• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heat transfer at ice-water interface under conditions of low flow velocities*

    2016-10-18 01:45:26NanLI李楠YoucaiTUO脫友才YunDENG鄧云JiaLI李嘉RuifengLIANG梁瑞峰RuidongAN安瑞冬
    水動力學研究與進展 B輯 2016年4期
    關鍵詞:李嘉李楠

    Nan LI (李楠), You-cai TUO (脫友才), Yun DENG (鄧云), Jia LI (李嘉), Rui-feng LIANG (梁瑞峰),Rui-dong AN (安瑞冬)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065,China, E-mail: linanscu@163.com

    ?

    Heat transfer at ice-water interface under conditions of low flow velocities*

    Nan LI (李楠), You-cai TUO (脫友才), Yun DENG (鄧云), Jia LI (李嘉), Rui-feng LIANG (梁瑞峰),Rui-dong AN (安瑞冬)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065,China, E-mail: linanscu@163.com

    The heat transfer at the ice-water interface is closely related to the hydrodynamic and physical properties of the water body. It affects the ice cover thickness and the water temperature underlying the ice cover. This paper studies the heat transfer from the water to the ice cover. Based on the flume data, a linear relationship between the ice-water heat transfer coefficient and the flow velocity beneath the ice cover is established and the calculated dimensionless ice-water heat transfer coefficient is 1.1×10-3. This empirical relationship can be applied to estimate the ice-water heat transfer of reservoirs, lakes and other freshwater bodies when the flow velocity under the ice cover is in the range of 0.024 m/s-0.110 m/s.

    ice cover, heat exchange, ice-water heat transfer coefficient, low flow velocity, laboratory experiment

    Introduction

    The formation of ice cover is an important phenomenon in cold regions[1,2]. Ice in surface water bodies changes the hydraulic and thermal conditions of rivers, lakes and reservoirs[3,4]. The ice cover influences the operation of water resource projects, leads to reductions in power generation[5,6], causes ice disasters such as ice dam and ice flood[7,8], and hinders energy and mass exchanges between air and water,resulting in adverse effects on biological environment[9].

    The thermal growth and decay of an ice cover is governed by heat-exchanges at the air-ice and icewater interfaces. The ice-water heat transfer coefficient, which reflects the rate of heat exchange between the ice cover and the underlying water, is an important parameter for quantifying the heat flux at the icewater interface, the thickness of ice cover, and the water temperature underneath the ice cover. During the past few decades, the heat-exchanges at the icewater interface in rivers, lakes and oceans were extensively studied. The turbulent heat transfer from the flowing river water to the ice cover is shown to have a significant effect on the thickness of the ice cover,especially during the decay period when the water temperature is above the freezing point[3]. The thermal growth and melting of the lake ice is primarily a vertical one-dimensional heat transfer process[10-12]. It is possible to estimate the heat exchange flux between ice and water by a bulk formula[13]

    in which,ρwis the density of water,cwis the specific heat of water,Chis the dimensionless ice-water heat transfer coefficient,uwis the current speed,Twis the water temperature, and T0is the freezing point.

    With considerations of the surface roughness, the ice thickness, the current and the temperature under ice, Hamblin and Carmack[14]estimated the dimensionless ice-water heat transfer coefficient Chto be(0.8±0.3)×10-3in lakes of Yukon River Basin, which is smaller than that was found in sea ice studies.Shirasawa et al.[15]obtained Chof a value 0.39×10-3from the HANKO and the BALTEX/BASIS experiments and used 2.0×10-3as the value ofChto calculate the ice-water heat flux in Saroma-ko Lagoon. Ji et al.[13]computedChto be(0.16-0.50)×10-3through field observations in Bohai Sea in different periods,and found that the coefficient had a positive relation with the thickness of the ice cover and the roughness of the bottom surface of the ice cover.

    Fig.1 Schematic diagram of the experimental device

    Fig.2 Detailed structures of the plexiglas flume (m)

    However, the ice-water heat transfer coefficient is closely related to the hydrodynamic and physical properties of the water body. When the dimensionless ice-water heat transfer coefficientsChmentioned above are applied to particular situations, it is found that they are not satisfactory for the water body under low flow conditions such as a reservoir.

    The field observation method to study ice-water heat exchange involves many difficulties and various uncontrollable factors. No detailed laboratory study has been made to determine the ice-water heat transfer coefficient. In this study, a laboratory experiment is conducted to investigate the heat exchange from water to ice cover to establish an empirical formula for the ice-water heat transfer coefficient under low flow conditions.

