• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Standard-sample bracketing calibration method combined with Mg as an internal standard for silicon isotopic compositions using multi-collector inductively coupled plasma mass spectrometry

    2016-11-21 02:09:49HonglinYuanChengChengKaiyunChenZhianBao
    Acta Geochimica 2016年4期

    Honglin Yuan·Cheng Cheng·Kaiyun Chen·Zhian Bao

    Standard-sample bracketing calibration method combined with Mg as an internal standard for silicon isotopic compositions using multi-collector inductively coupled plasma mass spectrometry

    Honglin Yuan1·Cheng Cheng1·Kaiyun Chen1·Zhian Bao1

    Silicon isotope analysis traditionally uses a standard-sample bracketing(SSB)method that relies upon greater instrument stability than can be consistently expected.The following proposed method reduces the level of instrumental stability required for the analysis process and provides a valid solution for high-precision and accurate studies of Si isotopic compositions.Rock samples were dissolved by using alkali fusion and acidification. Silicon isotopes were purified with an ion exchange resin. Interfering peaks for isotopes were separated by using a Nu Plasma 1700 multi-collector inductively coupled plasma mass spectrometry(MS)system in high-resolution mode(M/ΔM>8000 RP).Two magnesium isotopes(25Mg and26Mg)and three silicon isotopes(28Si,29Si,and30Si)were analyzed in the same data collection cycle.Mg isotopes were used as an internal standard to calibrate the mass discrimination effects in MS analysis of Si isotopes in combination with the SSB method in order to reduce the effects of MS interference and instrumental mass discrimination on the accuracy of measurements.The conventional SSB method without the Mg internal standard and the proposed SSB method with Mg calibration delivered consistent results within two standard deviations. When Mg was used as an internal standard for calibration,the analysis precision was better than 0.05‰amu.

    Si isotope·Mg internal standard·MC-ICPMS·Rock samples·High resolution

    ? Honglin Yuan

    sklcd@nwu.edu.cn

    1State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Collaborative Innovation Center of Continental Tectonics,Xi’an 710069,China

    1 Introduction

    Silicon is the second-most abundant element in Earth’s crust;it makes up the skeleton of rocks and has stable chemical properties.Silicon has three stable isotopes:28Si,29Si,and30Si with relative abundances of 92.23%,4.67%,and 3.1%respectively(Cardinal et al. 2003;Georg et al.2007).Researchers have conducted numerous studies on Si isotopes to better understand magmatism,meteorites,hydrothermal mineral deposits,clay minerals,the ocean silicon cycle,biological silicate,and fractionation of silicate melts and metallic melts(Brzezinski et al.2003;Armytage et al.2011;Opfergelt et al.2011;Armytage et al.2012;Opfergelt et al.2013;Savage et al.2013;Hin et al.2014;Zhu et al.2014). Studies on silicon isotopes have not only revealed Earth’s evolutionary history(Georg et al.2007;Armytage et al. 2011;Ziegler et al.2010;Savage and Moynier 2013;Savage et al.2013)but also are very important in explaining ore genesis(as it pertains to mineral resources)and in research on the climate and carbon cycle(Dugdale et al.2004;Pringle et al.2013;Hou et al.2014).

    Si isotopic composition is normally determined by using multi-collector inductively coupled plasma mass spectrometry(MC-ICP-MS),whose accuracy and precision are mainly affected by interfering mass spectrometry(MS)peaks for isobaric heterotopes,instrumental mass discrimination effects,and the stability of the sample injection system.Standard-sample bracketing(SSB)is normally used to calculate Si isotopic composition.To calibrate the instrumental mass discrimination,the SSB method requires identical instrumental conditions and excellent stability during analysis of the standard and actual samples.In practice,each sample needs to be measured more than three times,and the mean value of the measurements iscalculated as the Si isotopic composition of the sample to obtain stable and reliable results.Fluctuations in instrumental conditions that affect the accuracy of the isotopic ratio analyses are mainly caused by changes in the sensitivity of the sample injection system or in the mass discrimination effects in the MS system.These are usually calibrated using two isotopes of elements with similar atomic weights(e.g.,adding203Tl and205Tl for isotopic analysis of Pb).Because of their similar relative atomic masses to those of Si isotopes,the Mg isotopes25Mg and26Mg can be used to calibrate mass discrimination effects. Cardinal et al.(2003),Zambardi and Poitrasson(2011)added magnesium into silicon samples and standard solutions to calibrate the changes in the Si isotopic composition caused by changes in the mass discrimination effects from variations in the space charge effect or sample injection conditions.However,because of previously experienced hardware limitations,they analyzed Mg and Si isotopes in two different data collection cycles during the measurement process;simultaneous analysis of Mg and Si isotopes could not be achieved,and so the changes in the measured Si isotopic composition caused by variations in the instrumental conditions were not effectively calibrated.

    In this study,interfering peaks were separated by using the high-resolution mode of the large dimension MC-ICPMS system(Nu Plasma 1700).Mg was used as the internal standard,and the physical positions of the detectors at the high-and low-mass sides of the instrument were moved to the extremes to slightly extend the mass dispersion limit of the MC-ICP-MS system,allowing for the analysis of Mg(25Mg and26Mg)and Si isotopes in the same data collection cycle,thus achieving simultaneous collection of Mg isotope and Si isotope signals.The Mg isotopes were used to calibrate the fractionation effect during the Si isotopic analysis to obtain accurate Si isotopic compositions.

