• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geochemistry of sedimentary rocks from Permian-Triassic boundary sections of Tethys Himalaya:implications for paleo-weathering,provenance,and tectonic setting

    2016-11-21 02:09:50AkhtarMirBalaramJavidGanaiShamimDarKeshavKrishna
    Acta Geochimica 2016年4期

    Akhtar R.Mir·V.Balaram·Javid A.Ganai·Shamim A.Dar· A.Keshav Krishna

    Geochemistry of sedimentary rocks from Permian-Triassic boundary sections of Tethys Himalaya:implications for paleo-weathering,provenance,and tectonic setting

    Akhtar R.Mir1·V.Balaram2·Javid A.Ganai1·Shamim A.Dar3· A.Keshav Krishna2

    The geochemical characteristics of two sections-the Permian-Triassic boundary(PTB)Guryul Ravine section,Kashmir Valley,Jammu and Kashmir,India;and the Attargoo section,Spiti Valley,Himachal Pradesh,India-have been studied in the context of provenance,paleo-weathering,and plate tectonic setting. These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya.The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness.Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74;such values reveal low-to-moderate degree of chemical weathering.The chemical index of weathering in studied samples ranged from 71 to 94,suggesting a minor K-metasomatism effect on these samples.Plagioclase index of alteration in studied sections ranged from 68 to 92,indicating a moderate degree of weathering of plagioclase feldspars.The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances.These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si2O versus K2O/ Na2O tectonic setting diagram.

    ? Javid A.Ganai

    jganai.ganai9@gmail.com

    1Department of Earth Sciences,University of Kashmir,Srinagar 190006,India

    2CSIR-National Geophysical Research Institute,Hyderabad 500007,India

    3Department of Geology,S.P.College,Srinagar 190008,India

    Geochemistry·Permian-Triassic boundary· Guryul Ravine·Tectonic settings

    1 Introduction

    The sedimentary succession of the Tethys Himalaya stretching from North India to South Tibet represents the deformed remnants of the northern continental margin of the Indian subcontinent.The succession,one of the most complete and spectacularly exposed in the world,preserves an excellent stratigraphic record of the history of Gondwana during most of the Phanerozoic.The global stratotype section and point(GSSP)for the Permian-Triassic boundary(PTB)(e.g.Meishan,Ursula Creek,Guryul Ravine,and Attargoo sections,etc.)have been a focus of researchers all over the world due to some important events like mass extinction,formation of the Neo-Tethys Sea,marine anoxia,increase of atmospheric CO2content,global warming,carbon isotopic excursion,acid rain,etc.(Wignall and Twitchett 1996;Berner 2002;Maruoka et al. 2003;Benton et al.2004;Payne et al.2004;Erwin 2005;Huey and Ward 2005;Brookfield et al.2010;Shen and Lin 2010;Shen et al.2011;Xu and Lin 2014).Various studies throughout the world have been carried out on clastic sedimentary rocks using major-,trace-,or rare earth element data to understand paleo-weathering,paleoclimate,provenance,tectonic setting,paleoredox conditions,and crustal evolution(Zhang et al.2010;Sun et al.2011;Wani and Mondle 2011;Ganai et al.2014;Mir et al.2015). Despite the global importance of PTB sections,little attention has been paid to geochemical characteristics of PTB sections of the northwest Himalaya(e.g.Guryul Ravine and Attargoo sections)(notable exceptions include Bhargava 2008;Williams et al.2012;Ganai et al.2014).However,increasing attention has been paid to the paleontology and stratigraphy of the PTB Guryul section,with field-based work concentrated on assigning ages to the rock sequences and delineating depositional environments(Kapoor 1992,1996;Yin et al.2001;Brookfield et al. 2003,2013).In the present study,we present geochemical data from the PTB sequences in the Kashmir and Spiti regions,North India,with an aim to understand the paleoweathering,provenance,and tectonic setting of these sections.This work adds to existing knowledge of the PTB Guryul Ravine and Attargoo sections and contributes to efforts to correlate geochemical characteristics among PTB sections of the world.

    2 Geology of the study area

    Rifting and eruption of middle Permian basalts was followed by separation of blocks of the northern edge of Gondwanaland,birth of the Neo-Tethys ocean,and rapid thermal subsidence of the northern Gondwana margin during Upper Permian and Triassic times.Due to this rapid subsidence,continuous sedimentation across the PTB took place on the northern Gondwanaland shelf(Myrow et al. 2003;Sciunnach and Garzanti 2012).The Permian-Triassic sedimentation sequence is well-preserved at Guryul Ravine(Kashmir Valley,India)and in the Permian Gungri Formation at Attargoo(Spiti Valley,India).These locations are considered to have the most complete and wellpreserved PTB type-sections in the world.

    The Kashmir Valley occupies an oval shaped basin between the Pir Panjal Range in the southwest and the Great Himalayan Range in the northeast.Permian-Triassic outcrops are exposed at various places in the Kashmir Valley e.g.Guryul Ravine,Phalgam,Ashmukam,etc. Guryul Ravine is considered GSSP for the PTB(Fig.1a)(Kapoor 1996;Yin et al.2001;Brookfield et al. 2003,2010).The Guryul Ravine section consists of a conformable succession of mixed siliciclastic-carbonate sediments(>100 m thick)deposited in a deep-shelf or ramp setting(Brookfield et al.2010).The Permo-Triassic sequences in Kashmir Valley are divided into the Zewan Formation of Upper Permian age and the overlying Lower Triassic Khunamuh Formation(Fig.2a,b).The Panjal Traps,which are chiefly basaltic in composition with subsidiary association of silicic volcanic rocks,lie at the base of the Guryul Ravine section.The Zewan Formation is subdivided into four members named A,B,C,and D by Nakazawa et al.(1975).

    The top-most 5 meters of the Zewan Formation are composed of fine-to medium-grained layers of sandy limestones or calcareous quartz sandstones interbedded with patchy calcareous shales(Brookfield et al.2003).The transition from parallel lamination to hummocky crosslamination structures suggests decreasing storm activity through time(Saito 1989;Brookfield et al.2003).These cross-laminated and bioturbated well-sorted sands with a scarcity of fossils likely originated in a near-shore lagoon with graded storm beds transitioning shoreward to higher energy deposits(Brookfield et al.2003,2010).The Zewan Formation is overlain by the Khunamuh Formation,which is divided into six members,named as E,F(xiàn),G,H,I,and J on the basis of variation in carbonate content(Nakazawa et al.1975).Interbedded dark calcareous shales and argillaceous limestones(about 16 m thick)comprise basal parts of the Khunamuh Formation while upper members consist of shale,thin-bedded lime mudstone,and nodular limestone(Nakazawa et al 1975;Nakazawa and Kapoor 1981;Kapoor 1996;Brookfield et al.2003).

