• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dissipation of polycyclic aromatic hydrocarbons in crop soils amended with oily sludge

    2016-11-21 02:09:51ShaopingKuangWenjuanYuYanSongYaqingSuHuihuiWangLinaWang
    Acta Geochimica 2016年4期
    關(guān)鍵詞:計(jì)算結(jié)果頂板數(shù)值

    Shaoping Kuang·Wenjuan Yu·Yan Song·Yaqing Su·Huihui Wang· Lina Wang

    Dissipation of polycyclic aromatic hydrocarbons in crop soils amended with oily sludge

    Shaoping Kuang1,2·Wenjuan Yu1·Yan Song1·Yaqing Su1·Huihui Wang1,2· Lina Wang1

    Oil fields present a potential ecological risk to nearby farmland soil.Here we present a new method designed to evaluate the ability of winter wheat(Triticum aestivum)to contribute to the dissipation of polycyclic aromatic hydrocarbons(PAHs),which are priority pollutants in soils contaminated by oily sludge.The influence of different doses of oily sludge on the dissipation of PAHs was studied along with individual PAH profiles in soils after different periods of plant growth.Five soil samples were artificially contaminated with different percentages of oily sludge(0%,5%,10%,15%and 20%).Winter wheat grew in the oily sludge-amended soils for 265 days. PAH content in the soils was monitored over the course of the study.The rate of PAH dissipation is related to the properties of different PAHs,period of winter wheat growth,and oily sludge application dose.Analysis for treated soils indicates that the dissipation of PAHs increased significantly over the first 212 days,followed by minimal changes over the final 53 days of treatment.In contrast,PAH dissipation slowed with increasing oily sludge application.For each PAH,the experimental results showed a significant compound-dependent trend.Winter wheat in the present study significantly enhanced the dissipation of PAHs in oily sludge-contaminated soil.

    ? Shaoping Kuang

    kuang1009@126.com

    1Qingdao University of Science and Technology,Zhengzhou Road 53,Qingdao 266042,Shandong,People’s Republic of China

    2Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta,Binzhou University,Binzhou 256600,Shandong,People’s Republic of China

    Oily sludge·Soil·Polycyclic aromatic hydrocarbons·Dissipation·Bioremediation

    1 Introduction

    Polycyclic aromatic hydrocarbons(PAHs)are remarkable for their long half-life period in soil and biota.They are by-products from the incomplete combustion or pyrolysis of organic materials and sixteen of them are listed as priority pollutants by the United States Environmental Protection Agency(EPA)(Puglisi et al.2007;Das et al. 2008;Kim et al.2013;Zhang et al.2015).PAHs are concerning mainly for their widespread occurrence,recalcitrance,and toxic/carcinogenic properties which may adversely affect both human health and biota(Yang et al. 2008;Cao et al.2013;Maria et al.2014;Wang et al. 2015).PAHs can easily present in soils via atmospheric deposition as well as anthropic activity(such as disposal of waste materials,car tire shredding and road runoff,sewage sludge,industrial wastewater,and compost applied to agricultural land)(Qiao et al.2008;Edris et al.2014;Roozbeh et al.2014;Hu et al.2015).Soils become the main environmental harbors for these contaminants(Chaineau et al.2000;Wang et al.2012,2013;Tsibart and Gennadiev 2013).

    Over the last few years,interest has increased around PAH remediation technologies that are cheap and environmentally friendly(Ortega-Calvo et al.2007;Peng et al. 2008;Maillacheruvu and Pathan 2009;Minai-Tehrani et al. 2015).Phytoremediation has gained acceptance and now is considered one of the most promising alternative remediation approaches for PAHs in soil(Joner and Leyval 2003;Fernández-Luquen?o et al.2008;Ma et al.2009;Liu et al. 2013).Much research has been conducted about PAHs insoil and plants(Aichberger et al.2006;Stroud et al.2007;Priyanka et al.2015).However,research focused on PAHs from oily sludges is less abundant(Zhang et al.2015;Kuang et al.2008;Nanekar et al.2015).Little is known about the potential impact of edible plants on the fate of PAHs in oily sludge-contaminated soils and the basic mechanisms involved remain poorly understood(Su and Zhu 2008;Ma et al.2009;Oleszczuk 2009).On the other hand,increasing oil exploitation continues to produce large amounts of PAH-abundant oily sludge.Improper management of oily sludge causes serious damage to ecosystems and the abundant PAHs in oily sludge may persist in soil for a long time,turning oily sludge disposal into a prominent environmental problem.As PAHs can easily enter sediment,the determination of PAH dissipation in agricultural soil around oilfields is an important research question(Kuang and Chen 2009).

    The aim of the present work is to investigate soil PAH dissipation with field phytoremediation.Winter wheat(Triticum aestivum)was chosen as the test plant in our research since it is a typical crop in northern China.The experiment was designed to evaluate the ability of winter wheat to contribute to PAH removal.Variation for the dissipation of the sixteen PAHs in the EPA list was determined.In order to simulate environmental conditions,soils used in this experiment were artificially contaminated with different percentages of oily sludge.The results provide the theoretical basis for the proper utilization and scientific management of oily sludge in oil fields.

    2 Samples and experiments

    2.1Instruments

    PAHs were determined by high performance liquid chromatography(HPLC,Shimadzu,Japan)with a fluorescence detector and VP-ODS column(Serial No.9122504,150L×4.6),and extracted by ultrasonic washer(KQ5200,Kunshan in China).The concentration of PAHs in liquors was finished by rotary evaporator(Shensheng SENCO-R,China)and thermostat water bath(Shensheng W201B,China).PAH samples were separated by low-speed tabletop centrifuge(TDL-40B,Shanghai),Quick mixer(Changzhou,China),and water cycling multipurpose vacuum pump(SHB-III,Zhengzhou in China).

    2.2Reagents

    Dichloromethane,cyclohexane,acetonitrile,methanol,silica,and anhydrous sodium sulfate were used.Among them,acetonitrile was chromatographically pure;other reagents were all analytically pure.Methanol was distilled prior to use.Silica was used in the stratographic analysis. PAH standard matters were bought from Supelco Corporation of America.