    1. Experimental setup

    1.1 Flume design

    The experiment is conducted in a small plexiglas flume of 4.0 m (length)×3.0 m (width)×2.0 m (height)in a cold room (Fig.1). The flume is wrapped with polyethylene plastic foam to prevent the heat exchange from sidewalls. A screen is installed in the entrance section, which makes the flow uniformly distributed. An ice cover is formed in the flume in each test. Figure 2 shows the detailed structures of the plexiglas flume.

    1.2 Instrumentation

    The measured data in the experiment include the flow velocity, the ice thickness variation, the ice temperature and the water temperature. Figure 3 is a photo of the experimental device and the measuring instruments.

    Fig.3 Photo of the experimental device and measuring instruments

    The flow measuring section is 0.50 m from the entrance (Section 1, Fig.2). A Vectrino velocimeterwith a resolution of 0.001 m/s is used to measure the flow velocity. The velocities at three depths (0.07 m,0.14 m and 0.21 m) are measured before the experiment. The data indicate that the velocities distrubute evenly in depth. Therefore, the flow velocity at the mid-depth is measured in the experiment, which may be taken as the depth-averaged velocity.

    The ice thickness variation measuring section is 1.50 m from the entrance (Section 2, Fig.2). The bottom surface of the ice cover is flat, and the variation of the ice thickness is uniform along the ice cover. The vertical distance between the bottom surface of the ice cover and a fixed point at the beginning of the experiment is h1, and it becomes h220 min later. The measured ice thickness variation is then h2-h1. The vertical distance is measured by a micrometer, of accuracy of 0.0001 m (Fig.4).

    Fig.4 Schematic diagram of ice thickness variation measurement

    The temperature measuring section is 1.60 m from the entrance (Section 3, Fig.2). A LG93-22 temperature recorder is used to measure the water and ice temperatures, with an accuracy of 0.1oC. The ice temperature is measured by No.1 and No.2 temperature probes, and the water temperature is measured by No.3 to No.11 temperature probes. The layout of the temperature probes is shown in Fig.5.

    Fig.5 Layout of temperature probes (m)

    1.3 Experimental procedure

    A flow regime test is made first, under 4 flow conditions with the depth-averaged flow velocities of 0.110 m/s, 0.084 m/s, 0.055 m/s and 0.024 m/s.

    The flow regime test is made by recording the instantaneous velocities (ux,uyand uz) every 0.04 s. The average turbulence intensity under each condition is determined by

    in which,Tuis the instantaneous turbulence intensity,u′x,u′y,u′zare the fluctuating velocities inx,y,z directions,ux,uy,uzare the instantaneous velocities inx,y,zdirections,Tuis the average turbulence intensity, andNis the number of instantaneous turbulence intensities in each test.

    The inflow velocity is stable under all 4 conditions and the calculated average turbulence intensities are 14.7%, 14.4%, 13.7% and 9.8%, respectively. According to Wang et al.[16], the boundary layer under a flat surface is of turbulence when the water turbulence intensity reaches 3.5%. Hence, the flows under these 4 conditions are of turbulence and are valid for the experiment.

    Main steps of the experiment include: (1) Set the temperature in the cold room to -15oC, and freeze an ice cover (about 1.70 m long and 0.02 m thick) in the flume. (2) Stabilize the temperature in the cold room to 0oC, start the pump to make the water flow, and use the valve to control the flow velocity. (3) Start the LG93-22 temperature recorder and measure the vertical distance between the bottom surface of the ice cover and the fixed point, when the flow field in the flume is stable. (4) Repeat Steps (1) to (3) in each experiment.

    1.4 Experimental results

    A total of 22 experiment runs are made by combining these 4 velocity conditions with different inflow temperatures (Table 1). The measured ice thickness reductions at the bottom of the ice cover and the inflow temperature over a 20 min period are given in Table 1. Figure 6 shows the vertical temperature profiles under various velocity conditions. Influenced by the air temperature in the cold room, the ice temperature reaches 0oC gradually. No. 3 to No. 11 temperatureprobes are in the flow where the water temperature is mixed evenly.

    Table 1 Summary of test conditions

    2. Results and analyses

    2.1 Analyses of the heat flux process

    A definition of the heat flux between the ice cover and the flowing water is presented in Fig.7 for analyzing the heat flux process. The air temperature in the cold room is 0oC, and the whole temperature of the ice cover reaches a stable 0oC. Accordingly, there is no conductive heat flux at the air-ice interface and the inner ice. The melting of the bottom surface of the ice cover is caused by the turbulent heat exchange between ice and water, and the heat balance equation at the bottom of the ice cover can be written as

    in which,qwiis the turbulent heat exchange between ice and water,ρiis the ice density,Liis the latent heat of the ice melting, and dh/dtis the rate of the ice thickness variation.