    2 Methods

    2.1Reagents

    The experiments used AR-grade nitric acid and hydrochloric acid that were distilled twice with a PFA Savillex DST-1000 sub-boiling still(Minnetonka,USA). Ultrapure water was purified with Milli-Q Element(Elix-Millipore,USA)(18.2 MΩ/cm).The standard solutions were Alfa Si and Alfa Mg(Si:stock no.38717;Mg:stock no.14430,2%HNO3,plasma standard solution,Specpure,Alfa Aesar,Johnson Matthey Company).NaOH(LOT: 10165572,Alfa Aesar,Johnson Matthey Company)was used as the fluxing agent for the fusion test.A Bio-Rad polypropylene ion exchange column was used for the purification test with aBio-Rad AG50-X12cation exchange resin(Catalog#142-1651,Bio-Rad Laboratories Inc.,CA,USA).

    2.2Sample dissolution

    Rock samples were fused by using NaOH as the fluxing agent and dissolved with HCl according to the method presented in a previous study(Georg et al.2006).To avoid contamination during sample fusion in the Muffle furnace,5 and 30 mL silver crucibles fabricated in the laboratory(Fig.1)were used as melting vessels in this study.The samples and crucibles in contact with the samples were kept inside a relatively clean and large crucible during the entire sample fusion process.The weighing of the sample,addition of the fluxing agent,and transfer of the small crucibles into the large crucible were performed with a class 100 clean bench to reduce the background level during the test process.The specific sample dissolution procedure was as follows:within the clean bench,10 mg of powdery sample was evenly mixed with 200 mg powdery NaOH and placed into a 5 mL silver crucible.This crucible was then covered and transferred into a 30 mL crucible with a lid.The large crucible was placed into a Muffle furnace,where the sample was fused at 730°C for 10 min. Upon cooling,the 5 mL small silver crucible containing the melt was placed into a Teflon vial(30 mL,Savillex Corporation,Minnesota,USA),and 20 mL ultrapure water was added.The mixture was ultrasonicated for 15 min,allowed to settle for 24 h,and ultrasonicated for another 15 min.The solution inside the Teflon vial was diluted and acidified to pH 2.2 with hydrochloric acid(Fitoussi et al. 2009)and then heated at 40°C for 15 min to accelerate the dissolution of hydroxide.

    2.3Chemical separation

    Fig.1 NaOH fusion in silver crucible

    Fig.2 Elution curve of Si in rock sample solution

    Si isotopes were purified by using 2 mL cation exchange resin(AG 50-X12).Because the active ion of the resin was H+,the resin did not adsorb anions but effectively adsorbed cations.Si was present in the solution in the form of H3SiO4-(Georg et al.2006).Si could be directly eluted with the ultrapure water,and cations of substrate elements such as Na+,K+,Mg2+,Al3+etc.were adsorbed onto the resin;thus,Si was separated from the cations(Fig.2).The recovery rate of Si isotopes was greater than 98%,and the background level during the entire process was less than 20 ng.Table 1 presents the separation procedure.

    2.4Apparatus and data processing

    Instrumental analysis was performed with a high-resolution Nu Plasma 1700 MC-ICP-MS system(Nu Instruments,UK)installed in the State Key Laboratory of Continental Dynamics,Northwest University,Xi’an,China.The Nu Plasma 1700 system was equipped with three ion-counting multipliers and 16 Faraday cups.The high-and low-mass sides each had three independently movable Faraday cups and two independently movable slits before each Faraday cup to achieve separate resolution of the interfering peaks on the high-and low-mass sides(Fig.3).The highest RP(edge 5,95%)of the MS system was greater than 20,000.In this study,the outermost Faraday cups H8 and L7 were moved to the extreme positions,and the slits before the Faraday cup were moved to the two sides to receive30Si and25Mg signals simultaneously.Table 2 presents the detectors for the other isotopes.In this study,the resolution was in the range of 8000-10,000 RP,and data were collected in static mode.The ratios of Si/Mg in the solution were about 1 and the sensitivity of Si was about 2 V/ppm. During the Si isotope test,the background noise(<50 mV)was deducted as the on-peak zero(OPZ).Samples were injected in the wet state(Zambardi and Poitrasson 2011). Table 2 presents the instrument parameters.

    For data calibration purposes,the fractionation factor was calculated from the measured ratio between a pair of DSM3 Mg standard isotopes(25Mg-26Mg)and the reference isotopic ratio by using the power index method.The Si isotopic ratios29Si/28Si and30Si/28Si were calibrated through fractionation.The Si isotopic compositions of the samples{δ29Si=[(29Si/28Si)sample/(29Si/28Si)standard-1]×1000; δ30Si=[(30Si/28Si)sample/(30Si/28Si)standard-1]×1000}were calculated by using the SSB method.TheAlfa Si standard solution was calibrated according to NIST NBS 28 and used as the Si isotope reference standard.