    2.3Soil samples collection and treatment

    Soil used in this experiment was farmland soil without any known contamination history.In order to simulate typical properties of the farmland soil contaminated by oily sludge,winter wheat was cultured in five different soils with increasing mass percentages(0%,5%,10%,15%and 20%)of oily sludge.Oily sludge mass percentages were calculated by dry mass.The initial content of each PAH in oily sludge-amended soil was calculated according to the control soil and oily sludge(Yu et al.2013).The seeds of winter wheat germinated directly in the open air without any fertilization control;water was needed.Due to the long growth cycle of winter wheat,the experiments were carried out for 265 days.

    Oily sludge-amended soil samples were collected and analyzed after 53,106,159,212 and 265 days.The soil samples were immediately air-dried,grinded,and sieved after being collected.They were then placed into polyvinyl chloride bags,sealed,and stored at room temperature prior to PAH analyses.

    2.4Extraction,concentration,purification,and determination of PAHs

    (1) The extraction,concentration and purification of PAHs.A sample was put into a centrifuge bottle and dichloromethane was added.The centrifuge bottle was kept in the ultrasonic washer for 2 h and then transferred into the centrifugal vacuum pump.A volume of 10.00 mL of supernatant was transferred into an egg yard type bottle,and all the liquids were dried by rotary evaporator.Afterwards,the resulting residue was dissolved with cyclohexane.A 0.50 mL sample of the obtained solution was put on the mini silica column.A second fraction containing PAHs was collected and blown dry with nitrogen.

    (2) Determination of PAHs.Samples were determined by HPLC equipped with fluorescence detector. Sample preconcentration liquid and mixed certificated liquid were extracted separately.

    The qualitative analysis was done by the comparison of the retention time of PAHs,while the quantitative analysis was carried out by the determination of PAHs using an external standard method.In addition,principal component analysis was conducted with SPSS1 1.0.Categories and contents of PAHs in variously treated soil samples after different periods of plant growth are presented in Tables 1,2,3,and4.(The initial contents of PAHs in the control soil and oily sludge and the contents of PAHs after 265 days of plant growth were illustrated in Yu et al.2013).The initial contents of individual PAHs in oily sludge-amended soil were calculated according to the content of control soil and oily sludge.

    2.5Data analysis

    The dissipation of PAHs was evaluated according to the following formula:

    PAH dissipation(%)=100-Ct×100/C0

    where Ctis the concentration(μg/g)of PAHs in soil at the time t and C0is the concentration(μg/g)of PAHs in soil at the time 0.

    3 Results and discussion

    Sixteen PAHs listed as priority pollutants presented in study soils.The total PAH contents of oily sludge and control soil were 3504.66 and 16.96 μg/g,respectively. Naphthalene and phenanthrene were predominant in the control soil.In line with the soil,oily sludge used in this experiment had a considerably high content of 2-and 3-ring PAHs.The introduction of sludge into the soil results in an increase in soil PAH content(Baran andOleszczuk 2003;Oleszczuk and Baran 2005;Varun et al. 2013).Table 5 shows that PAH concentrations in the treated soil varied distinctly during the experimental period.It was found that the apparent losses of PAHs wererelated to the properties of different PAHs,the period of winter wheat growth,and oily sludge application dose.

    Table 1 Residual concentrations(μg/g)of PAHs in treated soil samples after 53 days of plant growth

    Table 2 Residual concentrations(μg/g)of PAHs in treated soil samples after 106 days of plant growth

    Table 3 Residual concentrations(μg/g)of PAHs in treated soil samples after 159 days of plant growth

    Table 4 Residual concentrations(μg/g)of PAHs in treated soil samples after 212 days of plant growth

    3.1Impact of time on PAH dissipation

    The period of winter wheat growth was an important factor affecting PAH losses.During the whole period of study,continuous variation of PAH content was observed.The dissipation rate of PAHs increased significantly with time. For example,the average dissipation rate(for all studied soils)of predominant PAHs in the period of the first 53 days was only 4.94%,3.43%,3.79%,3.63%and 3.86%for naphthalene,acenaphthylene,acenaphthene,fluorene,and phenanthrene,respectively,while in the continuous period of the first 212 days the corresponding losses of those PAHs were 64.78%,60.17%,63.32%,62.37%,and 61.33%,followed by minimal variations over the subsequent 53 days of treatment.The applied dissipation rates of PAHs explain the variability of the low values in the initial period of the first 53 days;the dissipation rates increased with time to the largest value of 70.67%at the end of the experiment.Figure 1 presents the significant trend of total PAH content in treated soils related to the days of winter wheat growth.The most pronounced dissipation of PAHs was found at the heading stage of winter wheat.

    The dissipation rates of individual PAHs are illustrated in Table 5;the half-lives for most PAHs(5-and 6-ring PAHs being the exception)were between 59 and 212 days irrespective ofoily sludge application dose.Forexample,the T1/2values formostPAHs in soilcontaminated by oily sludge at 20%approached 212 days.As for 5-and 6-ring PAHs(benzo[a]pyrene,indeno(1,2,3-cd)pyrene,dibenzo(a,h)anthracene,and benzo(g,h,i)perylene),the half-lives were not reached by the end of the study.The highest T1/2values corresponded to naphthalene and the lowest to benzo(g,h,i)perylene.

    3.2Effect of PAHs properties on PAHs dissipation

    As for individual PAHs,the overall extent of PAH loss from all treated soils showed a significant compound-dependent trend in line with previous findings(Fismes et al. 2002;Gao and Zhu 2004;Ian et al.2013;Jin et al.2014). The average concentration of PAHs with various rings in soil samples are listed in Fig.2,which shows that the properties of PAHs strongly influence the extent of their dissipation.The dissipation rates of low-molecular-weight PAHs are much higher than those of high-molecularweight PAHs,despite the fact that low-molecular-weight PAHs are predominant in soil.In the experimental treatment with various doses of oily sludge,more than half(51.66%)of 2-to 4-ring PAHs degraded,whereas the dissipation was much lower in the case of 5-to 6-ring PAHs.For example,the lowest dissipation in the present study was only 27.94%.This pronounced trend is in agreement with many other research reports,which suggests that high-molecular-weight PAHs are more resistant to microbial attack than low-molecular-weight PAHs(Tabak et al.2003;Lee et al.2008).