    The melting rate of the bottom surface of the ice cover is related to the water temperature gradient in the thermal boundary layer[17]. The plots of the temperature in Fig.6 show a thermal boundary layer with a sharp temperature gradient close to the ice cover. The heat flux from the water to the ice cover in the boundary layer contributes to the heat flux for the melting of the bottom surface of the ice cover. The heat flux from the water is determined by the temperature gradient at the ice-water interface, which is expressed by the Fourier's law[18,19]

    in which,kwis the thermal conductivity of water,?T/?zis the temperature gradient.

    Fig.6 Vertical temperature profiles under various velocity conditions

    Many processes influence the millimeter thick thermal boundary, and it is difficult to accurately measure the temperature gradient at the ice-water interface.

    The turbulent heat exchange between ice and water can also be expressed by the Newton's law of cooling[20]

    Fig.7 Definition of the heat flux

    Solving Eq.(4) and Eq.(6) for hwi, we have

    Solving Eq.(4) and Eq.(5) for ?z, we have

    in which,?his the ice thickness variation,?tis the duration of each experiment, and

    The calculated ice-water heat transfer coefficients (Table 2) show that the relative error between the coefficients under various conditions and their average value is in the range of -14%-16%, and the standard deviation of the coefficients under each condition is 51.2, 17.7, 21.7 and 10.2, respectively. The calculation error mainly results from the flow water temperature and the instability of the flow field. Besides, this error can be caused by the ice thickness variation measurement. The average values of the velocity, the ice thickness variation and the vertical temperature in experiment runs are used herein for error reduction.

    The calculated thickness of the thermal boundary layer ?z(Table 2) shows that the thickest thermal boundary layer is less than 0.006 m, and it has an inverse relationship with the velocity.

    Table 2 Comparison of calculated results

    Fig.8 Linear fitting for the average ice-water heat transfer coefficient and the flow velocity

    2.2 Correlation analysis

    The influence factors of the heat transfer coefficient include the flow velocity, the salinity, the specific heat capacity, and the density[21]. In this study, the inflow temperature and the flow velocity are variables,and the velocity is the governing factor. Figure 8 shows a linear relationship between the average value of the ice-water heat transfer coefficient under each condition and its flow velocity.

    The result shows a positive linear correlation between the average ice-water heat transfer coefficient and the flow velocity beneath the ice cover. The regression coefficient is 0.9982 and the regression equation is

    in which,hwiis the ice-water heat transfer coefficient,uwis the depth-averaged velocity.

    2.3 Comparison of the dimensionless ice-water heat transfer coefficients

    The bulk formula mentioned above provides a method to determine the dimensionless ice-water heat transfer coefficient Ch. The bulk formula and the empirical formula Eq.(9) describe the same heat transfer process at the ice-water interface. From Eq.(1),Eq.(6) and Eq.(9), the dimensionless ice-water heat transfer coefficient is obtained as

    The comparisons of Chbetween this study and previous researches[13]are shown in Table 3. The value ofChin this paper is 1.1×10-3, which is between the maximum value (3.8×10-3) and the minimum value(0.16×10-3), and similar to theChcalculated by Hamblin and Carmack[14]. The variation of Chin Table 3 may be the results of the hydrodynamics conditions, the properties of water body and the roughness of the ice cover.

    Table 3 Comparison of Chbetween this study and pre-

    3. Conclusion

    In this study, the flume experiment is carried out to determine the ice-water heat transfer coefficient under low flow velocity conditions. Based on the flume data and data analyses, a positive linear correlation between the ice-water heat transfer coefficient and the flow velocity beneath the ice cover is established and an empirical formulais obtained. This empirical formula provides a convenient way to estimate the ice-water heat transfer of reservoirs, lakes and other freshwater bodies when the flow velocity under the ice cover is in the range of 0.024 m/s-0.11 m/s. However, there are still some important issues that should be further studied, such as the icewater heat transfer coefficient under extremely low flow conditions and the verification of this empirical formula in field work.

    References

    [1] HUANG W., LI Z. and LIU X. et al. Effective thermal conductivity of reservoir freshwater ice with attention to high temperature[J]. Annals of Glaciology, 2013, 54(62): 189-195.

    [2] TUO Y., DENG Y. and LI J. et al. Water temperature and ice conditions in Fengman reservoir, winter of 2012-2013[C]. Proceedings of the 22th IAHR International Symposium on Ice. Singapore, 2014, 434-441.

    [3] SHEN H. T. Mathematical modeling of river ice processes[J]. Cold Regions Science and Technology, 2010,62(1): 3-13.

    [4] TUO You-cai, LIU Zhi-guo and DENG Yun et al. Water temperature of the Fengman reservoir with seasonal ice cover[J]. Advances in Water Science, 2014, 25(5): 731-738(in Chinese).

    [5] GEBRE S., ALFREDSEN K. and LIA L. et al. Review of ice effects on hydropower systems[J]. Journal of Cold Regions Engineering, 2013, 27(4): 196-222.

