av专区在线播放| 亚洲av中文av极速乱| 亚洲,一卡二卡三卡| 在线观看人妻少妇| 亚洲精品亚洲一区二区| 啦啦啦中文免费视频观看日本| 免费黄网站久久成人精品| 乱系列少妇在线播放| 高清视频免费观看一区二区| 亚洲成人中文字幕在线播放| 精品久久久精品久久久| 大又大粗又爽又黄少妇毛片口| 男女边摸边吃奶| 丝袜美腿在线中文| 在线观看人妻少妇| 亚洲精品乱码久久久久久按摩| 亚洲精品久久午夜乱码| 中文字幕人妻熟人妻熟丝袜美| 高清午夜精品一区二区三区| 久久久久久久午夜电影| 免费看日本二区| 亚洲国产高清在线一区二区三| 听说在线观看完整版免费高清| 一级av片app| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 久久久久性生活片| 九草在线视频观看| 各种免费的搞黄视频| 成年免费大片在线观看| 国产男女超爽视频在线观看| 一级片'在线观看视频| 国产视频内射| 三级经典国产精品| 精品午夜福利在线看| 女人被狂操c到高潮| 夫妻性生交免费视频一级片| 午夜激情久久久久久久| 又爽又黄无遮挡网站| 国产av码专区亚洲av| 欧美国产精品一级二级三级 | 日本-黄色视频高清免费观看| 久久ye,这里只有精品| 欧美高清性xxxxhd video| 交换朋友夫妻互换小说| 最近中文字幕高清免费大全6| videos熟女内射| 久久久午夜欧美精品| 亚洲精品影视一区二区三区av| 亚洲av中文字字幕乱码综合| 97人妻精品一区二区三区麻豆| 国产亚洲精品久久久com| 中文资源天堂在线| 一区二区av电影网| 久久久久性生活片| 国产老妇女一区| 精品一区在线观看国产| 美女视频免费永久观看网站| 高清午夜精品一区二区三区| 亚洲av电影在线观看一区二区三区 | 日韩在线高清观看一区二区三区| 精品久久久久久电影网| 国产黄色视频一区二区在线观看| 国产精品一区二区在线观看99| 国产男人的电影天堂91| 中文字幕亚洲精品专区| 91久久精品电影网| 亚洲aⅴ乱码一区二区在线播放| 秋霞伦理黄片| 一区二区av电影网| 韩国av在线不卡| 日本黄大片高清| 国产黄片视频在线免费观看| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 狂野欧美激情性bbbbbb| 精品国产一区二区三区久久久樱花 | 91狼人影院| 中国三级夫妇交换| 91精品国产九色| 男女边摸边吃奶| 春色校园在线视频观看| 一个人看视频在线观看www免费| 一级a做视频免费观看| av线在线观看网站| 国产精品福利在线免费观看| 最近手机中文字幕大全| 黄色配什么色好看| 久久精品综合一区二区三区| 国产精品伦人一区二区| 日韩国内少妇激情av| 99热国产这里只有精品6| 国产高清有码在线观看视频| 在线亚洲精品国产二区图片欧美 | 99热这里只有是精品在线观看| 欧美+日韩+精品| 免费观看a级毛片全部| 久久韩国三级中文字幕| 久久久久久久久久久丰满| 大陆偷拍与自拍| 国产精品国产三级国产av玫瑰| 国产老妇女一区| av天堂中文字幕网| 国产亚洲最大av| 国产免费又黄又爽又色| 国产精品秋霞免费鲁丝片| 性色av一级| 日韩av不卡免费在线播放| 春色校园在线视频观看| 亚洲欧美日韩东京热| 欧美国产精品一级二级三级 | 欧美另类一区| 国产高清三级在线| 看非洲黑人一级黄片| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添av毛片| 日韩av免费高清视频| 国产精品麻豆人妻色哟哟久久| 亚洲怡红院男人天堂| 欧美日韩亚洲高清精品| 中文欧美无线码| 国产乱来视频区| 久久精品人妻少妇| 热99国产精品久久久久久7| 亚洲成人av在线免费| 久久久久久久精品精品| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| 亚洲精品456在线播放app| 午夜日本视频在线| 亚洲av免费高清在线观看| 精品久久国产蜜桃| 在线观看一区二区三区激情| 久久久成人免费电影| 国产精品久久久久久久久免| 日产精品乱码卡一卡2卡三| 水蜜桃什么品种好| 两个人的视频大全免费| 王馨瑶露胸无遮挡在线观看| 国产毛片a区久久久久| 嫩草影院新地址| 免费av观看视频| 久久久久久国产a免费观看| 国产日韩欧美在线精品| 七月丁香在线播放| 久久精品国产亚洲av天美| 婷婷色综合大香蕉| 成人二区视频| 国产真实伦视频高清在线观看| 久久人人爽人人片av| 久久久午夜欧美精品| 最近的中文字幕免费完整| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| 日本-黄色视频高清免费观看| 插阴视频在线观看视频| 欧美日韩综合久久久久久| 亚洲精品影视一区二区三区av| 精品酒店卫生间| av国产精品久久久久影院| 欧美激情国产日韩精品一区| 欧美性猛交╳xxx乱大交人| 日韩在线高清观看一区二区三区| 欧美少妇被猛烈插入视频| 欧美变态另类bdsm刘玥| 精品久久久久久久久av| 日韩一区二区视频免费看| 日本猛色少妇xxxxx猛交久久| 成年女人在线观看亚洲视频 | av在线app专区| 久久99热这里只有精品18| 久久久久久久国产电影| 少妇丰满av| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩无卡精品| 免费看av在线观看网站| 久久99蜜桃精品久久| 美女高潮的动态| 国产精品无大码| 男人狂女人下面高潮的视频| 日本色播在线视频| 蜜桃亚洲精品一区二区三区| 亚洲av国产av综合av卡| 性插视频无遮挡在线免费观看| 熟女av电影| 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| 国产欧美另类精品又又久久亚洲欧美| 亚洲美女搞黄在线观看| 永久免费av网站大全| 美女内射精品一级片tv| 久久女婷五月综合色啪小说 | 69av精品久久久久久| 久久久久国产网址| 国精品久久久久久国模美| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| av天堂中文字幕网| 婷婷色综合www| 亚洲欧美一区二区三区黑人 | 精品亚洲乱码少妇综合久久| 亚洲欧美精品专区久久| 成人二区视频| 国产 一区精品| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 亚洲国产精品国产精品| 97超视频在线观看视频| 黄色欧美视频在线观看| 久久久国产一区二区| 精品久久久久久久人妻蜜臀av| 国产亚洲最大av| 久久精品国产亚洲av涩爱| 亚洲aⅴ乱码一区二区在线播放| 夫妻性生交免费视频一级片| 一本久久精品| 亚洲av日韩在线播放| 国产成人aa在线观看| 免费看a级黄色片| 欧美成人精品欧美一级黄| 亚洲欧洲国产日韩| 精品人妻一区二区三区麻豆| 国产成年人精品一区二区| 免费少妇av软件| 一边亲一边摸免费视频| 赤兔流量卡办理| 视频中文字幕在线观看| 精品酒店卫生间| 欧美日韩国产mv在线观看视频 | 亚洲国产高清在线一区二区三| 久久久色成人| 午夜福利高清视频| 99热这里只有是精品在线观看| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| eeuss影院久久| 国产久久久一区二区三区| 免费电影在线观看免费观看| 久久精品熟女亚洲av麻豆精品| 嫩草影院精品99| 国产成人精品福利久久| 好男人视频免费观看在线| 身体一侧抽搐| 建设人人有责人人尽责人人享有的 |