    Table 1 Separation scheme of silicon isotopes

    Fig.3 Mass scan of Si isotopes and polyatomic interference with MC-ICP-MS:mass spectrum peaks at a low resolution(1000 RP)and b high resolution(8000 RP)

    Table 2 Operating conditions for Si isotope determination using Nu Plasma 1700 MC-ICPMS

    2.5Internal standard-based calibration

    The abundances of26Mg and25Mg are 11.01%and 10.00%,respectively.They can be used to effectively calculate the mass discrimination effect in MS during Si isotope measurement(Zambardi and Poitrasson 2011). Although24MgH+interferes with25Mg+,the influence of this hydride on26Mg/25Mg is less than 0.02‰(Engstr?m et al.2006).The difference in mass between25Mg and30Si is 20%,which is greater than the specified mass dispersion(17%)for MC-ICP-MS.Therefore,previous researchers have analyzed Mg and Si in two different cycles(Cardinal et al.2003),but the fluctuations in instrumental conditions resulted in different Si isotopic compositions of the samples due to the fractionation effect of Mg and Si isotopes being determined in different cycles,which affected the accuracy of the Si isotopic compositions.In this study,the outermost Faraday cups H8 and L7 on the high-and lowmass sides were manually moved to the extreme edges,and the ion lenses were adjusted to appropriately compress the mass peaks with the zoom lens to put the Mg isotopes(25Mg+,26Mg+)and Si isotopes(28Si+,29Si+and30Si+)into the same cycle without changing the magnetic field during the test.This increased the analysis efficiency and data quality.

    According to the conventional power index calibration method,the fractionation factor fMgof Mg isotopes in MS analysis can be obtained from standard samples with known isotopic ratios:

    If there is a simple linear relationship between the fractionation factors of Mg and Si,then

    Based on fMg,the Si isotopic ratio in the sample can be calculated as follows:

    The correlation between ln(29Si/28Si)measureand ln(26Mg/25Mg)measurecan be determined as follows:

    where a is calculated from the slope S of the plot of ln(29Si/28Si)measure versus ln(26Mg/25Mg)measure:

    The isotopic ratios of Si and Mg measured in the same analysis cycle in a mixed solution are plotted in Fig.4.The slope of the plot is 0.882,and a was calculated to be 0.9833.Within the same analysis cycle,inserting a into Eq.3 obtained the fractionation factor of Si.Inserting a into Eq.4 obtained the Si isotopic composition of the samples.Differences in instrumental conditions,especially due to instrumental repair such as the replacement of a cone or torch,usually cause considerable changes in the absolute values of Si and Mg isotopic ratios;the variation in S can reach 25% (Cardinal et al.2003).Therefore,calculations should only be based on ln(29Si/28Si)measureand ln(26Mg/25Mg)measurewith data obtained within the same analysis section under identical instrumental analysis conditions.

    Fig.4 MC-ICP-MS measured ratios of ln 29Si/28Si versus ln26Mg/25Mg

    3 Mass spectrometry resolution and results

    3.1Resolution and interfering peaks in mass spectrometry spectra

    The MC-ICP-MS analysis of the three silicon isotopes was subjected to the following interferences:(14N2+,12C16O+) for28Si+,,12C1H16O+,15N14N+)for29Si+,and30Si+(14N16O+)for30Si+.These interfering peaks cannot be effectively separated in conventional low-resolution mode(<1000 RP)and are at the high-mass side of the Si isotopes.Thus,a magnetic field deviating from the peak center is normally used for measurements on a narrow platform without interference(Fig.3a)(Zhang et al.2014). However,slight disturbances in the testing conditions result in a shift of mass spectral peaks,which can affect the accuracy of the analysis results.In this study,the resolution of the MS system was increased to above 8000 RP,and the ion lens,focusing lens,and collector slits were adjusted. This resulted in complete separation of the mass spectral peaks for28Si+,29Si+,30Si+,25Mg+,and26Mg+with good peak shapes from interfering peaks(Fig.3b),thus ensuring the reliability of the Si isotopic analysis results.

    3.2Measurement results

    NBS-28 and IRMM-018a are commonly used international reference standards in Si isotope studies(Reynolds et al. 2007).In addition,the Si isotopic composition of the BHVO-2 standard rock sample has been reported(Zambardi and Poitrasson 2011).In this study,the Mg internal standard plus SSB calibration method and the SSB calibration method without an internal standard were used to determine the Si isotopic compositions of IRMM-018a and BHVO-2,respectively(Table 3).

    The results indicate that the Mg isotopic compositions obtained by SSB calibration plus the Mg internal standard and by SSB calibration without the internal standard were consistent within the error range and agreed with the reported values.This indicates that both methods delivered an accurate Si isotopic composition.Overall,the Mg internal standard plus SSB method resulted in more stable relative errors than the SSB method without aninternal standard.Thus,this new method reduces the level of instrumental stability required for the analysis process which is very important for applications involving the addition of spikes for Si.