    Spiti is located in the northern part of the Himachal Pradesh,which occupies a central position in the Western Himalaya(Fig.1b).The section exposed at Attargoo village(Fig.2c,d)is composed of Permian gray-black shales of the Gungri Formation and Triassic limestones of the Mikim Formation.Since the Uppermost Permian strata have not been observed here,the cross-boundary biostratigraphy is yet to be confirmed(Garzanti et al.1998;Williams et al.2012).An upward progression from gray to black in the Gungri Shale supports the hypothesis that oxygen levels were decreasing toward the end of the Permian(Shukla et al.2002).The Gungri Formation is mostly composed of black splintery shale and interbedded calcareous and micaceous siltstone(Singh et al.1995).The silty shale mostly occurs in the base of the Gungri Formation,whereas the upper part contains gray-to-black shale capped unconformably by an iron-rich pebble-sand layer(‘ferruginous layer’)2-8 cm in thickness marking,apparently,the PTB(Singh et al.2004).Three factors point to the ferruginous layer’s being a sub-aerial exposure surface:its regional extent,and mineralogical and sedimentological characteristics(Bhatt et al.1981;Bhargava 1987;Singh et al.1995;Srikantia and Bhargava 1998;Algeo et al.2007;Williams et al.2012).However,Himalayan Tethyan stratigraphy reflects a major sporadic transgression which commenced in the Mid-Early Permian and proceeded through the remainder of the Permian(Gardner 1992;Garzanti et al.1996).

    3 Sampling and analytical methods

    Fig.1 a General geological map of Guryul Ravine section,Kashmir Region Jammu and Kashmir,India(after Bhat and Bhat 1997).b General geological map of Attargoo section,Spiti Region,Himachal Pradesh,India(after Shukla et al.2002)

    Fig.2 a and b Field photograph showing close view of the Permian-Triassic boundary at Guryul Ravine section,Kashmir region Jammu and Kashmir,India;c and d Field photograph showing Permian-Triassic boundary at Attargoo section,Spiti Region,Himachal Pradesh,India

    Stratigraphically well-known Permo-Triassic sections exposed atGuryulRavine((Fig.2a,b)and Attargoo village(Fig.2c,d)of the Spiti region,Himachal Pradesh,northern India,were sampled formajorelementalanalysis.Weathered surfaceswere trenched about10-15 cminto the rock face and about5-10 cmthick fresh chips from different rock types such as sandstones and shales were taken as samples.The fresh samples were put into polythene bags and placed into sealed bags marked with sample numberand location,and transported to the Laboratory forchemical analysis.Geochemicalanalysis was carried outat the National Geophysical Research Institute(NGRI),Hyderabad,India.Samples were crushed and then powdered to 200 mesh size in an agate mill.Major elements were determinedfrom pressed pellets,which were prepared by using collapsible aluminum cups.These cups were filled with boric acid.About 1 g of powdered rock sample was put on top of the boric acid and the cups were then pressed under a hydraulic press at 20 tonspressure.The sample pelletswere analyzed using a Philips MagiX PRO model PW-2440 wavelength dispersive X-ray fluorescence spectrometer(XRF)coupled with automatic sample changer PW 2540.International rock standards GSR-4 and GSR-5 were used as reference material during major element analysis.The precision and accuracy of the data are well within the international standards and are better than 5%.

    4 Geochemistry

    The major elemental concentrations of both the Guryul Ravine and Attargoo Permian-Triassic sections are presented in Table 1.SiO2and Al2O3concentrations of sandstones from the Guryul Ravine section ranged from 75 to 81 and 3.8 to 5.5 wt.%,respectively.MgO and Fe2O3contents of sandstones from the Guryul Ravine section varied from 3.9 to 4.07 and 6.9 to 7.2 wt.%,respectively. Alkalis and alkaline earth elements(Na2O,K2O,CaO)are more depleted than other major elements in the sandstone of the Guryul Ravine section.The shales of the Guryul Ravine and Attargoo sections showed SiO2concentration between 55 and 77 and 49 and 65 wt.%,respectively.The lower SiO2content observed in some samples suggests possible hydraulic sorting during sedimentary processes. Al2O3concentration of shales from the Guryul Ravine and Attargoo sections,varied from 11 to 17 and 16 to 20 wt.%,respectively,whereas TiO2ranges of the two sections were from 1.5 to 2.2 and 0.7 to 2 wt.%,respectively,andcontents varied from 0.79 to 10 and 2.9 to 17 wt.% respectively.Collectively,these results reveal the presence of a mixed clay assemblage and detrital phases in the shales.

    When compared to Post-Archean Australian Shale(PAAS,after Taylor and McLennan 1985)values of shale samples of both sections are characterized by enrichment of TiO2,MgO,and K2O.Elevated K2O(Fig.3)concentration is attributed to contribution of K-feldspars and weathering of plagioclase feldspars.Enrichment of MgO with respect to PAAS may be attributed to the contribution of these elements from the marine fauna.SiO2and Al2O3are more or less similar to PAAS in the shales of both sections.Further,shale samples showed depletion of Fe2O3and P2O5;however,depletion of these oxides was greater in the case of the Guryul Ravine shales.Depletion of Fe2O3and P2O5in shales indicates the presence of relatively lesser quantities of phyllosilicates,ferromagnesian and apatite minerals,and/or may be attributed to the influence of degree of chemical weathering of the source rocks.

    According to Cox et al.(1995),the K2O/Al2O3ratio relates to how much alkali feldspar versus plagioclase and clay minerals may have been present in the original shales. In order from high to low values,the K2O/Al2O3ratio of minerals represents alkali feldspars(0.4-1),illite(0.3),and other clay minerals(nearly 0).Shales with K2O/Al2O3greater than 0.5 are likely to possess a significant quantity of alkali feldspar relative to other minerals in the original shale,whereas those with K2O/Al2O3less than 0.4 likely possess minimal alkali feldspar in the original shale(Cox et al.1995).The studied shales of the Guryul Ravine sections have average K2O/Al2O3=0.23(range 0.11-0.35);shales of the Attargoo section have average K2O/Al2O3=0.26(range 0.25-0.29).These overall low K2O/Al2O3ratios in the studied shales suggest minimal involvement of alkali feldspar relative to other minerals and strongly support that K2O addition to the present samples has not taken place.

    The enrichment of essential rock-forming minerals(if any)and altered products was determined by using the index of compositional variability(ICV).This parameter is calculated as ICV=(Fe2O3+K2O+Na2O+CaO+ MgO+MnO+TiO2)/Al2O3(Cox et al.1995).Rockforming minerals such as plagioclase,K-feldspars,amphiboles,and pyroxenes show ICV values of>0.84,whereas typical alteration products such as kaolinite,illite,and muscovite show values of<0.84(Cox et al.1995;Cullers 2000).The ICV values of sandstones and shales of the Guryul Ravine section range from 0.68 to 3.35 with an average of 1.69;shales of the Attargoo section show ICV from 0.68 to 1.62 with an average of 1.06.Hence,in both sections ICV values are greater than 0.84,indicating that the studied samples are enriched in rock-forming minerals. Quartz is more resistant to weathering than feldspars,mafic minerals,and lithics(Roser and Korsch 1986,1999).Hence,SiO2/Al2O3ratio ofsiliciclastic rocks can be used to indicate sediment maturity.The average values of SiO2/Al2O3ratio in fresh igneous rocks ranges from~3.0(in basic rocks)to~5.0(in acidic rocks).The high SiO2/Al2O3values found in our analysis(Table 1)indicate relatively high sediment maturity(Roser and Korsch 1999).

