• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Copper partitioning between granitic silicate melt and coexisting aqueous fluid at 850°C and 100 MPa

    2016-11-21 02:09:46ShuilongWangHuiLiLinboShangXianwuBiXinsongWangWenlinFan
    Acta Geochimica 2016年4期

    Shuilong Wang·Hui Li·Linbo Shang·Xianwu Bi· Xinsong Wang·Wenlin Fan

    Copper partitioning between granitic silicate melt and coexisting aqueous fluid at 850°C and 100 MPa

    Shuilong Wang1,3·Hui Li2·Linbo Shang1·Xianwu Bi1· Xinsong Wang1·Wenlin Fan1

    Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850°C,100 MPa and oxygen fugacity(f O2)buffered at approaching Ni-NiO(NNO).Partition coefficients of Cu(DCu=cfluid/cmelt)were varied with different alumina/alkali mole ratios[Al2O3/(Na2O+K2O),abbreviated as Al/ Alk],Na/K mole ratios,and SiO2mole contents.The DCuincreased from 1.28±0.01 to 22.18±0.22 with the increase of Al/Alk mole ratios(ranging from 0.64 to 1.20)and Na/K mole ratios(ranging from 0.58 to 2.56).The experimental results also showed that DCuwas positively correlated with the HCl concentration of the starting fluid. The DCuwas independent of the SiO2mole content in the range of SiO2content considered.No DCuvalue was less than 1 in our experiments at 850°C and 100 MPa,indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system,and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment.The results indicated that Cu favored partitioning into the aqueous fluid rather than themelt phase if there was a high Na/K ratio,Na-rich,peraluminous granitic melt coexisting with the high Cl-fluid.

    ? Shuilong Wang

    shuilongwang0@126.com

    ? Linbo Shang

    shanglinbo@vip.gyig.ac.cn

    1State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China

    2Geophysical Exploration Institute of Heilongjiang Province,Harbin 150036,China

    3University of Chinese Academy of Sciences,Beijing 100039,China

    Cu·Experimental study·Partition coefficient· Granitic silicate melt·Aqueous fluid

    1 Introduction

    The porphyry copper deposit is the most important source of Cu in the world,as it accounts for about 50%-60%of the world’s Cu production(Sinclair 2007).Porphyry copper deposits are spatially and temporally related to felsic and to intermediate porphyritic intrusions.This has led many investigators to examine the relationship between magmatic activity and hydrothermal ore genesis(Frank et al.2011).Studies are in general agreement that magma provides the heat and metallogenic materials for the porphyry deposits(Sillitoe 1979,1989,2010;Sinclair 2007).It has been hypothesized that the majority of the Cu found in the deposits was derived from the melt(Sinclair 2007). Most researchers believed that the porphyry deposits were formed when the metals in the ore-forming fluid were precipitated due to the boiling and/or un-mixing of fluid(Sillitoe 2010).The close spatial relationship between the felsic porphyry rocks and the ore bodies strengthens the melt-ore link,but the details of the Cu transport in the porphyry environment are still not clear over a range of pressure,temperature,compositions of fluids and silicate melts.

    The transformation of silicate melt and fluid from the original melt resulted in the element partitioning behavior between the melt and fluid phases(Audétat et al.2000;Kamenetsky et al.2004).This is an important step for the formation of the porphyry ore deposits(Hedenquist andLowenstern 1994;Shinohara 1994;Candela and Piccoli 1995;Barnes 1997;Ulrich et al.1999).During phase transformation,the fluid and silicate melt compositions immediately influence the element partitioning behavior between the silicate melt and fluid(Bodnar et al.1985;Heinrich et al.1999;Kamenetsky et al.2004;Rusk et al. 2004),causing the variation of element species and concentrations in fluid,followed by the formation of various kinds of hydrothermal deposits(Halter and Webster 2004). Thus,it is important to know the partitioning behavior of Cu between granitic silicate melts and coexisting fluids.

    The partitioning behavior of metals between silicate melts and fluids can be affected by a number of parameters,including temperature,pressure,oxygen fugacity,and compositions of fluid and melt.Previous studies on Cu partitioning between aqueous fluids and silicate melts have focused on various aqueous fluid systems at~700-1000°C and 50-400 MPa(Khitarov et al.1982;Candela and Holland 1984;Keppler and Wyllie 1991;Williams et al.1995;Bai and Koster van Groos 1999;Simon et al.2006;Frank et al.2011;Zajacz et al.2012). Their data show that the DCu(fluid/melt)values can vary from 0.1 to 433,with most of them being greater than 1. The available experimental data of Cu partitioning between fluids and melts show that the Cu partitioning into the fluid phase is significantly enhanced with the presence of chloride(NaCl/KCl or HCl)in the system,with positive correlations between the DCu(fluid/melt)values and the Clconcentrations in the fluids(Khitarov et al.1982;Candela and Holland 1984;Keppler and Wyllie 1991;Williams et al.1995;Bai and Koster van Groos 1999;Simon et al. 2006;Frank et al.2011).Data of Simon et al.(2006)demonstrate that the presence of sulfur enhances the partitioning of Cu from melts into magmatic volatile and brine phases,as thevalue of the S-bearing system is five times of that of the S-free system.Recently,Tattitch et al.(2015)reported that the DCu(brine/vapor)values increase from 25(±6)at XCO2=0.10,to 100(±30)at XCO2=0.38 in the CO2-bearing vapor-brine-melt system.

    In natural systems,analyses of Cu-rich,low-density fluid bubbles,trapped in melt inclusions in quartz of silicic volcanic rocks from the 1912 Valley of Ten Thousand Smokes,Alaska(Lowenstern 1993)and in the CO2-dominated vapor bubbles from quartz phenocrysts of rhyolites from Pantelleria,Sicily(Lowenstern et al.1991),show the D(vapor/melt)values for Cu to be from 100 to 1000.Rare natural data on Cu partitioning between fluids and silicic melts in granitic-pegmatite(Zajacz et al.2008)and magmatic-hydrothermal(Audétat and Pettke 2003;Vikent’ev et al.2012)systems agree with the range of experimentally measured values in the laboratory.

    However,there is a lack of experimental data about the influence of silicate melt compositions[Al/(Na+K),Na/ K,SiO2]on the partitioning behavior of Cu between the melt and fluid phases.Only some data reported by Bai and Koster van Groos(1999)show that the decrease of ASI of the silicate melt results in a decrease of the DCuvalues for the Cl-bearing system.In the experiments in this paper,the fluid-melt partition coefficients of Cu were determined as a function of the melt compositions(e.g.,Al/Alk mole ratios,Na/K mole ratios,and SiO2mole contents,where the Al/ Alk mole ratio is the molar ratio of Al2O3divided by the sum of Na2O+K2O)and the concentrations of chlorine in the co-existing fluids at 850°C,100 MPa,in order to constrain the Cu partitioning behavior between the melt and fluid phases in a fluid-melt system evolved from the representative porphyry magma.

