• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heat transfer at ice-water interface under conditions of low flow velocities*

    2016-10-18 01:45:26NanLI李楠YoucaiTUO脫友才YunDENG鄧云JiaLI李嘉RuifengLIANG梁瑞峰RuidongAN安瑞冬
    水動力學研究與進展 B輯 2016年4期
    關鍵詞:李嘉李楠

    Nan LI (李楠), You-cai TUO (脫友才), Yun DENG (鄧云), Jia LI (李嘉), Rui-feng LIANG (梁瑞峰),Rui-dong AN (安瑞冬)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065,China, E-mail: linanscu@163.com

    ?

    Heat transfer at ice-water interface under conditions of low flow velocities*

    Nan LI (李楠), You-cai TUO (脫友才), Yun DENG (鄧云), Jia LI (李嘉), Rui-feng LIANG (梁瑞峰),Rui-dong AN (安瑞冬)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065,China, E-mail: linanscu@163.com

    The heat transfer at the ice-water interface is closely related to the hydrodynamic and physical properties of the water body. It affects the ice cover thickness and the water temperature underlying the ice cover. This paper studies the heat transfer from the water to the ice cover. Based on the flume data, a linear relationship between the ice-water heat transfer coefficient and the flow velocity beneath the ice cover is established and the calculated dimensionless ice-water heat transfer coefficient is 1.1×10-3. This empirical relationship can be applied to estimate the ice-water heat transfer of reservoirs, lakes and other freshwater bodies when the flow velocity under the ice cover is in the range of 0.024 m/s-0.110 m/s.

    ice cover, heat exchange, ice-water heat transfer coefficient, low flow velocity, laboratory experiment

    Introduction

    The formation of ice cover is an important phenomenon in cold regions[1,2]. Ice in surface water bodies changes the hydraulic and thermal conditions of rivers, lakes and reservoirs[3,4]. The ice cover influences the operation of water resource projects, leads to reductions in power generation[5,6], causes ice disasters such as ice dam and ice flood[7,8], and hinders energy and mass exchanges between air and water,resulting in adverse effects on biological environment[9].

    The thermal growth and decay of an ice cover is governed by heat-exchanges at the air-ice and icewater interfaces. The ice-water heat transfer coefficient, which reflects the rate of heat exchange between the ice cover and the underlying water, is an important parameter for quantifying the heat flux at the icewater interface, the thickness of ice cover, and the water temperature underneath the ice cover. During the past few decades, the heat-exchanges at the icewater interface in rivers, lakes and oceans were extensively studied. The turbulent heat transfer from the flowing river water to the ice cover is shown to have a significant effect on the thickness of the ice cover,especially during the decay period when the water temperature is above the freezing point[3]. The thermal growth and melting of the lake ice is primarily a vertical one-dimensional heat transfer process[10-12]. It is possible to estimate the heat exchange flux between ice and water by a bulk formula[13]

    in which,ρwis the density of water,cwis the specific heat of water,Chis the dimensionless ice-water heat transfer coefficient,uwis the current speed,Twis the water temperature, and T0is the freezing point.

    With considerations of the surface roughness, the ice thickness, the current and the temperature under ice, Hamblin and Carmack[14]estimated the dimensionless ice-water heat transfer coefficient Chto be(0.8±0.3)×10-3in lakes of Yukon River Basin, which is smaller than that was found in sea ice studies.Shirasawa et al.[15]obtained Chof a value 0.39×10-3from the HANKO and the BALTEX/BASIS experiments and used 2.0×10-3as the value ofChto calculate the ice-water heat flux in Saroma-ko Lagoon. Ji et al.[13]computedChto be(0.16-0.50)×10-3through field observations in Bohai Sea in different periods,and found that the coefficient had a positive relation with the thickness of the ice cover and the roughness of the bottom surface of the ice cover.

    Fig.1 Schematic diagram of the experimental device

    Fig.2 Detailed structures of the plexiglas flume (m)

    However, the ice-water heat transfer coefficient is closely related to the hydrodynamic and physical properties of the water body. When the dimensionless ice-water heat transfer coefficientsChmentioned above are applied to particular situations, it is found that they are not satisfactory for the water body under low flow conditions such as a reservoir.

    The field observation method to study ice-water heat exchange involves many difficulties and various uncontrollable factors. No detailed laboratory study has been made to determine the ice-water heat transfer coefficient. In this study, a laboratory experiment is conducted to investigate the heat exchange from water to ice cover to establish an empirical formula for the ice-water heat transfer coefficient under low flow conditions.