    Table 3 Si isotopic compositions of standard references BHVO-2 and IRMM18a

    4 Conclusion

    In this study,rock samples were dissolved by alkali fusion and acidification,and silicon isotopes were purified with ion exchange resin for a recovery rate above 98%.Interfering peaks for isotopes were separated by using the Nu Plasma 1700 MC-ICP-MS system in high-resolution mode. Magnesium and silicon isotopes were analyzed in the same test cycle.MS interference for silicon isotopes was completely isolated by using the Nu Plasma 1700 MC-ICP-MS system at a resolution of 8000 RP.The outermost Faraday cups were manually moved to the extreme edges of the instrument;this allowed the Mg and Si isotopes to be analyzed in the same cycle and established an Mg internal standard plus SSB calibration analysis method to obtain accurate Si isotopic compositions.Compared with the Si isotopic composition obtained by the SSB method without an internal standard,the proposed method features stable and reliable accuracy and precision.The Si isotopic composition obtained after calibration with the Mg internal standard was closer to the actual value,which is very important for applications involving the addition of a spikes for Si.

    Acknowledgments This study was funded by the National Natural Science Foundation of China(Grant Nos.41427804,41421002,41373004),Beijing SHRIMP Center Open Foundation,and Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1281)and the MOST Research Foundation from the State Key Laboratory of Continental Dynamics(BJ08132-1).

    Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creative commons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate creditto the originalauthor(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    References

    Armytage RMG,Georg RB,Savage PS,Williams HM,Halliday AN(2011)Silicon isotopes in meteorites and planetary core formation.Geochim Cosmochim Acta 75:3662-3676

    Armytage RMG,Georg RB,Williams HM,Halliday AN(2012)Silicon isotopes in lunar rocks:implications for the Moon’s formation and the early history of the Earth.Geochim Cosmochim Acta 77:504-514

    Brzezinski MA,Jones JL,Bidle KD,Azam F(2003)The balance between silica production and silica dissolution in the sea: insights from Monterey Bay,California,applied to the global data set.Limnol Oceanogr 48:1846-1854

    Cardinal D,Alleman LY,de Jong J,Ziegler K,AndréL(2003)Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode.J Anal At Spectrom 18:213-218

    Dugdale RC,Lyle M,Wilkerson FP,Chai F,Barber RT,Peng TH(2004)Influence of equatorial diatom processes on Si deposition and atmospheric CO2cycles at glacial/interglacial timescales. Paleoceanography 19:143-168

    Engstr?m E,Rodushkin I,Baxter DC,?hlander B(2006)Chromatographic purification for the determination of dissolved silicon isotopic compositions in natural waters by high-resolution multicollector inductively coupled plasma mass spectrometry. Anal Chem 78:250-257

    Fitoussi C,Bourdon B,Kleine T,Oberli F,Reynolds BC(2009)Si isotope systematics of meteorites and terrestrial peridotites:implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core.Earth Planet Sci Lett 287:77-85

    Georg RB,Reynolds B,F(xiàn)rank M,Halliday A(2006)New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS.Chem Geol 235:95-104

    Georg RB,Halliday AN,Schauble EA,Bc R(2007)Silicon in the Earth’s core.Nature 447:1102-1106

    Hin RC,F(xiàn)itoussi C,Schmidt MW,Bourdon B(2014)Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate.Earth Planet Sci Lett 387:55-66

    Hou K,Li Y,Gao J,Liu F,Qin Y(2014)Geochemistry and Si-O-Fe isotope constraints on the origin of banded iron formations of the Yuanjiacun Formation,Lvliang Group,Shanxi,China.Ore Geol Rev 57:288-298

    Opfergelt S,Georg RB,Delvaux B,Cabidoche YM,Burton KW,Halliday AN(2011)Silicon isotopes and the tracing of desilication in volcanic soil weathering sequences,Guadeloupe. Chem Geol 326-327:113-122

    Opfergelt S,Burton KW,Strandmann PAEPV,Gislason SR,Halliday AN (2013)Riverine silicon isotope variations in glaciated basaltic terrains:implications for the Si delivery to the ocean over glacial-interglacial intervals.Earth Planet Sci Lett 369-370:211-219

    Pringle EA,Savage PS,Badro J,Barrat JA,Moynier F(2013)Redox state during core formation on asteroid 4-Vesta.Earth Planet Sci Lett 373:75-82

    Reynolds BC,Aggarwal J,AndréL,Baxter D,Beucher C,Brzezinski MA,Engstrom E,Georg RB,Land M,Leng MJ(2007)An interlaboratory comparison of Si isotope reference materials.J Anal At Spectrom 22:561-568

    Savage PS,Moynier F(2013)Silicon isotopic variation in enstatite meteorites:clues to their origin and Earth-forming material. Earth Planet Sci Lett 361:487-496

    Savage PS,Georg RB,Armytage RMG,Williams HM,Halliday AN(2010)Silicon isotope homogeneity in the mantle.Earth Planet Sci Lett 295:139-146

    Savage PS,Georg RB,Williams HM,Burton KW,Halliday AN(2011)Silicon isotope fractionation during magmatic differentiation.Geochim Cosmochim Acta 75:6124-6139

    Savage PS,Georg RB,Williams HM,Halliday AN(2013)Silicon isotopes in granulite xenoliths:insights into isotopic fractionation during igneous processes and the composition of the deep continental crust.Earth Planet Sci Lett 365:221-231