    5 Discussion

    5.1Paleo-weathering

    Fig.3 Post-Archean Australian average Shale normalized major element patterns of the siliciclastic sediments(PAAS values after Taylor and McLennan 1985)

    Chemical weathering strongly affects major element geochemistry of siliciclastic sediments,as labile cations(e.g.,Ca2+,Na+,K+)are removed preferentially over more stable components(Al,Ti)(Nesbitt and Young 1982;Fedo et al.1995).The degree of this weathering of feldspars is often measured relative to unweathered protoliths using the chemical index of alteration(CIA)(Nesbitt and Young 1984).CIA is defined by the equation:CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O]×100 where all elements are in molecular proportion,and CaO*represents Ca in the silicate fraction only.As the sample Z6 contains CaO greater than 1 wt.%,there would be a chance of presence of organic content or presence of Ca in carbonates(calcite,dolomite).It is therefore necessary to correct for the measured CaO content in the samples.Due to non-availability of a direct method to distinguish and quantify the amount of CaO belonging to the silicate and non-silicate fractions,a method proposed by McLennan(1993)has been used to calculate the CaO*in the present study. According to this method,if the number of moles of CaO is less than that of Na2O,then the pure CaO value can be adopted.If the number of moles for CaO is greater than Na2O,CaO*should be assumed to be equivalent to Na2O. CIA values for average shales range from 70 to 75 which reflect a composition of muscovite,illite,and smectite. Intensely weathered rock yields mineral compositions trending toward kaolinite or gibbsite and aCIA approaching 100.CIA of unweathered rock is about 50. The studied sandstone and shales of the Guryul Ravine section have CIA values from 65 to 73;Attargoo section shales have CIA values from 71 to 74,reflecting their composition of muscovite and illite.The weathering trend can be illustrated on the triangular Al2O3,CaO*+Na2O,K2O(A-CN-K)plot,which is useful for evaluating and correcting the effects of K-metasomatism and giving some information of the composition of the fresh source rock(Fedo et al.1995).On this diagram(Fig.4),studied samples plot towards the A-K line away from the plagioclase-K-feldspar join,indicating low to moderate degree of weathering.Chemical weathering can also be measured by chemical index of weathering(CIW,Harnois 1988)and plagioclase index of alteration(PIA,F(xiàn)edo et al.1995). CIW eliminates the effect of K-metasomatism and is calculated as:CIW=Al2O3/(Al2O3+CaO*+Na2O)× 100 where the elements are represented in mole proportion and CaO*represents Ca in the silicate fraction.Most strikingly,unweathered potassic granite has a CIW of 80 and fresh K-feldspar has a CIW of 100,similar to values for residual products of chemical weathering(smectite CIW=80;kaolinite,illite,and gibbsite CIW=100).The CIW values of Guryul Ravine sandstone and shales range from 71 to 91;the CIW of Attargoo section shales from 91 to 94.This indicates a much reduced K-metasomatism effect on the samples of the study area.PIA reflects weathering of plagioclase feldspars and is defined by the equation:PIA=[(Al2O3-K2O)/(Al2O3+CaO*+Na2OK2O)]×100,where all elements are in molecular proportions and CaO*represents CaO in silicate fractions.The maximum PIA value is 100(kaolinite,gibbsite)and unweathered plagioclase has PIA value of 50.Studied sandstone and shale samples of Guryul Ravine section have PIA values from 68 to 87.However,shale of the Attargoo section has slightly higher PIA values of 88 to 92.Therefore,PIA values in studied samples indicate a moderate degree of weathering of plagioclase feldspars in both the Permo-Triassic sections.

    Fig.4 A-CN-K ternary diagram(after Nesbitt and Young 1982)of sandstone and shales from the Permo-Triassic sections of Kashmir and Spiti regions Tethys Himalaya showing weathering trends. A=Al2O3;CN=(CaO*+Na2O);K=K2O (all in molar proportions)

    5.2Provenance and tectonic setting

    Geochemical composition of basin sediments is changed to some extend by various processes such as hydraulicsorting,weathering,and diagenesis.However,strong signatures of the original source terrain are stored in these sediments,thus reflecting the nature of the exposed continental crust.Because of low solubility of Al and Ti oxides and hydroxides at low temperatures,these elements are generally stable in the face of siliciclastic weathering(Sugitani et al.2006).For this reason,Al/Ti ratios of residual soils is believed to be very close to those of their parent material allowing this ratio to be used by various researchers for discrimination of provenance(e.g.,Hayashi et al.1997;Sugitani et al.2006;Odigi and Amajor 2008;Sun et al.2013;Ganai et al.2014;Mir et al.2015).Studies have shown that Al2O/TiO2ratios ranging from 3 to 8 indicate mafic igneous rocks,from 8 to 21 intermediate rocks,and from 21 to 70 felsic igneous rocks.In our samples Al2O/TiO2ratio varied from 6 to 20,which indicates an intermediate source(Hayashi et al.1997;Sugitani et al.2006).McLennan et al.(1980),recognizing the significance of Al and Ti in provenance studies,proposed an Al2O3versus TiO2bivariate discrimination diagram to constrain the provenance of siliciclastic rocks.On this diagram,the siliciclastic sediments of the study areas plot along granitic and 3 granite+1 basalt trend lines indicating felsic provenance(Fig.5).The major element-based provenance discriminant function diagram of Roser and Korsch(1988)is frequently used by many researchers to identify the provenance of terrigenous sediments(Cullers 2000;Islam et al.2002;Rashid 2005;Dey et al.2009). This diagram discriminates four major provenance fields: mafic,intermediate,felsic,and quartzose sedimentary. Studied Guryul Ravine section samples fall within the Quartzose sedimentary provenance and those of the Attargoo section fall into the Felsic igneous provenance(Fig.6).However,for further verification of provenances of the studied samples from both PTB sections,it is recommended to use trace element or isotope data.