    1. Experimental setup

    1.1 Flume design

    The experiment is conducted in a small plexiglas flume of 4.0 m (length)×3.0 m (width)×2.0 m (height)in a cold room (Fig.1). The flume is wrapped with polyethylene plastic foam to prevent the heat exchange from sidewalls. A screen is installed in the entrance section, which makes the flow uniformly distributed. An ice cover is formed in the flume in each test. Figure 2 shows the detailed structures of the plexiglas flume.

    1.2 Instrumentation

    The measured data in the experiment include the flow velocity, the ice thickness variation, the ice temperature and the water temperature. Figure 3 is a photo of the experimental device and the measuring instruments.

    Fig.3 Photo of the experimental device and measuring instruments

    The flow measuring section is 0.50 m from the entrance (Section 1, Fig.2). A Vectrino velocimeterwith a resolution of 0.001 m/s is used to measure the flow velocity. The velocities at three depths (0.07 m,0.14 m and 0.21 m) are measured before the experiment. The data indicate that the velocities distrubute evenly in depth. Therefore, the flow velocity at the mid-depth is measured in the experiment, which may be taken as the depth-averaged velocity.

    The ice thickness variation measuring section is 1.50 m from the entrance (Section 2, Fig.2). The bottom surface of the ice cover is flat, and the variation of the ice thickness is uniform along the ice cover. The vertical distance between the bottom surface of the ice cover and a fixed point at the beginning of the experiment is h1, and it becomes h220 min later. The measured ice thickness variation is then h2-h1. The vertical distance is measured by a micrometer, of accuracy of 0.0001 m (Fig.4).

    Fig.4 Schematic diagram of ice thickness variation measurement

    The temperature measuring section is 1.60 m from the entrance (Section 3, Fig.2). A LG93-22 temperature recorder is used to measure the water and ice temperatures, with an accuracy of 0.1oC. The ice temperature is measured by No.1 and No.2 temperature probes, and the water temperature is measured by No.3 to No.11 temperature probes. The layout of the temperature probes is shown in Fig.5.

    Fig.5 Layout of temperature probes (m)

    1.3 Experimental procedure

    A flow regime test is made first, under 4 flow conditions with the depth-averaged flow velocities of 0.110 m/s, 0.084 m/s, 0.055 m/s and 0.024 m/s.

    The flow regime test is made by recording the instantaneous velocities (ux,uyand uz) every 0.04 s. The average turbulence intensity under each condition is determined by

    in which,Tuis the instantaneous turbulence intensity,u′x,u′y,u′zare the fluctuating velocities inx,y,z directions,ux,uy,uzare the instantaneous velocities inx,y,zdirections,Tuis the average turbulence intensity, andNis the number of instantaneous turbulence intensities in each test.

    The inflow velocity is stable under all 4 conditions and the calculated average turbulence intensities are 14.7%, 14.4%, 13.7% and 9.8%, respectively. According to Wang et al.[16], the boundary layer under a flat surface is of turbulence when the water turbulence intensity reaches 3.5%. Hence, the flows under these 4 conditions are of turbulence and are valid for the experiment.

    Main steps of the experiment include: (1) Set the temperature in the cold room to -15oC, and freeze an ice cover (about 1.70 m long and 0.02 m thick) in the flume. (2) Stabilize the temperature in the cold room to 0oC, start the pump to make the water flow, and use the valve to control the flow velocity. (3) Start the LG93-22 temperature recorder and measure the vertical distance between the bottom surface of the ice cover and the fixed point, when the flow field in the flume is stable. (4) Repeat Steps (1) to (3) in each experiment.

    1.4 Experimental results

    A total of 22 experiment runs are made by combining these 4 velocity conditions with different inflow temperatures (Table 1). The measured ice thickness reductions at the bottom of the ice cover and the inflow temperature over a 20 min period are given in Table 1. Figure 6 shows the vertical temperature profiles under various velocity conditions. Influenced by the air temperature in the cold room, the ice temperature reaches 0oC gradually. No. 3 to No. 11 temperatureprobes are in the flow where the water temperature is mixed evenly.

    Table 1 Summary of test conditions

    2. Results and analyses

    2.1 Analyses of the heat flux process

    A definition of the heat flux between the ice cover and the flowing water is presented in Fig.7 for analyzing the heat flux process. The air temperature in the cold room is 0oC, and the whole temperature of the ice cover reaches a stable 0oC. Accordingly, there is no conductive heat flux at the air-ice interface and the inner ice. The melting of the bottom surface of the ice cover is caused by the turbulent heat exchange between ice and water, and the heat balance equation at the bottom of the ice cover can be written as

    in which,qwiis the turbulent heat exchange between ice and water,ρiis the ice density,Liis the latent heat of the ice melting, and dh/dtis the rate of the ice thickness variation.

