• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of some parameters on the performance of anchor impellers for stirring shear-thinning fluids in a cylindrical vessel*

    2016-10-18 01:45:36HouariAMEUR

    Houari AMEUR

    Institut des Sciences et Technologies, Centre Universitaire Salhi Ahmed, CUN-SA, BP 66, Naama 45000, Algeria,E-mail: houari_ameur@yahoo.fr

    ?

    Effect of some parameters on the performance of anchor impellers for stirring shear-thinning fluids in a cylindrical vessel*

    Houari AMEUR

    Institut des Sciences et Technologies, Centre Universitaire Salhi Ahmed, CUN-SA, BP 66, Naama 45000, Algeria,E-mail: houari_ameur@yahoo.fr

    The 3-D hydrodynamics of shear thinning fluids in a stirred tank with an anchor impeller were numerically simulated. By using a computational fluid dynamics code (CFX 13.0), the obtained results give a good prediction of the hydrodynamics such as the velocity fields and cavern size. The multiple reference frames (MRF) technique was employed to model the rotation of the impellers. The rheology of the fluid was approximated using the Ostwald model. To validate the CFD model, some predicted results were compared with the experimental data and a satisfactory agreement was found. The effects of impeller speed, fluid rheology, and some design parameters on the flow pattern, cavern size and power consumption were explored.

    CFD, computer simulation, stirred tank, anchor impeller, shear thinning fluid

    Introduction

    Mixing operations with non-Newtonian fluids are frequently employed in areas such as the paint, polymer, food or pharmaceutical industries. Additional difficulties for the optimization of processes often occur with such fluids. Shear thinning fluids are a common class of non-Newtonian fluids, the agitation of such fluids results in the formation of well-mixed zone (known as cavern) around the impeller with essentially stagnant and/or slow moving fluids elsewhere. The formation of the stagnant regions gives rise to poor mass and heat transfer rates, which lead to poor quality of the end products[1]. Thus, the mixing of such fluids is a difficult operation and considered as a key step in the chemical industry. It is desirable to eliminate these stagnant regions by a proper mixing design[2-5].

    Low viscosity mixing applications can usually be performed with impeller systems consisting of one or more turbines and propellers. The close-clearance impellers are highly recommended for the mixing of highly viscous fluids, especially for shear thinning fluids, in the laminar regime[6]. For instance, in polymerization reactors, it is desirable to ensure efficient mixing to prevent phenomena like hot spots, to control the molecular weight distribution of the final product,and to avoid the dead zones[7].

    Triveni et al.[7]reported that if turbine impellers are used with highly viscous liquids, flow velocities rapidly decay to low values away from the impeller affecting the blending quality. Turbine impellers are therefore not recommended for use in the laminar regime. For such conditions, close-clearance impellers such as anchors are commonly used. Chhabra and Richardson[8]reported that the flow pattern generated by an anchor agitator is tangential and the anchor is suitable for mixing of viscous Newtonian and non-Newtonian fluids. It has been shown that, at higher impeller rotational speeds, an anchor impeller creates secondary axial and radial flows as well[9]. Nagata[10]revealed by experiments that there exists an axial temperature profile within the vessel. Bertrand et al.[11]and Savreux et al.[12]simulated the 2-D laminar mixing of non-Newtonian fluids with an anchor impeller and they confirmed the finding of Nagata that the anchor is inefficient in the laminar regime. Akiti et al.[13]also studied the behavior of an anchor agitated vessel of 2 L and 4 L capacity using CFD and they observedthat the anchor impeller produces little flow and turbulence in the area beneath the impeller irrespective of the reactor configuration. Karray et al.[14]investigated the performance of the anchor for turbulent Newtonian fluid flow. They found that the use of the classical anchor in turbulent flow yields an important deformation of the anchor arm. To solve this problem,they suggested using an anchor blade. Tanguy et al.[15]measured the power consumption of an anchor agitator for the homogenization of non-Newtonian fluids and they showed that the constant Ksdefined by Metzner and Otto[16]do not vary strongly with the power law index(n). Espinosa-Solares et al.[17]studied the combined effect of bottom clearance and wall clearance on the power consumption rate and they proposed a numerical correlation. They have observed that the power consumption decreases as the bottom and wall clearance increase, which is due to the change in the flow pattern.

    By experiments, Triveni et al.[18]studied the mixing of Newtonian and non-Newtonian fluids in an anchor-agitated vessel. They observed an increase in the fraction of the well-mixed region from 0.7 to 0.95 with increase in impeller speed for both Newtonian and non-Newtonian fluids but the increase is small for viscous fluids. Anne-Archard et al.[19]studied numerically the hydrodynamics and power consumption in a stirred vessel by helical and anchor agitators. They discussed the Metzner-Otto correlation for yield stress fluids.

