袁 帥,趙立欣,孟海波,沈玉君
(農(nóng)業(yè)部規(guī)劃設(shè)計(jì)研究院,農(nóng)業(yè)部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125)
生物炭主要類型、理化性質(zhì)及其研究展望
袁帥,趙立欣,孟海波*,沈玉君
(農(nóng)業(yè)部規(guī)劃設(shè)計(jì)研究院,農(nóng)業(yè)部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125)
【目的】生物炭作為工農(nóng)業(yè)生產(chǎn)副產(chǎn)品低碳利用的有效手段,其改善土壤及提高作物品質(zhì)的有益功效已被逐步認(rèn)識(shí),但對(duì)其研究報(bào)道分散且差異較大。對(duì)已有研究進(jìn)行梳理總結(jié),可為生物炭生產(chǎn)施用以及形成有效的產(chǎn)業(yè)鏈提供科學(xué)依據(jù)?!局饕M(jìn)展】1)生物炭全碳含量在 30%~90% 之間,平均 64%。生物炭碳含量由大到小來(lái)源依次是木質(zhì)、秸稈、殼類、糞污和污泥。秸稈類生物炭碳含量大多為 40%~80%,木質(zhì)類生物炭在60%~85%。生物炭灰分含量在 0~40% 之間變動(dòng),平均 15.52%。灰分含量由大到小依次是污泥、糞污、秸稈、殼類和木質(zhì)。秸稈生物炭灰分含量主要在 20%~35% 之間,較少為 15%;木質(zhì)炭灰分主要在 0~10% 范圍內(nèi)。生物炭碳含量和灰分含量相關(guān)系數(shù)為-0.77。裂解溫度與生物炭碳灰組分呈正相關(guān),相關(guān)系數(shù)分別為 0.17 和0.28。施入生物炭可以改善土壤狀況,生物炭灰分通常對(duì)養(yǎng)分貧瘠土壤及沙質(zhì)土壤的一些養(yǎng)分補(bǔ)充作用較明顯。2)生物炭比表面積絕大多數(shù)在 0~520 m2/g 之間,平均 124.83 m2/g,殼類、秸稈、木質(zhì)、糞污和污泥生物炭比表面積逐漸降低。秸稈炭比表面積集中在 0~200 m2/g 以內(nèi),木質(zhì)炭比表面積集中在 0~100 m2/g 以內(nèi)。制備溫度與比表面積的相關(guān)系數(shù)為 0.48。生物炭的孔隙結(jié)構(gòu)能降低土壤容重、降低土壤密度,能較好地去除溶液和鈍化土壤中的重金屬。3)生物炭 pH 值范圍在 5~12,平均為 9.15。秸稈、污泥、糞污、木質(zhì)、殼類生物炭pH 值中值逐漸降低。秸稈生物炭 pH 值多集中在 8~11 范圍內(nèi),木質(zhì)生物炭 pH 相對(duì)一致。生物炭的 CEC 從 0到 500 cmol /kg 都有分布,平均為 71.91 cmol/kg。秸稈類生物炭 CEC 值大多集中在 0~100 cmol/kg 范圍內(nèi),木質(zhì)生物炭則在 5~10 與 15~25 cmol/kg 范圍內(nèi)均有一定數(shù)量的分布。裂解溫度與 pH 值和 CEC 的相關(guān)系數(shù)為0.58 和 0.30。生物炭施入土壤后可消耗土壤質(zhì)子,提高酸性土壤 pH 值,提高酸性土壤一些養(yǎng)分的有效性;其巨大的表面積還可提高對(duì)陽(yáng)離子的吸附,提高土壤保肥能力。4)生物炭的裂解溫度大都集中在 200~800℃ 之間,偶有達(dá)到 1000℃ 的裂解溫度?!窘ㄗh和展望】目前,全世界范圍內(nèi)對(duì)生物炭的生產(chǎn)和使用還處于就近和來(lái)源方便的初級(jí)階段,影響著生物炭功能和效益的最大化。應(yīng)從以下幾個(gè)方面加強(qiáng)研究和應(yīng)用試驗(yàn):首先,系統(tǒng)研究生物炭制造參數(shù)對(duì)理化性狀的影響,研究不同原料生物炭的作用機(jī)理差異及其針對(duì)性,建立生物炭理化性質(zhì)參數(shù)數(shù)據(jù)庫(kù);其次,加強(qiáng)應(yīng)用研究,根據(jù)土壤理化性狀和改良目標(biāo)選擇適宜的生物炭類型,根據(jù)對(duì)作物經(jīng)濟(jì)性狀的要求,研究選擇適宜的生物炭類型,實(shí)現(xiàn)生物炭功效的最大利用。加強(qiáng)不同原料的選配和組合研究,改良生物炭產(chǎn)品的目標(biāo)性狀,形成系列化產(chǎn)品。
生物炭;理化性質(zhì);參數(shù)
生物炭(Biochar)是利用生物殘?bào)w在缺氧的情況下,經(jīng)高溫慢熱解(通常<700℃)產(chǎn)生的一類難溶的、穩(wěn)定的、高度芳香化的、富含碳素的固態(tài)物[1]。生物炭多為顆粒細(xì)、質(zhì)地較輕的黑色蓬松狀固態(tài)物質(zhì),主要組成元素為碳、氫、氧、氮等,含碳量多在70% 以上。生物炭可溶性極低,具有高度羧酸酯化和芳香化結(jié)構(gòu)[2-3],其原料來(lái)源廣泛,農(nóng)業(yè)廢棄物如雞糞、豬糞、木屑、秸稈以及工業(yè)有機(jī)廢棄物、城市污泥等都可作為其原料[4]。生物炭原材料尺寸的大小會(huì)影響到生物炭產(chǎn)率,主要表現(xiàn)為尺寸增大生物炭產(chǎn)量隨之增加。
生物炭自從被發(fā)現(xiàn)之日起,就以其改良土壤、提高作物產(chǎn)量等眾多優(yōu)點(diǎn)引起科學(xué)家的關(guān)注。黃超等[5]利用盆栽試驗(yàn),在肥力較差土壤上施用含碳量為63.4% 的小麥秸稈生物炭,施用生物炭量為 10、50和 200 g/kg 的黑麥草產(chǎn)量分別比對(duì)照增加了 7%、27% 和 53%;句芒芒等[6]施用碳質(zhì)量分?jǐn)?shù)為 47.17%的花生殼生物炭進(jìn)行盆栽試驗(yàn),番茄產(chǎn)量高達(dá) 92746 kg/hm2;Luo 等采用田間試驗(yàn)研究發(fā)現(xiàn),施入碳含量為 67.69% 的稻稈生物炭可以增加玉米干物質(zhì)量[7]。生物炭灰分含有一定量的礦質(zhì)養(yǎng)分,污泥、畜禽糞便生物炭比木質(zhì)、秸稈和殼類生物炭含量更高,可以補(bǔ)充養(yǎng)分貧瘠土壤及沙質(zhì)土壤的一些養(yǎng)分供應(yīng)。陳心想等[8]研究發(fā)現(xiàn),施用木質(zhì)生物炭顯著提高了新積土有效磷、鉀含量。生物炭灰分量與生物炭 pH 值關(guān)系密切,堿性灰分物質(zhì)高的生物炭 pH 值較高。高海英等[9]發(fā)現(xiàn),竹炭灰分含量、礦質(zhì)養(yǎng)分元素種類和含量均高于木炭,所以 pH 值也高于木炭。
生物炭的理化參數(shù)主要包括:全碳含量、灰分含量、揮發(fā)成分含量、表面元素組成及表面官能團(tuán)種類和含量、表面負(fù)電荷含量等;結(jié)構(gòu)表征主要包括:表面形態(tài)和孔隙結(jié)構(gòu)(如比表面積、孔容積和孔徑分布等)。由于原材料、技術(shù)工藝及熱解條件等差異,生物炭在結(jié)構(gòu)、揮發(fā)成分含量、灰分含量、孔容、比表面積等理化性質(zhì)上表現(xiàn)出非常廣泛的多樣性,進(jìn)而使其擁有不同的環(huán)境效應(yīng)[10]。目前,國(guó)內(nèi)學(xué)者就生物炭的特性[11-12]、環(huán)境行為和效應(yīng)[13-14]、土壤性狀和產(chǎn)量[15-16]、碳截留與溫室氣體減排[17-18]及其對(duì)全球生物地球化學(xué)循環(huán)影響等領(lǐng)域[19-20]已開展了大量研究,但仍然沒有針對(duì)性地開展生物炭理化參數(shù)的總結(jié)及歸納工作,本文主要針對(duì)生物炭的一些重要和常見參數(shù)進(jìn)行歸類總結(jié)與研究,試圖對(duì)這些性狀的參數(shù)范圍有更清晰的認(rèn)識(shí)。
Lehmann 和 Joseph 在其專 著《Biochar for Environmental Management》中,將碳組分、灰分、比表面積、pH 值、CEC(Cation exchange capacity)、有機(jī)碳、孔隙度等幾大性狀作為生物炭分類的指標(biāo)和依據(jù)[21]。本文參考此專著,選擇碳組分、灰組分、比表面積、pH 值、陽(yáng)離子交換量 CEC 幾大性狀為分析探討的對(duì)象,另外將裂解溫度也考慮在內(nèi),試圖從他人的研究中總結(jié)出一些規(guī)律,對(duì)已有研究進(jìn)行梳理,對(duì)今后的生物炭研究及其生產(chǎn)實(shí)踐進(jìn)行指導(dǎo)。
1.1不同原料對(duì)全碳組分和灰組分的影響
生物炭的主要組成一般包括全碳、揮發(fā)物、礦物和水分[22]。生物炭的全碳組分組成是異質(zhì)的,包含易降解的脂肪碳組分和穩(wěn)定的芳香碳組分[23-24]。原料和制備條件的多樣性導(dǎo)致其各組分含量的差異[25]。生物炭各組分的相對(duì)比例決定了生物炭的物理化學(xué)行為和功用,從而決定了其用途的適宜性以及在環(huán)境中的遷移和轉(zhuǎn)化[26-27]。
生物炭的組成元素主要為碳、氫、氧等,而且以高度富含碳(約 70%~80%)為主要 標(biāo)志,灰分也是生物炭的重要組成部分。 Balwant 等[28]的研究表明,生物炭的全碳含量在 16.5%~83.6% 范圍內(nèi),灰分含量在 3.2%~76.2% 范圍內(nèi);Spokas[24]研究表明,木質(zhì)和秸稈生物炭的全碳含量在 38.3%~53.0% 范圍內(nèi),而煤和其他化石燃料生物炭的碳含量高 達(dá) 98.4%。生物炭自身的高含碳量可引起生物炭施用到土壤中后 C/N 顯著增高,生物炭中灰分含有更多的鹽基離子,可以增大土壤的 pH 值。通過(guò)文獻(xiàn)總結(jié),對(duì)研究中生物炭的碳組分和灰組分?jǐn)?shù)據(jù)進(jìn)行歸納整理,見表1。