    2 Experimental methods

    2.1Starting materials

    The starting chemical compositions of the individual haplogranite gels were determined by X-ray fluorescence(XRF)and are provided in Table 1.The method used to compound the haplogranitic gels is presented in detail by Hamilton and Henderson(1968).The gels were prepared from reagent grade TEOS,Na2CO3,KHCO3,and Al2O3. The Al/Alk mole ratios and Na/K mole ratios of these haplogranitic gels are varied around a basic point with composition of(Qtz0.38Ab0.33Or0.29),which is the ternary minimum composition of the water-saturated melt,with the liquids at a temperature of about 710°C and a vapor pressure of 100 MPa(Tuttle and Bowen 1958;Zhang 1992).In order to conform to Henry’s Law,a small amount of Cu2O powder was added for the synthesis of the haplogranite gels.

    The haplogranitic gel was fused to glass in the Pt crucibles in a silicon-molybdenum electric oven at 1300°C for 2 h.The glasses were then mounted onto a polymer casting resin,polished,and examined for the compositional homogeneity by using a scanning electron microscope(Fig.1).The data show that major elements(Si,Al,Na,K)were distributed homogeneously in the glass,indicating that the glasses were compositionally homogeneous.

    2.2Experimental apparatus

    Experiments were conducted using an externally-heated cold-seal rapid quench pressure vessel(RQV)(Fig.2),which mainly includes three parts(reaction system,pressure system,and temperature control system).The vessel of the reaction system has 30 mm in its outer diameter,8 mm in its inner diameter,450 mm in length,with the distilled water as the pressure medium of the reactionsystem.The exterior cooling kettle(~200 mm long)of the vessel is cooled by a water-circulating jacket during the entire experimental run,in order to protect the vessel during the rapid quench.The vessel was removed from the furnace and tilted vertically to allow the capsule to slide to the cool-end of the vessel and quenched to room temperature in 1 min at the end of the experiment.A manual spiral pump was used to enhance the pressure of the pressure system.Valves and buffers were used to keep a constant pressure condition.Pressures were measured with a Bourdon-type gauge,which was manufactured by the Jinan Great Wall Instrumentation Factory and has an uncertainty of±5 MPa.The temperature control system,produced by the Shanghai Automation Instrumentation Co.,Ltd.,has applied an XTMD-1000P controller with a temperature error of±1°C.A calibrated sheathed Pt-Pt90Rh10 thermocouple was inserted into a shallow hole at the end of the vessel to connect the reaction system and the temperature control system.There is a constant temperature zone in the reaction system to keep the same conditions during various experiments.The Ni-rich alloy of the vessel(GH49,containing ca.60 wt%Ni)and a Ni-based filler rod generated an oxygen fugacity that was intrinsically buffered near the NNO at temperatures of~800-850°C and a water pressure of 100 MPa(Chou 1987;Taylor et al.1992).

    Table 1 Major element(wt%)and Cu(μg/g)concentrations of haplogranitic gels

    Fig.1 A SEM image of haplogranitic glass.Pores(such as A and B)are produced by rapid quench.They are distributed randomly in the haplogranitic glass

    2.3Experimental procedures

    Experiments were conducted in gold capsules with a length of~60 mm,outer diameter of 5 mm,and inner diameter of 4.5 mm.Approximately 200 mg of haplogranite powder and 200 μl solution were loaded into each capsule.The capsule was crimped and bathed in ice water while being sealed with an oxyacetylene torch to minimize volatile losses,with less than±0.5 mg being lost from the capsules after sealing.They were then baked in an oven overnight at 110°C to check for leakage.If the weight loss was less than±0.5 mg,the capsules were placed into the externallyheated cold-seal rapid quench pressure vessel,sealed,pressurized to about one-third of the desired final pressure,and then heated to the desired temperature and pressure. Experiments were done for several days at constanttemperature and pressure and finally quenched isobarically within 1 min.

    Fig.2 Sketch of the RQV experimental apparatus

    The capsules were then removed from the vessels,cleaned,and weighed to check for any leakage that may have happened during the experiments.Capsules that had a weight loss of over±0.5 mg were discarded.Then,the eligible capsules were pierced with a stainless steel needle and the solution was removed with a microsyringe into a 10 ml test tube.The solution was then weighed and diluted with 5 wt%HNO3to a volume of 10 ml,with an uncertainty of±1%.After the solution was removed,the glass was obtained by splitting the capsule.Then,the inside of the capsule and the outside of the glass bead were cleaned with 5 wt%HNO3.The cleaning solution was moved to a 50 ml test tube with an error of±0.1 ml,similar to the concentration of Cu in the aqueous fluid.Therefore,achieving equilibrium between the haplogranite melt and fluid in the capsule was an important precondition.A series of experiments have been done to check how long the equilibrium could be reached for the partition of elements(Candela and Holland 1984;Williams et al.1995;Frank et al.2003,2011;Chen 1989;Tang 2003).Based on the data from the studies above,each of our experiments had to be run for 5 days,in order to make sure the equilibrium between the haplogranite melt and the fluid in the capsule was reached.

    3 Analytical techniques

    The major elements of the glasses were analyzed by using a PANalytical Axios-advance XRF spectrometer on fused lithium-tetraborate glass pellets.Analytical precision,as determined by the Chinese National standard GSR-1,was generally around 1%-5%.The Cu concentrations of the haplogranitic gels and recovered quenched aqueous fluids were analyzed by using a Finnigan MAT ELEMENT inductively coupled plasma source mass spectrometer(ICP-MS)following the procedures described by Qi et al.(2000).Part of the product glasses were milled to 200 mesh in an agate mortar,then 50 mg of the glass powder was dissolved by 1 ml of purified HF and HNO3in a Teflon crucible,and the solutions also were analyzed by using ICP-MS.Rhodium was used as an internal standard to monitor signal drift during counting.The international standards GBPG-1 and OU-6 were used for analytical quality control.The relative analytical precision was generally less than 5%.

    Simon et al.(2007)verified that compositions of aqueous fluids trapped as quartz-hosted inclusion and glasshosted inclusion,and those recovered from the capsule after quench are generally consistent at the 2δ uncertainty level,though those compositions were analyzed by using three entirely different instrumental techniques(i.e.,LAICP-MS,INAA and AAS).Therefore,in our experiments,the Cu contents of the recovered quenched aqueous fluids analyzed with the ICP-MS represent the concentration of Cu in the fluids at high temperature and pressure,while the Cu contents of the produced glasses indicate those of the melts.