    [6] GEBRE S., TIMALSINA N. and ALFREDSEN K. Some aspects of ice-hydropower interaction in a changing climate[J]. Energies, 2014, 7(3): 1641-1655.

    [7] CHANG J., MENG X. and WANG Z. et al. Optimized cascade reservoir operation considering ice flood control and power generation[J]. Journal of Hydrology, 2014,519: 1042-1051.

    [8] WU Peng, HIRSHFIELD Faye and SUI Jueyi et al. Impacts of ice cover on local scour around semi-circular bridge abutment[J]. Journal of Hydrodynamics, 2014, 26(1): 10-18.

    [9] HAO Hong-sheng, DENG Yun and LI Jia et al. Numerical simulation and experimental study on growth and decay of ice-cover[J]. Chinese Journal of Hydrodynamics, 2009,24(3): 374-380(in Chinese).

    [10] SALORANTA T. M. Modeling the evolution of snow,snow ice and ice in the Baltic Sea[J]. Tellus A, 2000,52(1): 93-108.

    [11] DUGUAY C. R., FLATO G. M. and JEFFRIES M. O. et al. Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations[J]. Hydrological Processes, 2003, 17(17): 3465-3483.

    [12] SALORANTA T. M., ANDERSEN T. MyLake-A multiyear lake simulation model code suitable for uncertainty and sensitivity analysis simulations[J]. Ecological modelling, 2007, 207(1): 45-60.

    [13] JI Shun-ying, YUE Qian-jing and BI Xiang-jun. Heat transfer coefficient between ice cover and water in the Bohai Sea[J]. Marine Science Bulletin, 2002, 21(1): 9-15(in Chinese).

    [14] HAMBLIN P. F., CARMACK E. C. On the rate of heat transfer between a lake and an ice sheet[J]. Cold Regions Science and Technology, 1990, 18(2): 173-182.

    [15] SHIRASAWA K., LEPP?RANTA M. and KAWAMURA T. et al. Measurements and modelling of the water: Ice heat flux in natural waters[C]. Proceedings of the 18th IAHR International Symposium on Ice. Sapporo, Japan,2006, 1: 85-91.

    [16] WANG Jin-jun, LIAN Qi-xiang and XING Yu-shan. Effects of turbulent intensities on the boundary layer development[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22 (2): 193-197(in Chinese).

    [17] YANG Song-song, LIU Ai-lian and CHEN Wu-fen et al. Temperature field distribution detection research at ice and water near the interface by using fiber Bragg grating[J]. Optical Technique, 2014, 40(3): 254-257(in Chinese).

    [18] KIRILLIN G., LEPP?RANTA M. and TERZHEVIK A. et al. Physics of seasonally ice-covered lakes: a review[J]. Aquatic Sciences, 2012, 74(4): 659-682.

    [19] OVEISY A., BOEGMAN L. and IMBERGER J. Threedimensional simulation of lake and ice dynamics during winter[J]. Limnology and Oceanography, 2012, 57(1): 43-57.

    [20] WONG K. F. V. Intermediate heat transfer[M]. New York, USA: Marcel Dekker, Inc., 2003, 4-5.

    [21] ZHAO Zhen-nan. Heat transfer[M]. Beijing, China: Higher Education Press, 2008, 175-177(in Chinese).

    10.1016/S1001-6058(16)60664-9

    October 16, 2014, Revised April 4, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51309169, 51179112).