如表1所示,不同原料的生物炭其全碳組分和灰組分不同,原材料的種類會(huì)影響生物炭的碳組分和灰分。對(duì) 119 份生物炭全碳含量進(jìn)行分析,其范圍大多在 30~90% 之間,平均 63.84%,其中秸稈樣本數(shù)為 41 個(gè)、殼類 14 個(gè)、木質(zhì) 42 個(gè)、糞污 9 個(gè)、污泥 2 個(gè),其他類 11 個(gè)。以碳含量中值進(jìn)行比較,碳含量由大到小分別是木質(zhì)、秸稈、殼類、糞污和污泥(圖1)。由于原材料性質(zhì)、裂解工藝、設(shè)備、溫度和裂解時(shí)長(zhǎng)以及其他多種復(fù)雜不可控客觀條件的影響,同一種原料的碳和灰分含量也不同,需要根據(jù)生物炭原料性質(zhì)、生產(chǎn)各環(huán)節(jié)參數(shù)具體分析。
對(duì)不同原料生物炭碳組分進(jìn)行頻度分析[圖2]。結(jié)果表明,秸稈生物炭全碳含量在 40%~80% 范圍內(nèi)分布較多;木質(zhì)生物炭在 60%~85% 范圍內(nèi)分布較廣。
選取總共 82 個(gè)生物炭數(shù)據(jù)(包括秸稈生物炭 20 個(gè)、殼 類 5 個(gè)、木質(zhì) 42 個(gè)、糞污 10 個(gè)、污泥 1 個(gè)及其他類 4 個(gè))進(jìn)行灰分含量分析,大多數(shù)生物炭灰分含量在0~40% 之間變動(dòng),平均值為 15.52%,只有污泥生物炭灰分含量達(dá)到 80% 以上。5 類生物炭灰分含量由大到小分別是污泥、糞污、秸稈、殼類和木質(zhì)(圖3)。
選取秸稈和木質(zhì)生物炭進(jìn)行灰分頻度分析[圖4]。結(jié)果顯示,秸稈生物炭灰分含量多在 20% 至35%,少量低于 15%;木質(zhì)碳灰分在 0~10% 范圍內(nèi)分布較多,與木質(zhì)生物炭含碳量高有關(guān)。
1.2不同裂解溫度對(duì)全碳組分和灰組分的影響
生物炭的含碳量隨炭化溫度的不同而發(fā)生改變,生物炭性質(zhì)也受到制備溫度、加熱速率、通氣條件等條件的影響,以溫度影響較大。隨制備溫度的升高,生物炭產(chǎn)量下降,但其碳含量、灰分含量、比表面積以及孔隙度卻隨著溫度的升高而升高。
裂解溫度與生物炭碳、灰分含量呈顯著正相關(guān),相關(guān)系數(shù)分別為 0.17 和 0.28。隨著裂解溫度的升高,生物炭碳含量和灰分含量都增大。生物炭碳含量和灰分含量呈極顯著負(fù)相關(guān),相關(guān)系數(shù)為-0.77。因?yàn)闊崃呀鉁囟仍龈?,易熱解含碳化合物殘留降低,生物炭中難分解碳物質(zhì)比例相應(yīng)增高,固定碳含量增大,繼而碳含量增多。熱裂解溫度升高,有機(jī)物損失增大,灰分在生物炭中含量相應(yīng)增大,由于灰分是堿性物質(zhì),生物炭 pH 因生物質(zhì)熱解溫度增高而提高。生物炭碳含量高意味著被氧化為無(wú)機(jī)灰分的部分減少,反之亦然。
表1 生物炭全碳組分和灰組分分析表Table 1 Carbon and ash contents of biochar
圖1 不同原料生物炭碳含量分布與中值(n=119)Fig.1 Carbon contents and mid values of biochar from different sources
1.3碳組分和灰分含量對(duì)土壤的影響
施用生物炭可以增加土壤碳素含量,提高土壤碳氮比,改善土壤養(yǎng)分供應(yīng)狀況。黃超等[5]在肥力較差土壤上施用含碳量為 63.4% 的小麥秸稈生物炭,施用生物質(zhì)炭量為 10、50 和 200 g/kg 的盆栽黑麥草產(chǎn)量分別比對(duì)照增加了 7%、27% 和 53%;句芒芒等[6]施用碳質(zhì)量分?jǐn)?shù)為 47.17% 的花生殼生物炭,盆栽番茄產(chǎn)量高達(dá) 92746 kg/hm2;Luo 等研究施入碳含量為 67.69% 的稻稈生物炭發(fā)現(xiàn),可以增加玉米干物質(zhì)量[7]。
圖2 秸稈和木質(zhì)生物炭碳組分分布頻度Fig.2 Frequency of the C contents in straw and wood biochar
圖3 不同來(lái)源生物炭灰分含量分布與中值(n=82)Fig.3 Ash contents and mid values of biochar from different sources(n=82)
圖4 秸稈和木質(zhì)生物炭灰分頻度Fig.4 Frequency of the ash contents in straw and wood biochar
生物炭灰分含有一定量的礦質(zhì)養(yǎng)分,污泥、畜禽糞便生物炭比木質(zhì)、秸稈和殼類生物炭含量更高,可以補(bǔ)充養(yǎng)分貧瘠土壤及沙質(zhì)土壤的一些養(yǎng)分供應(yīng)。生物炭灰分量與生物炭 pH 值關(guān)系密切,堿性灰分物質(zhì)高的生物炭 pH 值較高。高海英等[9]發(fā)現(xiàn),竹炭灰分含量明顯高于木炭,礦質(zhì)養(yǎng)分元素種類和含量也均高于木炭,所以竹炭 pH 值高于木炭。陳心想等[8]研究發(fā)現(xiàn),施用木質(zhì)生物炭顯著提高了新積土有效磷、鉀含量。
2.1不同原材料對(duì)比表面積的影響
熱解過(guò)程中,生物質(zhì)原料的結(jié)構(gòu)基本印記在了生物炭中,對(duì)生物炭的物理化學(xué)性質(zhì)具有決定性影響[73-75]。生物質(zhì)熱解過(guò)程中,質(zhì)量損失(大部分以揮發(fā)有機(jī)物的形式)及不相稱的收縮或體積減少的發(fā)生,導(dǎo)致礦物及碳骨架形成,并且保留了原料的基本孔隙和結(jié)構(gòu)特征[76]。生物炭的孔一般按直徑大小分為大孔(ID>50 nm)、中孔(2 nm<ID<50 nm)和微孔(ID<2 nm)[75]。生物炭中保留的植物生物質(zhì)原料的蜂窩狀結(jié)構(gòu)構(gòu)成了其主要的大孔。微孔主要由熱解過(guò)程中碳的損失及碳架的斷裂收縮形成。雖然大孔可能會(huì)作為微孔的前體,但是微孔貢獻(xiàn)了生物炭的大部分比表面積,微孔的含量與比表面積呈正相關(guān)[77]。
生物炭的多孔性和低密度性,可改善土壤通氣狀況,降低厭氧程度。生物炭的大比表面等特性,可以使其具有強(qiáng)的吸附和固定重金屬能力[78]、成為土壤微生物棲息的良好環(huán)境[79]、提高土壤對(duì)氮素及其他養(yǎng)分元素吸持容量等[80]。對(duì)不同材料的生物炭比表面積進(jìn)行分析,得到表2。
表2 生物炭比表面積Table 2 Specific surface area of biochar
不同材料,不同裂解方式對(duì)生物炭的比表面積影響很大,有的只有 0.7~15 m2/g[75],有的可高達(dá)幾百個(gè) m2/g[97],本研究中生物炭比表面積參數(shù)范圍與其研究類似,生物炭比表面積的變化范圍絕大多數(shù)在 0 到 520 m2/g 之間,平均為 124.83 m2/g;另外,幾類生物炭中,殼類生物炭比表面積中值比其他幾類都大,其他依次為糞污、秸稈、木質(zhì)和污泥,如圖5。其中,秸稈生物炭樣品 36 個(gè)、殼類 11 個(gè)、木質(zhì) 17 個(gè)、糞污 10 個(gè)、污泥 10 個(gè)、其他類 9 個(gè),總共 93 個(gè)樣品。
生物炭本來(lái)就具有多孔隙的性質(zhì),數(shù)量龐大的微孔隙導(dǎo)致生物炭巨大的表面積。因?yàn)榱呀鉁囟取⒃牧戏N類等因素的變化,致使生物炭的微孔隙數(shù)量變化,以至于生物炭比表面積的巨大差距。
對(duì)部分種類生物炭的比表面積數(shù)據(jù)進(jìn)行頻度分析(圖6)。結(jié)果顯示,秸稈炭比表面積集中在 0~200 m2/g 以內(nèi),木質(zhì)炭比表面積集中在 0~100 m2/g 以內(nèi)。
圖5 生物炭比表面積范圍示意圖(n=93)Fig.5 Specific surface area of biochar
圖6 生物炭比表面積范圍頻度分析Fig.6 Frequency of specific surface area
2.2裂解溫度對(duì)生物炭比表面積的影響
研究表明制備溫度對(duì)生物炭的吸附有很大的影響,因?yàn)殡S著制備溫度的升高生物炭的比表面積增大,碳含量增加而氧含量降低,O/C 降低,生物炭的親水性和極性降低,對(duì)水分子的親和力降低,對(duì)疏水性污染物的吸附增強(qiáng)。因此表現(xiàn)為比表面積越大吸附作用越強(qiáng)。
本研究將裂解溫度與生物炭比表面積的相關(guān)性進(jìn)行了分析,發(fā)現(xiàn)它們呈顯著正相關(guān),相關(guān)系數(shù)為0.48,即裂解溫度的升高可以增加生物炭孔隙度和比表面積,這與之前的研究結(jié)論一致。這是因?yàn)闇囟壬撸捉Y(jié)構(gòu)及復(fù)雜性降低,導(dǎo)致比表面積增大。
2.3比表面積對(duì)土壤的影響