    The melting rate of the bottom surface of the ice cover is related to the water temperature gradient in the thermal boundary layer[17]. The plots of the temperature in Fig.6 show a thermal boundary layer with a sharp temperature gradient close to the ice cover. The heat flux from the water to the ice cover in the boundary layer contributes to the heat flux for the melting of the bottom surface of the ice cover. The heat flux from the water is determined by the temperature gradient at the ice-water interface, which is expressed by the Fourier's law[18,19]

    in which,kwis the thermal conductivity of water,?T/?zis the temperature gradient.

    Fig.6 Vertical temperature profiles under various velocity conditions

    Many processes influence the millimeter thick thermal boundary, and it is difficult to accurately measure the temperature gradient at the ice-water interface.

    The turbulent heat exchange between ice and water can also be expressed by the Newton's law of cooling[20]

    Fig.7 Definition of the heat flux

    Solving Eq.(4) and Eq.(6) for hwi, we have

    Solving Eq.(4) and Eq.(5) for ?z, we have

    in which,?his the ice thickness variation,?tis the duration of each experiment, and

    The calculated ice-water heat transfer coefficients (Table 2) show that the relative error between the coefficients under various conditions and their average value is in the range of -14%-16%, and the standard deviation of the coefficients under each condition is 51.2, 17.7, 21.7 and 10.2, respectively. The calculation error mainly results from the flow water temperature and the instability of the flow field. Besides, this error can be caused by the ice thickness variation measurement. The average values of the velocity, the ice thickness variation and the vertical temperature in experiment runs are used herein for error reduction.

    The calculated thickness of the thermal boundary layer ?z(Table 2) shows that the thickest thermal boundary layer is less than 0.006 m, and it has an inverse relationship with the velocity.

    Table 2 Comparison of calculated results

    Fig.8 Linear fitting for the average ice-water heat transfer coefficient and the flow velocity

    2.2 Correlation analysis

    The influence factors of the heat transfer coefficient include the flow velocity, the salinity, the specific heat capacity, and the density[21]. In this study, the inflow temperature and the flow velocity are variables,and the velocity is the governing factor. Figure 8 shows a linear relationship between the average value of the ice-water heat transfer coefficient under each condition and its flow velocity.

    The result shows a positive linear correlation between the average ice-water heat transfer coefficient and the flow velocity beneath the ice cover. The regression coefficient is 0.9982 and the regression equation is

    in which,hwiis the ice-water heat transfer coefficient,uwis the depth-averaged velocity.

    2.3 Comparison of the dimensionless ice-water heat transfer coefficients

    The bulk formula mentioned above provides a method to determine the dimensionless ice-water heat transfer coefficient Ch. The bulk formula and the empirical formula Eq.(9) describe the same heat transfer process at the ice-water interface. From Eq.(1),Eq.(6) and Eq.(9), the dimensionless ice-water heat transfer coefficient is obtained as

    The comparisons of Chbetween this study and previous researches[13]are shown in Table 3. The value ofChin this paper is 1.1×10-3, which is between the maximum value (3.8×10-3) and the minimum value(0.16×10-3), and similar to theChcalculated by Hamblin and Carmack[14]. The variation of Chin Table 3 may be the results of the hydrodynamics conditions, the properties of water body and the roughness of the ice cover.

    Table 3 Comparison of Chbetween this study and pre-

    3. Conclusion

    In this study, the flume experiment is carried out to determine the ice-water heat transfer coefficient under low flow velocity conditions. Based on the flume data and data analyses, a positive linear correlation between the ice-water heat transfer coefficient and the flow velocity beneath the ice cover is established and an empirical formulais obtained. This empirical formula provides a convenient way to estimate the ice-water heat transfer of reservoirs, lakes and other freshwater bodies when the flow velocity under the ice cover is in the range of 0.024 m/s-0.11 m/s. However, there are still some important issues that should be further studied, such as the icewater heat transfer coefficient under extremely low flow conditions and the verification of this empirical formula in field work.

    References

    [1] HUANG W., LI Z. and LIU X. et al. Effective thermal conductivity of reservoir freshwater ice with attention to high temperature[J]. Annals of Glaciology, 2013, 54(62): 189-195.

    [2] TUO Y., DENG Y. and LI J. et al. Water temperature and ice conditions in Fengman reservoir, winter of 2012-2013[C]. Proceedings of the 22th IAHR International Symposium on Ice. Singapore, 2014, 434-441.

    [3] SHEN H. T. Mathematical modeling of river ice processes[J]. Cold Regions Science and Technology, 2010,62(1): 3-13.

    [4] TUO You-cai, LIU Zhi-guo and DENG Yun et al. Water temperature of the Fengman reservoir with seasonal ice cover[J]. Advances in Water Science, 2014, 25(5): 731-738(in Chinese).