    Biography: Nan LI (1987-), Male, Ph. D. Candidate

    You-cai TUO,

    E-mail: tuoyoucai@scu.edu.cn

    2016,28(4):603-609

    猜你喜歡
    李嘉李楠
    在研究的路上鐫刻生命的印記
    What Makes You Tired
    Taking Robotics, AI, IoT to the World
    一本書
    ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION?
    Numerical and experimental study of continuous and discontinuous turbidity currents on a flat slope *
    官相
    故事林(2018年15期)2018-08-13 02:21:46
    Modeling of thermodynamics of ice and water in seasonal ice-covered reservoir *
    Reverse motion characteristics of water-vapor mixture in supercavitating flow around a hydrofoil*
    Adaptive key SURF feature extraction and application in unmanned vehicle dynamic object recognition
    欧美一级毛片孕妇| 咕卡用的链子| 久久久久久亚洲精品国产蜜桃av| 中文字幕另类日韩欧美亚洲嫩草| 老熟女久久久| 激情在线观看视频在线高清 | 99久久综合精品五月天人人| 国产男女超爽视频在线观看| 新久久久久国产一级毛片| 最新美女视频免费是黄的| 国产有黄有色有爽视频| ponron亚洲| 亚洲午夜理论影院| 国产亚洲欧美98| 亚洲精品粉嫩美女一区| 国产精品久久久av美女十八| 日韩中文字幕欧美一区二区| 久久精品亚洲熟妇少妇任你| 中文字幕精品免费在线观看视频| 热re99久久国产66热| 国产精品偷伦视频观看了| 日韩三级视频一区二区三区| av天堂在线播放| 王馨瑶露胸无遮挡在线观看| 成人黄色视频免费在线看| 国产免费av片在线观看野外av| 一进一出抽搐gif免费好疼 | 久久精品亚洲熟妇少妇任你| 亚洲 欧美一区二区三区| 欧美成狂野欧美在线观看| 久久久久久久久久久久大奶| 在线看a的网站| 黄频高清免费视频| 久久久久久久精品吃奶| 国产成人精品久久二区二区91| 大型av网站在线播放| 久久99一区二区三区| 大香蕉久久网| 亚洲人成77777在线视频| 中文字幕人妻丝袜一区二区| 18禁美女被吸乳视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品亚洲一级av第二区| 亚洲伊人色综图| 十八禁高潮呻吟视频| 精品亚洲成a人片在线观看| 国产主播在线观看一区二区| 久久久精品免费免费高清| 成年动漫av网址| a级片在线免费高清观看视频| 久久天堂一区二区三区四区| 一进一出好大好爽视频| 欧美黄色片欧美黄色片| 老汉色av国产亚洲站长工具| 国产精品.久久久| 国产精品一区二区在线观看99| 一个人免费在线观看的高清视频| 午夜福利免费观看在线| 性色av乱码一区二区三区2| 欧美激情高清一区二区三区| 亚洲精品自拍成人| 嫁个100分男人电影在线观看| 69精品国产乱码久久久| 黄片大片在线免费观看| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 久久久久久久国产电影| 亚洲av成人av| 亚洲一卡2卡3卡4卡5卡精品中文| 窝窝影院91人妻| 美女视频免费永久观看网站| 老司机影院毛片| 人人妻人人澡人人看| 美女福利国产在线| 韩国精品一区二区三区| 狠狠狠狠99中文字幕| 中文字幕色久视频| 国产乱人伦免费视频| av在线播放免费不卡| 一级片免费观看大全| av网站在线播放免费| 午夜激情av网站| 国产蜜桃级精品一区二区三区 | 美国免费a级毛片| tube8黄色片| 欧美激情高清一区二区三区| 欧美中文综合在线视频| 九色亚洲精品在线播放| 精品国产美女av久久久久小说| 亚洲精品自拍成人| 国产成人免费无遮挡视频| 亚洲专区中文字幕在线| 欧美激情高清一区二区三区| svipshipincom国产片| 国产亚洲精品久久久久久毛片 | 精品卡一卡二卡四卡免费| 国产精品影院久久| 精品福利永久在线观看| 国产在线精品亚洲第一网站| 黄网站色视频无遮挡免费观看| 亚洲av成人av| 久9热在线精品视频| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 天天躁夜夜躁狠狠躁躁| 少妇被粗大的猛进出69影院| 男女下面插进去视频免费观看| av片东京热男人的天堂| 亚洲一区二区三区欧美精品| 国产精品久久久人人做人人爽| 在线观看免费高清a一片| 法律面前人人平等表现在哪些方面| 久久久久久久精品吃奶| 久久中文字幕人妻熟女| 