生物炭具有高的吸附能力。生物炭的孔隙結(jié)構(gòu)能降低土壤容重、降低土壤密度,生物炭具有較大的比表面積和較高表面能,有結(jié)合重金屬離子的強(qiáng)烈傾向,因此能夠較好地去除溶液和鈍化土壤中的重金屬。李力等[1]的鎘去除實(shí)驗(yàn)中 BC350 和 BC700兩種玉米生物炭的比表面積分別為 7.72 m2/g 和 120 m2/g,結(jié)果顯示 BC700 對(duì) Cd(Ⅱ)的吸附容量大于BC350,解吸率遠(yuǎn)小于 BC350,吸附效果更好;劉玉學(xué)等[40]研究比表面積為 81.8 m2/g、總孔容積為0.080 cm3/g 的稻稈炭和比表面積 189.6 m2/g、總孔容積為 0.175 cm3/g 的竹炭對(duì)小青菜及其土壤的影響,結(jié)果顯示生物炭的施入能顯著降低土壤容重。
3.1不同原材料對(duì) pH 值和 CEC 的影響
生物炭的 pH 一般呈堿性,Balwant 等研究發(fā)現(xiàn),生物炭 pH 介于 6.93~10.26 范圍之間[28],也有研究報(bào)道可以制備 pH 介于 4~12 之間的生物炭[98]。生物炭中無(wú)機(jī)礦物是造成生物炭 pH 偏堿的主要原因[98-99],生物炭的表面含氧官能團(tuán)(如羧基和羥基)也可能對(duì)生物炭的 pH 有一定的貢獻(xiàn)。陽(yáng)離子交換量(CEC)是反映生物炭表面負(fù)電荷的參數(shù),也決定其在土壤中持留銨、鈣和鉀等陽(yáng)離子的能力[26],生物炭 CEC 與其表面含氧官能團(tuán)含量正相關(guān)[100]?,F(xiàn)有報(bào)道中生物炭的 CEC 差異很大,介于 71 mmol/kg[101]和 34 cmol/kg[100-102]之間,Balwant 等認(rèn)為生物炭的 CEC 介于 71.0~451.5 mmol/kg 范圍之間[28]。
本研究中生物炭 pH 值及CEC 信息如表3。對(duì)表中生物炭 pH 值信息進(jìn)行分析得到圖7。由圖7可以看出,整體上看無(wú)論是什么材料的生物炭、裂解溫度為多少,生物炭 pH 值范圍在 5~12 的范圍,平均為 9.15。收集到的 pH 值數(shù)據(jù)共有 86 個(gè),其中秸稈 41 個(gè)、殼類 7 個(gè)、木質(zhì) 25 個(gè)、糞污 4 個(gè)、污泥 3個(gè),其他類 6 個(gè),秸稈、污泥、糞污、木質(zhì)、殼類生物炭 pH 值中值依次遞減。
表3 生物炭裂解溫度、pH 值與 CECTable 3 Pyrolysis temperature, pH and CEC of biochar
圖7 生物炭 pH 值范圍分析(n=86)Fig.7 pH of biochar from different material
分析秸稈和木質(zhì)類生物炭的 pH 值分布頻數(shù),得到圖8。結(jié)果表明秸稈生物炭 pH 值多集中在 8~11范圍內(nèi);木質(zhì)生物炭的 pH 分布范圍比較廣且比較均勻,在 5~11 范圍內(nèi)均有一定數(shù)量的分布。
圖8 生物炭 pH 值頻度分析Fig.8 pH frequency of biochar
對(duì)生物炭的 CEC 進(jìn)行分析得到圖9,分析表明生物炭的 CEC 變化范圍范圍比較大,從 0 到 500 cmol/kg 都有分布,平均為 71.91 cmol/kg。分析數(shù)據(jù)中秸稈炭 17 個(gè)、殼類 1 個(gè)、木質(zhì) 7 個(gè)、糞污 1 個(gè)、污泥 2 個(gè),其他類 5 個(gè),總共 33 個(gè)。CEC 的變化范圍比較大,這與生物炭原材料和裂解溫度等因素有關(guān)。
圖9 生物炭 CEC 范圍分析(n=33)Fig.9 CEC of biochar from different materials
分析秸稈和木質(zhì)類生物炭的 CEC 分布頻數(shù)(圖10),結(jié)果表明秸稈生物炭 CEC 值大多集中在0~100 cmol/kg 范圍內(nèi);木質(zhì)生物炭的 CEC 分布范圍在 5~10 與 15~25 cmol/kg 范圍內(nèi)均有一定數(shù)量的分布。
圖10 生物炭 CEC 頻度分析Fig.10 CEC frequency of biochar
3.2不同裂解溫度對(duì) pH 值和 CEC 的影響
高溫?zé)崃呀獾纳锾勘鹊蜏責(zé)崃呀獾纳锾恐芯哂懈俚乃嵝該]發(fā)物及更多的灰分,因而 pH 更高。CEC 與生物炭 O/C 比相關(guān),熱解溫度較低時(shí)纖維素分解不完全,含氧官能團(tuán)如羥基、羧基和羰基被保留,生物炭具有更高的 O/C 比和較大的 CEC。
本研究表明,裂解溫度與 pH 值和 CEC 的相關(guān)系數(shù)為 0.58 和 0.30。即隨著裂解溫度的升高,生物炭的 pH 值增加,這是因?yàn)榱呀鉁囟仍黾恿松锾康幕曳趾?;裂解溫度與生物炭 CEC 呈正相關(guān),這可能是由于過(guò)高的裂解溫度增加了生物炭的灰分,進(jìn)而增大了生物炭的 CEC。另外,對(duì) pH 值和 CEC 的相關(guān)性進(jìn)行了分析,結(jié)果顯示 pH 值和 CEC 呈顯著正相關(guān),相關(guān)系數(shù)為 0.26。生物炭呈堿性,能夠明顯提高土壤 pH,改變土壤質(zhì)地,增大鹽基交換量,從而引起土壤 CEC 增加,影響植物對(duì)營(yíng)養(yǎng)元素的吸收效果[79,123]。
3.3pH 值和 CEC 對(duì)土壤的影響
生物炭大多呈堿性,或者具有較大石灰當(dāng)量值,可以作為石灰替代物,生物炭含大量的有機(jī)官能團(tuán)(-COO-、-COOH、-O-、-OH 等),能夠吸收土壤中的 H+,而其灰分含有的鈣、鎂、鉀、鈉等鹽基離子可以交換土壤中吸附的氫離子及交換性鋁離子,降低土壤中其含量[124]。因此,可改良酸性土壤一些養(yǎng)分的有效性。黃超等[5]運(yùn)用 pH 值為 9.2 的小麥秸稈生物炭研究其對(duì)紅壤的影響,結(jié)果表明紅壤施用生物質(zhì)炭不僅大大提高了土壤碳庫(kù),還可降低土壤酸度,增加土壤 pH 值;何飛飛等[74]研究 pH 值分別為 9.62 和 8.96、BET 比表面積分別為 7.74 m2/g和 2.45 m2/g 的水稻秸稈炭和花生殼炭對(duì)紅壤菜田土理化性質(zhì)的影響,結(jié)果顯示蕹菜收獲后,土壤 pH值、CEC 值和持水量(WHC)隨生物炭用量增加而升高。
生物炭具有離子吸附交換能力及一定吸附容量,其可改善土壤的陽(yáng)離子或陰離子交換量,從而可提高土壤的保肥能力。生物炭對(duì)土壤陽(yáng)離子交換量 CEC 或保肥能力的改善取決于生物炭的 CEC,pH及生物炭在土壤中氧化。生物炭比表面積大,可以增強(qiáng)土壤對(duì)陽(yáng)離子的吸附能力,增加耕層土壤CEC。生物炭對(duì)低 CEC 和 pH 的酸性土壤中的 CEC改良特別有效,其中土壤 CEC 的改良與生物炭的原料的堿度、有機(jī)氮的礦化和銨根的硝化作用有關(guān)[125]。生物炭的 pH 升高,其對(duì)重金屬離子的吸附和固定加強(qiáng),說(shuō)明了生物炭對(duì)重金屬的吸附與生物炭的表面官能團(tuán)和 pH 值有關(guān)[124,126]。
在查閱的 100 多篇文獻(xiàn)中,分別得到碳組分、灰分、比表面積、pH 值和 CEC 幾種參數(shù)數(shù)據(jù) 119、82、93、86、33 個(gè),反映出目前生物炭理化特性研究者對(duì)這幾大參數(shù)重視程度不一,這與裂解材料的來(lái)源、實(shí)驗(yàn)成本、實(shí)驗(yàn)復(fù)雜性以及研究方向有直接關(guān)系。另外,在裂解溫度方面,Balwant 等的研究認(rèn)為生物炭裂解溫度在 100℃ 至 900℃ 范圍內(nèi)[28];本研究表明,生物炭的裂解溫度大都集中在 200℃ 至800℃ 之間,偶有達(dá)到 1000℃ 的裂解溫度。
生物炭的研究是最近幾年才出現(xiàn)在人們視野中的新興研究領(lǐng)域,雖然國(guó)內(nèi)外專家學(xué)者已經(jīng)做了大量關(guān)于生物炭原材料、性狀、對(duì)土壤效應(yīng)以及作用機(jī)理等多方面的研究,但是全世界范圍內(nèi)對(duì)生物炭的生產(chǎn)和使用還處于就近和來(lái)源方便的初級(jí)階段,影響著生物炭功能和效益的最大化。從生物炭的裂解原料、裂解工藝、裂解設(shè)備,及生物炭對(duì)土壤、作物、重金屬、有機(jī)污染物及碳循環(huán)等的作用效果,再到生物炭作用機(jī)理的整個(gè)產(chǎn)業(yè)鏈的研究(甚至各個(gè)環(huán)節(jié)相互影響的研究),都還只是比較分散、零散的研究堆積,并沒有形成系統(tǒng)的、全面的生物炭研究體系,對(duì)生物炭的生產(chǎn)、應(yīng)用還沒有成熟理論的指導(dǎo),尤其是生物炭理化性狀參數(shù)的研究。生物炭的理化性質(zhì)直接反映其原材料、生產(chǎn)水平和后端應(yīng)用等。比如目前還沒有非常詳實(shí)和確定的論據(jù)來(lái)證明生物炭的何種性狀對(duì)土壤或者作物的何種效應(yīng)作用最大,對(duì)于生物炭的理化參數(shù)最優(yōu)范圍仍然沒有確定值,比如生物炭灰分能增加土壤 pH 值,究竟何種類型生物炭含有多少灰分能在多大程度上增加 pH值?玉米秸稈生物炭比表面積為多少時(shí)可以吸附 Cd的量為多少等等。另外,不同生物炭的應(yīng)用還處于探索階段,功效不能有效發(fā)揮。并且應(yīng)用研究大多針對(duì)單一類型生物炭,缺乏不同原料生物炭的選配和組合研究。綜上所述,未來(lái)應(yīng)從以下幾個(gè)方面加強(qiáng)研究和應(yīng)用試驗(yàn)。首先,系統(tǒng)研究生物炭制造參數(shù)對(duì)理化性狀的影響,研究不同原料生物炭的作用機(jī)理差異及其針對(duì)性,建立生物炭理化性質(zhì)參數(shù)數(shù)據(jù)庫(kù),生物炭理化性質(zhì)參數(shù)數(shù)據(jù)庫(kù)的建立十分必要,這對(duì)于生物炭詳細(xì)參數(shù)的研究和相關(guān)標(biāo)準(zhǔn)的制定具有指導(dǎo)意義,需要廣大專家學(xué)者一同努力;其次,加強(qiáng)應(yīng)用研究,根據(jù)土壤理化性狀和改良目標(biāo)選擇適宜的生物炭類型,根據(jù)對(duì)作物經(jīng)濟(jì)性狀的要求,研究選擇適宜的生物炭類型,實(shí)現(xiàn)生物炭功效的最大利用。再次,加強(qiáng)不同原料的選配和組合研究,改良生物炭產(chǎn)品的目標(biāo)性狀,形成系列化產(chǎn)品。