    Fig.5 Al2O3versus TiO2bivariate diagram(after McLennan et al. 1980)

    Several studies have revealed that the chemical compositions of siliciclastic rocks are significantly controlled by plate tectonic settings of their provenances,and consequently siliciclastic rocks from different tectonic settings possess terrain-specific geochemical signatures(Bhatia and Crook 1986;Roser and Korsch 1986;Li et al.2003). Tectonic settings of provenances of ancient siliciclastic rocks can be inferred from the major element-based discrimination diagrams proposed by Roser and Korsch(1986)by utilizing(K2O/Na2O)versus SiO2.Both SiO2and K2O/Na2O values increase from volcanic arc to active continental margin to passive margin settings;high SiO2and low Na2O in the binary discriminant plots suggestcontinentally-derived sediments.In the SiO2versus K2O/ Na2O diagram,samples from both Permo-Triassic sections(Guryul Ravine and Attargoo)in this study plot in the field of passive continental margin setting(Fig.7).

    Fig.6 Major element provenance discriminant function diagram(after Roser and Korsch 1988)for siliciclastic sediments of Permo-Triassic sections of Kashmir and Spiti regions Tethys Himalaya

    Fig.7 K2O/Na2O versus SiO2discrimination diagram (after Roser and Korsch 1986)for siliciclastic sediments of Permo-Triassic sections of Kashmir and Spiti regions Tethys Himalaya

    6 Conclusions

    As expected,geochemically the sandstones of the Permian-Triassic sectionsofthe NWTethys Himalaya,India are more enriched in SiO2and show significant variations in other major elemental abundances.When compared to UCC,the alkalis and alkaline earth elements(Na2O,K2O,MgO,and CaO)are more depleted than other elements in the samples. The salient geochemical characteristics(such as enrichment in felsic elements and their ratios with depleted mafic components)indicate the Permo-Triassic siliciclastic sedimentary rocks of the Guryul Ravine and Attargoo sections may be derived from a felsic-dominant source i.e.quartzose sedimentary and granitic rocksand may have been deposited in a passive continentalmargin tectonic setting.On the bases of CIA and CIW it is concluded that studied samples of the Permo-Triassic sectionsexperienced low to moderate degree ofchemicalweathering.PIAvalues in studied samples show moderate weathering of plagioclase feldspars.The consistent variation in terms of degree of chemical weathering noticed in the sandstones and shales from the studied PTB sections clearly indicatesclimatic influence in the deposition of the Tethys sediments.

    Acknowledgments We are thankfulto the Director,NGRI,Hyderabad for permission to analyze the studied samples.First and third authors pay sincere gratitude to Prof.ShakilA.Romshoo,Head,Department of Earth Sciences,University of Kashmir for providing necessary facilities.Authors pay our sincere thanks to reviewers for their constructive comments and suggestions.

    References

    Algeo TJ,Hannigan R,Rowe H,Brookfield M,Baud A,Krystyn L,Ellwood BB(2007)Sequencing events across the Permian-Triassic boundary,Guryul Ravine(Kashmir India).Palaeogeogr Palaeoclimatol Palaeoecol 252:328-346

    Benton MJ,Tverdokhlebov VP,Surkov MV (2004)Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russian.Nature 432:97-100

    Berner RA(2002)Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling.Proc Natl Acad Sci USA 99:4172-4177

    Bhargava ON(1987)Stratigraphy,microfacies and paleoenvironment of the Lilang Group(Scythian-Dogger),Spiti Valley,Himachal Himalaya,India.J Palaeontol Soc India 25:91-107

    Bhargava ON(2008)An updated introduction to the Spiti geology. J Palaeontol Soc India 53:113-129

    Bhat GM,Bhat GD(1997)Stratigraphy and depositional environment of Late Permian Carbonates,Kashmir Himalaya.Geol Surv Mines Bur Srilanka Prof Paper 7:205-223

    Bhatia MR,Crook KAW (1986)Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.Contrib Miner Petrol 92:181-193

    Bhatt DK,F(xiàn)uchs G,Prashara KC,Krysten L,Arora RK,Golebiowski R(1981)Conodonts of otoceras beds of Spiti.J Palaeontol Soc India 25:130-134

    Brookfield ME,Twitchett RJ,Goodings C(2003)Palaeoenvironments of the Permian-Triassic transition sections in Kashmir,India.Palaeogeogr Palaeoclimatol Palaeoecol 198:353-371

    Brookfield ME,Shellnutt JG,Liang Qi R,Hannigan GM,Bhat PB Wignall(2010)Platinum element group variations at the Permo-Triassic boundary in Kashmir and British Columbia and their significance.Chem Geol 272:12-19

    Brookfield ME,Algeo TJ,Hannigan R,Williams J,Bhat GM(2013)Shaken and stirred:seismites and tsunamites at the Permian-Triassic boundary,Guryul Ravine,Kashmir,India.Palaios 28:568-582

    Cox R,Lowe DR,Cullers RL(1995)The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochim Cosmochim Acta 59(14):2919-2940

    Cullers RL(2000)The geochemistry of shales,siltstones and sandstones of Pennsylvanian-Permian age,Colorado,U.S.A:implications for provenance and metamorphic studies.Lithos 51:305-327

    Dey S,Rai AK,Chaki A(2009)Palaeo-weathering,composition and tectonics of provenance of the Proterozoic Kaladgi Badami basin Karnataka southern India:evidence from sandstone petrography and geochemistry.J South Asian Earth Sci 34:703-715

    Erwin DH(2005)Extinction:how life on earth nearly died 250 million years ago.Princeton University Press,Princeton

    Fedo CM,Nesbitt HW,Young GM(1995)Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleo-weathering conditions and provenance.Geology 23:921-924

    Ganai JA,Shaik RA,Alam MM,Balaram V,Sathyanarayanan M(2014)The geochemistry of Permo-Carboniferous black shales from Spiti region,Himachal Pradesh,Tethys Himalaya:a record of Provenance and change in climate.Himal Geol 35(1):31-39

    Gardner LR(1992)Long-term isovolumetric leaching of aluminum from rocks during weathering:implications for the genesis of saprolite.Catena 19:521-537

    Garzanti E,Angiolini L,Sciunnach D(1996)The mid-carboniferous to Lowermost Permian succession of Spiti po group and ganmachidam formation Tethys Himalaya,northern India: gondwana glaciation and rifting of neo-tethys.Geodin Acta 9:78-100

    Garzanti E,Angiolini L,Brunton H,Sciunnach D,Balini M(1998)The bashkirian fenestella shales and the moscovian chaetetid shales of the Tethys Himalaya:south Tibet,Nepal and India. J Asian Earth Sci 16:119-141

    Harnois L(1988)The CIW index:a news index of weathering.Sed Geol 55:319-322

    Hayashi K,F(xiàn)ujisawa H,Holland H,Ohmoto H(1997)Geochemistry of~1.9 Ga sedimentary rocks from northeastern Labrador,Canada.Geochim Cosmochim Acta 61(19):4115-4137

    Hongfu Y,Kexin Z,Jinnan T,Zunyi Y,Sunbao W(2001)The global stratotype section and point(GSSP)of the Permian-Triassic boundary.Episodes 24:102-114