    During the quenching process,a small amount of the solutions included in some pores or inclusions of the glasses could influence the actual Cu concentrations of the melts.In order to estimate the influence,a small portion of product glass was mounted onto a polymer casting resin,polished,and observed under optical microscope.Microscopic observations verified that the glass was homogeneous and crystal-free,with many pores or inclusions(Fig.3).Among these pores or inclusions,only 1%-5% of them in volume are actual fluid inclusions,which were checked using Laser Raman Spectrometry.Raman spectra indicate that these inclusions contain some water(Fig.4),in which Cu and other components,such as NaCl,KCl and HCl,could be presented.Therefore,it is estimated thatthere is an uncertainty of about±5%for the Cu concentrations of the melts.

    Fig.3 Photomicrograph of pores or inclusions in product glass.The dark areas like A or B are mostly pores produced by quenching of the melts(95%).Only 1%-5%of them(C and D)contain water verified by Raman spectroscopy

    Fig.4 Raman spectrum of water contained in a pore in product glass

    4 Results and discussion

    4.1Influence of Al/Alk mole ratio of the melt

    In Group A of Table 2,the L1 series gels with various Al/ Alk mole ratios and similar Na/K mole ratios were used as starting melts and the 0.1 mol/l HCl solution was used as the starting fluid.Cu partition coefficients vary from 1.28±0.01 to 10.09±0.10 when Al/Alk mole ratios range from 0.64 to 1.20.Evidently,the DCuis positively correlated with the Al/Alk mole ratios(Fig.5).This infers that Cu partitioning is distinctly affected by the melt composition changing from peralkaline to peraluminous.It can be seen that the higher Al/Alk mole ratios for the melts,the more Cu partitions into the coexisting aqueous fluids. However,the higher the alkali contents of the melts,the more Cu partitions into the melts.

    The network of silicate melts constitutes of the basic structure of magma.In silicate melts,Si4+and Al3+are called network-former cations,while Na+and K+are called network-modifier cations.The ratio between the network-modifier cation and network-former cation defines the degree of melt polymerization.The increase of Al/Alk mole ratios means an increase of the degree of polymerization but a relative decrease of non-bridging oxygen(NBO)available.Some elements,such as Cu,Pb,Zn,Mo,and so on,form six-coordinate(or>6)complexes in the silicate melts(Bai and Koster van Groos 1999),with a positive correlation to the NBO(Farges et al.1991,1992). Therefore,with the increase of the Al/Alk mole ratios,the solubility of the element Cu in the silicate melts is reduced,resulting in an increase of the partition coefficient of Cu between fluids and melts.

    4.2Influence of Na/K mole ratio of the melt

    The influences of the Na/K mole ratio on the Cu partition coefficients are listed in Group B of Table 2.In Group B,the L2 series gels with various Na/K mole ratios and similar Al/Alk mole ratios were used as the starting melts and the 0.1 mol/l HCl solution was used as the starting fluid.The Cu partition coefficients vary from 1.35±0.01 to 22.18±0.22,when the Na/K ratios range from 0.58 to 2.56.Evidently,the DCuis positively correlated with the Na/K mole ratio(Fig.6).This implies that Cu is more favorable to be partitioned into the aqueous fluid for a Narich melt-fluid system than a K-rich melt-fluid system.

    The standard enthalpy of formation of Na2O and K2O are-416 and-363.17 kJ/mol,respectively.In addition,the Pauling radius of Na+(95 pm)is smaller than that of K+(133 pm),while the electronegativity of Na+is larger than that of K+(Huheey et al.2006).Based on these parameters,the structure of a melt becomes more and more stable with the increase Na/K mole ratio,resulting in the decrease of capability for accommodating Cu in the melt phase.Hence,Cu tends to be enriched in the fluids rather than the melt.In addition,the Cu partition coefficients are increased with an increase of the Na/K ratios of the melt. This agrees with the fact that the Na ion is in favor of the Cu enrichment in fluids by Holland(1972).

    4.3Influence of the SiO2mole content

    The influences of the SiO2mole content on the Cu partition coefficients are listed in Group C of Table 2.In Group C,the L3 series gels with similar Al/Alk mole ratios and Na/K mole ratios were used as the starting melts and the 0.1 mol/ l HCl solution was used as the starting fluid.The Cu partition coefficients vary from4.48±0.04to 13.30±0.13,with the SiO2mole content ranging from 75.44±3.84 to 85.61±3.95.It can be seen in Fig.7 thatthere is no linear correlation between the Cu partition coefficient and the SiO2mole content.

    Table 2 Data for the partitioning of Cu between various silicate melts and coexisting aqueous fluids

    Fig.5 Relationship between DCuand Al/Alk of melt

    Fig.6 Relationship between DCuand Na/K mole ratio

    Fig.7 Relationship between DCuand SiO2mole content

    The SiO2mole content is the most important parameter controlling the various kinds of structures of silicate melts. The capability for accommodating elements varies widely with different kinds of melt structures(from island silicates to framework silicates).In this study,all silicate melts are supersaturated with SiO2.Consequently,the SiO2mole content of the melt is not obviously influenced by the Cu partition coefficients between the liquid and melt.

    4.4Influence of HCl concentration in starting fluids

    In Group D,L1-3 gels with Al/Alk mole ratio of 0.97 and Na/K mole ratio of 1.34 were used as the starting melt and different HCl solutions were used as the starting fluids(Table 2).The Cu partition coefficients vary from 2.98±0.03 to 17.61±0.17,with the HCl concentrations of solutions ranging from 0.01 to 2.00 mol/l.The results of this study are consistent with those of previous ones(Khitarov et al.1982;Candela and Holland 1984;Keppler and Wyllie 1991;Williams et al.1995;Bai and Koster van Groos 1999;Simon et al.2005;Frank et al.2011).It can be seen in Fig.8 that there is a positive linear correlation between the Cu partition coefficient and the Cl concentration of the fluid.

    Fig.8 Relationship between DCuand HCl concentrations in starting fluids

    Volatile elements,particularly F and Cl,play an important role in magmatic hydrothermal ore-forming systems(Webster 1990).For example,halogens affect various processes,such as the timing of vapor saturation,the compositional variations by complexing with metals,and types of mineralization in hydrothermal metallogenic system(Hu et al.2008).Chlorine prefers to be distributed in aqueous fluids with a maximum Cl distribution coefficient of 117(Webster 1992a,b;Bureau et al.2000).Cu prefers to complex with Cl in aqueous fluids(Khitarov et al.1982;Candela and Holland 1984;Keppler and Wyllie 1991;Williams et al.1995;Bai and Koster van Groos 1999;Simon et al.2005;Frank et al.2011),so the Cu partitioning coefficients are increased with an increase of Cl concentrations in the fluids.