[1]李力,陸宇超,劉婭,等. 玉米秸稈生物炭對(duì)Cd(Ⅱ)的吸附機(jī)理研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2012, 31(11): 2277-2283. Li L, Lu Y C, Liu Y et al. Adsorption Mechanisms of Cadmium(Ⅱ)on Biochars Derived from Corn Straw[J]. Journal of Agro-Environment Science, 2012,31(11):2277-2283.
[2]Braida W J, Pignatello J J, Lu Y F, et al. Sorption hysteresis of benzene in charcoal particles [J]. Environmental Science &Technology, 2003, 37: 409-417.
[3]Kramer R W, Kujawinski E B, Hatcher P G. Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transformation cyclotron resonance mass spectrometry[J]. Environmental Science &Technology, 2004, 38: 3387-3395.
[4]王搖, 侯艷偉, 彭靜靜, 等. 生物炭吸附有機(jī)污染物的研究進(jìn)展[J].環(huán)境化學(xué),2012,31(3):287-295. Wang N, Hou Y W, Peng J J, et al. Research progress on sorptionof orgnic contaminants to biochar[J].Environmental Chemistry, 2012,31(3):287-295.
[5]黃超, 劉麗君, 章明奎.生物質(zhì)炭對(duì)紅壤性質(zhì)和黑麥草生長(zhǎng)的影響[J].浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版, 2011, 37(4):439-445. Huang C, Liu L J, Zhang M K. Effects of biochar on properties of red soil and ryegrass growth[J]. Journal of Zhejiang University(Agric. &Life Sci.), 2011, 37(4): 439-445.
[6]勾芒芒, 屈忠義. 土壤中施用生物炭對(duì)番茄根系特征及產(chǎn)量的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2013, 22(8): 1348-1352. Gou M M, Qu Z Y. Effect of biochar on root distribution and yield of tomato in sandy loam soil[J]. Ecology and Environmental Sciences, 2013, 22(8): 1348-1352.
[7]Luo Y, Jiao Y J, Zhao X R, et al. Improvement to maize growth caused by biochars derived from six feedstocks prepared at three different temperatures [J]. Journal of Integrative Agriculture, 2014,13(3): 533-540.
[8]陳心想, 何緒生, 耿增超, 等. 生物炭對(duì)不同土壤化學(xué)性質(zhì)、小麥和糜子產(chǎn)量的影響[J]. 生態(tài)學(xué)報(bào), 2013, 33(20): 6534-6542. Chen X X, He X S, Geng Z C, et al. Effcts of biochar on selected soil chemical properties and on wheat and millet yield [J]. Acta Ecologica Sinca, 2013, 33(20): 6534-6542.
[9]高海英, 陳心想, 張?chǎng)?等. 生物炭和生物炭基氮肥的理化特征及其作物肥效評(píng)價(jià)[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2013, 41(4): 69-85. Gao H Y, Chen X X, Zhang W, et al. Physicochemical properties and efficiences of biochar and biochar-based nitrogenous fertilizer[J]. Journal of Northwest A and F University(Nat.Sci.Ed),2013, 41(4): 69-85.
[10]Saran S, Elisa L C, Evelyn K, et al. Biochar, climate change and soil: a review to guide future research [R]. CSIRO Land and Water Science Report, 2009: 5-6.
[11]章明奎,王浩,鄭順安,等. 土壤中黑碳的表面化學(xué)性質(zhì)及其變化研究[J]. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2009, 35(3): 278-284. Zhang M K, Wang H , Zheng S A. Preliminary study of surface chemical properties and transform of black carbon in soils(Agric.&LifeSci.)[J], 2009, 35(3): 278-284.
[12]袁金華,徐仁扣. 生物質(zhì)炭的性質(zhì)及其對(duì)土壤環(huán)境功能影響的研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 2011, 20(4): 779-785. Yuan J H, Xu R K. Progress of the research on the properties of biochars and their influence on soil environmental functions[J]. Ecology and Environmental Sciences, 2011, 20(4): 779-785.
[13]劉玉學(xué),劉微,吳偉祥,等. 土壤生物炭環(huán)境行為與環(huán)境效應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20(4): 977-982 Liu Y X, Liu W, Wu W X, et al. Environmental behavior and effect of biomass-derived black carbon in soil [J]. Chinese Journal of Applied Ecology, 2009, 20(4): 977-982.
[14]李力,劉婭,陸宇超,等. 生物炭的環(huán)境效應(yīng)及其應(yīng)用的研究進(jìn)展[J]. 環(huán)境化學(xué), 2011, 30(8): 1411-1421. Li L, Liu Y, Lu Y C, et al. Review on environmental effects and applications of biochar[J]. Environmental Chemistry, 2011, 30(8): 1411-1421.
[15]張文玲,李桂花,高衛(wèi)東. 生物質(zhì)炭對(duì)土壤性狀和作物產(chǎn)量的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2009, 25(17): 153-157. Zhang W L, Li G H, Gao W D. Effects of biomass charcoal on soil character and crop yield [J]. Chinese Agricultural Science Bulletin,2009, 25(17): 153-157.