    Huey RB,Ward PD(2005)Hypoxia,global warming,and terrestrial Late Permian extinctions.Science 308:398-401

    Islam R,Ghosh SK,Sachan HK(2002)Geochemical characterization of the Neoproterozoic Nagthat siliciclastics,NW Kumaun Lesser Himalaya:implications for source rock assessment.J Geol Soc India 60:91-105

    Kapoor HM(1992)Permo-Triassic of the Indian subcontinent and its intercontinental correlation.In:Sweet WC,Yang Z,Dickins JM,Yin H(eds)Permo-triassic events in the eastern tethys. Cambridge University Press,Cambridge,pp 21-36

    Kapoor HM(1996)The Guryul ravine section,candidate of the global stratotype and point(GSSP)of the Permia-Triassic boundary(PTB).In:Yin H (ed)The paleozoic-mesozoic boundary. Candidates of the global stratotype section and point of the Permian-Triassic boundary.China University of Geosciences Press,Wuhan,pp 99-110

    Maruoka T,Koeberl C,Hancox PJ,Reimold WU(2003)Sulfur geochemistry across a terrestrial Permian-Triassic boundary section in the Karoo Basin,South Africa.Earth Planet Sci Lett 206(1-2):101-117

    McLennan SM (1993)Weathering and global denudation.J Geol 101:295-303

    McLennan SM,Nance WB,Taylor SR(1980)Rare earth elementthorium correlation in sedimentary rocks and the composition of the continental crust.Geochim Cosmochim Acta 44:1833-1839

    Mir AR,Bhat ZA,Alvi SH,Balaram V(2015)Geochemistry of black shales from Singhbhum mobile belt,Eastern India:implications for paleo-weathering and provenance.Himal Geol 36(2):126-133

    Myrow PM,Hughes NC,Paulsen T,Williams I,Parcha SK,Thompson KR,Bowring SA,Peng SC,Ahluwalia AD(2003)Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction.Earth Planet Sci Lett 212:433-444

    Nakazawa K,Kapoor HM (1981)The Upper Permian and Lower Triassic Faunas of Kashmir.Palaeontol Indica New Ser 46:1-191

    Nakazawa K,Kapoor HM,Ishii K,Bando Y,Okimura Y,Tokuoka T(1975)The Upper Permian and the Lower Triasssic in Kashmir,India.Memoir Facul Sci Kyoto Univ Geol Mineral Ser 41:1-106

    Nesbitt HW,Young GM(1982)Early Proterozoic climates and plate motion inferred from major element chemistry of lutites.Nature 299:715-717

    Nesbitt HW,Young GM(1984)Prediction of some weathering trend of plutonic and volcanic rocks based on thermodynamic and kinetic consideration.Geochim Cosmochim Acta 48:1523-1534

    Odigi MI,Amajor LC(2008)Petrology and geochemistry of sandstones in the southern Benue Trough of Nigeria:implications for provenance and tectonic setting.Chin J Geochem 27:384-394

    Payne JL,Lehrmann DJ,Wei J,Orchard MJ,Schrag DP,Knoll AH(2004)Large perturbations of the carbon cycle during recovery from the End-Permian extinction.Science 305:506-509

    Rashid SA(2005)The geochemistry of Mesoproterozoic clastic sedimentary rocks from the Rautgara Formation,Kumaun Lesser Himalaya:implications for provenance,mineralogical control and weathering.Curr Sci 88:1832-1836

    Roser BP,Korsch RJ(1986)Determination of tectonic setting of sandstone-mudstone suites using SiO2content and K2O/Na2O ratio.J Geol 94:635-650

    Roser BP,Korsch RJ(1988)Provenance signatures of sandstonemudstone suites determined using discriminant function analysis of major element data.Chem Geol 67:119-139

    Roser BP,Korsch RJ(1999)Geochemical characterization,evolution and source of a Mesozoic accretionary wedge:the Torlesse terrane,New Zealand.Geol Mag 136:493-512

    Saito Y(1989)Modern storm deposits in the inner shelf and their recirrence intervals,Sendai Bay,northeast Japan.In:Taira A,Masuda F(eds)sedimentary facies in the active plate margin. Terra Science Publishing,Tokyo,pp 331-344

    Sciunnach D,Garzanti E(2012)Subsidence history of the Tethys Himalaya.Earth Sci Rev 111:179-198

    Shen W,Lin Y(2010)Environmental conditions and events prior to the Permian-Triassic boundary at Meishan Section,China. J Earth Sci 21:151-153

    Shen W,Sun Y,Lin Y,Liu D,Chai P(2011)Evidence for wildfire in the Meishan section and implications for Permian-Triassic events.Geochim Cosmochim Acta 75:1992-2006

    Shukla AD,Bhandari N,Shukla PN(2002)Chemical signatures of the Permian-Triassic transitional environment in Spiti Valley,India.In:Koeberl C,MacLeod KG(eds)Catastrophic events and mass extinctions:impacts and beyond.Geological Society of America,Boulder,pp 445-453

    Sing,J,Mahanti S,Singh K(2004)Geology and evaluation of hydrocarbon prospects of Tethyan sediments in Spiti Valley,Spiti and Zanskar,Himanchal Pradesh,19th Himalaya-Karakoram-Tibet Workshop.Himalayan Journal of Sciences,Niseko pp 250

    Singh T,Tiwari R,Vijaya S,Avtar R(1995)Stratigraphy and palynology of Carboniferous-Permian-Triassic succession in Spiti Valley,Tethys Himalaya,India.J Palaeontol Soc lndia 40:55-76

    Srikantia SV,Bhargava ON(1998)Geology of Himachal Pradesh: Geological Society of India,Bangalore p 416

    Sugitani K,F(xiàn)umiaki Y,Tsutomu N,Koshi Y,Masayo M,Koichi M,Kazuhiro S(2006)Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt.Goldsworthy,Pilbara Craton,Western Australia:evidence for the early evolution of continental crust and hydrothermal alteration.Precambr Res 147:124-147

    Sun L,Gui H,Chen S,Ma Y,He Z (2011)Geochemical characteristics and geological significance of the Neoproterozoic carbonates from northern Anhui Province,China.Chin J Geochem 30:40-50

    Sun L,Gui H,Chen S(2013)Geochemistry of sandstones from the Neoproterozoic Jinshanzhai Formation in northern Anhui Province,China:provenance,weathering and tectonic setting. Chin J Geochem 32:095-103

    Taylor SR,McLennan SM(1985)The continental crust:its composition and its evolution.Blackwell,Oxford

    Wani H,Mondal MEA(2011)Evaluation of provenance,tectonic setting,and paleoredox conditions of the Mesoproterozoic-Neoproterozoic basins of the Bastar craton,Central Indian Shield:using petrography of sandstones and geochemistry of shales.Lithosphere 3:43-154

    Wignall PB,Twitchett RJ(1996)Oceanic anoxia and the Permian mass extinction.Science 272:1155-1158