    By CFD simulations, Prajapati and Ein-Mozaffari[6]investigated the mixing of yield stress fluids for an anchor agitator. They found that the optimum values for the impeller width-to-tank diameter and impeller clearance-to tank diameter ratios were 0.102 and 0.079, respectively. The mixing time and the specific power consumption results for different operating conditions showed that a four-blade anchor impeller is more efficient than a two-blade anchor impeller.

    Our search of the literature shows that a little space has been reserved to the prediction of 3-D hydrodynamics of power-law fluids in a tank equipped with an anchor impeller, through CFD modeling. Thus,the purpose of this paper is to simulate the 3-D flow fields generated by an anchor impeller in the agitation of power-law fluids in a cylindrical tank through the CFD technique and to search another design giving better performance.

    The effects of fluid rheology, agitator speed, impeller blade width, number of blades and some other design parameters on the flow pattern, cavern size and power consumption were evaluated. 0.3 m, height:H/ D=1) fitted with an anchor agitator of 0.006 m×0.012 m blade width which is mounted on a shaft of 0.018 m of diameter(ds). The liquid level is kept equal to the vessel height. The impeller is placed at a clearance(c)from the vessel base equal to 0.02 m.

    Fig.1 Simulated system

    The effect of blade diameter(d )is investigated,four geometrical configurations are realized for this purpose, which are:d/ D=0.57, 0.65, 0.73 and 0.82 respectively.

    2. Mathematical modeling

    The fluid simulated has a shear thinning behavior modeled by the Oswald law. Table 1 resumes the fluid properties (fluid density(ρ), power law index(n)and consistency index(m)) according to the measure of Triveni et al.[7].

    Table 1 Properties of the non-Newtonian fluid studied

    For non-Newtonian fluids, the apparent viscosity(η ) is taken as[2,20]

    The average shear rate is

    where Ksis the shear rate constant andNis the impeller rotational speed.

    1. Simulated system

    Details of the simulated system are shown in Fig.1. It consists of a stirred vessel (diameter:D=

    The generalized Reynolds number (Reg)for non-Newtonian fluids is defined as

    Most of the published literature on shear rate constant had considered the dependency of Kson flow behavior n. But Tanguy et al.[15]reported that Ksis independent ofn . Though the variation in term [(3n+1)/ 4n]n(n-1)is from 0.78 to 0.87 for a range innfrom 0.9 to 0.1, the percentage deviation in Ksis 21.8% and 12.3% respectively. So we have considered the dependence ofKsonnin the calculations.

    Power(P)per unit volume(V)is an important approach for scaling up of an agitated vessel as this parameter ensures a constant specific interfacial area. It can be calculated by integration of the viscous dissipation in all the vessel volume

    where Qvis the viscous dissipation.

    The power number(N p)is calculated as

    3. CFD simulations

    A commercial CFD package (CFX 13.0) was employed to solve the momentum and continuity equations using the finite volume method. A pre-processor(ANSYS ICEM CFD 13.0) was used to discretize the flow domain with an unstructured tetrahedral mesh. A mesh test is performed in order to ensure the accuracy of our predicted results. The original 3-D mesh of the stirred system had 130 451 computational cells. Then,this number was increased by a factor of about 2, until to 260 902 cells. The additional cells changed the power number by more than 3%. Thus, the number of cells was increased again until 521 804 cells. The last mesh did not change the power number by more than 2.5%, therefore, the mesh with 260 902 cells was employed in this investigation. For further details, please refer to our previous work[21]. The simulations were considered converged when the scaled residuals for each transport equations were below 10-6. Most simulations required about 2 000 iterations for convergence. The computations were performed on a 3.60 GHz Intel Pentium IV CPU having 2.00 GB of RAM. The computational time was about 5 h-6 h.

    4. Validation of the cfd model

    The performance of the anchor impeller has been evaluated based on cavern size and power consumption. First, we have seen necessary to validate the CFD model. For this purpose, we have referred to the work of Prajapati and Ein-Mozaffari[6]. We note that the same geometrical conditions undertaken by these authors have been considered. The variation of power number versus Reynolds number is presented in Fig.2. The comparison of our predicted results with the experimental data given by Prajapati and his co-worker shows a satisfactory agreement.

    Fig.2 Impeller power number versus Reynolds number

    On the other hand, we remark that the power number data fall along the line with the slope of -1 at Reg<30, indicating that the flow is laminar. At Reg>30, the data start deviating from the line with the slope of -1. This means that the flow within the mixing tank is in the transitional regime.