    3.3Impact of oily sludge application on PAH dissipation

    The contents of PAHs in treated soils increase along with the oily sludge percentages.The dissipation rate of PAHs in soils planted with winter wheat was negatively correlated with the percentages of oily sludge.The reduction of PAH dissipation ratios might be attributed to the more negative effect of PAHs on winter wheat growth with the percentages of oily sludge increasing.The cause might be the inherent toxicity of PAHs;PAHs might have indirect adverse effects on plants by reducing the ability of soil to provide nutrients and water for plants.

    The removal extent for individual PAHs depended on the oily sludge dose.For example,the dissipation rates for naphthalene and phenanthrene after 265 days of plantgrowth were 59.97%and 58.16%,respectively,in planted soil with a 20%oily sludge dose,which were significantly lower than in soil with a 5%oily sludge dose 5%-69.83%and 67.98%,respectively.Figure 3 presents the pronounced trend of total PAH content in planted soil with respect to the oily sludge percentages.

    Table 5 The rates of PAH dissipation in different soils after different periods of plant growth

    Fig.1 Total PAH content in treated soils with respect to the days of winter wheat growth

    Fig.2 The average concentrations(μg/g)of PAHs(for all studied soils)with various rings in treated soils

    3.4Enhancement of PAH dissipation in crop soil

    Fig.3 Total PAH content in planted soils with respect to oily sludge dose(defined as the ration of oily sludge weight and soil total weight on a dry weight basis)

    The residual concentrations of PAHs in control soil with and without winter wheat planted were analyzed.The residual concentrations of PAHs in the planted soil without oily sludge application were lower than those in corresponding unplanted soil.Residual concentrations(μg/ g)of PAHs in the control soil samples after different periods of monitoring are illustrated in Table 6.Naphthalene and phenanthrene were predominant in the control soil.For example,the dissipation rates of naphthalene and phenanthrene in planted soil with initial concentrations of9.375 and 3.063 μg/g were 71.63%and 68.10%after 212 days of plant growth.These rates are significantly higher compared with corresponding rates in unplanted soil-4.45%and4.38%,respectively.Pronounced increases in dissipation of naphthalene and phenanthrene in planted and unplanted soils after different periods of plant growth are illustrated in Fig.4.

    Table 6 Residual concentrations of PAHs(μg/g)in the control soil samples after different periods

    Fig.4 Residual concentrations of NaP and Phe in planted and unplanted soils with respect to the period of winter wheat growth

    Winter wheat evidently promotes the dissipation of PAHs.The observed results,based on the dissipation ratios of PAHs in planted and unplanted soil,confirm the impact of winter wheat.After 265 days,PAH contents significantly decreased in the planted soils,corroborating many other studies.The reasons for the loss of PAHs from soil might be plant uptake,bio-transformation,bio-degradation,or abiotic dissipation,including leaching and volatilization(Shaw and Burns 2003;Kunihiro et al.2013;Li et al. 2015).However,many researchers have reported that plant direct accumulation of PAHs only accounted for a slight share of the enhanced dissipation and could be assumed to be negligible(Ke et al.2003;Xu et al.2005).The dominant contribution to the loss of PAHs might be plant-promoted biodegradation.The enhanced dissipation of PAHs might be rooted in greater activity of microorganisms and a higher density in planted soil.The plant litter and root exudates could modify the soil environment more suitably for microbial transformation,enhancing the bioavailability of the contaminants and providing substrates for co-metabolic dissipation(Ke et al.2003).

    4 Conclusions

    The present study reveals the potential ecological risk of the farmland soil around oil fields.The rates of PAH dissipation in crop soil contaminated with PAHs are related toPAH properties and concentrations.The persistence of PAHs is also significantly influenced by winter wheat growth.Prolonged winter wheat growth leads to a decrease in PAH dissipation rates.The influence was important in the period from 159 to 212 days with only a minor reduction over the subsequent 53 days of treatment.In this the period from 159 to 212 days,the specific properties of PAHs had a very slight effect on the loss of PAHs.The residual concentrations of PAHs in planted and unplanted soils indicate that the presence of winter wheat significantly enhanced the dissipation of PAHs,regardless of the variation in initial concentrations of PAHs in the control soil.

    Acknowledgments The study is jointly supported by National Natural Science Foundation of China(41541025)and Open Research Fund Program of Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta(Binzhou University)(2015KFJJ01).

    References

    Aichberger H,Andreas PL,Celis R,Braun R,Ottner F,Rost H(2006)Assessment of factors governing biodegradability of PAHs in three soils aged under field conditions.Soil Sediment Contam 15:73-85

    Baran S,Oleszczuk P(2003)Changes in the content of polycyclic aromatic hydrocarbons(PAHs)in light soil fertilized with sewage sludge.J Environ Sci Health A 38:793-805

    Cao XF,Liu M,Song YF,AcklandM L(2013)Composition,sources,and potential toxicology of polycyclic aromatic hydrocarbons(PAHs)in agricultural soils in Liaoning,People’s Republic of China.Environ Monit Assess 185:2231-2241

    Chaineau CH,Morel JL,Oudot J(2000)Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize.J Environ Qual 29:569-578

    Das P,Mukherjee S,Sen R(2008)Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin.Chemosphere 72:1229-1234

    Edris M,Saeid G,Leila A,Masoomeh A,Jafar S(2014)The application of soil washing for treatment of polycyclic aromatic hydrocarbons contaminated soil:a case study in a petrochemical complex.Environ.Prog.Sustain.Energy 33:107-113

    Fernández-Luquen?o F,Marsch R,Espinosa-Victoria D,Thalasso F,Hidalgo-Lara ME,Munive A,Luna-Guido ML,Dendooven L(2008)Remediation of PAHs in a saline-alkaline soil amended with wastewater sludge and the effect on dynamics of C and N. Sci Total Environ 402:18-28