    Zambardi T,Poitrasson F(2011)Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS. Geostand Geoanal Res 35:89-99

    Zhang A,Zhang J,Zhang R,Xue Y(2014)Modified enrichment and purification protocol for dissolved silicon isotope determination in natural waters.J Anal At Spectrom 29:2414-2418

    Zhu C,Liu Z,Schaefer A,Wang C,Zhang G,Gruber C,Ganor J,Georg RB(2014)Silicon isotopes as a new method of measuring silicate mineral reaction rates at ambient temperature.Procedia Earth Planet Sci 10:189-193

    Ziegler K,Young ED,Schauble EA,Wasson JT(2010)Metal-silicate silicon isotope fractionation in enstatite meteorites and constraints on Earth’s core formation.Earth Planet Sci Lett 295:487-496

    12 January 2016/Revised:12 March 2016/Accepted:28 March 2016/Published online:16 April 2016

    ?The Author(s)2016.This article is published with open access at Springerlink.com

    精品无人区乱码1区二区| 男女做爰动态图高潮gif福利片| 亚洲乱码一区二区免费版| www.色视频.com| a级毛片免费高清观看在线播放| 久久久久久久精品吃奶| 亚洲人成伊人成综合网2020| 可以在线观看毛片的网站| 日韩精品中文字幕看吧| 国产一级毛片七仙女欲春2| 熟妇人妻久久中文字幕3abv| 久久欧美精品欧美久久欧美| 97超视频在线观看视频| 日韩高清综合在线| 午夜久久久久精精品| 内射极品少妇av片p| 国产高清视频在线播放一区| 精品久久久久久久久av| 男人的好看免费观看在线视频| 婷婷丁香在线五月| 少妇的逼水好多| 日本黄色视频三级网站网址| 精品一区二区免费观看| 99国产精品一区二区蜜桃av| 一级av片app| 国产色婷婷99| 又黄又爽又免费观看的视频| 3wmmmm亚洲av在线观看| www.999成人在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品女同一区二区软件 | 日韩有码中文字幕| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久成人| av中文乱码字幕在线| 免费高清视频大片| 午夜精品在线福利| 免费在线观看日本一区| 久久香蕉精品热| 男人舔女人下体高潮全视频| 欧美在线一区亚洲| 国产精品久久电影中文字幕| 搞女人的毛片| 亚洲精品在线观看二区| 极品教师在线免费播放| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 国产精品影院久久| 黄色视频,在线免费观看| 毛片女人毛片| 亚洲一区高清亚洲精品| 亚洲无线观看免费| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 免费一级毛片在线播放高清视频| 亚洲av二区三区四区| 18禁黄网站禁片免费观看直播| 欧美性猛交╳xxx乱大交人| 国产美女午夜福利| 欧美最黄视频在线播放免费| 中文字幕av成人在线电影| 亚洲国产欧洲综合997久久,| 日韩 亚洲 欧美在线| 午夜精品一区二区三区免费看| 老司机深夜福利视频在线观看| 中文字幕av在线有码专区| 伦理电影大哥的女人| 最好的美女福利视频网| 舔av片在线| 国产成人aa在线观看| 亚洲三级黄色毛片| 人妻制服诱惑在线中文字幕| 亚洲中文字幕日韩| 久久热精品热| 成人特级黄色片久久久久久久| 午夜福利在线观看免费完整高清在 | 嫩草影院精品99| 天天躁日日操中文字幕| 少妇人妻精品综合一区二区 | 国产野战对白在线观看| av中文乱码字幕在线| 久久精品国产亚洲av香蕉五月| 99热只有精品国产| 毛片一级片免费看久久久久 | 999久久久精品免费观看国产| 亚洲国产精品sss在线观看| 美女高潮喷水抽搐中文字幕| 午夜亚洲福利在线播放| 床上黄色一级片| 在线观看美女被高潮喷水网站 | 又爽又黄a免费视频| 中文字幕av在线有码专区| 一个人看的www免费观看视频| 成人av一区二区三区在线看| 一a级毛片在线观看| 色哟哟·www| 18美女黄网站色大片免费观看| 