    5. Results and discussion

    Results of the 3-D hydrodynamics in the whole vessel volume are presented in this section. Figure 3(a)shows the variations of tangential and radial velocities along the dimensionless vessel radiusR?, where R?=2R/ D,Ris the radial coordinate. We note that the dimensionless tangential velocityand thedimensionless radial velocityare defined as:andrespectively.

    Fig.3 For 1 % CMC,,Z?=0.5,D/ d=0.57

    From Fig.3(a), it is observed that both components reach up their maximum at the impeller blade tip,and begin to decay continuously until becoming negligible at the immediate contact with the side vessel wall. In comparison between the two velocity components, the tangential one is the dominant (Fig.3(b)). These results agree well with the finding of Chhabra and Richardson[8].

    Fig.4 Streamlines for 1 % CMC,Z?=0.5,d/ D =0.57

    5.1 Effect of Reynolds number

    The mixing performance is a function of the flow pattern generated by the impeller. Parameters such as impeller geometry, rotational speed and fluid rheology affect the flow pattern generated by the impeller in the mixing tank. In our study, different parameters have been investigated, we begin the test by searching the effects of impeller rotational speed.

    It would be very useful to improve the knowledge of hydrodynamics, particularly the sheared/unsheared region distribution, in order to provide a predictive tool for designers. Figure 4 presents the streamlines for different Reynolds numbers at the middle height of vessel (Z?=Z/ D=0.5,Zis the vertical coordinate). The important remark from these slices is the formation of dead zones at the outside corner of the vertical arm. These dead zones can be eliminated by increasing the impeller rotational speed.

    5.2 Effect of fluid rheology

    The influence of fluid rheology is discussed in this section. We recall that the CMC (sodium carboxymethyl cellulose) solution is simulated in this study which has a shear thinning behavior. Two concentrations of CMC have been used and all the fluid properties are reported in Table 1.

    Streamlines are presented in Fig.5 for the two CMC concentrations at a location upper the horizontal arm of the anchor impeller. For a laminar regime(Reg=20)and due to the insufficient impeller rotational speed, two vortices are formed at the blade tip. These vortices are detached from the blade tip going away to the vessel wall with the increase of CMC percentage.

    Fig.5 Streamlines for the classical anchor,Z?=0.2,d/ D =0.57

    Fig.6 Power number for the classical anchor (Case 1),d/ D= 0.57

    The power number is calculated also for the two cases, as show in Fig.6, this parameter is greater with increase of viscosity. On the other hand, the continuous increase of the impeller rotation speed permits a reduction in the power required. However, for Reg>30(transitional regime), the decrease ofNp is slight when compared with the laminar regime.

    5.3 Effect of blade diameter

    A mixing operation can be defined as an artificial creation of the fluid flow to decrease its heterogeneity,to accelerate its transfer and to achieve a certain degree of homogeneity. These factors are related to the impeller design and the flow behavior. For this purpose, we have taken into account the impeller shape and some design parameters.

    In this section, we investigate the influence of impeller blade diameter(d). For the same number of blades(α=2), four geometrical configurations are realized and which are:d/ D=0.57, 0.65, 0.73 and 0.82, respectively. Figure 7 gives an insight about the flow pattern generated by changing the ratiod/ D. For low Reynolds numbers(Reg=20), the formation of recirculation loops is observed at each corner of the blade. Reducing the little space between the impeller blade and vessel wall can participate to eliminate these dead zones. On the other hand, the power required(Table 2) is increased, and this is due to the wall effects and inertial forces.

    Fig.7 Streamlines for, 1% CMC,Z?=0.5,α=2

    Table 2 Power number for Reg=20, 1% CMC,α=2

    5.4 Effect of blade number

    Another parameter which can touch the performance of agitated system is the impeller blade number(α). For this end, three geometrical configurations have been tested, which are:α=2, 4 and 6, respectively.

    For an angular position θ=90o, the variation of mean velocity along the vessel height for different impeller blade numbers is presented in Fig.8. The observation of this figure indicates that there is a great difference between the first case and second one, and just a slight difference between the second and third cases. For the two blades impeller, the fluid motion is less intense which is marked by the formation of a recirculation zone at the blade corner (Fig.9). At the same Reynolds number, these dead zones are eliminated in the second and third cases.