    Fismes J,Perrin-Ganier C,Empereur-Bissonnet P,Morel JL(2002)Soil-to-Root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils.J Environ Qual 31:1649-1656

    Gao Y,Zhu L(2004)Plant uptake,accumulation and translocation of phenanthrene and pyrene in soils.Chemosphere 55:1169-1178

    Hu W,Liu GB,Tu Y,Zhong Q(2015)Emission of polycyclic aromatic hydrocarbons from different types of motor vehicles’exhaust.Environ Earth Sci 74:5557-5564

    Ian JK,Roy MH,Gerhard L(2013)Chemical reactivity and longrange transport potential of polycyclic aromatic hydrocarbonsa review.Chem Soc Rev 42:9333-9391

    Jin AF,He JT,Chen SN,Huang GX(2014)Distribution and transport of PAHs in soil profiles of different water irrigation areas in Beijing,China.Environ Sci Processes Impacts 16:1526-1534

    Joner EJ,Leyval C(2003)Rhizosphere gradients of polycyclic aromatic hydrocarbon(PAHs)dissipation in two industrial soils and the impact of arbuscular Mycorrhiza.Environ Sci Technol 37:2371-2375

    Ke L,Wang WQ,Wong TWY,Wong YS,Tam NFY(2003)Removal of pyrene from contaminated sediments by mangrove microorganisms.Chemosphere 51:25-34

    Kim KH,Jahan SA,Kabir E,Brown RJC(2013)A review of air borne polycyclic aromatic hydrocarbons(PAHs)and their human health effects.Environ Int 60:71-80

    Kuang SP,Chen H (2009)Distribution of polycyclic aromatic hydrocarbons in soils and corns,and its risk assessment in summer around Zhongyuan oil field,China.Int J Oil Gas Coal Technol 2:331-346

    Kuang SP,Sun DY,Sun YH(2008)Pollution characteristics of PAHs in oily sludge and around soils of Zhongyuan oil field.J Agro-Environ Sci 27:855-861

    Kunihiro M,Ozeki Y,Nogi Y,Hamamura N,Kanaly RA(2013)Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp.StrainKK22.Appl Environ Microbiol 79:4410-4420

    從表1中可以看到,利用ANSYS有限元分析軟件建立的SOLID95模型得到的數(shù)值解與文獻(xiàn)[2]用板單元SHELL63建立的模型計(jì)算結(jié)果基本相吻合,某些點(diǎn)的應(yīng)力甚至比文獻(xiàn)[2]的應(yīng)力更加接近實(shí)驗(yàn)值。其中,數(shù)值計(jì)算解與變分法理論計(jì)算值誤差在16.4%以內(nèi),與試驗(yàn)數(shù)據(jù)的誤差只有兩個(gè)點(diǎn)超過(guò)6%,其余點(diǎn)均在6%以內(nèi)。以跨中截面上頂板正應(yīng)力為例,如圖3所示,表示的是本研究用ANSYS模型計(jì)算的跨中上頂板正應(yīng)力與用變分法理論計(jì)算結(jié)果和該有機(jī)玻璃模型梁試驗(yàn)結(jié)果的對(duì)比圖。

    Lee SH,Lee WS,Lee CH,Kim JG (2008)Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892-898

    Li RL,Tan HD,Zhu YX,Zhang Y(2015)In situ simultaneous investigation of the transport of phenanthrene and fluoranthene adsorbed onto the root surfaces to tissues of mangrove seedlings. Anal Methods 7:6828-6836

    Liu WX,Sun JY,Ding LL,Luo YM,Chen MF,Tang CX(2013)Rhizobacteria(Pseudomonas sp.SB)assist phytoremediation of oily-sludge-contaminated soil by tall fescue(Testucaarundinacea L.).Plant Soil 371:533-542

    Ma B,He Y,Chen HH,Xu JM (2009)Dissipation of polycyclic aromatic hydrocarbons(PAHs)in the rhizosphere:synthesis through meta-analysis.Environ Pollut 158:855-861

    Maillacheruvu KY,Pathan IA(2009)Biodegradation of naphthalene,phenanthrene,and pyrene under anaerobic conditions.J Environ Sci Health A 44:1315-1326

    Maria L,Jessika H,John PG,Magnus E(2014)Time-dependent relative potency factors for polycyclic aromatic hydrocarbons and their derivatives in the H4IIE-luc bioassay.Environ Toxicol Chem 33:943-953

    Minai-Tehrani D,Rohanifar P,Azami S(2015)Assessment of bioremediation of aliphatic,aromatic,resin,and asphaltene fractions of oil-sludge-contaminated soil.Int J Environ Sci Technol 12:1253-1260

    Nanekar S,Dhote M,Kashyap S,Singh SK,Juwarkar AA(2015)Microbe assisted phytoremediation of oil sludge and role of amendments:a mesocosm study.Int J Environ Sci Technol 12:193-202

    Oleszczuk P,Baran S(2005)The concentration of polycyclic aromatic hydrocarbons in sewage sludge-amended soil.Commun Soil Sci Plan 36:1083-1097

    Ortega-Calvo J,Ball WP,Schulin R,Semple KT,Wick LY(2007)Bioavailability of pollutants and soil remediation.J Environ Qual 36:1383-1384

    Peng RH,Xiong AS,Xue Y,F(xiàn)u XY,Gao F,Zhao W,Tian YS,Yao QH(2008)Microbial biodegradation of polyaromatic hydrocarbons.FEMS Microbiol Rev 32:927-955

    Priyanka C,Harmesh S,Richa S,Alok KP,Shashi BS,SaxenaA K,Lata N (2015)Identification and analysis of polyaromatic hydrocarbons(PAHs)-biodegrading bacterial strains from refinery soilof India.Environ Monit Assess 187:391

    Puglisi E,Cappa F,F(xiàn)ragoulis G,Trevisan M,Del Re AAM(2007)Bioavailability and degradation of phenanthrene in compost amended soil.Chemosphere 67:548-556