[16]何緒生,耿增超,佘雕,等. 生物炭生產(chǎn)與農(nóng)用的意義及國(guó)內(nèi)外動(dòng)態(tài)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(2): 1-7. He X S, Geng Z C, She D, et al. Implications of production and agricultural utilization of biochar and its international dynamics[J]. Transactions of the CSAE, 2011, 27(2): 1-7.
[17]張阿鳳,潘根興,李戀卿. 生物黑炭及其增匯減排與改良土壤意義[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2009, 28(12): 2459-2463. Zhang X S, Pan G X, Li L Q. Biochar and the effect on C stock enhancement, emission reduction of greenhouse gases and soil reclaimation[J].Journal of Agro-Enviroment Science, 2009, 28(12): 2459-2463.
[18]潘根興,張阿鳳,鄒建文,等. 農(nóng)業(yè)廢棄物生物黑炭轉(zhuǎn)化還田作為低碳農(nóng)業(yè)途徑的探討[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2010, 26(4): 394-400. Pan G X, Zhang A F, Zou J W .Biochar from agro-byproducts used as amendment to croplands: an option for low carbon agriculture[J].Journal of Ecology and Rural Environment, 2010,26(4): 394-400.
[19]張旭東,梁超,諸葛玉平,等. 黑碳在土壤有機(jī)碳生物地球化學(xué)循環(huán)中的作用[J]. 土壤通報(bào), 2003, 34(4): 349-355. Zhang X D,Liang C,Zhuge Y P, et al. Roles of black carbon in the biogeochemical cycles of organic carbon[J]. Chinese Academy of Sciences, 2003, 34(4): 349-355.
[20]韓永明,曹軍驥. 環(huán)境中的黑碳及其全球生物地球化學(xué)循環(huán)[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 2005, 25(1): 125-132. Han Y M, Cao J J. Black carbon in the environments and its global biogeochemical cycle [J]. Marine Geology and Quaternary Geology,2005, 25(1): 125-132.
[21]Joseph S, Peacocke C, Lehmann J, Munroe P. Developing a biochar classification system and test methods[A]. Lehmann J, Joseph S. Biochar for environmental management [M]. London, UK: Earthscan, 2009. 107-126.
[22]Amonette J E, Joseph S. Characteristics of biochar: Microchemical properties[J]. Journal of the Party School of Shengli Oilfield, 2013,7(6):1649-1654.
[23]Keiluweit M, Nico P S, Johnson M G, et al. Dynamic molecular structure of plant biomass-derived black carbon(biochar).[J]. Environmental Science &Technology, 2010, 44(4):1247-1253.
[24]Spokas K A. Review of the stability of biochar in soils: predictability of O: C molar ratios [J]. Carbon Management, 2010,1(2): 289-303.
[25]Spokas K A, Cantrell K B, Novak J M, et al. Biochar: a synthesis of its agronomic impact beyond carbon sequestration [J]. Journal of Environmental Quality, 2012, 41(4): 973-989.
[26]Mukherjee A. Physical and chemical properties of a range of laboratory-produced fresh and aged biochars [D]. Gainesville, FL,USA: Ph.D Dissertation of University of Florida, 2011.
[27]Cao X D, Ma L N, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science &Technology, 2009, 43(9): 3285-3291.
[28]Balwant S, Bhupinder P S, Annette L. Characterisation and evaluation of biochars for their application as a soil amendment [J]. Australian Journal of Soil Research, 2010, 48, 516-525.
[29]李明遙, 張妍, 杜立宇, 等. 生物炭與沸石混施對(duì)土壤Cd形態(tài)轉(zhuǎn)化的影響[J]. 水土保持學(xué)報(bào), 2014, 28(3): 248-252. Li M Y, Zhang Y, Du L Y, et al. Influence of biochar and zeolite on the fraction transform of cadmium in contaminated soil [J]. Journal of Soil and Water Conservation, 2014, 28(3):248-252.
[30]高德才, 張蕾, 劉強(qiáng), 等. 旱地土壤施用生物炭減少土壤氮損失及提高氮素利用率[J].農(nóng)業(yè)工程學(xué)報(bào), 2014,30(6): 54-61. Gao D C, Zhang L, Liu Q, et al. Application of biochar in dryland soil decreasing loss of nitrogen and improving nitrogen using rate[J]. Transactions of the CSAE, 2014, 30(6): 54-61.
[31]張晶, 蘇德純. 不同鎘污染農(nóng)田土壤上秸稈和炭化秸稈分解動(dòng)態(tài)及其對(duì)土壤鎘的吸附特征[J]. 環(huán)境工程學(xué)報(bào), 2013, 7(10): 4097-4012. Zhang J, Su D C. Decompositiom dynamic and Cd adsorption characteristic of crop straw and biochar in different Cdcontaminated farmland soils[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 4097-4012.
[32]黃華, 王雅雄, 唐景春, 等. 不同燒制溫度下玉米秸稈生物炭的性質(zhì)及對(duì)萘的吸附性能[J].環(huán)境科學(xué), 2014,35(5): 1884-1890. Huang H, Wang Y R, Tang J C, et al. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene [J]. Environmental Science, 2014,35(5): 1884-1890.
[33]顏鈺, 王子瑩, 金潔, 等. 不同生物質(zhì)來(lái)源和熱解溫度條件下制備的生物炭對(duì)菲的吸附行為[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014, 33(9): 1810-1816. Yan Y, Wang Z Y, Jin J, et al. Phenanthrene adsorption on biochars produced from different biomass materials at two temperatures[J]. Journal of Agro-Environment Science, 2014, 33(9): 1810-1816.
[34]張晗芝, 黃云, 劉鋼, 等. 生物炭對(duì)玉米苗期生長(zhǎng)、養(yǎng)分吸收及土壤化學(xué)性狀的影響[J]. 生態(tài)環(huán)境學(xué), 2010, 19(11): 2713-2717. Zhang H Z, Huang Y, Liu G, et al. Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage[J]. Ecology and Environmental Sciences, 2010, 19(11): 2713-2717.
[35]Cheng Y, Cai Z C, Scott X, et al. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem [J]. Biology and Fertility of Soils,2012, 48: 941-946.
[36]王榮梅, 楊放, 許亮, 等. 生物炭在新疆棉田的應(yīng)用效果研究[J].地球與環(huán)境, 2014,42(6):757-763. Wang R F, Yang F, Xu L, et al. The effects of biochar application in the cotton fields of Kashgar Oasis, Xinjiang Uygur Autonomous Region, China[J]. Earth and Environment, 2014, 42(6): 757-763.
[37]郎印海, 劉偉, 王慧. 生物炭對(duì)水中五氯酚的吸附性能研究[J]. 中國(guó)環(huán)境科學(xué), 2014, 34(8):2017-2023. Lang Y H, Liu W, Wang H, et al. Adsorption efficiencies of pentachlorophenol from aqueous solution onto biochars[J]. China Environmental Science, 2014, 34(8): 2017-2023.
[38]張娜, 李佳, 劉學(xué)歡, 等. 生物炭對(duì)夏玉米生長(zhǎng)和產(chǎn)量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014, 33(8): 1569-1574. Zhang N, Li J, Liu X H, et al. Effects of biochar on growth and yield of summer maize[J]. Journal of Agro-Environment Science,2014, 33(8): 1569-1574.
[39]蔣旭濤, 遲杰. 鐵改性生物炭對(duì)磷的吸附及磷形態(tài)的變化特征[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014, 33(9): 1817-1822. Jiang X T, Chi J. Phosphorus adsorption by and forms in femodified biochar[J]. Journal of Agro-Environment Science, 2014,33(9): 1817-1822.
[40]劉玉學(xué), 王耀鋒, 呂豪豪, 等. 不同稻稈炭和竹炭施用水平對(duì)小青菜產(chǎn)量、品質(zhì)以及土壤理化性質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(6): 1438-1444. Liu Y X, Wang Y F, Lv H H, et al. Effcts of different application rates of rice straw biochar and bamboo biochar on yield and quality of greengrocery(Brassica chinensis)and soil properties[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1438-1444.
[41]Yin Y F, He X H, Gao R, et al. Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon [J]. Journal of Integrative Agriculture, 2014, 13(3): 491-498.
[42]Han X, Liang C H, Li T Q, et al. Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar[J]. Journal of Zhejiang University-Science B(Biomedicine &Biotechnology), 2013, 14(7): 640-649.
[43]安增莉, 侯艷偉, 蔡超, 等. 水稻秸稈生物炭對(duì)Pb(Ⅱ)的吸附特性[J]. 環(huán)境化學(xué), 2011, 30(11), 1851-1857. An Z L, Hou Y W, Cai C, et al. Lead(Ⅱ)Adsorption characteristics on different biochars derived from rice straw[J]. Environmental Chemistry, 2011, 30(11): 1851-1857.
[44]惠錦卓, 張愛平, 劉汝亮, 等. 添加生物炭對(duì)灌淤土土壤養(yǎng)分含量和氮素淋失的影響[J]. 中國(guó)農(nóng)業(yè)氣象, 2014, 35(2): 156-161. Hui J Z, Zhang A P, Liu R L, et al. Effects of biochar on soil nutrients and nitrogen leaching in anthropogenic-alluvial soil[J]. Chinese Journal of Agrometeorology, 2014, 35(2): 156-161.
[45]梁媛, 李飛躍, 楊帆, 等. 含磷材料及生物炭對(duì)復(fù)合重金屬污染土壤修復(fù)效果與修復(fù)機(jī)理[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(12):2377-2383. Liang Y, Li F Y, Yang F, et al. Immobilization and its mechanisms of heavy metal contaminated soils by phosphate-containing amendment and biochar [J]. Journal of Agro-Environment Science,2013, 32(12): 2377-2383.