欧美日韩福利视频一区二区| 国产麻豆成人av免费视频| 日韩欧美国产在线观看| 久久久久久久久久成人| 动漫黄色视频在线观看| 美女免费视频网站| 99在线人妻在线中文字幕| 两个人视频免费观看高清| 1024手机看黄色片| 精品99又大又爽又粗少妇毛片 | 亚洲人成网站高清观看| 在线十欧美十亚洲十日本专区| 日本熟妇午夜| 久久热精品热| 亚洲av.av天堂| 深夜精品福利| 我要搜黄色片| 熟女人妻精品中文字幕| а√天堂www在线а√下载| 亚洲欧美激情综合另类| 99久久精品国产亚洲精品| 国产精品一区二区免费欧美| 欧美日韩瑟瑟在线播放| 国产三级在线视频| 久久精品国产清高在天天线| 亚州av有码| 嫩草影院入口| 内地一区二区视频在线| 欧美日本视频| 黄色日韩在线| 精品一区二区三区人妻视频| 中文字幕高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美三级亚洲精品| 日本 欧美在线| 成年人黄色毛片网站| av在线天堂中文字幕| 宅男免费午夜| 两个人的视频大全免费| 成人三级黄色视频| 日韩欧美三级三区| 亚洲av一区综合| 国产黄a三级三级三级人| 俄罗斯特黄特色一大片| 免费观看人在逋| 久久精品影院6| 久久6这里有精品| 在线看三级毛片| 精品99又大又爽又粗少妇毛片 | 欧美xxxx性猛交bbbb| 久久久久精品国产欧美久久久| 国产激情偷乱视频一区二区| 欧美激情久久久久久爽电影| 午夜两性在线视频| 午夜福利18| 亚洲av.av天堂| 嫩草影院新地址| 美女cb高潮喷水在线观看| 日韩有码中文字幕| 一级av片app| 国产伦精品一区二区三区四那| 亚洲精品一卡2卡三卡4卡5卡| 大型黄色视频在线免费观看| av在线观看视频网站免费| 99久久精品热视频| 精品免费久久久久久久清纯| 最近最新免费中文字幕在线| 久久九九热精品免费| 亚洲一区高清亚洲精品| 九色国产91popny在线| 国产在线精品亚洲第一网站| 99久久九九国产精品国产免费| 男女那种视频在线观看| 免费看光身美女| 亚洲专区国产一区二区| 国产精品永久免费网站| 亚洲人成网站高清观看| 一个人看视频在线观看www免费| 午夜福利在线观看免费完整高清在 | 久久精品影院6| 69av精品久久久久久| 久久久久性生活片| 日日夜夜操网爽| 久久香蕉精品热| 久久亚洲精品不卡| 国产精品女同一区二区软件 | 欧美黄色淫秽网站| 天堂av国产一区二区熟女人妻| 日韩精品中文字幕看吧| 色在线成人网| 久久久精品欧美日韩精品| 真人一进一出gif抽搐免费| 欧美极品一区二区三区四区| 亚洲国产日韩欧美精品在线观看| 国内精品美女久久久久久| 草草在线视频免费看| 琪琪午夜伦伦电影理论片6080| 精品国产三级普通话版| 悠悠久久av| 亚洲自拍偷在线| 色综合站精品国产| 欧美xxxx黑人xx丫x性爽| 久9热在线精品视频| 又黄又爽又刺激的免费视频.| 午夜两性在线视频| 日韩精品青青久久久久久| 一级a爱片免费观看的视频| 免费大片18禁| 色视频www国产| 99久久99久久久精品蜜桃| 久久国产精品影院| 国产免费av片在线观看野外av| 久久亚洲真实| 亚洲人成网站在线播| 黄色一级大片看看| 精品久久久久久久久亚洲 | 麻豆国产97在线/欧美| 午夜免费激情av| 亚洲美女搞黄在线观看 | 亚洲美女视频黄频| 嫩草影视91久久| 欧美一区二区精品小视频在线| 97超视频在线观看视频| 国产伦在线观看视频一区| 男人舔奶头视频| 成年女人永久免费观看视频| 99在线视频只有这里精品首页| 亚洲人成网站高清观看| 一区二区三区激情视频| 久久久久久久久大av| 色精品久久人妻99蜜桃| 亚洲久久久久久中文字幕| 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 搡老妇女老女人老熟妇| 最新在线观看一区二区三区| 韩国av一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 国产一区二区在线av高清观看| 午夜精品久久久久久毛片777| 亚洲成a人片在线一区二区| 久久久久久久亚洲中文字幕 | 免费看a级黄色片| 国产精品精品国产色婷婷| 国产中年淑女户外野战色| 午夜免费男女啪啪视频观看 | 尤物成人国产欧美一区二区三区| h日本视频在线播放| 草草在线视频免费看| 最近最新免费中文字幕在线| 亚洲第一电影网av| 又紧又爽又黄一区二区| 一a级毛片在线观看| 丝袜美腿在线中文| 国产久久久一区二区三区| 国产精品98久久久久久宅男小说| 搡女人真爽免费视频火全软件 | 国产免费男女视频| 日韩成人在线观看一区二区三区| 午夜亚洲福利在线播放| 特大巨黑吊av在线直播| 国产熟女xx| 亚洲国产精品999在线| 国产伦人伦偷精品视频| 婷婷丁香在线五月| 国产白丝娇喘喷水9色精品| 久久婷婷人人爽人人干人人爱| 97热精品久久久久久| 国产 一区 欧美 日韩| 不卡一级毛片| 国产一区二区激情短视频| 51国产日韩欧美| 亚洲午夜理论影院| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 亚洲av不卡在线观看| 