    [5] GEBRE S., ALFREDSEN K. and LIA L. et al. Review of ice effects on hydropower systems[J]. Journal of Cold Regions Engineering, 2013, 27(4): 196-222.

    [6] GEBRE S., TIMALSINA N. and ALFREDSEN K. Some aspects of ice-hydropower interaction in a changing climate[J]. Energies, 2014, 7(3): 1641-1655.

    [7] CHANG J., MENG X. and WANG Z. et al. Optimized cascade reservoir operation considering ice flood control and power generation[J]. Journal of Hydrology, 2014,519: 1042-1051.

    [8] WU Peng, HIRSHFIELD Faye and SUI Jueyi et al. Impacts of ice cover on local scour around semi-circular bridge abutment[J]. Journal of Hydrodynamics, 2014, 26(1): 10-18.

    [9] HAO Hong-sheng, DENG Yun and LI Jia et al. Numerical simulation and experimental study on growth and decay of ice-cover[J]. Chinese Journal of Hydrodynamics, 2009,24(3): 374-380(in Chinese).

    [10] SALORANTA T. M. Modeling the evolution of snow,snow ice and ice in the Baltic Sea[J]. Tellus A, 2000,52(1): 93-108.

    [11] DUGUAY C. R., FLATO G. M. and JEFFRIES M. O. et al. Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations[J]. Hydrological Processes, 2003, 17(17): 3465-3483.

    [12] SALORANTA T. M., ANDERSEN T. MyLake-A multiyear lake simulation model code suitable for uncertainty and sensitivity analysis simulations[J]. Ecological modelling, 2007, 207(1): 45-60.

    [13] JI Shun-ying, YUE Qian-jing and BI Xiang-jun. Heat transfer coefficient between ice cover and water in the Bohai Sea[J]. Marine Science Bulletin, 2002, 21(1): 9-15(in Chinese).

    [14] HAMBLIN P. F., CARMACK E. C. On the rate of heat transfer between a lake and an ice sheet[J]. Cold Regions Science and Technology, 1990, 18(2): 173-182.

    [15] SHIRASAWA K., LEPP?RANTA M. and KAWAMURA T. et al. Measurements and modelling of the water: Ice heat flux in natural waters[C]. Proceedings of the 18th IAHR International Symposium on Ice. Sapporo, Japan,2006, 1: 85-91.

    [16] WANG Jin-jun, LIAN Qi-xiang and XING Yu-shan. Effects of turbulent intensities on the boundary layer development[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22 (2): 193-197(in Chinese).

    [17] YANG Song-song, LIU Ai-lian and CHEN Wu-fen et al. Temperature field distribution detection research at ice and water near the interface by using fiber Bragg grating[J]. Optical Technique, 2014, 40(3): 254-257(in Chinese).

    [18] KIRILLIN G., LEPP?RANTA M. and TERZHEVIK A. et al. Physics of seasonally ice-covered lakes: a review[J]. Aquatic Sciences, 2012, 74(4): 659-682.

    [19] OVEISY A., BOEGMAN L. and IMBERGER J. Threedimensional simulation of lake and ice dynamics during winter[J]. Limnology and Oceanography, 2012, 57(1): 43-57.

    [20] WONG K. F. V. Intermediate heat transfer[M]. New York, USA: Marcel Dekker, Inc., 2003, 4-5.

    [21] ZHAO Zhen-nan. Heat transfer[M]. Beijing, China: Higher Education Press, 2008, 175-177(in Chinese).

    10.1016/S1001-6058(16)60664-9

    October 16, 2014, Revised April 4, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51309169, 51179112).