[46]楊帆, 李飛躍, 趙玲, 等. 生物炭對(duì)土壤氨氮轉(zhuǎn)化的影響研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(5): 1016-1020. Yang F, Li F Y, Zhao L, et al. Influence of biochar on the transformation of ammonia nitrogen in soils [J]. Journal of Agro-Environment Science, 2013, 32(5): 1016-1020.
[47]陳紅霞, 杜章留, 郭偉, 等. 施用生物炭對(duì)華北平原農(nóng)田土壤容重、陽(yáng)離子交換量和顆粒有機(jī)質(zhì)含量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2011, 22(11): 2930-2934. Chen H X, Du Z L, Guo W, et al. Effects of biochar amengment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain[J]. Chinese Journal of Applied Ecology, 2011, 22(11): 2930-2934.
[48]Zhang J N, Lu F, Luo C H, et al. Humification characterization of biochar and its potential as a composting amendment [J]. Journal of Environmental Sciences, 2014, 26: 390-397.
[49]Zeng Z, Zhang S D, Li T Q, et al. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants [J]. Journal of Zhejiang University-Science B(Biomedicine &Biotechnology), 2013, 14(12): 1152-1161.
[50]Kurt A S, John M B, Donald C R. Ethylene: potential key for biochar amendment impacts[J]. Plant and Soil, 2010, 333: 443-452.
[51]李際會(huì), 呂國(guó)華, 白文波, 等. 改性生物炭的吸附作用及其對(duì)土壤硝態(tài)氮和有效磷淋失的影響[J]. 中國(guó)農(nóng)業(yè)氣象, 2012, 33(2): 220-225. Li J H, Lü G H, Bai W B, et al. Effect of Modified Biochar on Soil Nitrate Nitrogen and Available Phosphorus Leaching[J]. Chinese Journal of Agrometeorology, 2012, 33(2): 220-225.
[52]劉鴻驕, 侯亞紅, 王磊. 秸稈生物炭還田對(duì)圍墾鹽堿土壤的低碳化改良[J]. 環(huán)境科學(xué)與技術(shù), 2014, 37(1): 75-80. Liu H J, Hou Y H, Wang L. Amelioration effect of reed straw biochar returning to salty soil in the view of low carbon point[J]. Environmental Science and Technology, 2014, 37(1):75-80.
[53]王林, 徐應(yīng)明, 梁學(xué)峰, 等. 生物炭和雞糞對(duì)鎘低積累油菜吸收鎘的影響[J]. 中國(guó)環(huán)境科學(xué), 2014, 34(11):2851-2858. Wang L, Xu Y M, Liang X F, et al. Effects of biochar and chicken manure on cadmium uptake in pakchoi cultivars with low cadmium accumulation[J]. China Environment Science, 2014, 34(11): 2851-2858.
[54]烏英嗄, 張貴龍, 賴欣, 等. 生物炭施用對(duì)華北潮土土壤細(xì)菌多樣性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014, 33(5): 965-971. Wu Y G, Zhang G L, Lai X, et al. Effects of biochar applications on bacterial diversity in fluvor-aquic soil of North China[J]. Journal Of Agro-Environment Science, 2014, 33(5): 965-971.
[55]王震宇, 劉國(guó)成, Monica X , 等. 不同熱解溫度生物炭對(duì) Cd(Ⅱ)的吸附特性[J]. 環(huán)境科學(xué), 2014, 35(12): 4735-4744. Wang Z Y, Liu G C, Monica X, et al. Adsorption of Cd(Ⅱ)varies with biochars derived at different pyrolysis temperatures[J]. Environmental Science, 2014, 35(12): 4735-4744.
[56]李冬, 陳蕾, 夏陽(yáng), 等.生物炭改良劑對(duì)小白菜生長(zhǎng)及低質(zhì)土壤氮磷利用的影響[J].環(huán)境科學(xué)學(xué)報(bào), 2014, 34(9): 2384-2391. Li D, Chen L, Xia Y, et al. The effects of biochar on growth and uptake of nitrogen and phosphorus for Chinese cabbage in poor quality soil in Ningxia[J]. Acta Science Circumstantiae, 2014, 34(9): 2384-2391.
[57]Will F, Myles G, Fredrick P, et al. A simple technique to eliminate ethylene emissions from biochar amendment in agriculture[J]. Agronomy for Sustainable Development, 2013, 33: 469-474.
[58]孟李群, 張?jiān)迄i, 蘇漳文, 等. 不同炭化溫度下杉木生物炭產(chǎn)率及特性比較[J]. 福建林業(yè)科技, 2014, 41(2):38-41. Meng L Q, Zhang Y P, Su Z W, et al. Comparison of Chinese fir biochar carbon yield and characteristics at different carbonization temperatures[J]. Journal of Fujian Forestry Science and Technology,2014, 41(2): 38-41.
[59]侯艷偉, 曾月芬, 安增莉. 生物炭施用對(duì)污染紅壤中重金屬化學(xué)形態(tài)的影響[J]. 內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 42(4): 460-466. Hou Y W, Zeng Y F, An Z L. Effcets of the Application of Biochar on the Chemical Fraction of Heavy Metals in Polluted Red Soil[J]. Journal of Inner Mongolia University(Natural Science Edition),2011, 42(4): 460-466.
[60]齊瑞鵬, 張磊, 顏永毫, 等. 定容重條件下生物炭對(duì)半干旱區(qū)土壤水分入滲特征的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(8): 2281-2288. Qi R P, Zhang L, Yan Y H, et al. Effects of biochar addition into soils in semiarid land on water infliltration under the condition of the same bulk density[J]. Chinese Journal of Applied Ecology,2014, 25(8): 2281-2288.
[61]公丕濤, 杜旭華, 鐘哲科, 等. 檸條裂解產(chǎn)品的化學(xué)成分和性質(zhì)[J].干旱區(qū)資源與環(huán)境, 2015, 29(1):71-76. Gong P T, Du X H, Zhong Z K, et al. The chemical properties of pyrolysis products from Caragana korshinskii[J]. Journal of Arid Land Resources and Environment, 2015, 29(1): 71-76.
[62]邢英, 李心清, 王兵, 等. 生物炭對(duì)黃壤中氮淋溶影響: 室內(nèi)土柱模擬[J]. 生態(tài)學(xué)雜志, 2011, 30(11): 2483-2488. Xing Y, Li X Q, Wang B, et al. Effects of biochar on soil nitrogen leaching: a laboratory simulation test with yellow soil column [J]. Chinese Journal of Ecology, 2011, 30(11): 2483-2488.
[63]劉娜, 王柳, 邱華, 等. 生物炭催化過(guò)硫酸鹽脫色偶氮染料金橙Ⅱ[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版, 2014, 44(6): 2000-2009. Liu N, Wang L, Qiu H, et al. Biochar catalyzed persulfate decoloration of azo dye acid orange 7[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(6): 2000-2009.
[64]王欣欣, 鄒平, 符建榮, 等. 不同竹炭施用量對(duì)稻田甲烷和氧化亞氮排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014, 33(1): 198-204. Wang X X, Zou P, Fu J R, et al. Effects of bamboo biochar amendments on methane and nitrous oxide emission from paddy soil[J]. Journal of Agro-Environment Science, 2014, 33(1): 198-204.
[65]胡菲菲, 何丕文. 不同熱解溫度制備的雞糞生物炭對(duì)廢水中磷的吸附[J]. 湖北農(nóng)業(yè)科學(xué), 2014, 53(8): 1774-1785. Hu F F, He P W. Phosphate adsorption in wastewater by bio-carbon prepared from pyrolysis of chicken manure at different temperature[J]. Hubei Agricultural Sciences, 2014,53(8): 1774-1785.
[66]張鵬, 武健羽, 李力, 等. 豬糞制備的生物炭對(duì)西維因的吸附與催化水解作用[J]. 農(nóng)業(yè)環(huán)境科學(xué)報(bào), 2012, 31(2): 416-421. Zhang P, Wu J Y ,Li L, et al. Sorption and catalytic hydrolysis of carbarylon on pig-manure-derived biochars[J]. Journal of Agro-Environment Science, 2012, 31(2): 416-421.
[67]Paz-Ferreiro J, Gascó G, Gutiérrez B, et al. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil [J]. Biology and Fertility of Soils, 2012, 48: 511-517.
[68]Yuan H R, Lu T, Zhao D D, et al. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis [J]. Journal of Material Cycles and Waste Management,2013,15: 357-361.
[69]Singla A, Inubushi K. Effect of biochar on CH4and N2Oemission from soils vegetated with paddy [J]. Paddy and Water Environment,2014, 12: 239-243.
[70]Yi Q G, Qi F J, Cheng G, et al. Thermogravimetric analysis of co-combustion of biomass and biochar [J]. Journal of Thermal Analysis and Calorimetry, 2013, 112: 1475-1479.
[71]Chen C R,Phillips I R, Condron L M, et al. Impacts of green waste biochar on ammonia volatilization from bauxite processing residue sand [J]. Plant and Soil, 2013, 367: 301-312.
[72]曾愛, 廖允成, 張俊麗, 等. 生物炭對(duì)塿土土壤含水量、有機(jī)碳及速效養(yǎng)分含量的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(5): 1009-1015. Zeng A, Liao R C, Zhang J L, et al. Effects of biochar on soil moisture,organic carbon and available nutrient contents in manural loessial soils[J]. Journal of Agro-Environment Science, 2013, 32(5): 1009-1015.
[73]Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids[M]. San Diego: Academic Press, 1999.