    Qiao M,Huang S,Wang Z(2008)Partitioning characteristics of PAHs between sediment and water in a shallow lake.J Soils Sediments 8:69-73

    Roozbeh M,Mehdi M,Iraj F,Ehsan A,Ali F,Ali A,Mohammad AZ(2014)Source identification of polycyclic aromatic hydrocarbons(PAHs)in sediment samples from the northern part of the Persian Gulf,Iran.Environ Monit Assess 186:7387-7398

    Shaw LJ,Burns RGO(2003)Biodegradation of organic pollutants in the rhizgsphdre.Adv Appl Microbial 53:1-60

    Stroud JL,Paton GI,Semple KT(2007)Microbe-aliphatic hydrocarbon interactions in soil:implications for biodegradation and bioremediation.J Appl Microbial 102:1239-1253

    Su YH,Zhu YG(2008)Uptake of selected PAHs from contaminated soils by rice seedlings(Oryza sativa)and influence of rhizosphere on PAH distribution.Environ Pollut 155:359-365

    Tabak HH,Lazorchak JM,Lei L,Khodadoust AP,Antia JE,Bagchi R,Uidan MT(2003)Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments:bioavailability,biodegradability,and toxicity issues.Environ Toxicol Chem 22:473-482

    Tsibart AS,Gennadiev AN(2013)Polycyclic aromatic hydrocarbons in soils:sources,behavior,and indication significance(a review).Eurasian Soil Sci 46:728-741

    Varun K,Steven EK,Dylan E,Thomas B,Vinka OC(2013)Enhanced containment of polycyclic aromatic hydrocarbons through organic modification of soils.Environ Prog Sustain Energy 33:47-54

    Wang N,Li HB,Long JL,Cai C,Dai JL,Zhang J,Wang RQ(2012)Contamination,source,and input route of polycyclic aromatic hydrocarbons in historic wastewater-irrigated agricultural soils. J Environ Monit 14:3076-3085

    Wang S,Ni HG,Sun JL,Jing X,He JS,Zeng H(2013)Polycyclic aromatic hydrocarbons in soils from the Tibetan Plateau,China: distribution and influence of environmental factors.Environ Sci Process Impacts 15:661-667

    Wang J,Cao XF,Liao JQ,Huang Y,Tang XY(2015)Carcinogenic potential of PAHs in oil-contaminated soils from the main oil fields across China.Environ Sci Pollut Res 22:10902-10909

    Xu SY,Chen YX,Lin Q,Wang WX,Xie SG,Shen CF(2005)Uptake and accumulation of phenanthrene and pyrene in spiked soils by ryegrass(Loliumperenne L).J Environ Sci 17:817-822

    Yang Y,Hofmann T,Pies C,Grathwohl P(2008)Sorption of polycyclic aromatic hydrocarbons(PAHs)to carbonaceous materials in ariver flood plain soil.Environ Pollut 156:1357-1363

    Yu WJ,Kuang SP,Zhao LS(2013)Uptake,accumulation and translocation of polycyclic aromatic hydrocarbons by winter wheat cultured on oily sludge-amended soil.Chin J Geochem 32:295-302

    Zhang WH,Wei CH,An GF(2015)Distribution,partition and removal of polycyclic aromatic hydrocarbons(PAHs)during coking wastewater treatment processes.Environ Sci Process Impacts 17:975-984