    5 Implications

    The metallogenic system of the porphyry ore deposits is complicated,as the compositions of melts,vapor,and brine fluids are extremely varied throughout the ore-forming process.Our data have demonstrated that the melt composition is also an important factor governing the partitioning behavior of Cu between fluids and melts,besides the chlorine and sulfur in fluids.Whole rock analyses of ore-bearing porphyry rocks obviously show their Al/Alk and Na/K mole ratios are both larger than 1 in Fig.9(Zhou 2011;Wang 2013;Hou et al.2003).These geological and experimental results imply that Cu prefers to partition into the aqueous fluids to form Cu-rich ore-forming fluids in the system of peraluminous granitic melt or Na-rich melt coexisting with HCl-rich aqueous.Fluids(vapor and/or brine)can be exsolved form magmatic melts when they are saturated in the melts under conditions of certain temperatures and pressure(Robb 2013).The total quantity of Cu scavenged from the melts by the exsolved fluids can easily supply enough Cu to form a world-class Cu-porphyry deposit(Sinclair 2007).

    In natural systems,the exsolution of the magmatic volatile phase(MVP),which always occur during the later stage of the fractional crystallization of the magma,resulted in the partition of Cu between the MVP and melt(Candela 1997).Therefore,the contents Al2O3,Na2O,and K2O(or Na2O+K2O)of the primary melt cannot be used to evaluate its metallogenic potentiality,as those contents in the melt are variable during the fractional crystallization process.Our study presents that the parameters(Al/Alk,Na/K mole ratios)of evolved magmas are more suitable for indicating the metallogenic potentiality of the melt.TheDCu(fluid/melt)values(1.28-22.18)presented by our work are consistent with the values obtained by previous researchers from the natural samples(Lowenstern et al. 1991;Lowenstern 1993;Audétat and Pettke 2003;Vikent’ev et al.2012;Zajacz et al.2008).Therefore,it is believed that our Cu partition coefficients between fluids and silicate melts could be used as a parameter to estimate the possible the amount of Cu derived from source magma of porphyries in a geological model,such as that shown by Pokrovski et al.(2013).

    Fig.9 Plots of Al/Alk and Na/K mole ratios versus SiO2contents of Copper deposits(Data cited:Zhou 2011;Wang 2013;Hou et al.2003)Al/Alk and Na/K are calculated in mole content.Al/Alk is the mole ratio of Al2O3divided by the sum of Na2O+K2O

    Herein,our Cu partitioning data obtained from the above experiments have been applied to discuss how copper could be efficiently removed from a silicate melt into an evolving fluid in the fluid-melt system.We selected the following parameters for the simulation:mean Cu partitioning value(10),volume of granite melts(100 km3),density of melts(2.5 g/cm3),content of water(5 wt%),Cu concentration in granite melts(50 ppm).In addition,the system is supposed to be closed so that the Cu amounts are limited to the given volume of the melts.After the equilibration of Cu in the fluid and melt two-phases,the calculated Cu mass in fluid is 4.17×106tons.The model indicates that 33.3%of the Cu would be removed from the melt into the fluid.This calculation reveals that a large amount of Cu could be extracted from the silicate melt into the coexisting fluid,even if the Cu partitioning values are relatively small(such as 1-10).This implies that the variation of compositions of silicate melts could result in the large variation of Cu mass transferred from the melt into the fluid.

    Simultaneously,considering the influence of fluid compositions(such as S,CO2and HCl)on the Cu partition coefficients(Simon et al.2006;Zajacz et al.2008;Frank et al.2011;Tattitch et al.2015;this study),a Cu partitioning value of 50 without exaggeration has been assumed to calculate the efficiencies of Cu removal from the melt into the fluid.On the basis of the calculation,8.93×106tons out of the total 1.25×107tons of Cu in the melt could be extracted from the melt into the fluid,showing the efficiency of removal to be about 71.5%.This shows the extent of Cu partition between the fluid and silicate melt phases,which should play a dominant controlling role for the formation of porphyry Cu deposits.Such calculations,while representing a simplification of nature’s processes,suggest that a partition coefficient may have a significant influence on the behavior of copper in magmatic systems.

    6 Conclusions

    The results of our experiments have shown that the Cu partition coefficients show a positive correlation with the concentration of HCl in the starting fluid.Furthermore,the composition of a melt evidently constrains the Cu partitioning between the granitic silicate melt and coexisting aqueous fluid.Cu partition coefficients are increased with the increases of Na/K and Al/Alk mole ratios in the melt,indicating that Cu is more favorable to be partitioned into the fluid phase in the peraluminous granitic melt(especially Na-rich)-fluid system compared to the peralkaline and K-rich granitic melt-fluid system.

    References

    Audétat A,Pettke T(2003)The magmatic-hydrothermal evolution of two barren granites:a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico(USA).Geochim Cosmochim Acta 67(1):97-121

    Audétat A,Günther D,Heinrich CA(2000)Causes for large-scale metal zonation around mineralized plutons:fluid inclusion LAICP-MS evidence from the Mole Granite,Australia.Econ Geol 95(8):1563-1581

    Bai TB,Koster van Groos AF(1999)The distribution of Na,K,Rb,Sr,Al,Ge,Cu,W,Mo,La,and Ce between granitic melts and coexisting aqueous fluids.Geochim Cosmochim Acta 63(7):1117-1131

    Barnes HL(1997)Geochemistry of hydrothermal ore deposits,vol 1. Wiley,New York

    Bodnar RJ,Burnham CW,Sterner SM (1985)Synthetic fluid inclusions in natural quartz.III.Determination of phase equilibrium properties in the system H2O-NaCl to 1000°C and 1500 bars.Geochim Cosmochim Acta 49(9):1861-1873

    Bureau H,Keppler H,Métrich N (2000)Volcanic degassing of bromine and iodine:experimental fluid/melt partitioning data and applications to stratospheric chemistry.Earth Planet Sci Lett 183(1):51-60

    Candela PA(1997)A review of shallow,ore-related granites: textures,volatiles,and ore metals.J Petrol 38(12):1619-1633

    Candela PA,Holland HD(1984)The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim Cosmochim Acta 48(2):373-380

    Candela PA,Piccoli PM(1995)Model ore-metal partitioning from melts into vapor and vapor/brine mixtures.Magmas Fluids Ore Depos 23:101-127

    Chen SQ(1989)Experimental study on geochemistry of copper and molybdenum.Dissertation,Institute of Geochemistry,Chinese Academy of Sciences(in Chinese)

    Chou IM(1987)Oxygen buffer and hydrogen sensor techniques at elevated pressures and temperatures.Hydrotherm Exp Tech,61-99

    Farges F,Ponader CW,Brown GE(1991)Structural environments of incompatible elements in silicate glass/melt systems:I.Zirconium at trace levels.Geochim Cosmochim Acta 55(6):1563-1574

    Farges F,Ponader CW,Calas G,Brown GE(1992)Structural environments of incompatible elements in silicate glass/melt systems:II.U IV,U V,and U VI.Geochim Cosmochim Acta 56(12):4205-4220