    Williams JC,Basu AR,Bargava ON,Ahluwalia AD,Hannigan RE(2012)Resolving original signatures from a sea of overprint-The geochemistry of the Gungri Shale(Upper Permian)Spiti Valley India.Chem Geol 324:59-72

    Xu L,Lin Y(2014)Analysis of platinum-group elements in drill core samples from the Meishan Permian-Triassic boundary section,China.Chin J Geochem 33:365-373

    Zhang Z,Yang X,Li S,Zhang Z(2010)Geochemical characteristics of the Xuanwei Formation in West Guizhou:significance of sedimentary environment and mineralization.Chin J Geochem 29:355-364

    Zhiming L,Jiajun L,Ruizhong H,Mingqin H,Yuping L,Chaoyang L(2003)Tectonic setting and nature of the provenance of sedimentary rocks in Lanping Mesozoic-Cenozoic Basin:evidence from geochemistry of sandstones.Chin J Geochem 22:352-360

    11 January 2016/Revised:6 February 2016/Accepted:18 April 2016/Published online:20 June 2016

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    亚洲美女视频黄频| a级毛片免费高清观看在线播放| 国产精品日韩av在线免费观看| 丰满少妇做爰视频| 日韩欧美国产在线观看| 色综合色国产| 亚洲精品久久久久久婷婷小说 | 秋霞在线观看毛片| 久久久久久久久中文| 男人狂女人下面高潮的视频| 狂野欧美白嫩少妇大欣赏| 男女那种视频在线观看| av.在线天堂| 亚洲自拍偷在线| 国产精品爽爽va在线观看网站| 好男人在线观看高清免费视频| 亚洲av电影不卡..在线观看| 成人高潮视频无遮挡免费网站| 国产三级中文精品| 日韩大片免费观看网站 | 中文字幕av在线有码专区| 大话2 男鬼变身卡| 国产国拍精品亚洲av在线观看| 久久久久九九精品影院| 久久久a久久爽久久v久久| 国产精品一区二区在线观看99 | 国产精品国产三级专区第一集| 三级国产精品欧美在线观看| 久久久精品大字幕| 国产在线男女| 国产伦一二天堂av在线观看| 大香蕉久久网| 精品不卡国产一区二区三区| 欧美日本亚洲视频在线播放| 长腿黑丝高跟| 久久人人爽人人爽人人片va| 亚洲欧洲日产国产| 久久久精品94久久精品| 国产精品久久久久久av不卡| 91在线精品国自产拍蜜月| 精品无人区乱码1区二区| 青春草视频在线免费观看| 国产探花极品一区二区| 久久久久国产网址| 又粗又爽又猛毛片免费看| 日韩欧美三级三区| 国产精品精品国产色婷婷| 美女内射精品一级片tv| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久v下载方式| 联通29元200g的流量卡| 亚洲最大成人中文| 日本黄色视频三级网站网址| 只有这里有精品99| 在线观看一区二区三区| 九色成人免费人妻av| 欧美激情在线99| 中文乱码字字幕精品一区二区三区 | 一区二区三区高清视频在线| 午夜a级毛片| 综合色av麻豆| 性插视频无遮挡在线免费观看| 亚洲欧美日韩高清专用| 日本黄色片子视频| 乱系列少妇在线播放| 午夜激情福利司机影院| 国产片特级美女逼逼视频| 少妇熟女欧美另类| 国产乱人偷精品视频| 国产激情偷乱视频一区二区| 97超碰精品成人国产| 少妇高潮的动态图| 午夜福利在线观看免费完整高清在| 国产乱人视频| 国产一区二区在线观看日韩| 精品午夜福利在线看| 深爱激情五月婷婷| 插阴视频在线观看视频| 三级国产精品片| 久久久精品大字幕| 国产片特级美女逼逼视频| 精品欧美国产一区二区三| 美女高潮的动态| 免费人成在线观看视频色| 美女被艹到高潮喷水动态| 在线a可以看的网站| 午夜福利在线在线| 亚洲18禁久久av| 丝袜美腿在线中文| 免费黄色在线免费观看| 亚洲欧美精品综合久久99| 级片在线观看| 高清视频免费观看一区二区 | 人人妻人人澡人人爽人人夜夜 | 欧美最新免费一区二区三区| 国产精品一区www在线观看| 亚洲国产色片| 亚洲久久久久久中文字幕| 亚洲天堂国产精品一区在线| a级一级毛片免费在线观看| 亚洲国产精品合色在线| 天天躁夜夜躁狠狠久久av| 美女大奶头视频| 日本免费在线观看一区| 亚洲中文字幕一区二区三区有码在线看| 久久久久国产网址| 国内少妇人妻偷人精品xxx网站| 97人妻精品一区二区三区麻豆| 亚洲av免费在线观看| 18禁在线播放成人免费| 国产淫片久久久久久久久| 国产午夜精品一二区理论片| eeuss影院久久| 性插视频无遮挡在线免费观看| 国产亚洲av片在线观看秒播厂 | 又粗又爽又猛毛片免费看| 一级二级三级毛片免费看| 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 中文亚洲av片在线观看爽| 亚洲国产欧洲综合997久久,| 国产精品伦人一区二区| 中文亚洲av片在线观看爽| 国产黄a三级三级三级人| 午夜激情欧美在线| 精品酒店卫生间| 丰满人妻一区二区三区视频av| 久久久国产成人免费| 91精品一卡2卡3卡4卡| 91av网一区二区| 性插视频无遮挡在线免费观看| av在线老鸭窝| 亚洲乱码一区二区免费版| 亚洲国产精品成人综合色| 99久久成人亚洲精品观看| 亚洲中文字幕一区二区三区有码在线看| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 色网站视频免费| 成人三级黄色视频| 国产欧美另类精品又又久久亚洲欧美| 深爱激情五月婷婷| 老司机影院成人| 成年免费大片在线观看| 尤物成人国产欧美一区二区三区| 国产精品人妻久久久久久| 麻豆久久精品国产亚洲av| 亚洲欧洲国产日韩| 国产高清国产精品国产三级 | 婷婷色av中文字幕| 看黄色毛片网站| 亚洲电影在线观看av| 最新中文字幕久久久久| 视频中文字幕在线观看| 在线免费观看不下载黄p国产| 亚洲人成网站高清观看| 