    Biography: Nan LI (1987-), Male, Ph. D. Candidate

    You-cai TUO,

    E-mail: tuoyoucai@scu.edu.cn

    2016,28(4):603-609

    猜你喜歡
    李嘉李楠
    在研究的路上鐫刻生命的印記
    What Makes You Tired
    Taking Robotics, AI, IoT to the World
    一本書
    ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION?
    Numerical and experimental study of continuous and discontinuous turbidity currents on a flat slope *
    官相
    故事林(2018年15期)2018-08-13 02:21:46
    Modeling of thermodynamics of ice and water in seasonal ice-covered reservoir *
    Reverse motion characteristics of water-vapor mixture in supercavitating flow around a hydrofoil*
    Adaptive key SURF feature extraction and application in unmanned vehicle dynamic object recognition
    国产老妇伦熟女老妇高清| 最近的中文字幕免费完整| 美女视频免费永久观看网站| 99久久精品一区二区三区| 美女脱内裤让男人舔精品视频| 全区人妻精品视频| 国产黄色免费在线视频| 高清黄色对白视频在线免费看| 美女大奶头黄色视频| 亚洲精品自拍成人| 精品人妻偷拍中文字幕| 高清黄色对白视频在线免费看| 欧美精品一区二区大全| 国产精品一区二区在线观看99| 国产成人freesex在线| 国产精品99久久久久久久久| 久久av网站| 尾随美女入室| 黄色一级大片看看| 色5月婷婷丁香| 日韩在线高清观看一区二区三区| 国产精品不卡视频一区二区| 国产精品99久久久久久久久| 黄色配什么色好看| 黑丝袜美女国产一区| 日本-黄色视频高清免费观看| 亚洲美女视频黄频| 男男h啪啪无遮挡| 嘟嘟电影网在线观看| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 多毛熟女@视频| 亚洲国产精品成人久久小说| 赤兔流量卡办理| 永久免费av网站大全| 成人国语在线视频| 五月天丁香电影| 久久久久久久亚洲中文字幕| 中文天堂在线官网| 一级毛片电影观看| 性色av一级| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 久久影院123| 国产黄色视频一区二区在线观看| 蜜桃在线观看..| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂| 亚洲av不卡在线观看| 国产成人一区二区在线| 国产精品 国内视频| 亚洲av福利一区| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 午夜福利在线观看免费完整高清在| 成人国产av品久久久| 成人综合一区亚洲| 男女边摸边吃奶| 男女边吃奶边做爰视频| 日韩一区二区三区影片| 国产成人freesex在线| 国产精品一国产av| 国产成人a∨麻豆精品| 亚洲精品乱码久久久v下载方式| 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 中文精品一卡2卡3卡4更新| 97超视频在线观看视频| 一级片'在线观看视频| 成人漫画全彩无遮挡| 午夜福利视频精品| 99热全是精品| 内地一区二区视频在线| 天天影视国产精品| 欧美精品高潮呻吟av久久| 久久精品国产鲁丝片午夜精品| 亚洲av成人精品一区久久| 乱人伦中国视频| 免费人成在线观看视频色| 我要看黄色一级片免费的| 国产老妇伦熟女老妇高清| 在线观看一区二区三区激情| 中文天堂在线官网| 9色porny在线观看| 欧美丝袜亚洲另类| 欧美激情极品国产一区二区三区 | 狂野欧美激情性xxxx在线观看| 简卡轻食公司| 亚洲国产精品999| av播播在线观看一区| 18禁在线播放成人免费| 成年av动漫网址| 亚洲经典国产精华液单| xxx大片免费视频| 老司机亚洲免费影院| 国产色婷婷99| 91午夜精品亚洲一区二区三区| 中文字幕最新亚洲高清| 纯流量卡能插随身wifi吗| 久久久久国产网址| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看 | 亚洲精品自拍成人| 久久 成人 亚洲| 免费黄网站久久成人精品| videosex国产| 少妇的逼好多水| 亚洲人与动物交配视频| 久久鲁丝午夜福利片| 