99国产精品一区二区蜜桃av | 高清在线国产一区| 精品久久久久久电影网| x7x7x7水蜜桃| 午夜精品在线福利| 亚洲人成伊人成综合网2020| 欧美精品一区二区免费开放| 香蕉国产在线看| 欧美成狂野欧美在线观看| 如日韩欧美国产精品一区二区三区| 亚洲av欧美aⅴ国产| 国产成人精品久久二区二区91| 免费高清在线观看日韩| 亚洲精品美女久久av网站| 午夜福利一区二区在线看| 精品一区二区三卡| 国产深夜福利视频在线观看| 建设人人有责人人尽责人人享有的| 欧美日韩av久久| 人人澡人人妻人| 日韩有码中文字幕| 成人手机av| 久久精品成人免费网站| 亚洲人成伊人成综合网2020| 人妻久久中文字幕网| 伦理电影免费视频| 亚洲自偷自拍图片 自拍| 中文字幕制服av| 新久久久久国产一级毛片| 国产免费av片在线观看野外av| 亚洲性夜色夜夜综合| 欧美在线一区亚洲| 精品无人区乱码1区二区| 亚洲综合色网址| 久久影院123| 欧美人与性动交α欧美软件| 一区二区三区激情视频| 欧美av亚洲av综合av国产av| 99精品欧美一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放 | 一个人免费在线观看的高清视频| 成人手机av| 免费av中文字幕在线| 亚洲专区字幕在线| 自线自在国产av| 天堂中文最新版在线下载| 女人被狂操c到高潮| 成人永久免费在线观看视频| 国产精品久久久人人做人人爽| 波多野结衣一区麻豆| 91精品国产国语对白视频| 国产亚洲精品第一综合不卡| 一边摸一边抽搐一进一小说 | 在线看a的网站| 色尼玛亚洲综合影院| 免费在线观看影片大全网站| 欧美日韩乱码在线| 久久久久久久久免费视频了| 精品亚洲成国产av| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| av国产精品久久久久影院| videos熟女内射| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 一级a爱片免费观看的视频| 91国产中文字幕| 亚洲精品av麻豆狂野| 天天影视国产精品| 如日韩欧美国产精品一区二区三区| 咕卡用的链子| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 黄色成人免费大全| 99国产综合亚洲精品| av一本久久久久| 日韩中文字幕欧美一区二区| 满18在线观看网站| 少妇猛男粗大的猛烈进出视频| 搡老岳熟女国产| 中文字幕另类日韩欧美亚洲嫩草| xxxhd国产人妻xxx| 久热这里只有精品99| 人人妻人人澡人人看| a级毛片黄视频| 国产不卡av网站在线观看| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| 俄罗斯特黄特色一大片| 国产成人啪精品午夜网站| 国产一区二区三区视频了| 久久精品国产清高在天天线| 久久这里只有精品19| 一本综合久久免费| 欧美激情 高清一区二区三区| 亚洲免费av在线视频| 一级黄色大片毛片| 叶爱在线成人免费视频播放| 国产日韩一区二区三区精品不卡| 啦啦啦免费观看视频1| 午夜亚洲福利在线播放| 精品久久久久久久久久免费视频 | 国产一区在线观看成人免费| 一进一出抽搐动态| 天堂俺去俺来也www色官网| 欧美日本中文国产一区发布| 高清av免费在线| 不卡av一区二区三区| avwww免费| 一区在线观看完整版| 中文字幕精品免费在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 最新美女视频免费是黄的| 国产精品av久久久久免费| 成人影院久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟女精品中文字幕| 国产精品99久久99久久久不卡| 久久久久久久午夜电影 | 欧美成人午夜精品| 天天添夜夜摸| 50天的宝宝边吃奶边哭怎么回事| 巨乳人妻的诱惑在线观看| 国产熟女午夜一区二区三区| 欧美日韩av久久| 亚洲中文av在线| 国产亚洲欧美精品永久| 免费看a级黄色片| 大香蕉久久成人网| 欧美日韩精品网址| 亚洲七黄色美女视频| 精品国内亚洲2022精品成人 | 精品国产一区二区久久| 麻豆成人av在线观看| 国产成人精品在线电影| 国产99久久九九免费精品| 精品一区二区三卡| 国产精品亚洲av一区麻豆| 美女视频免费永久观看网站| 又大又爽又粗| 又黄又爽又免费观看的视频| 亚洲av电影在线进入| 成人18禁在线播放| av天堂在线播放| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 亚洲精品国产精品久久久不卡| 国产男女内射视频| 无遮挡黄片免费观看| 国产精华一区二区三区| 女性被躁到高潮视频| 国产精品.