    Frank MR,Candela PA,Piccoli PM(2003)Alkali exchange equilibria between a silicate melt and coexisting magmatic volatile phase: an experimental study at 800°C and 100 MPa.Geochim Cosmochim Acta 67(7):1415-1427

    Frank MR,Simon AC,Pettke T,Candela PA,Piccoli PM(2011)Gold and copper partitioning in magmatic-hydrothermal systems at 800°C and100 MPa.Geochim Cosmochim Acta 75(9):2470-2482

    Halter WE,Webster JD (2004)The magmatic to hydrothermal transition and its bearing on ore-forming systems.Chem Geol 210(1):1-6

    Hamilton DL,Henderson CMB(1968)The preparation of silicate compositions by a gelling method.Miner Mag 36(282):832-838

    Hedenquist JW,Lowenstern JB(1994)The role of magmas in the formation of hydrothermal ore deposits.Nature 370(6490):519-527

    Heinrich CA,Günther D,Audétat A,Ulrich T,F(xiàn)rischknecht R(1999)Metal fractionation between magmatic brine and vapor,determined by microanalysis of fluid inclusions.Geology 27(8):755-758

    Holland HD(1972)Granites,solutions,and base metal deposits.Econ Geol 67(3):281-301

    Hou ZQ,Mo XX,Gao YF,Qu XM,Meng XJ(2003)Adakite,a possible host rock for porphyry copper deposits:case studies of porphyry copper belts in Tibetan plateau and in Northern Chile.Miner Depos 22(1):1-12(in Chinese with English abstract)

    Hu X,Bi X,Hu R,Shang L,F(xiàn)an W(2008)Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid.Geochem J 42(2):141-150

    Huheey JE,Keiter EA,Keiter RL,Medhi OK(2006)Inorganic chemistry:principles of structure and reactivity.Pearson Education India,New Delhi

    Kamenetsky VS,Naumov VB,Davidson P,Van Achterbergh E,Ryan CG(2004)Immiscibility between silicate magmas and aqueous fluids:a melt inclusion pursuit into the magmatic-hydrothermal transition in the Omsukchan Granite(NE Russia).Chem Geol 210(1):73-90

    Keppler H,Wyllie PJ(1991)Partitioning of Cu,Sn,Mo,W,U,and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF.Contrib Miner Petrol 109(2):139-150

    Khitarov NI,Malinin SD,Lebedev EB,Shibieva NP(1982)Partition of Zn,Cu,Pb and Mo between the fluid phase and silicate melt of granitic composition under high-temperature and pressure. Geokhimiya 8:1094-1107

    Qi Liang,Hu Jing,Gregoire DC(2000)Determination of trace elements in granites by inductively coupled plasma mass spectrometry.Talanta 51(3):507-513

    Lowenstern JB(1993)Evidence for a copper-bearing fluid in magma erupted at the Valley of Ten Thousand Smokes,Alaska.Contrib Miner Petrol 114(3):409-421

    Lowenstern JB,Mahood GA,Rivers ML,Sutton SR(1991)Evidence for extreme partitioning of copper into a magmatic vapor phase. Science 252(5011):1405-1409

    Pokrovski GS,Borisova AY,Bychkov AY(2013)Speciation and transport of metals and metalloids in geological vapors.Rev Miner Geochem 76(1):165-218

    Robb L(2013)Introduction to ore-forming processes.Wiley,London

    Rusk BG,Reed MH,Dilles JH,Klemm LM,Heinrich CA(2004)Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry coppermolybdenum deposit at Butte,MT.Chem Geol 210(1):173-199

    Shinohara H(1994)Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt:implications for chlorine and metal transport.Geochim Cosmochim Acta 58(23):5215-5221

    Sillitoe RH(1979)Some thoughts on gold-rich porphyry copper deposits.Miner Depos 14(2):161-174

    Sillitoe RH(1989)Gold deposits in western Pacific island arcs:the magmatic connection.Econ Geol Monogr 6:274-291

    Sillitoe RH(2010)Porphyry copper systems.Econ Geol 105(1):3-41

    Simon AC,F(xiàn)rank MR,Pettke T,Candela PA,Piccoli PM,Heinrich CA(2005)Gold partitioning in melt-vapor-brine systems. Geochim Cosmochim Acta 69(13):3321-3335

    Simon AC,Pettke T,Candela PA,Piccoli PM,Heinrich CA(2006)Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage.Geochim Cosmochim Acta 70(22):5583-5600

    Simon AC,F(xiàn)rank MR,Pettke T,Candela PA,Piccoli PM,Heinrich CA,Glascock M (2007)An evaluation of synthetic fluid inclusions for the purpose of trapping equilibrated,coexisting,immiscible fluid phases at magmatic conditions.Am Miner 92(1):124-138

    Sinclair WD(2007)Porphyry deposits.Miner Depos Can 5:223-243

    Tang QL(2003)Experimental research on the partitioning coefficients of copper between silicate melts and liquid coexisting. Dissertation,Institute of Geochemistry,Chinese Academy of Sciences(in Chinese with English abstract)

    Tattitch BC,Candela PA,Piccoli PM,Bodnar RJ(2015)Copper partitioning between felsic melt and H2O-CO2bearing saline fluids.Geochim Cosmochim Acta 148:81-99

    Taylor JR,Wall VJ,Pownceby MI(1992)The calibration and application of accurate redox sensors.Am Miner 77(3-4):284-295

    Tuttle OF,Bowen NL(1958)Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O.Geol Soc Am Mem 74:1-146

    Ulrich T,Guenther D,Heinrich CA(1999)Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits.Nature 399(6737):676-679

    Vikent’ev IV,Borisova AY,Karpukhina VS,Naumov VB,Ryabchikov ID(2012)Direct data on the ore potential of acid magmas of the Uzel’ginskoe ore field(Southern Urals,Russia).In:Doklady earth sciences,vol.443,No.1.MAIK Nauka/Interperiodica,pp.401-405

    Wang D(2013)The character of volatile abundances and its constraint to the metallogenesis of Cenozoic alkaline-rich magma in the Jinshajiang-Red-River belt.Dissertation,Institute of Geochemistry,Chinese Academy of Sciences(in Chinese with English abstract)

    Webster JD(1990)Partitioning of F between H2O and CO2fluids and topaz rhyolite melt.Contrib Miner Petrol 104(4):424-438

    Webster JD(1992a)Fluid-melt interactions involving Cl-rich granites:experimental study from 2 to 8 kbar.Geochim Cosmochim Acta 56(2):659-678

    Webster JD(1992b)Water solubility and chlorine partitioning in Clrich granitic systems:effects of melt composition at 2 kbar and 800°C.Geochim Cosmochim Acta 56(2):679-687

    Williams TJ,Candela PA,Piccoli PM (1995)The partitioning of copper between silicate melts and two-phase aqueous fluids:an experimental investigation at 1 kbar,800°C and 0.5 kbar,850°C.Contrib Miner Petrol 121(4):388-399