国产极品粉嫩免费观看在线 | 亚洲,欧美,日韩| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| 久久国产精品男人的天堂亚洲 | 久久久精品94久久精品| 纯流量卡能插随身wifi吗| 久久国产精品大桥未久av| 我的女老师完整版在线观看| 亚洲五月色婷婷综合| 欧美激情 高清一区二区三区| 欧美精品一区二区免费开放| 成人无遮挡网站| 欧美精品高潮呻吟av久久| 美女大奶头黄色视频| 成人漫画全彩无遮挡| 晚上一个人看的免费电影| 性高湖久久久久久久久免费观看| 九色成人免费人妻av| 少妇熟女欧美另类| 久久久久久久久久久免费av| 欧美精品国产亚洲| 成人二区视频| 天堂中文最新版在线下载| 久久久精品94久久精品| 久久精品国产亚洲av天美| 夜夜看夜夜爽夜夜摸| 中文精品一卡2卡3卡4更新| 久久精品夜色国产| 黄色一级大片看看| 大片电影免费在线观看免费| 蜜桃国产av成人99| 国产有黄有色有爽视频| 男女国产视频网站| 高清在线视频一区二区三区| 男女啪啪激烈高潮av片| 91久久精品国产一区二区成人| 黑人巨大精品欧美一区二区蜜桃 | 又粗又硬又长又爽又黄的视频| 国产黄色视频一区二区在线观看| 国产精品一区二区在线观看99| 日韩中文字幕视频在线看片| 亚洲精品456在线播放app| videosex国产| 精品一区在线观看国产| 内地一区二区视频在线| 日韩av不卡免费在线播放| 人人妻人人添人人爽欧美一区卜| 丝袜喷水一区| 午夜av观看不卡| 一区二区三区免费毛片| 一区二区日韩欧美中文字幕 | 桃花免费在线播放| 一级黄片播放器| 精品人妻熟女毛片av久久网站| 在线看a的网站| 美女主播在线视频| 免费观看性生交大片5| 午夜激情av网站| 国产日韩欧美亚洲二区| 欧美+日韩+精品| 我的老师免费观看完整版| 美女主播在线视频| 国产高清有码在线观看视频| 啦啦啦啦在线视频资源| 麻豆成人av视频| 国产成人精品久久久久久| 日韩中字成人| 国产高清有码在线观看视频| 嘟嘟电影网在线观看| 成人午夜精彩视频在线观看| 免费av不卡在线播放| 国产精品国产三级专区第一集| 日日撸夜夜添| 王馨瑶露胸无遮挡在线观看| 自线自在国产av| 午夜福利,免费看| 91久久精品电影网| 啦啦啦在线观看免费高清www| 啦啦啦视频在线资源免费观看| 久久久久国产精品人妻一区二区| 日韩视频在线欧美| 高清午夜精品一区二区三区| 97超视频在线观看视频| 2021少妇久久久久久久久久久| 特大巨黑吊av在线直播| 久久久欧美国产精品| 久久99精品国语久久久| 一本大道久久a久久精品| 亚洲精华国产精华液的使用体验| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 夫妻性生交免费视频一级片| av天堂久久9| 18禁观看日本| 午夜日本视频在线| 97在线视频观看| 毛片一级片免费看久久久久| 成人二区视频| 国产精品国产av在线观看| 欧美精品国产亚洲| 亚洲国产精品一区三区| 黄色视频在线播放观看不卡| 久久久a久久爽久久v久久| 91精品一卡2卡3卡4卡| 肉色欧美久久久久久久蜜桃| 永久网站在线| 九九久久精品国产亚洲av麻豆| 国国产精品蜜臀av免费| 高清不卡的av网站| 久久久久网色| 国产亚洲一区二区精品| av在线app专区| 国产欧美亚洲国产| 欧美亚洲 丝袜 人妻 在线| 日韩不卡一区二区三区视频在线| 久久人人爽av亚洲精品天堂| 国产老妇伦熟女老妇高清| 国产精品麻豆人妻色哟哟久久| 日本免费在线观看一区| 99九九线精品视频在线观看视频| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 黑人欧美特级aaaaaa片| 中文乱码字字幕精品一区二区三区| 欧美日韩在线观看h| 成人漫画全彩无遮挡| 999精品在线视频| 亚洲久久久国产精品| 成人手机av| 久久 成人 亚洲| 十八禁高潮呻吟视频| 国产精品一区二区三区四区免费观看| 成人手机av| 美女福利国产在线| 免费黄频网站在线观看国产| 人妻夜夜爽99麻豆av| 中文精品一卡2卡3卡4更新| 老司机亚洲免费影院| 赤兔流量卡办理| 中文字幕人妻丝袜制服| 99久久中文字幕三级久久日本| 精品卡一卡二卡四卡免费| 久久久a久久爽久久v久久| 91aial.com中文字幕在线观看| 美女cb高潮喷水在线观看| 欧美人与善性xxx| 日韩中文字幕视频在线看片| 十八禁高潮呻吟视频| 日本与韩国留学比较| 免费日韩欧美在线观看| 老司机影院毛片| 人人澡人人妻人| 日韩电影二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品456在线播放app| 欧美精品一区二区大全| 免费日韩欧美在线观看| 在线天堂最新版资源| 精品少妇久久久久久888优播| 成年女人在线观看亚洲视频| 日韩大片免费观看网站| 香蕉精品网在线| 中文天堂在线官网| 在现免费观看毛片| 日本免费在线观看一区| 亚洲精品国产色婷婷电影| 我要看黄色一级片免费的| 久久这里有精品视频免费| 