亚洲电影在线观看av| 亚洲精品国产成人久久av| 老司机福利观看| 国产老妇女一区| 国产黄a三级三级三级人| 国产单亲对白刺激| 一区二区三区高清视频在线| 久久韩国三级中文字幕| 中文字幕av在线有码专区| 黄片wwwwww| 毛片女人毛片| 国产激情偷乱视频一区二区| 精品久久久久久电影网 | 欧美日韩在线观看h| 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 亚洲真实伦在线观看| 色播亚洲综合网| 中文字幕人妻熟人妻熟丝袜美| 久久久久久九九精品二区国产| 校园人妻丝袜中文字幕| 大又大粗又爽又黄少妇毛片口| 亚洲成人精品中文字幕电影| 久久久国产成人免费| 不卡视频在线观看欧美| 国产成人福利小说| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 少妇猛男粗大的猛烈进出视频 | 国产 一区 欧美 日韩| 久久久久久九九精品二区国产| 岛国在线免费视频观看| 国产精品人妻久久久久久| 亚洲欧洲国产日韩| 国产在视频线精品| 天堂网av新在线| 国产午夜精品论理片| 天堂√8在线中文| 熟女人妻精品中文字幕| 欧美变态另类bdsm刘玥| 高清av免费在线| 九色成人免费人妻av| 亚洲四区av| 日日摸夜夜添夜夜添av毛片| 日韩中字成人| 一区二区三区免费毛片| 高清在线视频一区二区三区 | 色网站视频免费| 亚洲欧美成人综合另类久久久 | 久久久久免费精品人妻一区二区| 亚洲电影在线观看av| 99久久精品热视频| 毛片一级片免费看久久久久| 国产一级毛片在线| 国产在线男女| 精品熟女少妇av免费看| 精品久久久久久电影网 | 一个人看的www免费观看视频| 欧美日韩精品成人综合77777| av在线天堂中文字幕| 国产精品美女特级片免费视频播放器| 久久久久久久久久成人| 久久久精品94久久精品| 国产高清三级在线| eeuss影院久久| 99久久无色码亚洲精品果冻| 高清视频免费观看一区二区 | 国产精品久久久久久精品电影小说 | 亚洲欧洲国产日韩| 国产单亲对白刺激| 亚洲第一区二区三区不卡| 一边亲一边摸免费视频| 亚洲久久久久久中文字幕| 免费观看在线日韩| 国产成人a∨麻豆精品| 看黄色毛片网站| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 亚洲高清免费不卡视频| 亚洲欧美日韩东京热| 日韩大片免费观看网站 | 亚洲av中文av极速乱| 国产成人a∨麻豆精品| 成人欧美大片| 我的女老师完整版在线观看| 午夜精品国产一区二区电影 | 色5月婷婷丁香| 国产一区亚洲一区在线观看| 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 最后的刺客免费高清国语| 麻豆成人av视频| 一边亲一边摸免费视频| 国产成人精品一,二区| 精品久久久久久久久亚洲| 成人性生交大片免费视频hd| 全区人妻精品视频| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 欧美一区二区国产精品久久精品| 成人综合一区亚洲| 日韩欧美三级三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 日韩 亚洲 欧美在线| 中文亚洲av片在线观看爽| 69人妻影院| 国产在线男女| 麻豆国产97在线/欧美| 级片在线观看| 欧美日韩在线观看h| 水蜜桃什么品种好| 你懂的网址亚洲精品在线观看 | 国产高清不卡午夜福利| 免费av毛片视频| 长腿黑丝高跟| 免费不卡的大黄色大毛片视频在线观看 | 少妇高潮的动态图| 色噜噜av男人的天堂激情| 国产精品久久视频播放| 内地一区二区视频在线| 亚洲经典国产精华液单| 精品久久久久久电影网 | 夫妻性生交免费视频一级片| 黑人高潮一二区| 国产在视频线精品| 国产在视频线在精品| 寂寞人妻少妇视频99o| 国产视频首页在线观看| 免费在线观看成人毛片| 熟妇人妻久久中文字幕3abv| 哪个播放器可以免费观看大片| 久99久视频精品免费| 美女脱内裤让男人舔精品视频| 欧美性猛交黑人性爽| 国产精品麻豆人妻色哟哟久久 | av在线播放精品| 亚洲人成网站在线观看播放| 国产精品一区二区三区四区久久| av在线老鸭窝| 亚洲av.av天堂| 女的被弄到高潮叫床怎么办| 国产三级在线视频| 久久精品夜色国产| 91午夜精品亚洲一区二区三区| 男人的好看免费观看在线视频| 大香蕉久久网| 亚洲av熟女| 尾随美女入室| 中国国产av一级| 麻豆一二三区av精品| 国产精品人妻久久久影院| 亚洲精品乱码久久久v下载方式| 日韩精品青青久久久久久| 精品免费久久久久久久清纯| 成人二区视频| 成人高潮视频无遮挡免费网站| av免费在线看不卡| av女优亚洲男人天堂| 久久久久久久久久成人| 日本wwww免费看| 最后的刺客免费高清国语| 成人美女网站在线观看视频| 大话2 男鬼变身卡| 免费大片18禁| 国产在线一区二区三区精 | 色综合站精品国产| 国产精品国产三级国产专区5o | 69av精品久久久久久| 观看免费一级毛片| 又粗又爽又猛毛片免费看| 观看美女的网站| 精品人妻一区二区三区麻豆| 波多野结衣高清无吗| 国产高清有码在线观看视频| 高清在线视频一区二区三区 | 一个人看视频在线观看www免费| 成人特级av手机在线观看| 联通29元200g的流量卡| 国产一区亚洲一区在线观看| 欧美97在线视频| 日韩大片免费观看网站 | 久久精品国产自在天天线| 麻豆av噜噜一区二区三区| 永久免费av网站大全| 精品欧美国产一区二区三| 国产av码专区亚洲av| 六月丁香七月| 白带黄色成豆腐渣| 嫩草影院入口| 亚洲成人av在线免费| 一区二区三区四区激情视频| 黄色一级大片看看| 色播亚洲综合网| 看免费成人av毛片| 亚洲国产精品成人综合色| 不卡视频在线观看欧美| 69av精品久久久久久| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 欧美激情国产日韩精品一区| 一个人免费在线观看电影| a级毛片免费高清观看在线播放| 久久精品国产鲁丝片午夜精品| 日本wwww免费看| 亚洲久久久久久中文字幕| 久久久久精品久久久久真实原创| 欧美高清性xxxxhd video| 久久精品久久久久久噜噜老黄 | 久久人人爽人人爽人人片va| 国产精品电影一区二区三区| 久久人人爽人人爽人人片va| 成人午夜精彩视频在线观看| 亚洲18禁久久av| 成人二区视频| 亚洲精品,欧美精品| 国产精品国产三级国产专区5o | 国产亚洲精品久久久com| 看免费成人av毛片| 毛片一级片免费看久久久久| 熟女电影av网| 男人和女人高潮做爰伦理| 全区人妻精品视频| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 亚洲国产色片| 国产三级中文精品| 日本黄色片子视频| 在线观看一区二区三区| 亚洲精品一区蜜桃| 黑人高潮一二区| 国产成人精品一,二区| АⅤ资源中文在线天堂| 欧美高清成人免费视频www| 久久久久久久午夜电影| 色5月婷婷丁香| 欧美性感艳星| 色综合色国产| 丰满少妇做爰视频| 亚洲第一区二区三区不卡| 国产老妇伦熟女老妇高清| 亚洲电影在线观看av| 亚洲欧美日韩高清专用| 男女啪啪激烈高潮av片| 桃色一区二区三区在线观看| 五月伊人婷婷丁香| 直男gayav资源| 在线免费观看的www视频| 亚洲av成人精品一区久久| www.