    Zajacz Z,Halter WE,Pettke T,Guillong M(2008)Determination of fluid/melt partition coefficients by LA-ICPMS analysis of coexisting fluid and silicate melt inclusions:controls on element partitioning.Geochim Cosmochim Acta 72(8):2169-2197

    Zajacz Z,Candela PA,Piccoli PM,W?lle M,Sanchez-Valle C(2012)Gold and copper in volatile saturated mafic to intermediate magmas:Solubilities,partitioning,and implications for ore deposit formation.Geochim Cosmochim Acta 91:140-159

    Zhang BD(1992)Physical chemic of granite related to uranium ore forming.Atomic Energy Press,Beijing,pp 9-18(in Chinese)

    Zhou Q(2011)Petrogenesis and metallogeny for the dexing porphyry copper deposits.Dissertation,Nanjing University(in Chinese with English abstract)

    1 February 2015/Revised:9 April 2016/Accepted:6 June 2016/Published online:9 August 2016

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    色视频在线一区二区三区| 亚洲少妇的诱惑av| 亚洲欧美一区二区三区黑人 | 国产探花极品一区二区| 啦啦啦啦在线视频资源| 免费观看av网站的网址| videosex国产| 国产女主播在线喷水免费视频网站| 亚洲欧美一区二区三区黑人 | 一本大道久久a久久精品| 亚洲欧美中文字幕日韩二区| 女的被弄到高潮叫床怎么办| 欧美av亚洲av综合av国产av | 日韩,欧美,国产一区二区三区| 免费观看在线日韩| 国产 一区精品| 爱豆传媒免费全集在线观看| 亚洲精品乱久久久久久| 国产精品三级大全| 中文字幕人妻熟女乱码| 婷婷成人精品国产| 青春草国产在线视频| 热re99久久精品国产66热6| 日韩一区二区三区影片| 久热久热在线精品观看| 乱人伦中国视频| 午夜福利视频在线观看免费| 国产男女超爽视频在线观看| 精品一区二区三区四区五区乱码 | 亚洲av日韩在线播放| 国产97色在线日韩免费| 欧美人与性动交α欧美软件| 午夜影院在线不卡| 满18在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产亚洲av麻豆专区| 亚洲三区欧美一区| 国产精品国产av在线观看| 天天操日日干夜夜撸| 成年女人毛片免费观看观看9 | 午夜福利在线免费观看网站| 中文字幕人妻丝袜制服| 亚洲av日韩在线播放| 麻豆av在线久日| 叶爱在线成人免费视频播放| 欧美人与善性xxx| 国产黄色免费在线视频| 久久热在线av| 飞空精品影院首页| 国产精品.久久久| av福利片在线| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 亚洲第一区二区三区不卡| 日日撸夜夜添| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 狠狠婷婷综合久久久久久88av| 少妇人妻久久综合中文| 99久久精品国产国产毛片| 国产日韩欧美亚洲二区| 日本-黄色视频高清免费观看| 精品一区二区三区四区五区乱码 | 亚洲美女视频黄频| 精品卡一卡二卡四卡免费| 啦啦啦啦在线视频资源| 大香蕉久久网| 亚洲av.av天堂| 咕卡用的链子| 精品一区二区三卡| 国产成人精品久久二区二区91 | 成人漫画全彩无遮挡| 日韩一区二区三区影片| 欧美人与善性xxx| 欧美精品一区二区大全| 日本wwww免费看| 久久精品国产综合久久久| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 可以免费在线观看a视频的电影网站 | 国产日韩一区二区三区精品不卡| 丝袜在线中文字幕| 女性生殖器流出的白浆| 日韩大片免费观看网站| a 毛片基地| 一级爰片在线观看| 国产成人精品福利久久| 亚洲精品久久久久久婷婷小说| 国产国语露脸激情在线看| 国产精品免费大片| 99久久综合免费| 另类精品久久| 亚洲三级黄色毛片| 尾随美女入室| 高清黄色对白视频在线免费看| 免费观看a级毛片全部| 日韩制服骚丝袜av| 国产一区二区 视频在线| 高清欧美精品videossex| 99热全是精品| 精品亚洲乱码少妇综合久久| 男人添女人高潮全过程视频| 99re6热这里在线精品视频| 蜜桃在线观看..| 欧美激情极品国产一区二区三区| 亚洲国产精品一区二区三区在线| 制服丝袜香蕉在线| 欧美日韩视频精品一区| 各种免费的搞黄视频| 97在线视频观看| 亚洲,一卡二卡三卡| 国产精品久久久久久精品电影小说| 亚洲av综合色区一区| 欧美在线黄色| 亚洲人成77777在线视频| 交换朋友夫妻互换小说| 亚洲国产av新网站| 久久ye,这里只有精品| 人妻人人澡人人爽人人| 9热在线视频观看99| 国产深夜福利视频在线观看| av视频免费观看在线观看| 赤兔流量卡办理| 青春草视频在线免费观看| 国产成人精品一,二区| 18+在线观看网站| 免费高清在线观看日韩| 免费观看a级毛片全部| 国产亚洲欧美精品永久| av在线播放精品| 国产精品久久久久久精品电影小说| 女的被弄到高潮叫床怎么办| 深夜精品福利| 最近最新中文字幕大全免费视频 | 婷婷色av中文字幕| 亚洲精华国产精华液的使用体验| 高清黄色对白视频在线免费看| 哪个播放器可以免费观看大片| 一级片'在线观看视频| 精品少妇久久久久久888优播| 9191精品国产免费久久| 亚洲欧美日韩另类电影网站| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜制服| 久久久精品国产亚洲av高清涩受| 欧美日韩视频高清一区二区三区二| 中文字幕精品免费在线观看视频| 中文字幕制服av| 久久这里有精品视频免费| 国产一区二区激情短视频 | 久久精品国产亚洲av天美| 国产有黄有色有爽视频| 伦理电影免费视频| 