国产精品成人在线| 水蜜桃什么品种好| 亚洲欧美精品自产自拍| 日韩欧美精品免费久久| 伦精品一区二区三区| 一级a做视频免费观看| av线在线观看网站| 又大又黄又爽视频免费| 嘟嘟电影网在线观看| 亚洲激情五月婷婷啪啪| 精品人妻熟女av久视频| 人妻夜夜爽99麻豆av| 国模一区二区三区四区视频| 久久久国产精品麻豆| 久久影院123| 国产淫语在线视频| 亚州av有码| 亚洲不卡免费看| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 两个人的视频大全免费| 五月天丁香电影| 黑丝袜美女国产一区| 国产高清有码在线观看视频| 精品人妻熟女毛片av久久网站| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 国产国语露脸激情在线看| 性色av一级| 亚洲激情五月婷婷啪啪| 亚洲人与动物交配视频| 久久久亚洲精品成人影院| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 91在线精品国自产拍蜜月| 97超碰精品成人国产| 五月玫瑰六月丁香| 午夜福利视频在线观看免费| 极品人妻少妇av视频| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 婷婷成人精品国产| 国产精品偷伦视频观看了| 最近2019中文字幕mv第一页| 久久久亚洲精品成人影院| 国产精品嫩草影院av在线观看| 99精国产麻豆久久婷婷| 热re99久久国产66热| 欧美激情国产日韩精品一区| 人人妻人人添人人爽欧美一区卜| 久久精品国产亚洲av涩爱| 搡老乐熟女国产| 99久久精品一区二区三区| 精品午夜福利在线看| 老女人水多毛片| 成人国产麻豆网| 婷婷色av中文字幕| 如日韩欧美国产精品一区二区三区 | 亚洲精品色激情综合| 高清在线视频一区二区三区| 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 欧美bdsm另类| 国产爽快片一区二区三区| 欧美日韩在线观看h| 国产日韩欧美视频二区| 2022亚洲国产成人精品| 一边摸一边做爽爽视频免费| 国产黄色免费在线视频| 国产精品国产三级国产专区5o| 一级,二级,三级黄色视频| 亚洲国产精品成人久久小说| 成人毛片a级毛片在线播放| 中文字幕精品免费在线观看视频 | 桃花免费在线播放| 在线观看人妻少妇| 亚洲av男天堂| 又黄又爽又刺激的免费视频.| 七月丁香在线播放| 久久久a久久爽久久v久久| 久久久久久伊人网av| 老熟女久久久| 女人精品久久久久毛片| 亚洲不卡免费看| 人人妻人人澡人人看| 飞空精品影院首页| 视频区图区小说| 晚上一个人看的免费电影| 哪个播放器可以免费观看大片| 亚洲成人一二三区av| 中文欧美无线码| 国产亚洲一区二区精品| 在线精品无人区一区二区三| 免费av中文字幕在线| 久热这里只有精品99| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| kizo精华| 国产有黄有色有爽视频| 国产成人91sexporn| 日韩免费高清中文字幕av| 精品亚洲成国产av| 中文天堂在线官网| 欧美另类一区| 欧美丝袜亚洲另类| 亚洲久久久国产精品| 国产国语露脸激情在线看| 国产在视频线精品| 男女无遮挡免费网站观看| 亚洲精品亚洲一区二区| 国产亚洲午夜精品一区二区久久| 国产69精品久久久久777片| 美女中出高潮动态图| 交换朋友夫妻互换小说| 一边亲一边摸免费视频| 亚洲国产精品成人久久小说| 亚洲欧美成人精品一区二区| av福利片在线| 美女cb高潮喷水在线观看| 97超碰精品成人国产| 国产高清国产精品国产三级| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 亚洲精品美女久久av网站| 日本av手机在线免费观看| 久久婷婷青草| 极品人妻少妇av视频| 亚洲国产精品国产精品| 亚洲精品色激情综合| 青春草视频在线免费观看| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 日日爽夜夜爽网站| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看| 简卡轻食公司| 国产精品成人在线| 18禁观看日本| 免费不卡的大黄色大毛片视频在线观看| 天天影视国产精品| 91久久精品国产一区二区三区| 日韩成人伦理影院| 久久 成人 亚洲| 亚洲成人av在线免费| 国产精品久久久久成人av| 永久免费av网站大全| 久久久久国产精品人妻一区二区| 亚洲美女黄色视频免费看| 嘟嘟电影网在线观看| 少妇人妻 视频| 91成人精品电影| 啦啦啦在线观看免费高清www| 人妻 亚洲 视频| 亚洲欧洲精品一区二区精品久久久 | 91精品三级在线观看| 日日摸夜夜添夜夜爱| 亚洲成人av在线免费| 精品卡一卡二卡四卡免费| 国产欧美亚洲国产| 中国国产av一级| h视频一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 