色视频.com| 国产亚洲一区二区精品| 中文天堂在线官网| 97在线视频观看| 欧美激情在线99| 人人妻人人看人人澡| 日日撸夜夜添| 亚洲av不卡在线观看| 久久99精品国语久久久| 久久国内精品自在自线图片| 两性午夜刺激爽爽歪歪视频在线观看| 淫秽高清视频在线观看| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 国产麻豆成人av免费视频| 午夜福利高清视频| 春色校园在线视频观看| 一级黄色大片毛片| 美女xxoo啪啪120秒动态图| 日韩一区二区视频免费看| 国产精品人妻久久久影院| 真实男女啪啪啪动态图| 九九久久精品国产亚洲av麻豆| 51国产日韩欧美| 中文亚洲av片在线观看爽| 国语对白做爰xxxⅹ性视频网站| 精品酒店卫生间| 免费观看人在逋| 国产探花在线观看一区二区| www.色视频.com| 国产69精品久久久久777片| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 亚洲在久久综合| 国产一区二区亚洲精品在线观看| 99久久成人亚洲精品观看| 亚洲精品日韩在线中文字幕| 日本欧美国产在线视频| 欧美激情久久久久久爽电影| 欧美zozozo另类| 国产精品乱码一区二三区的特点| 精品免费久久久久久久清纯| 国产成人一区二区在线| 国产精品日韩av在线免费观看| 晚上一个人看的免费电影| 国产精品熟女久久久久浪| 久久久色成人| 久久久欧美国产精品| 久久久久久国产a免费观看| 久久久精品大字幕| 久久这里只有精品中国| 女人被狂操c到高潮| 成人毛片60女人毛片免费| av女优亚洲男人天堂| 中文资源天堂在线| 噜噜噜噜噜久久久久久91| 人人妻人人看人人澡| 一级二级三级毛片免费看| 日韩成人伦理影院| 国产精品女同一区二区软件| 久久久久久久久中文| 男女国产视频网站| 国产激情偷乱视频一区二区| 亚洲av福利一区| 国产精品麻豆人妻色哟哟久久 | 亚洲av成人精品一二三区| 内地一区二区视频在线| 日本-黄色视频高清免费观看| 午夜免费激情av| 亚洲中文字幕一区二区三区有码在线看| 午夜精品在线福利| 亚洲最大成人中文| 国产黄色小视频在线观看| 特级一级黄色大片| 亚洲国产欧美人成| 夜夜爽夜夜爽视频| 日日撸夜夜添| 天堂网av新在线| 亚洲18禁久久av| 中文字幕久久专区| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品| 亚洲av男天堂| 夜夜爽夜夜爽视频| 亚洲18禁久久av| 成人午夜精彩视频在线观看| 亚洲av免费在线观看| 久久精品国产鲁丝片午夜精品| 亚洲一级一片aⅴ在线观看| 中文在线观看免费www的网站| 国产成人91sexporn| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 在线播放国产精品三级| 波多野结衣高清无吗| 亚洲国产精品成人久久小说| 国产乱人视频| 欧美xxxx性猛交bbbb| 久久欧美精品欧美久久欧美| 韩国av在线不卡| 中文欧美无线码| 少妇人妻精品综合一区二区| 亚洲精品aⅴ在线观看| 精品人妻熟女av久视频| 人体艺术视频欧美日本| 丰满少妇做爰视频| 国产高清不卡午夜福利| 一边摸一边抽搐一进一小说| 91狼人影院| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 国产精品人妻久久久影院| 能在线免费看毛片的网站| 国产精品1区2区在线观看.| 91久久精品国产一区二区成人| 日本熟妇午夜| 日本av手机在线免费观看| 内射极品少妇av片p| 嫩草影院精品99| 亚洲成av人片在线播放无| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站| 国国产精品蜜臀av免费| 精品国内亚洲2022精品成人| 爱豆传媒免费全集在线观看| 男女那种视频在线观看| 亚洲美女视频黄频| 内地一区二区视频在线| 亚洲国产精品sss在线观看| 国产成人aa在线观看| ponron亚洲| 日韩 亚洲 欧美在线| 国产av在哪里看| 少妇熟女欧美另类| 久久国产乱子免费精品| 国产v大片淫在线免费观看| av免费观看日本| 午夜精品国产一区二区电影 | 九九久久精品国产亚洲av麻豆| 中文字幕人妻熟人妻熟丝袜美| 男女下面进入的视频免费午夜| 亚洲精品一区蜜桃| 99热网站在线观看| 老师上课跳d突然被开到最大视频| 国产精品一及| 亚洲三级黄色毛片| 亚洲av成人av| av专区在线播放| 男女边吃奶边做爰视频| 美女被艹到高潮喷水动态| 亚洲av福利一区| 十八禁国产超污无遮挡网站| 亚洲国产欧美在线一区| 天堂影院成人在线观看| 亚洲av男天堂| 国产一级毛片在线| 热99在线观看视频| 一级av片app| 日本色播在线视频| 高清毛片免费看| 看非洲黑人一级黄片| 欧美成人午夜免费资源| 精品一区二区免费观看| 又黄又爽又刺激的免费视频.| 又粗又硬又长又爽又黄的视频| 久久精品熟女亚洲av麻豆精品 | 神马国产精品三级电影在线观看| 简卡轻食公司| 日本五十路高清| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 男人狂女人下面高潮的视频| 美女大奶头视频| 老司机福利观看| 亚洲美女视频黄频| 久久久久性生活片| 日本与韩国留学比较| 精品久久久久久成人av| 国产精品久久久久久精品电影| 久久久a久久爽久久v久久| 亚洲自偷自拍三级| 18+在线观看网站| 嫩草影院精品99| 日韩在线高清观看一区二区三区| 九九热线精品视视频播放| 免费人成在线观看视频色| 国产男人的电影天堂91| 欧美变态另类bdsm刘玥| av在线天堂中文字幕| 成人高潮视频无遮挡免费网站| 18禁在线无遮挡免费观看视频| .国产精品久久| 国产淫片久久久久久久久| 亚洲真实伦在线观看| 欧美另类亚洲清纯唯美| 我的女老师完整版在线观看| 成人美女网站在线观看视频| 久久久精品94久久精品| 一个人看视频在线观看www免费| 亚洲综合精品二区| 久久热精品热| 成人二区视频| 国产私拍福利视频在线观看| 欧美变态另类bdsm刘玥| 精品免费久久久久久久清纯| 亚洲成色77777| 春色校园在线视频观看|