成人国产综合亚洲| 黄色女人牲交| 给我免费播放毛片高清在线观看| 精品久久久久久久久久免费视频| av在线蜜桃| 久久精品综合一区二区三区| 在线看三级毛片| 国产精品乱码一区二三区的特点| 亚洲片人在线观看| 男插女下体视频免费在线播放| 国产色婷婷99| 麻豆久久精品国产亚洲av| 亚洲内射少妇av| 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 亚洲精品成人久久久久久| 亚洲五月天丁香| 国产色爽女视频免费观看| 日韩欧美 国产精品| 最近视频中文字幕2019在线8| 免费看日本二区| 精品福利观看| 在线免费观看的www视频| 国产欧美日韩一区二区精品| 午夜视频国产福利| 日韩成人在线观看一区二区三区| 欧美在线一区亚洲| 观看免费一级毛片| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 亚洲av二区三区四区| 男女床上黄色一级片免费看| 欧美xxxx性猛交bbbb| 搞女人的毛片| 免费av毛片视频| 午夜精品在线福利| 日韩欧美在线乱码| 中文字幕人成人乱码亚洲影| 18禁裸乳无遮挡免费网站照片| 脱女人内裤的视频| 亚洲乱码一区二区免费版| 亚洲欧美日韩卡通动漫| 亚洲天堂国产精品一区在线| 成人毛片a级毛片在线播放| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 精品一区二区三区视频在线观看免费| 久久精品综合一区二区三区| 亚洲精品456在线播放app | 国产精品一区二区性色av| 一个人免费在线观看的高清视频| 国产成人欧美在线观看| 亚洲专区国产一区二区| 久久精品影院6| 欧美黄色淫秽网站| 在线a可以看的网站| 成年女人永久免费观看视频| 久久草成人影院| 国产精品98久久久久久宅男小说| 99久久精品热视频| 男人的好看免费观看在线视频| 成人一区二区视频在线观看| 午夜福利在线在线| 69av精品久久久久久| 亚洲人成网站高清观看| 神马国产精品三级电影在线观看| av视频在线观看入口| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 亚洲av电影在线进入| 精品99又大又爽又粗少妇毛片 | 午夜福利高清视频| 日本免费a在线| 尤物成人国产欧美一区二区三区| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| 老女人水多毛片| 国产高清视频在线播放一区| 国产伦一二天堂av在线观看| 国产精品女同一区二区软件 | 午夜福利高清视频| 简卡轻食公司| 大型黄色视频在线免费观看| 国产成人av教育| 日韩欧美 国产精品| 亚洲成av人片免费观看| 亚洲中文字幕一区二区三区有码在线看| 在线观看午夜福利视频| 精品不卡国产一区二区三区| 欧美在线一区亚洲| 一个人看的www免费观看视频| av视频在线观看入口| 久久久久久久久久成人| 精品免费久久久久久久清纯| 黄色配什么色好看| 免费人成视频x8x8入口观看| 日本熟妇午夜| 国产精品久久久久久人妻精品电影| 日本熟妇午夜| 亚洲国产精品成人综合色| 欧美+日韩+精品| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av涩爱 | 成人永久免费在线观看视频| 我要搜黄色片| 亚洲国产精品合色在线| 免费搜索国产男女视频| 波野结衣二区三区在线| 亚洲精品久久国产高清桃花| 精品国产亚洲在线| 久9热在线精品视频| 三级国产精品欧美在线观看| 亚洲国产色片| 日韩精品青青久久久久久| 国产成人av教育| 国产乱人视频| aaaaa片日本免费| 欧美+亚洲+日韩+国产| 日韩 亚洲 欧美在线| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| 免费看a级黄色片| 久久99热6这里只有精品| 免费看a级黄色片| 日本黄色片子视频| 精品久久久久久久久亚洲 | 伊人久久精品亚洲午夜| 亚洲av熟女| 黄色配什么色好看| 99久久无色码亚洲精品果冻| 欧美日韩综合久久久久久 | 欧美成人a在线观看| 亚洲最大成人中文| 免费搜索国产男女视频| 九九在线视频观看精品| 亚洲成av人片免费观看| 国产爱豆传媒在线观看| 在线免费观看不下载黄p国产 | 成年女人永久免费观看视频| 9191精品国产免费久久| 51午夜福利影视在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区三区在线臀色熟女| 18+在线观看网站| 亚洲狠狠婷婷综合久久图片| 99国产精品一区二区三区| 淫秽高清视频在线观看| 老司机深夜福利视频在线观看| 91在线精品国自产拍蜜月| 欧美激情久久久久久爽电影| 97热精品久久久久久| 一区二区三区激情视频| 日韩有码中文字幕| 欧美日本亚洲视频在线播放| 欧美日韩亚洲国产一区二区在线观看| 免费av毛片视频| 日本一本二区三区精品| 哪里可以看免费的av片| 久久久久久久久中文| 欧美性感艳星| 亚洲av五月六月丁香网| 十八禁人妻一区二区| 成年女人看的毛片在线观看| 