久久久| 丰满人妻熟妇乱又伦精品不卡| 午夜福利视频在线观看免费| 日本wwww免费看| 日本黄色视频三级网站网址 | 成人特级黄色片久久久久久久| 久久国产精品大桥未久av| 亚洲情色 制服丝袜| 三上悠亚av全集在线观看| 这个男人来自地球电影免费观看| 亚洲国产精品合色在线| 国产免费现黄频在线看| 淫妇啪啪啪对白视频| 精品国产一区二区三区四区第35| 日本一区二区免费在线视频| 欧美日韩黄片免| 日韩人妻精品一区2区三区| 亚洲成人手机| 热99久久久久精品小说推荐| 99久久综合精品五月天人人| 日本五十路高清| 免费观看a级毛片全部| 下体分泌物呈黄色| 亚洲黑人精品在线| 成人精品一区二区免费| 在线天堂中文资源库| 欧美中文综合在线视频| 精品国产一区二区三区四区第35| 18禁裸乳无遮挡动漫免费视频| 12—13女人毛片做爰片一| 最近最新免费中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利免费观看在线| 久久国产亚洲av麻豆专区| 黄片小视频在线播放| 亚洲一区高清亚洲精品| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 成人国产一区最新在线观看| 中文欧美无线码| 欧美精品啪啪一区二区三区| videosex国产| 一级毛片高清免费大全| 国产精品九九99| 国产高清国产精品国产三级| 美女午夜性视频免费| 亚洲一区高清亚洲精品| 精品亚洲成a人片在线观看| 黄色片一级片一级黄色片| 国产成人欧美| 后天国语完整版免费观看| 久热爱精品视频在线9| 亚洲av第一区精品v没综合| 精品国产国语对白av| 亚洲中文av在线| 久久人妻av系列| 一区福利在线观看| 美女扒开内裤让男人捅视频| 国产又色又爽无遮挡免费看| 一级片'在线观看视频| av天堂在线播放| 99久久国产精品久久久| 久久久久久人人人人人| 欧美日韩视频精品一区| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 在线观看免费高清a一片| 日韩欧美三级三区| 欧美久久黑人一区二区| 欧美老熟妇乱子伦牲交| xxx96com| 一二三四社区在线视频社区8| 国产高清国产精品国产三级| 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 成年动漫av网址| av网站在线播放免费| 精品亚洲成国产av| 久久草成人影院| 亚洲精品在线观看二区| 在线av久久热| 欧美在线黄色| 欧美日韩亚洲国产一区二区在线观看 | 亚洲第一av免费看| 首页视频小说图片口味搜索| 国产精品综合久久久久久久免费 | 男女床上黄色一级片免费看| 免费在线观看日本一区| 两个人免费观看高清视频| 老司机福利观看| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 99久久人妻综合| 99热国产这里只有精品6| 久久久久久人人人人人| 国产熟女午夜一区二区三区| 国产精品综合久久久久久久免费 | videos熟女内射| 在线观看免费日韩欧美大片| 狠狠婷婷综合久久久久久88av| 亚洲精品自拍成人| 久久人妻av系列| 极品少妇高潮喷水抽搐| 日韩欧美免费精品| av一本久久久久| 黑人巨大精品欧美一区二区mp4| 老司机影院毛片| svipshipincom国产片| 极品少妇高潮喷水抽搐| 一级片免费观看大全| 在线国产一区二区在线| 国产免费av片在线观看野外av| 操美女的视频在线观看| 日韩中文字幕欧美一区二区| 日韩欧美免费精品| 丰满迷人的少妇在线观看| 精品视频人人做人人爽| 美女高潮喷水抽搐中文字幕| 大码成人一级视频| 亚洲熟女毛片儿| 亚洲av熟女| 人妻丰满熟妇av一区二区三区 | 亚洲性夜色夜夜综合| 黄色a级毛片大全视频| 又黄又爽又免费观看的视频| 人人妻人人爽人人添夜夜欢视频| 色综合欧美亚洲国产小说| 激情在线观看视频在线高清 | 久久人人爽av亚洲精品天堂| 亚洲国产看品久久| 久9热在线精品视频| 国产精品亚洲一级av第二区| 久久人妻福利社区极品人妻图片| 国产成人精品久久二区二区免费| 国产真人三级小视频在线观看| 男人操女人黄网站| 欧美不卡视频在线免费观看 | 午夜福利,免费看| 国产精品 欧美亚洲| www.自偷自拍.com| 成年人黄色毛片网站| 欧美不卡视频在线免费观看 | 久久久久久人人人人人| 男女免费视频国产| 久久久久久久久免费视频了| 韩国精品一区二区三区| 99国产综合亚洲精品| 午夜福利在线免费观看网站| 日韩欧美一区二区三区在线观看 | 狂野欧美激情性xxxx| 亚洲精品在线观看二区| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| 国产精品自产拍在线观看55亚洲 | 91精品三级在线观看| 国产单亲对白刺激| 久久人人97超碰香蕉20202| 视频区欧美日本亚洲| 18禁裸乳无遮挡动漫免费视频| 在线观看www视频免费| 午夜福利在线观看吧| 欧美 亚洲 国产 日韩一| 国产av精品麻豆| 成人精品一区二区免费| 亚洲av成人av| 一级毛片女人18水好多| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| 欧美人与性动交α欧美软件| 99精国产麻豆久久婷婷| 成人精品一区二区免费| 国产午夜精品久久久久久| 黄色怎么调成土黄色| 99re6热这里在线精品视频| 精品欧美一区二区三区在线| 久久天堂一区二区三区四区| 久久久久视频综合| 新久久久久国产一级毛片| 很黄的视频免费| 久久久久久久久久久久大奶| av国产精品久久久久影院| 