    Fig.8 Mean velocity for Reg=20, 1% CMC,d/ D  =0.57,R?=0.3,θ=90o

    Fig.9 Flow fields for Reg=20, 1% CMC,d/ D =0.57,Case 1

    The agitation of shear thinning fluids results in the formation of zone of intense motion near the impeller (called cavern) with essentially stagnant zone elsewhere. Fig.9 (Line 2) presents the cavern size for the three cases studied, as illustrated: the increase in blade number enlarges the cavern size and enhances the mixing performances. Nevertheless, it is penalizing in terms of power consumption (Table 3). From all of these remarks, and since the dead zones can be elimi-nated by the impeller with four blades, thus α=4can be chosen as a sufficient number.

    Table 3 Power number for Reg=20, 1% CMC,d/ D=

    5.5 Effect of impeller design

    In laminar mixing of highly viscous fluids, the mixing is obtained by a sequence of stretching, folding and breaking mechanisms and not by highly energetic eddies, which makes the design of an optimal mixing device very challenging[22-24].

    Here, we tried to add arm blades at different heights and positions (horizontal and/or vertical), four cases have been investigated and summarized in Fig.10. Values of the power number obtained for all cases studied are summarized in Table 4.

    Fig.10 Cavern size for Reg=20, 1% CMC

    Table 4 Power number for Reg=20, 1% CMC

    The classical anchor is inefficient at low Reynolds numbers (Case 1) and the well stirred region is limited at the tank bottom. Mixing may be enhanced at the upper part of the vessel by adding an horizontal arm in this region (Case 2), and a better enhancement of the axial circulation may be obtained if this arm is placed vertically (Case 3) but with additional power cost.

    6. Conclusion

    In this study, the CFD technique was used to investigate the agitation of CMC solution, which is a shear thinning fluid, with an anchor impeller. The cavern size and the specific power consumption results for different operating conditions showed that the insufficient impeller rotational speed and little blade diameter permit the formation of dead zones at the upper corner of blade. For Reg>20, the decrease of power consumption continues but very slightly. The classical anchor is found inefficient in the laminar regime, thus to eliminate the dead zone, to increase the cavern size and to avoid the deformation of blade we suggest the use of arms (horizontal and vertical). The increase of blade number is also important, based on the comparison made previously we can choose the four bladed as sufficient for obtaining the best performance.

    References

    [1] AMANULLAH A., HJORTH S. A. and NIENOW A. W. Cavern sizes generated in highly shear thinning viscous fluids by Scaba 3SHP1 impeller[J]. Food and Bioproducts Processing, 1997, 75(4): 232-238.

    [2] WOZIWODZKI S., BRONIARZ-PRESS L. and OCHOWIAK M. Transitional mixing of shear-thinning fluids in vessels with multiple impellers[J]. Chemical Engineering and Technology, 2010, 33(7): 1099-1106.

    [3] MAA? S., EPPINGER T. and ALTWASSER S. et al. Flow field analysis of stirred liquid-liquid systems in slim reactors[J]. Chemical Engineering and Technology,2011, 34(8): 1215-1227.

    [4] IRANZO A., BARBERO R. and DOMINGO J. et al. Numerical investigation of the effect of impeller design parameters on the performance of a multiphase bafflestirred reactor[J]. Chemical Engineering and Technology, 2011, 34(8): 1271-1280.

    [5] WOZIWODZKI S. Unsteady mixing characteristics in a vessel with forward-reverse rotating impeller[J]. Chemical Engineering and Technology, 2011, 34(5): 767-774.

    [6] PRAJAPATI P., EIN-MOZAFFARI F. CFD Investigation of the mixing of yield- pseudoplastic fluids with anchor impellers[J]. Chemical Engineering and Technology,2009, 32(8): 1211-1218.

    [7] TRIVENI B., VISHWANADHAM B. and MADHAVI T. et al. Mixing studies of non-Newtonian fluids in an anchor agitated vessel[J]. Chemical Engineering Research and Design, 2010, 88(7): 809-818.

    [8] CHHABRA R. P., RICHARDSON J. F. Liquid mixing: In non Newtonian flow in process industries[M]. Oxford, UK: Butterworth-Heinemann, 1999, 324-391.

    [9] OHTA M., KURIYAMA M. and ARAI K. et al. A twodimensional model for the secondary flow in an agitated vessel with anchor impeller[J]. Journal of Chemical Engineering of Japan,1985,18(1): 81-84.

    [10] NAGATA S. Heat transfer in agitated vessel. In mixing: Principles and applications[M]. New York, USA: Wiley,1975, 385-387.

    [11] BERTRAND F., TANGAY P. A. and BRITO-DE LA FUENTE E. A new perspective for the mixing of yield stress fluids with anchor impellers[J]. Journal of Chemical Engineering of Japan, 1996, 29(1): 51-58.