[74]何飛飛, 榮湘民, 梁運(yùn)姍, 等. 生物炭對(duì)紅壤菜田土理化性質(zhì)和N2O、CO2排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(9):1893-1900. He F F, Rong X M, Liang Y S, et al. Effects of biochar on soil physiochemical properties and N2O、CO2emissions from vegetable-planting red soil[J]. Journal of Agro-Enviroment Science,2013, 32(9): 1893-1900.
[75]Ozcimen D. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy, 2010, 35: 1319-1324.
[76]Downie A, Crosky A, Munroe P. Physical properties of biocha.[A]Lehmann J, Joseph S(Eds.). Biochar for environmental management: science and technology[M]. London UK: Earthscan,2009. 13-30.
[77]Lehmann J. Bio-energy in the black [J]. Frontiers in Ecology &the Environment, 2007, 5(7): 381-387.
[78]郭文娟, 梁學(xué)峰, 林大松, 等. 土壤重金屬鈍化修復(fù)劑生物炭對(duì)鎘的吸附特性研究[J]. 環(huán)境科學(xué), 2013, 34(9): 3716-3721. Guo W J, Liang X F, Lin D S, et al. Adsorption of Cd2+on Biochar from Aqueous Solution[J]. Environmental Science, 2013, 34(9): 3716-3721.
[79]張千豐, 王光華. 生物炭理化性質(zhì)及對(duì)土壤改良效果的研究進(jìn)展[J]. 土壤與作物, 2012, 1(4): 219-226. Zhang Q F, Wang G H. Research progress of physiochemical properties of biochar and its effects as soil amendments [J]. Soil and Crop, 2012, 1(4): 219-226.
[80]Wardle D A, Nilsson M C, Zackrisson O. Fire-derived charcoal causes loss of forest humus[J]. Science, 2008, 320(5876): 629.
[81]徐楠楠, 林大松, 徐應(yīng)明, 等. 玉米秸稈生物炭對(duì)Cd2+的吸附特性及影響因素[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014, 33(5): 958-964. Xu N N, Lin D S, Xu Y M, et al. Adsorption of aquatic Cd2+by biochar obtained from corn stover[J]. Journal of Agro-Environment Science, 2014, 33(5): 958-964.
[82]戴靜, 劉陽(yáng)生. 四種原料熱解產(chǎn)生的生物炭對(duì)Pb2+和Cd2+的吸附特性研究[J]. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013,49(6): 1075-1082. Dai J, Liu Y S. Adsorption of Pb2+and Cd2+onto biochars derived from pyrolysis of four kinds of biomasses[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 1075-1082.
[83]張平, 廖柏寒, 李科林, 等. 3 種生物質(zhì)炭對(duì)活性艷藍(lán) KN-R 的吸附[J]. 環(huán)境工程學(xué)報(bào), 2014, 8(2): 581-586. Zhang P, Liao B H, Li K L, et al. Adsorption of reactive brilliant blue KN-R by three kinds of biochars[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 581-586.
[84]Cui H J, Wang M K, Fu M L, et al. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar [J]. Journal of Soils and Sediments, 2011, 11: 1135-1141.
[85]柯躍進(jìn), 胡學(xué)玉, 易卿, 等. 水稻秸稈生物炭對(duì)耕地土壤有機(jī)碳及其CO2釋放的影響[J]. 環(huán)境科學(xué), 2014, 35(1): 93-99. Ke Y J, Hu X Y, Yi Q, et al. Impacts of rice straw biochar on organic and CO2release in arable soil[J]. Environmental Science,2014, 35(1): 93-99.
[86]尹倩倩, 王樹榮. 生物質(zhì)快速熱裂解炭的分析及活化研究[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào), 2013, 21(1): 45-53. Yin Q Q, Wang S R. Influence of biochar and zeolite on the fraction transform of cadmium in contaminated soil [J]. Journal of Soil and Water Conservation, 2013, 21(1): 45-53.
[87]李曉, 張吉旺, 李戀卿, 等. 施用生物質(zhì)炭對(duì)黃淮海地區(qū)玉米生長(zhǎng)和土壤性質(zhì)的影響[J]. 土壤, 2014, 46(2): 269-274. Li X, Zhang J W,Li L Q, et al. Effects of biochar amendment on maize growth and soil properties in Huang-Huai-Hai Plain[J]. Soils,2014, 46(2): 269-274.
[88]甘文君, 何躍, 張孝飛, 等. 秸稈生物炭修復(fù)電鍍廠污染土壤的效果和作用機(jī)理初探[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2012, 28(3): 305-309. Gan W J, He Y, Zhang X F, et al. Effects and mechanisms of straw biochar on remediation contaminated soil in electroplating factory[J]. Journal of Ecology and Rural Environment, 2012, 28(3): 305-309.
[89]付琳琳, 藺海紅, 李戀卿, 等. 生物質(zhì)炭對(duì)稻田土壤有機(jī)碳組分的持效影響[J]. 土壤通報(bào), 2013, 44(6): 1379-1384. Fu L L, Lin H H, Li L Q, et al. Persistent effects of biochar application on organic carbon fractions of paddy soil[J]. ChineseJournal of Soil Science, 2013, 44(6): 1379-1384.
[90]曹美珠, 張超蘭, 潘麗萍, 等. 兩種生物炭對(duì)兩種質(zhì)地土壤中阿特拉津淋溶與遷移的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015, 34(1): 65-71. Cao M Z, Zhang C L, Pan L P, et al. Effect of 2 biochars on leaching and migration of atrazine in 2 soils[J]. Journal of Agro-Environment Science, 2015, 34(1): 65-71.
[91]Yang Y, Lin X, Wei B, et al. Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling [J]. Environmental Science &Technology, 2014, 11: 1093-1100.
[92]兗少鋒, 陳瑾, 王麗喬, 等. 雷竹落葉生物炭對(duì)微囊藻毒素的吸附性能[J]. 環(huán)境化學(xué), 2014, 33(4): 617-623. Yan S F, Chen J, Wang L Q, et al. adsorption of microcystin-LR on the leaves-Phyllostachys praecox-derived biochar[J]. Environmental Chemistry, 2014, 33(4): 617-623.
[93]Cahyo P, Julie E J, Jan B, et al. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure[J]. Biology and Fertility of Soils, 2014, 50: 695-702.
[94]Tsai W T, Chen H R. Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar[J]. Environmental Science &Technology, 2013,10: 1349-1356.
[95]Yao H,Lu J,Wu J, et al. Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source[J]. Water Air Soil Pollution, 2013, 224: 1370.
[96]曾祥專, 盧歡亮, 黃志華, 等.污泥生物炭用作除臭填料的試驗(yàn)研究[J]. 中國(guó)給水排水, 2013, 29(17): 40-43. Zeng X Z, Lu H L, Huang Z H, et al. Odor Removal by using sewage sludge biocarbon as filter material[J]. China Water And Wastewater, 2013, 29(17): 40-43.
[97]Chun Y, Sheng G Y, Cary T C, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science &Technology, 2004, 38: 4649-4655.
[98]Cantrell K,B Hunt G P, Uchimiya M, et al. Impact of pyrolysis temperature and manuresource on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428.
[99]Silber A, Levkovitch I, Graber E R. pH-dependent mineral release and surface properties ofcornstraw biochar: agronomic implications[J]. Environmental Science &Technology, 2010, 44(24): 9318-9323.
[100]Lee G W, Kidder M, Evans B R, et al. Characterization of biochars produced from cornstovers for soil amendment[J]. Environmental Science &Technology, 2010, 44(20): 7970-7974.
[101]Cheng C H, Lehmann J, Engelhard M H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 2008. 72(6): 1598-1610.
[102]Gundale J M, DeLuca H T. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal[J]. Forest Ecology and Management, 2006, 231(1-3): 86-93.
[103]Zhao X R, Li D, Kong J, et al. Does biochar addition influence the change points of soil phosphorus leaching? [J]. Journal of Integrative Agriculture, 2014, 13(3): 499-506.
[104]顧美英, 徐萬(wàn)里, 唐光木, 等. 生物炭對(duì)灰漠土和風(fēng)沙土土壤微生物多樣性及與氮素相關(guān)微生物功能的影響[J]. 新疆農(nóng)業(yè)科學(xué),2014, 51(5): 926-934. Gu M M, Xu W L, Tang G M, et al. Effects of biochar on soil microbial diversity and function related with N transformation in frey desert soil and aeolian sandy in Xinjiang[J]. Xinjiang Agricultural Sciences, 2014, 51(5): 926-934.
[105]趙宇俠, 周正, 祝永水. 生物黑炭的施加對(duì)連云港濱海鹽堿土的改良作用[J]. 淮海工學(xué)院學(xué)報(bào)(自然科學(xué)版), 2013, 22(4): 51-54. Zhao Y X, Zhou Z, Zhu Y S. Improvement of Biological BC in Coastal Saline Soil of Lianyungang City[J]. Journal of Huaihai Institute of Technology(Natural Science Edition), 2013, 22(4): 51-54.
[106]陳靜, 李戀卿, 鄭金偉, 等. 生物質(zhì)炭保水劑的吸水保水性能研究[J]. 水土保持通報(bào), 2013, 33(6): 232-237. Chen J, Li L Q. Zheng J W, et al. Research on water retention capacity of water-retaining agent of pam-biochar[J]. Bulletin of Soil and Water Conservation, 2013, 33(6): 232-237.