    5 January 2016/Revised:21 April 2016/Accepted:9 May 2016/Published online:28 May 2016

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    猜你喜歡
    計(jì)算結(jié)果頂板數(shù)值
    用固定數(shù)值計(jì)算
    數(shù)值大小比較“招招鮮”
    不等高軟橫跨橫向承力索計(jì)算及計(jì)算結(jié)果判斷研究
    甘肅科技(2020年20期)2020-04-13 00:30:40
    煤礦頂板錨固體失穩(wěn)模式探測(cè)儀的研發(fā)與應(yīng)用
    基于Fluent的GTAW數(shù)值模擬
    焊接(2016年2期)2016-02-27 13:01:02
    超壓測(cè)試方法對(duì)炸藥TNT當(dāng)量計(jì)算結(jié)果的影響
    一種新型頂板位移傳感器的設(shè)計(jì)
    煤礦井下巷道掘進(jìn)頂板支護(hù)探析
    河南科技(2014年1期)2014-02-27 14:04:12
    噪聲對(duì)介質(zhì)損耗角正切計(jì)算結(jié)果的影響
    復(fù)合頂板綜采面沿空留巷技術(shù)研究與應(yīng)用
    金屬礦山(2013年6期)2013-03-11 16:53:52
    六月丁香七月| 久久精品国产自在天天线| 久久久午夜欧美精品| 精品人妻视频免费看| 国产精品无大码| 国产乱人视频| 成人黄色视频免费在线看| 国产精品偷伦视频观看了| 久久久久久九九精品二区国产| 亚洲激情五月婷婷啪啪| 久久99精品国语久久久| 久久99精品国语久久久| 国产黄频视频在线观看| 亚洲欧美成人综合另类久久久| 日韩不卡一区二区三区视频在线| 亚洲伊人久久精品综合| 免费不卡的大黄色大毛片视频在线观看| 黑人高潮一二区| 精品午夜福利在线看| 多毛熟女@视频| 午夜免费鲁丝| 精品久久久久久久末码| 秋霞在线观看毛片| 97在线人人人人妻| 在线观看一区二区三区激情| 日本黄色日本黄色录像| 黄色日韩在线| 黄色配什么色好看| 久热这里只有精品99| 秋霞在线观看毛片| 丝瓜视频免费看黄片| 人人妻人人看人人澡| 大陆偷拍与自拍| 免费观看在线日韩| 中文字幕av成人在线电影| 日韩欧美 国产精品| 久久久a久久爽久久v久久| 日韩在线高清观看一区二区三区| 成年美女黄网站色视频大全免费 | 久久久国产一区二区| 国产视频首页在线观看| 亚洲欧美精品自产自拍| 亚洲av欧美aⅴ国产| 99热国产这里只有精品6| 久久久国产一区二区| 99久久综合免费| 国产精品久久久久久精品电影小说 | 好男人视频免费观看在线| 春色校园在线视频观看| 日韩一区二区三区影片| 日日啪夜夜爽| 国产精品国产av在线观看| 人人妻人人澡人人爽人人夜夜| 边亲边吃奶的免费视频| 一区在线观看完整版| 在线观看三级黄色| 天美传媒精品一区二区| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩另类电影网站 | 免费少妇av软件| 国产伦理片在线播放av一区| 十八禁网站网址无遮挡 | 亚洲精品亚洲一区二区| 亚洲欧美成人综合另类久久久| 少妇的逼好多水| 久久国产亚洲av麻豆专区| 美女cb高潮喷水在线观看| 久久精品久久久久久久性| 亚洲人成网站高清观看| 国产一区二区三区综合在线观看 | 狂野欧美激情性xxxx在线观看| 卡戴珊不雅视频在线播放| 国产精品嫩草影院av在线观看| 久热久热在线精品观看| 国产精品国产av在线观看| 国产在线免费精品| 久久久久久久久久久免费av| 欧美成人a在线观看| 久久 成人 亚洲| 日韩不卡一区二区三区视频在线| 黄片无遮挡物在线观看| 日韩大片免费观看网站| 国产综合精华液| 国产精品熟女久久久久浪| 久久久久久久大尺度免费视频| 免费黄频网站在线观看国产| 亚洲无线观看免费| 久久人妻熟女aⅴ| 精华霜和精华液先用哪个| 久久人人爽人人爽人人片va| 高清不卡的av网站| 国产黄色视频一区二区在线观看| 亚洲精品乱码久久久v下载方式| 午夜免费男女啪啪视频观看| 黑丝袜美女国产一区| 日韩av不卡免费在线播放| 一区在线观看完整版| 中国国产av一级| 我要看日韩黄色一级片| 午夜福利影视在线免费观看| 我要看黄色一级片免费的| 天堂俺去俺来也www色官网| 伊人久久国产一区二区| h视频一区二区三区| 亚洲最大成人中文| 精品熟女少妇av免费看| 国产真实伦视频高清在线观看| 日日撸夜夜添| 高清av免费在线| 好男人视频免费观看在线| av女优亚洲男人天堂| 国产深夜福利视频在线观看| 成年女人在线观看亚洲视频| 成人高潮视频无遮挡免费网站| 三级国产精品欧美在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲综合色惰| 国产综合精华液| 亚洲国产色片| 99久久人妻综合| 久热这里只有精品99| 欧美三级亚洲精品| 亚洲综合色惰| 王馨瑶露胸无遮挡在线观看| 99热6这里只有精品| 一级毛片aaaaaa免费看小| 国产爱豆传媒在线观看| 成人18禁高潮啪啪吃奶动态图 | 国产黄频视频在线观看| 亚洲aⅴ乱码一区二区在线播放| av线在线观看网站| 在线观看av片永久免费下载| 91久久精品国产一区二区成人| 亚洲精品456在线播放app| 国产黄片美女视频| 日本与韩国留学比较| www.色视频.com| 偷拍熟女少妇极品色| 丝袜脚勾引网站| 新久久久久国产一级毛片| 日韩,欧美,国产一区二区三区| 26uuu在线亚洲综合色| 久久国产亚洲av麻豆专区| 男人狂女人下面高潮的视频| 18+在线观看网站| 成人亚洲欧美一区二区av| 免费播放大片免费观看视频在线观看| 国产精品一区二区在线不卡| 国产淫片久久久久久久久| 狠狠精品人妻久久久久久综合| 免费看光身美女| 街头女战士在线观看网站| 欧美国产精品一级二级三级 | 国产中年淑女户外野战色| 久久这里有精品视频免费| 久久久亚洲精品成人影院| 国产亚洲91精品色在线| 激情 狠狠 欧美| 日韩av不卡免费在线播放| 成人国产麻豆网| 亚洲av电影在线观看一区二区三区| 色婷婷久久久亚洲欧美| 中文字幕免费在线视频6| 免费少妇av软件| 熟女电影av网| 亚洲熟女精品中文字幕| 国产精品三级大全| 夜夜骑夜夜射夜夜干| 又爽又黄a免费视频| 日韩成人伦理影院| 身体一侧抽搐| 丰满人妻一区二区三区视频av| 高清不卡的av网站| 韩国高清视频一区二区三区| tube8黄色片| h日本视频在线播放| freevideosex欧美| 