91精品三级在线观看| 国产aⅴ精品一区二区三区波| 精品一品国产午夜福利视频| 久久久久国产一级毛片高清牌| 在线观看一区二区三区激情| 女警被强在线播放| 欧美日韩亚洲高清精品| 啪啪无遮挡十八禁网站| 50天的宝宝边吃奶边哭怎么回事| 久久中文看片网| 国产在线精品亚洲第一网站| 久久久精品免费免费高清| 午夜成年电影在线免费观看| 亚洲国产毛片av蜜桃av| 可以免费在线观看a视频的电影网站| 免费黄频网站在线观看国产| 精品一区二区三区四区五区乱码| 欧美 日韩 精品 国产| 欧美色视频一区免费| av免费在线观看网站| 国产精品 国内视频| 曰老女人黄片| 日本a在线网址| a级毛片黄视频| 性色av乱码一区二区三区2| 亚洲一区二区三区不卡视频| 国产三级黄色录像| 久久国产亚洲av麻豆专区| 欧美午夜高清在线| 成人影院久久| 他把我摸到了高潮在线观看| 免费av中文字幕在线| 国产蜜桃级精品一区二区三区 | 日本黄色视频三级网站网址 | 国产精品一区二区精品视频观看| 久久99一区二区三区| 成人永久免费在线观看视频| 91成年电影在线观看| 丁香六月欧美| 捣出白浆h1v1| 在线播放国产精品三级| 久久国产精品男人的天堂亚洲| 免费在线观看亚洲国产| 亚洲一区中文字幕在线| 69av精品久久久久久| 国产在线精品亚洲第一网站| 国产av一区二区精品久久| 婷婷丁香在线五月| 伊人久久大香线蕉亚洲五| 欧美日韩成人在线一区二区| 成年版毛片免费区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成国产人片在线观看| 日韩成人在线观看一区二区三区| 精品久久久久久电影网| tube8黄色片| 最新在线观看一区二区三区| tube8黄色片| 色综合欧美亚洲国产小说| 啦啦啦免费观看视频1| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| 国产精品永久免费网站| 精品乱码久久久久久99久播| 欧美另类亚洲清纯唯美| 欧美午夜高清在线| 高清在线国产一区| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 国产精品九九99| 在线观看舔阴道视频| 亚洲人成77777在线视频| 国产单亲对白刺激| 亚洲伊人色综图| 精品久久久久久电影网| 精品电影一区二区在线| 久久久国产成人精品二区 | 欧美av亚洲av综合av国产av| 欧美成人免费av一区二区三区 | 天天操日日干夜夜撸| 黑人欧美特级aaaaaa片| 91精品三级在线观看| 人人澡人人妻人| 日本黄色日本黄色录像| 国产精品av久久久久免费| 亚洲av成人一区二区三| 精品国产一区二区三区久久久樱花| 在线十欧美十亚洲十日本专区| 老司机影院毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精华国产精华精| 在线观看www视频免费| 久久香蕉激情| 亚洲美女黄片视频| 国产成人啪精品午夜网站| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品免费大片| 久久精品熟女亚洲av麻豆精品| 伦理电影免费视频| 久久中文看片网| 日日爽夜夜爽网站| 久久国产精品大桥未久av| 亚洲自偷自拍图片 自拍| 亚洲精华国产精华精| 亚洲五月色婷婷综合| 久久精品亚洲av国产电影网| 大型黄色视频在线免费观看| 亚洲成a人片在线一区二区| 国产又爽黄色视频| 中出人妻视频一区二区| 亚洲欧美色中文字幕在线| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| 国产亚洲欧美精品永久| 免费少妇av软件| 亚洲avbb在线观看| 国产精品香港三级国产av潘金莲| 国产精品欧美亚洲77777| 午夜免费观看网址| 脱女人内裤的视频| 国产三级黄色录像| 中文字幕精品免费在线观看视频| 免费人成视频x8x8入口观看| 亚洲精品一卡2卡三卡4卡5卡| 男人的好看免费观看在线视频 | 精品高清国产在线一区| 国产伦人伦偷精品视频| 9热在线视频观看99| 久久精品成人免费网站| 免费在线观看影片大全网站| 99久久国产精品久久久| 久久久国产欧美日韩av| 老司机福利观看| 亚洲成人国产一区在线观看| 亚洲色图综合在线观看| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 亚洲国产欧美一区二区综合| 国产视频一区二区在线看| 制服诱惑二区| 黄色 视频免费看| 中文欧美无线码| 午夜两性在线视频| 久9热在线精品视频| 自线自在国产av| 大片电影免费在线观看免费| 丰满的人妻完整版| av一本久久久久| 亚洲av成人一区二区三| 成年动漫av网址| 亚洲精华国产精华精| 成人永久免费在线观看视频| 日韩熟女老妇一区二区性免费视频| 高清欧美精品videossex| 最新的欧美精品一区二区| 丰满饥渴人妻一区二区三| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 免费在线观看黄色视频的| 国产一区在线观看成人免费| 国产精品一区二区在线不卡| 90打野战视频偷拍视频| 水蜜桃什么品种好| tocl精华| 亚洲精品在线美女|