[107]馮愛青, 張民, 路艷艷, 等. 控釋氮用量及生物炭對(duì)玉米產(chǎn)量及土壤生物化學(xué)性質(zhì)的影響[J]. 水土保持學(xué)報(bào), 2014, 28(2): 159-164. Feng A Q, Zhang M, Lu Y Y, et al. Effects of controlled released nitrogen application rate and biochar on maize yield and soil biochemical properties[J]. Journal of Soil and Water Conservation,2014, 28(2): 159-164.
[108]Jiang T Y, Xu R K, Gu T X, et al. Effect of crop-straw derived biochars on Pb(II)adsorption in two variable charge soils[J]. Journal of Integrative Agriculture, 2014, 13(3): 507-516.
[109]Liu Y X, Yang M, Wu Y M, et al. Reducing CH4and CO2emissions from waterlogged paddy soil with biochar [J]. Journal of Soils and Sediments, 2011, 11: 930-939.
[110]王晉, 莊舜堯, 曹志洪, 等. 不同生物炭浸提液對(duì)水稻發(fā)芽及幼苗發(fā)育的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2014,30(30): 50-55. Wang J, Zhuang S Y, Cao Z H, et al. Effects of different biochar extracts on rice germination and seedling development[J]. Chinese Agricultural Science Bulletin, , 2014, 30(30): 50-55.
[111]陳偉, 周波, 束懷瑞. 生物炭和有機(jī)肥處理對(duì)平邑甜茶根系和土壤微生物群落功能多樣性的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(18): 3850-3856. Chen W, Zhou B, Shu H R. Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis Rehd. [J]. Scientia Agricultura Sinica, 2013, 46(18): 3850-3856.
[112]馬彥茹, 楊新華, 葛春輝, 等. 棉稈生物質(zhì)炭對(duì)兩種石灰性土壤速效磷、速效鉀的激活效應(yīng)研究[J]. 新疆農(nóng)業(yè)科學(xué), 2014, 51(4): 660-666. Ma Y R, Yang X H, Ge C H, et al. Study on activating effect of soil available P and K through application of cotton stalk biochar[J]. Xinjiang Agricultural Sciences, 2014, 51(4): 660-666.
[113]佟雪嬌, 李九玉, 姜軍, 等.添加農(nóng)作物秸稈炭對(duì)紅壤吸附Cu(Ⅱ)的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2011, 27(5): 37-41.Tong X J, Li J Y, Jiang J, et al. Effect of biochars derived from crop straws on Cu(Ⅱ)adsorption by red soils[J]. Journal Of Ecology And Rural Environment, 2011, 27(5): 37-41.
[114]Quirk R G, Zwieten L V, Kimber S, et al. Utilization of biochar in sugarcane and sugar-industry management[J]. Sugar Technology,2012, 14(4): 321-326.
[115]杜臻杰, 齊學(xué)斌, 陳效民, 等. 生物質(zhì)炭和豬場(chǎng)沼液對(duì)潮土水力特征參數(shù)的影響[J]. 水土保持學(xué)報(bào), 2014, 28(1): 189-197. Du Z J, Qi X B, Chen X M, et al. Effect of biochar and piggery biogas slurry on hydraulic characteristic parameter of alluvial soil[J]. Journal Of Soil And Water Conservation, 2014, 28(1): 189-197.
[116]張偉明, 管學(xué)超, 黃玉威, 等. 生物炭與化學(xué)肥料互作的大豆生物學(xué)效應(yīng)[J].作物學(xué)報(bào), 2015, 41(1): 109-122. Zhang W M, Guan X C, Huang Y W, et al. Biological effects of biochar and fertilizer interaction in soybean plant[J]. Acta Agronomica Sinica, 2015, 41(1): 109-122.
[117]Gasco′G, Paz-Ferreiro J, Me′ndez A. Thermal analysis of soil amended with sewage sludge and biochar from sewage sludge pyrolysis[J]. Journal of Thermal Analysis and Calorimetry, 2012,108: 769-775.
[118]Fu G N, Cheng G, Guan L L, et al. Effect of biochar on the chemical fertility of vegetable soil[J]. Agricultural Science &Technology, 2013, 14(12): 1804-1809.
[119]Ghosh S, Ow L F, Wilson B. Influence of biochar and compost on soil properties and tree growth in a tropical urban environment[J]. International Journal of Environmental Science &Technology, 2014,12(4): 1303-1310.
[120]張偉明, 孟軍, 王嘉宇, 等. 生物炭對(duì)水稻根系形態(tài)與生理特性及產(chǎn)量的影響[J]. 作物學(xué)報(bào), 2013, 39(8): 1445-1451. Zhang W M, Meng J, Wang J Y, et al. Effect of biochar on root morphological and physiological characteristics and yield in rice[J]. Acta Agronomica Sinica, 2013, 39(8): 1445-1451.
[121]Michael I B, Christopher M W. Algal biochar-production and properties [J]. Bioresource Technology, 2011, 102: 1886-1891.
[122]Clough T J, Bertram J E, Ray J L, et al. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil[J]. Soil Biology &Biochemistry, 2010, 74(3): 852-860.
[123]楊放, 李心清, 王兵, 等. 生物炭在農(nóng)業(yè)增產(chǎn)和污染治理中的應(yīng)用[J]. 地球與環(huán)境, 2012, 40(1): 100-107. Yang F, Li X Q, Wang B, et al. The application of biochar to improving agricultural production and pollution abatement[J]. Earth And Environment, 2012, 40(1): 100-107.
[124]Uchimiya M, Wartelle L H, Klasson K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. Journal of Agricultural and Food Chemistry,2011, 59(6): 2501-2510.
[125]林雪原, 荊延德, 鞏晨,等. 生物炭吸附重金屬的研究進(jìn)展[J]. 環(huán)境污染與防治, 2014, 36(5): 83-87. Lin X Y, Jing Y D, Gong C, et al. Research progress on the sorption of heavy metals by biochar[J]. Environmental Pollution and Control,2014, 36(5): 83-87.
[126]Uchimiya M, Lima I M, Thomas K K, et al. Immobilization of heavy metal ions(Cu, Cd, Ni and Pb)by broiler litter-derived Biochars in water and Soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5538-5544.
The main types of biochar and their properties and expectative researches
YUAN Shuai,ZHAO Li-xin,MENG Hai-bo*,SHEN Yu-jun
(Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering/China Key Laboratory of Energy Resource Utilization From Agriculture Residue, Ministry of Agriculture, Beijing 100125, China)
【Objectives】Biochar production and application, as an effective low carbon use of by-products of industrial and agricultural production, have been widely recognized by researchers for their effects in soil improvement and crop production. However, the reports on the effects of biochar are discrepant greatly as the different feedstock and parameters in the production process of biochar. Summering previous researches willprovide academic base for the effective use and production of biochar.【Major advances】1)The range of the carbon contents in biochar is 30%-90% with an average of 63.84%, and the carbon contents from different raw materials are in order: wood>straw>shell>manure>sludge. The carbon contents of straw biochar are mainly in 40%-80%, and those of wood biochar are mainly in 60%-85%. The range of biochar ash is 0-40% with an average of 15.52%, and the contents are in order: sludge>manure>straw>shell>wood. The ash contents of straw biochar are generally in 20%-35%, and those of wood biochar are mainly in 0-10%. The correlation coefficient between the carbon contents and the ash contents is-0.77, the correlation coefficients between the pyrolysis temperature and the carbon contents and the ash contents are 0.17 and 0.28 respectively. Adding biochar could improve soil properties. Biochar ash content usually plays a significant role on nutrient supplement of poor and sandy soil. 2)The range of specific surface area is 0-520 m2/g with an average of 124.83 m2/g, and the contents are in order: shell>straw>wood>manure>sludge. The specific surface area of straw biochar is generally in 0-200 m2/g and that of wood biochar is generally in 0-100 m2/g. The correlation coefficient between the pyrolysis temperature and the specific surface area is 0.48. The pore structure of biochar could reduce soil bulk density, soil density, and remove heavy metals in solution and soils. 3)The pH of biochar is in range of 5-12 with an average of 9.15, and in order: straw>sludge>manure>wood>shell. pH of straw biochar is generally in 8-11 and pH of wood biochar has an uniform distribution. The range of CEC is 0-500 cmol/kg with an average of 71.91 cmol/kg. CEC of straw biochar is generally in 0-100 cmol/kg and CEC of wood biochar is generally in 5-10 and 15-25 cmol/kg. The correlation coefficients between the pyrolysis temperature and pH and CEC are respectively 0.58 and 0.30. The biochar could reduce soil proton,improve pH and nutrient availability of acidic soil; biochar also gets the ability of ion exchange adsorption,improves the cation and anion exchange capacity, increase ability to protect fertilizer. 4)All the biochar were prepared at the paralysis temperature of 200℃-800℃, occasionally at 1000℃.【Suggestions and expectations】The production and application of biochar are still in the initial stage in the world. Some researches should be considered in the future. Firstly, the differences in beneficial effects of biochar related manufacture parameters and raw materials should be systemically studied and a database should be setup accordingly; the suitable type of biochar should be made clear according to the expected target and the soil properties, to achieve the highest profit of biochar. More work is also needed for the selection and combination of biochar from different material sources, so to produce multiple functional products to meet the requirement of practical use.
biochar; property; parameter
S14
A
1008-505X(2016)05-1402-16
2014-11-25接受日期:2015-07-17
日期:2016-10-01
北京市科技計(jì)劃課題(Z141100000614008)資助。
袁帥(1987—),男,內(nèi)蒙古赤峰市人,碩士研究生,主要從事土壤肥料及生態(tài)學(xué)領(lǐng)域研究。E-mail:nmyuanshuai@126.com
Email:newmhb7209@163.com