    [12] SAVREUX F., JAY P. and ALBERT M. Viscoplastic fluid mixing in a rotating tank[J]. Chemical Engineering Science, 2007, 62(8): 2290-2301.

    [13] AKITI O., YEBOAH A. and BAI G. et al. Hydrodynamic effects on mixing and competitive reactions in laboratoryreactors[J]. Chemical Engineering Science, 2005, 60(8-9): 2341-2354.

    [14] KARRAY S., DRISS Z. and KCHAOU H. et al. Hydromechanics characterization of the turbulent flow generated by anchor impellers[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(3): 315-328.

    [15] TANGUY P. A., THIBAULT F. and BRITO DE LA FUENTE E. A new investigation of the Metzner-Otto concept for anchor mixing impellers[J]. Canadian Journal of Chemical Engineering, 1996, 74(2): 222-228.

    [16] METZNER A. B., OTTO R. E. Agitation of non-Newtonian fluids[J]. AIChE Journal, 1957, 3(1): 3-10

    [17] ESPINOSA-SOLARES T., BRITO-DE LA FUENTE E. and THIBAULT F. et al. Power consumption with anchor mixers-effect of bottom clearance[J]. Chemical Engineering Communications, 1997, 157(1): 65-71.

    [18] TRIVENI B., VISHWANADHAM B. and VENKATESHWAR S. Studies on heat transfer to Newtonian and non-Newtonian fluids in agitated vessel[J]. Heat Mass Transfer, 2008, 44: 1281-1288.

    [19] ANNE-ARCHARD D., MAROUCHE M. and BOISSON H. C. Hydrodynamics and Metzner-Otto correlation in stirred vessels for yield stress fluids[J]. Chemical Engineering Journal, 2006, 125(1): 15-24.

    [20] MURTHY S. S., JAYANTI S. Mixing of power-law fluids using anchors: Metzner-Otto concept revisited[J]. AIChE Journal, 2003, 49(1): 30-40.

    [21]AMEUR H., BOUZIT M. and HELMAOUI M. Numerical study of fluid flow and power consumption in a stirred vessel with a Scaba 6SRGT impeller[J]. Chemical and Process Engineering, 2011, 32(4): 351-366.

    [22] IRANSHAHI A., DEVALS C. and HENICHE M. et al. Hydrodynamics characterizations of the Maxblend impeller[J]. Chemical Engineering Science, 2007, 62(14): 3641-3653.

    [23] AMEUR H., BOUZIT M. Mixing in shear thinning fluids[J].Brazilian Journal of Chemical Engineering, 2012,29(2): 349-358.

    [24] AMEUR H., BOUZIT M. and HELMAOUI M. Hydrodynamic study involving a Maxblend impeller with yield stress fluids[J]. Journal of Mechanical Science and Technology 2012, 26(5): 1523-1530.

    10.1016/S1001-6058(16)60671-6

    February 10, 2015, Revised June 13, 2015)