蜜桃国产av成人99| 日本-黄色视频高清免费观看| 欧美另类一区| 另类精品久久| 免费观看在线日韩| 国产成人av激情在线播放| 熟妇人妻不卡中文字幕| 国产成人精品久久久久久| 桃花免费在线播放| 国产1区2区3区精品| 免费看av在线观看网站| 伦精品一区二区三区| 欧美精品一区二区免费开放| 青春草亚洲视频在线观看| 人妻少妇偷人精品九色| 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 国产国语露脸激情在线看| 啦啦啦视频在线资源免费观看| 亚洲三区欧美一区| 1024香蕉在线观看| 亚洲av中文av极速乱| 国产片内射在线| 97人妻天天添夜夜摸| 日韩电影二区| 免费观看av网站的网址| 各种免费的搞黄视频| 午夜日韩欧美国产| 三上悠亚av全集在线观看| 不卡视频在线观看欧美| 日本午夜av视频| 亚洲色图综合在线观看| 另类精品久久| 国产在线视频一区二区| 日韩av不卡免费在线播放| 在线观看国产h片| 久久国内精品自在自线图片| 久久人人97超碰香蕉20202| 日韩在线高清观看一区二区三区| 成人亚洲欧美一区二区av| 久久精品人人爽人人爽视色| 欧美日韩视频精品一区| 亚洲精品av麻豆狂野| 国产爽快片一区二区三区| 亚洲精品久久成人aⅴ小说| videosex国产| 边亲边吃奶的免费视频| 国产麻豆69| 成人国语在线视频| 午夜老司机福利剧场| 久久久久久久国产电影| 伊人久久国产一区二区| 国产成人精品一,二区| 岛国毛片在线播放| 亚洲av欧美aⅴ国产| 久久这里只有精品19| 看免费av毛片| 2021少妇久久久久久久久久久| 久久久精品国产亚洲av高清涩受| 久久午夜综合久久蜜桃| 中文乱码字字幕精品一区二区三区| 少妇精品久久久久久久| 久久国产精品大桥未久av| 久久久精品国产亚洲av高清涩受| 久久国产亚洲av麻豆专区| av线在线观看网站| 免费观看在线日韩| 免费av中文字幕在线| 亚洲五月色婷婷综合| 在线观看一区二区三区激情| 大话2 男鬼变身卡| 免费久久久久久久精品成人欧美视频| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 免费高清在线观看视频在线观看| 日本爱情动作片www.在线观看| 欧美成人午夜免费资源| 亚洲成人av在线免费| 亚洲天堂av无毛| 一区二区三区四区激情视频| 在线观看人妻少妇| 香蕉丝袜av| 欧美精品国产亚洲| 老司机亚洲免费影院| 久久狼人影院| 亚洲人成77777在线视频| 七月丁香在线播放| 中文乱码字字幕精品一区二区三区| 成年动漫av网址| 丝袜人妻中文字幕| 久久99热这里只频精品6学生| 97在线人人人人妻| 99精国产麻豆久久婷婷| 精品久久蜜臀av无| 99热全是精品| 夫妻性生交免费视频一级片| 一级毛片 在线播放| 五月天丁香电影| 精品视频人人做人人爽| 免费观看av网站的网址| 免费不卡的大黄色大毛片视频在线观看| 精品久久久精品久久久| 国产精品蜜桃在线观看| 亚洲国产日韩一区二区| 中文欧美无线码| 在线观看美女被高潮喷水网站| 国产精品一二三区在线看| 欧美激情 高清一区二区三区| 亚洲精品视频女| 丰满乱子伦码专区| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 国产麻豆69| 欧美精品亚洲一区二区| 深夜精品福利| 最黄视频免费看| 我要看黄色一级片免费的| tube8黄色片| 亚洲精品日韩在线中文字幕| 91精品国产国语对白视频| 999久久久国产精品视频| 香蕉丝袜av| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区国产| 国产xxxxx性猛交| 一级片免费观看大全| av又黄又爽大尺度在线免费看| 中文乱码字字幕精品一区二区三区| 在线观看免费视频网站a站| 亚洲精品日韩在线中文字幕| 综合色丁香网| 久久久久久免费高清国产稀缺| 亚洲男人天堂网一区| 只有这里有精品99| 黑人猛操日本美女一级片| 人妻系列 视频| 国产欧美亚洲国产| 日韩一卡2卡3卡4卡2021年| 国产乱来视频区| 成年美女黄网站色视频大全免费| 性色avwww在线观看| 九草在线视频观看| 久久精品久久精品一区二区三区| 午夜福利,免费看| www.精华液| 丝袜喷水一区| 国产精品成人在线| 天天躁日日躁夜夜躁夜夜| h视频一区二区三区| av在线观看视频网站免费| 青春草亚洲视频在线观看| 建设人人有责人人尽责人人享有的| 91精品三级在线观看| 日韩制服骚丝袜av| 欧美日韩av久久| 青春草视频在线免费观看| 亚洲一区二区三区欧美精品| 欧美日韩亚洲国产一区二区在线观看 | 久久ye,这里只有精品| 在线观看www视频免费| 免费大片黄手机在线观看| 日本vs欧美在线观看视频| 免费日韩欧美在线观看| 伦精品一区二区三区| 亚洲欧美成人综合另类久久久| 精品国产国语对白av| 在线观看一区二区三区激情| 欧美精品一区二区免费开放| 又黄又粗又硬又大视频| 宅男免费午夜| 亚洲av男天堂| 国产精品一二三区在线看| 伦理电影大哥的女人| 日韩大片免费观看网站| 国产无遮挡羞羞视频在线观看| 国产免费现黄频在线看| 久久这里只有精品19| 国产成人av激情在线播放| 久久精品夜色国产| 少妇的逼水好多| 精品国产乱码久久久久久小说| 亚洲精品第二区| 母亲3免费完整高清在线观看 | 性高湖久久久久久久久免费观看| 卡戴珊不雅视频在线播放| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 久久久久精品人妻al黑| 精品第一国产精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 自线自在国产av| 日本色播在线视频| 晚上一个人看的免费电影| 大香蕉久久成人网| 99热全是精品| 青草久久国产| 香蕉精品网在线| 街头女战士在线观看网站| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 午夜激情av网站| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 一级毛片黄色毛片免费观看视频| 99久国产av精品国产电影| 免费观看在线日韩| 国产老妇伦熟女老妇高清| 午夜福利在线观看免费完整高清在| 亚洲综合精品二区| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| 伊人亚洲综合成人网| 国产片特级美女逼逼视频| 国产成人精品久久久久久| 亚洲四区av| 最近最新中文字幕大全免费视频 | 久久午夜福利片| 国产成人精品在线电影| 大片免费播放器 马上看| 国产白丝娇喘喷水9色精品| 男男h啪啪无遮挡| 