国产精品免费大片| 成人无遮挡网站| 亚洲精品中文字幕在线视频 | 少妇 在线观看| 80岁老熟妇乱子伦牲交| 国产免费一级a男人的天堂| xxx大片免费视频| 国内精品宾馆在线| 国产淫语在线视频| 亚洲av日韩在线播放| 中国三级夫妇交换| 国产男女内射视频| 久久久精品94久久精品| 少妇熟女欧美另类| 精品99又大又爽又粗少妇毛片| 亚洲国产日韩一区二区| 亚洲美女黄色视频免费看| 一级毛片久久久久久久久女| a 毛片基地| 欧美国产精品一级二级三级 | 精品人妻偷拍中文字幕| 美女国产视频在线观看| 久久99热这里只频精品6学生| 久久久久久久大尺度免费视频| 高清视频免费观看一区二区| 欧美亚洲 丝袜 人妻 在线| 国产精品免费大片| 三级国产精品片| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 我要看黄色一级片免费的| 亚洲av成人精品一区久久| 一个人看视频在线观看www免费| 免费观看a级毛片全部| 美女福利国产在线 | 久久久欧美国产精品| 只有这里有精品99| 大片电影免费在线观看免费| 亚洲精品国产av成人精品| 国产色婷婷99| 成人毛片a级毛片在线播放| 夫妻午夜视频| 日韩一区二区三区影片| 亚洲,欧美,日韩| 亚洲精品,欧美精品| 亚洲色图综合在线观看| 一级av片app| 三级经典国产精品| 国内揄拍国产精品人妻在线| 卡戴珊不雅视频在线播放| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 汤姆久久久久久久影院中文字幕| 黄色怎么调成土黄色| 狠狠精品人妻久久久久久综合| 波野结衣二区三区在线| 少妇人妻 视频| 自拍欧美九色日韩亚洲蝌蚪91 | 一区二区三区乱码不卡18| 乱码一卡2卡4卡精品| 一个人看视频在线观看www免费| 这个男人来自地球电影免费观看 | 色婷婷久久久亚洲欧美| 婷婷色av中文字幕| 国产成人精品福利久久| 男女下面进入的视频免费午夜| 国产精品无大码| 精品久久久久久久久av| 久久久色成人| 日韩在线高清观看一区二区三区| 亚洲精品日韩av片在线观看| 久久午夜福利片| 少妇人妻精品综合一区二区| 国产av一区二区精品久久 | 有码 亚洲区| 99久国产av精品国产电影| 观看免费一级毛片| 午夜福利网站1000一区二区三区| 国产精品三级大全| 蜜桃亚洲精品一区二区三区| 网址你懂的国产日韩在线| 美女主播在线视频| 色视频在线一区二区三区| 久久精品夜色国产| 亚洲精品第二区| 18+在线观看网站| 肉色欧美久久久久久久蜜桃| 国产一区二区在线观看日韩| 免费观看性生交大片5| 国产精品久久久久久精品古装| 国产成人freesex在线| 最黄视频免费看| 在线观看免费高清a一片| 最近最新中文字幕大全电影3| 永久网站在线| 一区在线观看完整版| a级毛片免费高清观看在线播放| 秋霞在线观看毛片| 九草在线视频观看| 欧美bdsm另类| 久久国产亚洲av麻豆专区| 内地一区二区视频在线| 伦理电影大哥的女人| 国内揄拍国产精品人妻在线| 成人无遮挡网站| 成年女人在线观看亚洲视频| 国产成人精品久久久久久| xxx大片免费视频| 国产美女午夜福利| 亚洲性久久影院| 亚洲精品亚洲一区二区| 91久久精品国产一区二区三区| 亚洲精品中文字幕在线视频 | 99热6这里只有精品| 99re6热这里在线精品视频| 搡女人真爽免费视频火全软件| 女人十人毛片免费观看3o分钟| 久久精品国产鲁丝片午夜精品| 国产熟女欧美一区二区| 国产男女内射视频| 干丝袜人妻中文字幕| 国产高清不卡午夜福利| 爱豆传媒免费全集在线观看| 亚洲精品第二区| 秋霞伦理黄片| 国产精品无大码| 欧美日韩国产mv在线观看视频 | 一级片'在线观看视频| 日韩一区二区三区影片| 亚洲中文av在线| 日本wwww免费看| 久久久久网色| 亚洲国产精品999| 久久国产乱子免费精品| 一本久久精品| 大又大粗又爽又黄少妇毛片口| 亚洲精品视频女| 亚洲国产欧美人成| 久久99热6这里只有精品| 久久久久国产网址| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久99久久久不卡 | 伦精品一区二区三区| 免费播放大片免费观看视频在线观看| 毛片女人毛片| 久久亚洲国产成人精品v| 一区二区av电影网| 亚州av有码| 韩国高清视频一区二区三区| 国产精品一区二区三区四区免费观看| av免费在线看不卡| 久久精品夜色国产| 国产精品.久久久| 欧美精品国产亚洲| 丝袜脚勾引网站| 国产一区二区三区综合在线观看 | av卡一久久| 成年女人在线观看亚洲视频| 日本色播在线视频| 亚洲综合精品二区| 在线播放无遮挡| 99热网站在线观看| 亚洲人与动物交配视频| 女人久久www免费人成看片| 国产国拍精品亚洲av在线观看| 男人狂女人下面高潮的视频| 亚洲电影在线观看av| 亚州av有码| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 欧美另类一区| 99热这里只有精品一区| 中文天堂在线官网| 卡戴珊不雅视频在线播放| 涩涩av久久男人的天堂| 男人舔奶头视频| 最近中文字幕高清免费大全6| 国产日韩欧美在线精品| 精品人妻偷拍中文字幕| 国产男人的电影天堂91| 在线 av 中文字幕| 国产老妇伦熟女老妇高清| 蜜桃在线观看..| 久久99热这里只有精品18| 久久久久国产精品人妻一区二区| 亚洲成色77777| 成人影院久久| 久久久久久久久久久丰满| 高清午夜精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 国产真实伦视频高清在线观看| 美女cb高潮喷水在线观看| 欧美激情国产日韩精品一区| 国产欧美另类精品又又久久亚洲欧美| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 久久精品久久久久久久性| 亚洲国产高清在线一区二区三| 舔av片在线| 国产色爽女视频免费观看| 欧美亚洲 丝袜 人妻 在线| 91精品伊人久久大香线蕉| 久久这里有精品视频免费| 欧美bdsm另类| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av | 日韩av免费高清视频| 麻豆乱淫一区二区| 国产av码专区亚洲av| 丰满迷人的少妇在线观看| videos熟女内射| 少妇人妻一区二区三区视频| 久久久色成人| 大香蕉久久网| 国产精品爽爽va在线观看网站| 国产视频内射| 寂寞人妻少妇视频99o| 免费观看性生交大片5| 99久久精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 