    * Biography: Houari AMEUR (1982-), Male, Ph. D.,Assistant Professor

    2016,28(4):669-675

    欧美亚洲 丝袜 人妻 在线| 亚洲精品乱久久久久久| 搡老乐熟女国产| 一本综合久久免费| 一个人免费看片子| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 国产日韩欧美亚洲二区| 精品一品国产午夜福利视频| 欧美黑人欧美精品刺激| 国产亚洲欧美在线一区二区| 国产一区二区三区在线臀色熟女 | 操美女的视频在线观看| 脱女人内裤的视频| 亚洲 国产 在线| 国产欧美日韩精品亚洲av| 久久久久国内视频| 777米奇影视久久| 美国免费a级毛片| 国产精品影院久久| 香蕉丝袜av| 久久这里只有精品19| 两个人看的免费小视频| 黄色 视频免费看| 欧美黑人欧美精品刺激| 久9热在线精品视频| av一本久久久久| 国产精品99久久99久久久不卡| 国产真人三级小视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲欧美精品永久| 老司机在亚洲福利影院| 国产xxxxx性猛交| 1024香蕉在线观看| 高清视频免费观看一区二区| 一区二区日韩欧美中文字幕| 国产国语露脸激情在线看| 人妻 亚洲 视频| 亚洲成人免费av在线播放| av天堂在线播放| 日韩精品免费视频一区二区三区| a级毛片在线看网站| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 人妻 亚洲 视频| 最近最新免费中文字幕在线| 黑人猛操日本美女一级片| 下体分泌物呈黄色| 91麻豆精品激情在线观看国产 | 99精国产麻豆久久婷婷| av又黄又爽大尺度在线免费看| 亚洲专区字幕在线| 国产av一区二区精品久久| 母亲3免费完整高清在线观看| 欧美成人免费av一区二区三区 | 在线观看66精品国产| 大型黄色视频在线免费观看| 男人舔女人的私密视频| 韩国精品一区二区三区| 美女午夜性视频免费| 黑人巨大精品欧美一区二区蜜桃| 国产一区有黄有色的免费视频| 日本欧美视频一区| 亚洲中文av在线| 18禁黄网站禁片午夜丰满| 中文字幕av电影在线播放| 久久久久久人人人人人| 老司机影院毛片| e午夜精品久久久久久久| 国产亚洲精品一区二区www | 国产福利在线免费观看视频| 亚洲欧洲精品一区二区精品久久久| 欧美成人午夜精品| 男女床上黄色一级片免费看| 免费不卡黄色视频| 老司机亚洲免费影院| 巨乳人妻的诱惑在线观看| 69av精品久久久久久 | 啦啦啦 在线观看视频| 免费观看a级毛片全部| 精品国内亚洲2022精品成人 | 免费黄频网站在线观看国产| 国产欧美日韩精品亚洲av| 亚洲精品中文字幕一二三四区 | 国产视频一区二区在线看| 97人妻天天添夜夜摸| 激情视频va一区二区三区| 老熟妇仑乱视频hdxx| 亚洲午夜理论影院| 999精品在线视频| 亚洲熟妇熟女久久| 色婷婷av一区二区三区视频| 女性被躁到高潮视频| 80岁老熟妇乱子伦牲交| 中亚洲国语对白在线视频| 成人国语在线视频| 水蜜桃什么品种好| 高清视频免费观看一区二区| av片东京热男人的天堂| 757午夜福利合集在线观看| 国产在线观看jvid| 丝袜人妻中文字幕| 少妇猛男粗大的猛烈进出视频| 老汉色∧v一级毛片| 亚洲成人国产一区在线观看| av福利片在线| 高清欧美精品videossex| 国产在线观看jvid| 一边摸一边抽搐一进一小说 | 老司机靠b影院| 视频区欧美日本亚洲| 免费不卡黄色视频| 国产精品久久久久久精品电影小说| 两个人免费观看高清视频| 亚洲人成电影观看| 精品国产国语对白av| 国产精品麻豆人妻色哟哟久久| 最近最新中文字幕大全免费视频| 天堂8中文在线网| 在线观看www视频免费| 亚洲熟妇熟女久久| 99热网站在线观看| 日韩一区二区三区影片| 捣出白浆h1v1| 夜夜夜夜夜久久久久| 亚洲一区中文字幕在线| 捣出白浆h1v1| 老司机福利观看| 一级黄色大片毛片| 夫妻午夜视频| 精品一区二区三区av网在线观看 | 99国产精品一区二区蜜桃av | 国产老妇伦熟女老妇高清| 国产成人系列免费观看| a级片在线免费高清观看视频| 夜夜骑夜夜射夜夜干| 国产成人免费无遮挡视频| 欧美日韩亚洲高清精品| 1024香蕉在线观看| 亚洲av日韩在线播放| 成人黄色视频免费在线看| 午夜免费鲁丝| a级毛片黄视频| 久久久久久久大尺度免费视频| 日本五十路高清| 欧美黑人精品巨大| 19禁男女啪啪无遮挡网站| 国产免费现黄频在线看| 中亚洲国语对白在线视频| 午夜激情久久久久久久| 国产区一区二久久| 母亲3免费完整高清在线观看| av在线播放免费不卡| 99re在线观看精品视频| 亚洲精品国产精品久久久不卡| 久久久久久久久久久久大奶| 中文字幕人妻熟女乱码| 中文字幕最新亚洲高清| netflix在线观看网站| 美女视频免费永久观看网站| 搡老岳熟女国产| a在线观看视频网站| 亚洲中文日韩欧美视频| 