能在线免费观看的黄片| 午夜影院日韩av| 一级av片app| 最新中文字幕久久久久| 久久国产精品人妻蜜桃| 亚洲国产欧美人成| 亚洲一区二区三区不卡视频| 久久久久久久精品吃奶| 欧美日韩综合久久久久久 | 国产成人av教育| 2021天堂中文幕一二区在线观| 亚洲第一欧美日韩一区二区三区| 久久久成人免费电影| 国产aⅴ精品一区二区三区波| 十八禁网站免费在线| 波多野结衣巨乳人妻| av在线天堂中文字幕| 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 亚洲人成电影免费在线| 午夜福利18| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 久久伊人香网站| 国产精品免费一区二区三区在线| 免费一级毛片在线播放高清视频| 欧美日韩乱码在线| 久久国产精品影院| 成人性生交大片免费视频hd| 色在线成人网| 国产精品永久免费网站| АⅤ资源中文在线天堂| 韩国av一区二区三区四区| 两个人视频免费观看高清| 日本成人三级电影网站| 欧美日韩福利视频一区二区| 亚洲成人精品中文字幕电影| 亚洲第一电影网av| 精品久久久久久久久av| 一个人看视频在线观看www免费| 欧美成人a在线观看| 国产极品精品免费视频能看的| 能在线免费观看的黄片| 丁香欧美五月| 天堂影院成人在线观看| 精品久久国产蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 18美女黄网站色大片免费观看| 亚洲第一区二区三区不卡| 热99re8久久精品国产| 搡老岳熟女国产| 国产在视频线在精品| 亚洲内射少妇av| 国产伦一二天堂av在线观看| 成人无遮挡网站| 亚洲成人久久性| 日本撒尿小便嘘嘘汇集6| 国产一区二区在线观看日韩| 又黄又爽又刺激的免费视频.| 色综合站精品国产| 人妻制服诱惑在线中文字幕| 国产亚洲av嫩草精品影院| 日韩欧美国产一区二区入口| 国产精品久久电影中文字幕| 亚洲熟妇中文字幕五十中出| 成人永久免费在线观看视频| 最后的刺客免费高清国语| 午夜福利高清视频| 色综合欧美亚洲国产小说| 丰满人妻一区二区三区视频av| 国产激情偷乱视频一区二区| 亚洲欧美日韩卡通动漫| 身体一侧抽搐| 欧美黄色淫秽网站| 免费电影在线观看免费观看| 人人妻人人看人人澡| 日韩av在线大香蕉| 12—13女人毛片做爰片一| 三级毛片av免费| 婷婷色综合大香蕉| 高潮久久久久久久久久久不卡| 18禁在线播放成人免费| 免费av不卡在线播放| 日韩有码中文字幕| 欧美bdsm另类| 啦啦啦韩国在线观看视频| 制服丝袜大香蕉在线| 欧美区成人在线视频| 亚洲人与动物交配视频| 久久精品久久久久久噜噜老黄 | 婷婷精品国产亚洲av| 国产真实乱freesex| 亚洲精品成人久久久久久| 亚洲在线自拍视频| 日本免费a在线| 成人特级黄色片久久久久久久| av在线观看视频网站免费| 亚洲av不卡在线观看| 十八禁网站免费在线| 熟妇人妻久久中文字幕3abv| 毛片女人毛片| 深夜a级毛片| 又黄又爽又刺激的免费视频.| 乱人视频在线观看| 搡老熟女国产l中国老女人| 97热精品久久久久久| 亚洲精品亚洲一区二区| 直男gayav资源| 欧美性猛交黑人性爽| 国产乱人伦免费视频| 国产成人aa在线观看| 精品国产三级普通话版| 麻豆一二三区av精品| 欧美黑人巨大hd| 成人av一区二区三区在线看| 欧美日韩亚洲国产一区二区在线观看| 变态另类丝袜制服| 国产精品99久久久久久久久| 亚洲欧美清纯卡通| 午夜影院日韩av| 九色国产91popny在线| 一级毛片久久久久久久久女| 日本黄色视频三级网站网址| 国产成人欧美在线观看| 久久久久久久久久黄片| 成人永久免费在线观看视频| 欧美成狂野欧美在线观看| 97人妻精品一区二区三区麻豆| 夜夜躁狠狠躁天天躁| 欧美成人性av电影在线观看| 亚洲一区二区三区色噜噜| 国产中年淑女户外野战色| 国产精品久久久久久精品电影| 在线播放无遮挡| 午夜老司机福利剧场| 国产av在哪里看| 十八禁国产超污无遮挡网站| 超碰av人人做人人爽久久| 日本黄色视频三级网站网址| 免费看日本二区| 哪里可以看免费的av片| 国产白丝娇喘喷水9色精品| 欧美xxxx性猛交bbbb| 亚洲美女视频黄频| 少妇的逼水好多| 精品久久久久久久末码| 国产男靠女视频免费网站| 观看免费一级毛片| 一夜夜www| 国产爱豆传媒在线观看| 国产精品永久免费网站| 极品教师在线免费播放| 999久久久精品免费观看国产| 91麻豆av在线| 变态另类丝袜制服| 99久久九九国产精品国产免费| 狂野欧美白嫩少妇大欣赏| 他把我摸到了高潮在线观看| 国产成+人综合+亚洲专区| 久久久国产成人免费| 久久这里只有精品中国| 在线观看舔阴道视频| 成年人黄色毛片网站| 亚洲精品成人久久久久久| 真人做人爱边吃奶动态| 欧美一区二区亚洲| 在线天堂最新版资源| 91麻豆av在线| 亚洲无线在线观看| 久久香蕉精品热| 国产亚洲欧美98| 十八禁网站免费在线| 国语自产精品视频在线第100页| 国产中年淑女户外野战色| 美女高潮喷水抽搐中文字幕| 成人国产综合亚洲| 免费在线观看成人毛片|