少妇熟女欧美另类| 日本-黄色视频高清免费观看| 天堂8中文在线网| av在线app专区| 日本av免费视频播放| 亚洲成人手机| 一级爰片在线观看| 在线观看一区二区三区| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 黄色怎么调成土黄色| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 亚洲精品日本国产第一区| 久久久久国产网址| 伦理电影免费视频| 99热这里只有是精品50| 少妇丰满av| 成年免费大片在线观看| 人体艺术视频欧美日本| 观看美女的网站| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 国产一级毛片在线| 国产乱人视频| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久成人| 26uuu在线亚洲综合色| 一本久久精品| 国产精品一区二区三区四区免费观看| 久久久久精品久久久久真实原创| 日本欧美国产在线视频| 插逼视频在线观看| 国产精品一区二区在线不卡| 少妇精品久久久久久久| 精品人妻视频免费看| 欧美成人a在线观看| 国产伦理片在线播放av一区| 亚洲国产av新网站| 下体分泌物呈黄色| 国产男女超爽视频在线观看| 超碰av人人做人人爽久久| 成年女人在线观看亚洲视频| 99re6热这里在线精品视频| 激情五月婷婷亚洲| a级一级毛片免费在线观看| 国产男人的电影天堂91| 亚洲国产精品国产精品| 欧美bdsm另类| 国产精品国产三级国产专区5o| 中文天堂在线官网| 国产淫片久久久久久久久| 大香蕉久久网| 久久综合国产亚洲精品| 精品少妇黑人巨大在线播放| 亚州av有码| 精品亚洲成a人片在线观看 | 中文字幕精品免费在线观看视频 | 亚洲精品日韩在线中文字幕| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 日本爱情动作片www.在线观看| 亚洲精品一二三| 色视频在线一区二区三区| av福利片在线观看| 在线免费十八禁| 亚洲欧美精品专区久久| 国产久久久一区二区三区| 亚洲av福利一区| 久久亚洲国产成人精品v| 91精品国产国语对白视频| 天堂中文最新版在线下载| 99热6这里只有精品| 精品久久久久久久久亚洲| 免费黄频网站在线观看国产| 成人影院久久| 欧美97在线视频| 欧美性感艳星| 欧美区成人在线视频| 熟女人妻精品中文字幕| 精品久久久久久久久亚洲| 免费黄频网站在线观看国产| 舔av片在线| 亚洲经典国产精华液单| 熟女人妻精品中文字幕| 久久精品国产自在天天线| 久久久久久久亚洲中文字幕| 国产高清国产精品国产三级 | 国产精品久久久久久精品电影小说 | 久久久久视频综合| 亚洲国产精品999| 王馨瑶露胸无遮挡在线观看| 久久久亚洲精品成人影院| 18禁动态无遮挡网站| 亚洲精品色激情综合| 亚洲人成网站在线观看播放| 国产成人a∨麻豆精品| 成人毛片60女人毛片免费| 亚洲成人一二三区av| 一级毛片 在线播放| 国产午夜精品一二区理论片| 毛片一级片免费看久久久久| 国产永久视频网站| 99热这里只有精品一区| 一边亲一边摸免费视频| 国产欧美亚洲国产| 国产片特级美女逼逼视频| 国产精品偷伦视频观看了| 久久精品国产鲁丝片午夜精品| 男女边吃奶边做爰视频| 免费大片黄手机在线观看| 亚洲av免费高清在线观看| 黄片无遮挡物在线观看| 国产高清三级在线| 少妇裸体淫交视频免费看高清| av天堂中文字幕网| 秋霞在线观看毛片| 美女国产视频在线观看| 亚洲精品一二三| 欧美成人一区二区免费高清观看| 男人舔奶头视频| 老熟女久久久| 欧美少妇被猛烈插入视频| 黄色一级大片看看| 中文乱码字字幕精品一区二区三区| 高清黄色对白视频在线免费看 | 欧美人与善性xxx| 亚洲va在线va天堂va国产| 成人毛片a级毛片在线播放| 欧美日韩亚洲高清精品| 十分钟在线观看高清视频www | 精品酒店卫生间| 精品一区二区三区视频在线| 欧美bdsm另类| 亚洲av中文字字幕乱码综合| 六月丁香七月| 这个男人来自地球电影免费观看 | 国产91av在线免费观看| 男女边吃奶边做爰视频| 亚洲成色77777| 午夜激情福利司机影院| 街头女战士在线观看网站| 国产色爽女视频免费观看| 国产综合精华液| 成年美女黄网站色视频大全免费 | 一级黄片播放器| 少妇人妻久久综合中文| 亚洲欧美成人精品一区二区| 午夜福利影视在线免费观看| 日本av免费视频播放| 精品久久久噜噜| 一区二区三区四区激情视频| 男的添女的下面高潮视频| 在线亚洲精品国产二区图片欧美 | 亚州av有码| 国产探花极品一区二区| 国产片特级美女逼逼视频| 午夜日本视频在线| 久久99热6这里只有精品| 在线观看一区二区三区| 老师上课跳d突然被开到最大视频| 97超视频在线观看视频| 男女无遮挡免费网站观看| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| 免费av中文字幕在线| kizo精华| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 日韩免费高清中文字幕av| 永久网站在线| 99热6这里只有精品| 精品人妻视频免费看| 国产深夜福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 赤兔流量卡办理| 国产精品爽爽va在线观看网站| 亚洲在久久综合| 午夜老司机福利剧场| 亚洲av日韩在线播放| 久久久久精品性色| 免费人妻精品一区二区三区视频| 亚洲精品国产av蜜桃| 各种免费的搞黄视频| av视频免费观看在线观看| 天美传媒精品一区二区| 欧美最新免费一区二区三区| 日韩亚洲欧美综合| 91午夜精品亚洲一区二区三区| 男人狂女人下面高潮的视频| 99热网站在线观看| av专区在线播放| 日本av手机在线免费观看| 99精国产麻豆久久婷婷| 国产片特级美女逼逼视频| 国产精品偷伦视频观看了| 丝瓜视频免费看黄片| 少妇的逼好多水| 日日摸夜夜添夜夜添av毛片| 王馨瑶露胸无遮挡在线观看| 日本av免费视频播放| 午夜免费观看性视频| 午夜福利影视在线免费观看| 最黄视频免费看| 亚洲欧美成人精品一区二区| 老司机影院成人| 免费播放大片免费观看视频在线观看| 久久亚洲国产成人精品v| 亚洲精品日本国产第一区| 久久久成人免费电影| 亚洲久久久国产精品| 日韩 亚洲 欧美在线| 丰满人妻一区二区三区视频av| 欧美激情极品国产一区二区三区 | 国内揄拍国产精品人妻在线| 尾随美女入室| 久久久久网色| 久久久久久伊人网av|