亚洲不卡免费看| 免费观看a级毛片全部| 水蜜桃什么品种好| 美女大奶头黄色视频| a 毛片基地| 我的老师免费观看完整版| 最近手机中文字幕大全| 亚洲国产色片| 考比视频在线观看| 亚洲av男天堂| 免费黄网站久久成人精品| av播播在线观看一区| 最近2019中文字幕mv第一页| 天堂中文最新版在线下载| 嫩草影院入口| 国产成人精品福利久久| 久久影院123| 日韩欧美一区视频在线观看| 国产一区亚洲一区在线观看| 日韩在线高清观看一区二区三区| 国产成人免费无遮挡视频| 你懂的网址亚洲精品在线观看| 黄色视频在线播放观看不卡| 国产 一区精品| 亚洲精品乱码久久久v下载方式| 亚洲精品色激情综合| 另类亚洲欧美激情| av国产精品久久久久影院| 精品国产露脸久久av麻豆| 黄色视频在线播放观看不卡| av免费观看日本| 国产日韩欧美亚洲二区| a级毛片免费高清观看在线播放| 国产成人freesex在线| 中文字幕av电影在线播放| 高清午夜精品一区二区三区| 亚洲精品第二区| 国产一区二区在线观看日韩| tube8黄色片| 大片电影免费在线观看免费| 男人添女人高潮全过程视频| 我的女老师完整版在线观看| 老女人水多毛片| 七月丁香在线播放| 国产亚洲av片在线观看秒播厂| www.色视频.com| 亚洲av在线观看美女高潮| 精品国产乱码久久久久久小说| 嘟嘟电影网在线观看| 欧美精品一区二区免费开放| 免费看av在线观看网站| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 亚洲精品aⅴ在线观看| 在现免费观看毛片| 亚洲av日韩在线播放| 亚洲四区av| 肉色欧美久久久久久久蜜桃| 欧美 亚洲 国产 日韩一| 全区人妻精品视频| 久久国内精品自在自线图片| 高清午夜精品一区二区三区| 我要看黄色一级片免费的| 全区人妻精品视频| 亚洲四区av| 亚洲国产精品一区二区三区在线| 久久久久网色| 母亲3免费完整高清在线观看 | 女人久久www免费人成看片| 久久精品久久精品一区二区三区| 黄色配什么色好看| 91精品国产国语对白视频| 精品人妻熟女毛片av久久网站| 久久久久久久精品精品| 黄色配什么色好看| 91精品伊人久久大香线蕉| 国产成人精品福利久久| 亚洲高清免费不卡视频| 精品国产一区二区三区久久久樱花| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 精品卡一卡二卡四卡免费| 免费av不卡在线播放| a级毛片黄视频| 欧美日韩在线观看h| 欧美成人午夜免费资源| 亚洲内射少妇av| 国产一区二区三区综合在线观看 | 一个人免费看片子| 18禁在线播放成人免费| 中文字幕人妻丝袜制服| 热re99久久精品国产66热6| 99久久中文字幕三级久久日本| 日韩在线高清观看一区二区三区| 国模一区二区三区四区视频| 18在线观看网站| 国产深夜福利视频在线观看| 男女国产视频网站| 特大巨黑吊av在线直播| 午夜激情久久久久久久| 亚洲在久久综合| 日本欧美国产在线视频| av免费观看日本| 日韩视频在线欧美| 亚洲,一卡二卡三卡| 午夜福利网站1000一区二区三区| 欧美亚洲日本最大视频资源| 亚洲综合色网址| 久久精品国产亚洲av涩爱| 亚洲av免费高清在线观看| 免费观看a级毛片全部| 美女中出高潮动态图| 日日爽夜夜爽网站| 男的添女的下面高潮视频| 欧美 日韩 精品 国产| 久久久国产一区二区| 伊人久久精品亚洲午夜| 亚洲国产精品成人久久小说| 免费播放大片免费观看视频在线观看| 80岁老熟妇乱子伦牲交| 久久韩国三级中文字幕| 伊人亚洲综合成人网| 高清毛片免费看| 在线观看三级黄色| 男女无遮挡免费网站观看| 国产亚洲最大av| 成人午夜精彩视频在线观看| 在线观看国产h片| 高清视频免费观看一区二区| 在线观看国产h片| a级片在线免费高清观看视频| √禁漫天堂资源中文www| 熟女av电影| 久久97久久精品| 国产白丝娇喘喷水9色精品| 日韩欧美精品免费久久| 天堂中文最新版在线下载| 中文乱码字字幕精品一区二区三区| 亚洲av日韩在线播放| 亚洲人与动物交配视频| 在线观看免费日韩欧美大片 | 在线观看免费日韩欧美大片 | 哪个播放器可以免费观看大片| 久久久久久人妻| 亚洲精品乱久久久久久| 午夜免费观看性视频| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 亚洲成人手机| 亚洲欧美一区二区三区黑人 | 草草在线视频免费看| 91成人精品电影| 国产精品三级大全| 国产精品99久久久久久久久| av国产精品久久久久影院| 亚洲成人av在线免费| 最近2019中文字幕mv第一页| 桃花免费在线播放| 国产成人freesex在线| 日韩 亚洲 欧美在线| 女人精品久久久久毛片| 麻豆成人av视频| 下体分泌物呈黄色| 亚洲综合色惰| 伊人久久精品亚洲午夜| 最近2019中文字幕mv第一页| 最近最新中文字幕免费大全7| 久久鲁丝午夜福利片| 亚洲精品第二区| av又黄又爽大尺度在线免费看| 成年人免费黄色播放视频|