他把我摸到了高潮在线观看 | 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院| 精品久久久久久电影网| 国产日韩欧美视频二区| 国产有黄有色有爽视频| 久久久久久久久免费视频了| 99国产极品粉嫩在线观看| 交换朋友夫妻互换小说| 99久久99久久久精品蜜桃| 午夜福利乱码中文字幕| 视频区图区小说| 一边摸一边抽搐一进一出视频| 国产精品二区激情视频| av又黄又爽大尺度在线免费看| 激情视频va一区二区三区| 国产av精品麻豆| 国产精品欧美亚洲77777| 午夜视频精品福利| 狠狠狠狠99中文字幕| 丰满人妻熟妇乱又伦精品不卡| 久久久久久人人人人人| 视频在线观看一区二区三区| 国产成人精品久久二区二区免费| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 国产激情久久老熟女| 妹子高潮喷水视频| 国产福利在线免费观看视频| 亚洲国产欧美网| 精品人妻在线不人妻| 超色免费av| 咕卡用的链子| 黄片小视频在线播放| 性少妇av在线| 日本黄色视频三级网站网址 | 婷婷丁香在线五月| 国产一区二区三区视频了| 国产一区二区激情短视频| 欧美另类亚洲清纯唯美| 国产亚洲精品第一综合不卡| 麻豆国产av国片精品| 不卡av一区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产激情久久老熟女| 大型黄色视频在线免费观看| 大香蕉久久成人网| 下体分泌物呈黄色| 欧美日韩中文字幕国产精品一区二区三区 | a级毛片黄视频| 国产一区二区激情短视频| 免费久久久久久久精品成人欧美视频| 99久久人妻综合| 18在线观看网站| 亚洲欧美一区二区三区久久| 久久久水蜜桃国产精品网| 91麻豆av在线| 亚洲伊人色综图| 日韩大码丰满熟妇| 国产精品熟女久久久久浪| 啦啦啦 在线观看视频| 国产成人啪精品午夜网站| 好男人电影高清在线观看| 久久免费观看电影| 亚洲精品久久午夜乱码| 久久久欧美国产精品| 女人精品久久久久毛片| 18禁观看日本| 久久性视频一级片| www日本在线高清视频| 欧美黄色片欧美黄色片| www.精华液| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 色综合婷婷激情| 国产一卡二卡三卡精品| 亚洲第一欧美日韩一区二区三区 | 黄片大片在线免费观看| 亚洲色图av天堂| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 久久中文看片网| 日韩中文字幕视频在线看片| 男女午夜视频在线观看| 一区二区av电影网| 国产精品久久久久久精品古装| 欧美精品一区二区大全| 无限看片的www在线观看| 19禁男女啪啪无遮挡网站| av一本久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 欧美精品人与动牲交sv欧美| 夜夜骑夜夜射夜夜干| 大香蕉久久网| 日本av手机在线免费观看| avwww免费| 亚洲国产av新网站| 少妇粗大呻吟视频| 久久九九热精品免费| 亚洲va日本ⅴa欧美va伊人久久| 国产精品.久久久| 制服人妻中文乱码| 久热这里只有精品99| 国产区一区二久久| 99国产极品粉嫩在线观看| 后天国语完整版免费观看| 亚洲欧美精品综合一区二区三区| 国产免费福利视频在线观看| 久久精品亚洲精品国产色婷小说| 99精国产麻豆久久婷婷| netflix在线观看网站| 久久久久精品人妻al黑| 人人妻人人添人人爽欧美一区卜| 亚洲精品一二三| 2018国产大陆天天弄谢| 欧美精品高潮呻吟av久久| 99精品久久久久人妻精品| 亚洲五月色婷婷综合| 天堂中文最新版在线下载| 美女福利国产在线| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| kizo精华| 欧美精品av麻豆av| 考比视频在线观看| 国产精品免费大片| 美女午夜性视频免费| 国产成人免费观看mmmm| 精品亚洲成a人片在线观看| 欧美日韩一级在线毛片| 成人av一区二区三区在线看| 后天国语完整版免费观看| 一边摸一边做爽爽视频免费| 最新的欧美精品一区二区| 成年人午夜在线观看视频| 大陆偷拍与自拍| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 青青草视频在线视频观看| 欧美午夜高清在线| 国产91精品成人一区二区三区 | 国产一卡二卡三卡精品| 国产高清国产精品国产三级| 久久精品国产亚洲av香蕉五月 | 免费日韩欧美在线观看| 免费女性裸体啪啪无遮挡网站| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 啦啦啦中文免费视频观看日本| 久久av网站| 色尼玛亚洲综合影院| 国产xxxxx性猛交| 一本—道久久a久久精品蜜桃钙片| 天天躁夜夜躁狠狠躁躁| 热99re8久久精品国产| 国产成人欧美| 