国产一区二区激情短视频 | 天天操日日干夜夜撸| 久久久久精品性色| 1024视频免费在线观看| 精品国产超薄肉色丝袜足j| 久久99蜜桃精品久久| 日韩一区二区三区影片| 亚洲色图 男人天堂 中文字幕| 国产一级毛片在线| 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 少妇人妻 视频| 熟妇人妻不卡中文字幕| 成人国产av品久久久| 久久av网站| 黄片播放在线免费| 成年人免费黄色播放视频| 人人澡人人妻人| 99re6热这里在线精品视频| 精品少妇久久久久久888优播| 亚洲国产日韩一区二区| 久久午夜福利片| 熟女电影av网| 久久久久精品性色| 久久99精品国语久久久| 晚上一个人看的免费电影| 又大又黄又爽视频免费| 丝袜喷水一区| 国产亚洲午夜精品一区二区久久| 一区福利在线观看| 制服人妻中文乱码| 欧美激情极品国产一区二区三区| 日韩欧美精品免费久久| 国产精品av久久久久免费| 看免费av毛片| 亚洲精品一二三| 亚洲内射少妇av| 18禁观看日本| 日产精品乱码卡一卡2卡三| 久久 成人 亚洲| 成年女人在线观看亚洲视频| 国产 一区精品| 黄色视频在线播放观看不卡| 国产精品.久久久| 黄色怎么调成土黄色| 看免费成人av毛片| 啦啦啦中文免费视频观看日本| 亚洲精品美女久久久久99蜜臀 | 日韩中字成人| 老熟女久久久| 中文精品一卡2卡3卡4更新| 美女中出高潮动态图| 国产麻豆69| 婷婷色av中文字幕| 日韩制服骚丝袜av| 精品亚洲成国产av| 国产一区二区在线观看av| 国产精品久久久久久久久免| 性少妇av在线| 精品一品国产午夜福利视频| 久久热在线av| 国产免费现黄频在线看| 国产精品嫩草影院av在线观看| 满18在线观看网站| 夜夜骑夜夜射夜夜干| 伦理电影大哥的女人| 午夜免费鲁丝| 国产成人欧美| 久久久久久人妻| 免费观看av网站的网址| 在线观看国产h片| 国产亚洲av片在线观看秒播厂| 成人手机av| 国语对白做爰xxxⅹ性视频网站| 深夜精品福利| 国产成人aa在线观看| 国产免费现黄频在线看| 观看美女的网站| 日韩熟女老妇一区二区性免费视频| 一本久久精品| 亚洲av中文av极速乱| 飞空精品影院首页| 亚洲一级一片aⅴ在线观看| 在线观看免费视频网站a站| 青春草亚洲视频在线观看| 大香蕉久久网| 老司机亚洲免费影院| 午夜日本视频在线| 男女高潮啪啪啪动态图| kizo精华| 在线观看免费高清a一片| 国产精品av久久久久免费| 亚洲国产精品成人久久小说| 日产精品乱码卡一卡2卡三| 久久久久久久大尺度免费视频| 桃花免费在线播放| 午夜福利一区二区在线看| 久久久久久久久免费视频了| 国产成人精品福利久久| av不卡在线播放| 一级片免费观看大全| 蜜桃国产av成人99| 国产97色在线日韩免费| 国产午夜精品一二区理论片| 免费观看性生交大片5| 美女脱内裤让男人舔精品视频| 9热在线视频观看99| 制服诱惑二区| 日本91视频免费播放| 男女国产视频网站| 伦理电影大哥的女人| 日本欧美国产在线视频| 亚洲人成电影观看| 亚洲精品一区蜜桃| 欧美另类一区| 性高湖久久久久久久久免费观看| 国产老妇伦熟女老妇高清| 国产精品成人在线| 精品亚洲成a人片在线观看| 亚洲精品国产一区二区精华液| 欧美黄色片欧美黄色片| videossex国产| 男女免费视频国产| 精品国产超薄肉色丝袜足j| 精品一区二区免费观看| 久久精品aⅴ一区二区三区四区 | 免费黄网站久久成人精品| 亚洲综合色网址| 亚洲精品久久成人aⅴ小说| 人人妻人人添人人爽欧美一区卜| 人体艺术视频欧美日本| 99热全是精品| 美女国产视频在线观看| 亚洲精华国产精华液的使用体验| 亚洲成人手机| 日韩av不卡免费在线播放| 在线亚洲精品国产二区图片欧美| 大片电影免费在线观看免费| 亚洲国产日韩一区二区| 国产老妇伦熟女老妇高清| 亚洲色图 男人天堂 中文字幕| 老女人水多毛片| 成人18禁高潮啪啪吃奶动态图| 国产高清不卡午夜福利| 99热全是精品| 国产成人免费观看mmmm| 亚洲第一青青草原| 丰满少妇做爰视频| 免费高清在线观看视频在线观看| 精品人妻一区二区三区麻豆| av天堂久久9| 色94色欧美一区二区| 九色亚洲精品在线播放| 免费播放大片免费观看视频在线观看| 在线观看免费视频网站a站| 亚洲精品av麻豆狂野| 边亲边吃奶的免费视频| 18禁观看日本| 欧美少妇被猛烈插入视频| 色94色欧美一区二区| 一二三四在线观看免费中文在| 最新中文字幕久久久久| 精品人妻在线不人妻| 国产精品久久久久久av不卡| 美女大奶头黄色视频| 久久久久久人妻| 夫妻午夜视频| 国产免费现黄频在线看| 亚洲欧美日韩另类电影网站| 国产成人91sexporn| 国产成人午夜福利电影在线观看| 咕卡用的链子| 中文欧美无线码| 国产精品久久久av美女十八| 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区黑人 | 亚洲一级一片aⅴ在线观看| 国产成人一区二区在线| 一本大道久久a久久精品| 日本av免费视频播放| 国产免费又黄又爽又色| 亚洲色图综合在线观看| 日韩人妻精品一区2区三区| 伊人久久大香线蕉亚洲五| 少妇人妻久久综合中文| 国产亚洲av片在线观看秒播厂| 大码成人一级视频| 久热这里只有精品99| 精品第一国产精品| 岛国毛片在线播放| 美国免费a级毛片| 亚洲精品aⅴ在线观看| 韩国av在线不卡| 日本av免费视频播放| 99久久人妻综合| 久久久久国产一级毛片高清牌| 人妻 亚洲 视频| 午夜免费鲁丝| 中文天堂在线官网| 国产在线一区二区三区精| 国产日韩一区二区三区精品不卡| 天堂中文最新版在线下载| 女的被弄到高潮叫床怎么办| 欧美国产精品一级二级三级| 欧美日韩综合久久久久久| 韩国av在线不卡| 爱豆传媒免费全集在线观看| 久久久久国产网址| 97人妻天天添夜夜摸| 精品久久久久久电影网| 高清视频免费观看一区二区| 亚洲精品日本国产第一区| 少妇人妻 视频| 亚洲第一青青草原| 亚洲精品国产av成人精品| 男的添女的下面高潮视频| 三级国产精品片| 日本色播在线视频| 十八禁高潮呻吟视频| 国产一区亚洲一区在线观看| 一区二区日韩欧美中文字幕| 两个人看的免费小视频| 欧美日本中文国产一区发布| 亚洲成人手机| 亚洲国产精品一区二区三区在线| 少妇 在线观看| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 日韩中文字幕视频在线看片| 亚洲视频免费观看视频| 久久 成人 亚洲| 大话2 男鬼变身卡| 日韩一区二区三区影片| 亚洲欧洲国产日韩| 国产色婷婷99| 精品第一国产精品| 老司机影院毛片| 美女国产高潮福利片在线看| 成人手机av| 国产野战对白在线观看| www.熟女人妻精品国产|