69精品国产乱码久久久| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 亚洲一区二区三区欧美精品| 亚洲欧美日韩另类电影网站| 一边摸一边抽搐一进一小说 | 欧美老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 久久久精品免费免费高清| 91麻豆av在线| h视频一区二区三区| 成年女人毛片免费观看观看9 | 宅男免费午夜| 国产一区二区 视频在线| 亚洲视频免费观看视频| 国产在线精品亚洲第一网站| 精品人妻熟女毛片av久久网站| 丰满迷人的少妇在线观看| 精品人妻在线不人妻| 免费久久久久久久精品成人欧美视频| 人妻 亚洲 视频| √禁漫天堂资源中文www| 男女无遮挡免费网站观看| 777米奇影视久久| 在线观看一区二区三区激情| 一级片'在线观看视频| tube8黄色片| 国产成人欧美在线观看 | 满18在线观看网站| 欧美日韩av久久| 亚洲av欧美aⅴ国产| 曰老女人黄片| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 99riav亚洲国产免费| 亚洲五月色婷婷综合| 国产黄色免费在线视频| 亚洲三区欧美一区| 成年人黄色毛片网站| 亚洲成人免费电影在线观看| 男人操女人黄网站| 黄色 视频免费看| 久久久国产成人免费| 丝袜在线中文字幕| bbb黄色大片| 韩国精品一区二区三区| 成人国产av品久久久| 亚洲人成伊人成综合网2020| 亚洲欧美激情在线| 国产男女超爽视频在线观看| 中文字幕最新亚洲高清| 国产精品一区二区免费欧美| 免费av中文字幕在线| 日本欧美视频一区| 大型av网站在线播放| 99久久99久久久精品蜜桃| 国产伦理片在线播放av一区| bbb黄色大片| 在线十欧美十亚洲十日本专区| av有码第一页| 国产精品一区二区免费欧美| 国产高清激情床上av| 亚洲综合色网址| 精品亚洲成a人片在线观看| 亚洲人成伊人成综合网2020| 久久久久久人人人人人| 免费观看a级毛片全部| 女同久久另类99精品国产91| 久久久久久久久久久久大奶| 香蕉久久夜色| 国产成人精品在线电影| 怎么达到女性高潮| 国产精品久久久av美女十八| 后天国语完整版免费观看| 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 精品国产国语对白av| 久久中文看片网| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产高清国产av | 啦啦啦 在线观看视频| 亚洲精品国产色婷婷电影| 国产不卡一卡二| 18禁裸乳无遮挡动漫免费视频| 久久国产精品影院| 精品国产乱码久久久久久男人| 亚洲精品av麻豆狂野| 久久久精品免费免费高清| 精品国产一区二区久久| 一级黄色大片毛片| 欧美日韩亚洲综合一区二区三区_| 日日夜夜操网爽| 亚洲成人国产一区在线观看| 欧美另类亚洲清纯唯美| 国产野战对白在线观看| 成人黄色视频免费在线看| 水蜜桃什么品种好| 国产亚洲欧美在线一区二区| 精品第一国产精品| 丁香欧美五月| 国产极品粉嫩免费观看在线| 亚洲欧美激情在线| 丝袜人妻中文字幕| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯 | 日韩一区二区三区影片| 久久久久久久精品吃奶| 一级毛片精品| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 亚洲中文字幕日韩| 国产欧美亚洲国产| 午夜精品久久久久久毛片777| 天天躁日日躁夜夜躁夜夜| 亚洲少妇的诱惑av| a级毛片在线看网站| av国产精品久久久久影院| 涩涩av久久男人的天堂| 99riav亚洲国产免费| av不卡在线播放| 亚洲精品国产精品久久久不卡| 男女高潮啪啪啪动态图| 国产在线一区二区三区精| 久久久国产成人免费| 9热在线视频观看99| 一夜夜www| 天天躁日日躁夜夜躁夜夜| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3 | 欧美精品人与动牲交sv欧美| 亚洲色图综合在线观看| 日韩欧美一区二区三区在线观看 | 成在线人永久免费视频| 久久久久久久久免费视频了| 国产91精品成人一区二区三区 | 捣出白浆h1v1| 极品教师在线免费播放| 最新美女视频免费是黄的| 免费黄频网站在线观看国产| 精品国产乱码久久久久久小说| 一边摸一边抽搐一进一出视频| 久久精品人人爽人人爽视色| 国产高清videossex| 亚洲成人免费av在线播放| 男人操女人黄网站| 成年版毛片免费区| 99国产综合亚洲精品| 高清av免费在线| 国产高清视频在线播放一区| 亚洲国产欧美一区二区综合| 一本大道久久a久久精品| 精品少妇黑人巨大在线播放| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| tocl精华| 国产精品免费视频内射| 亚洲七黄色美女视频| 欧美性长视频在线观看| 成在线人永久免费视频| 精品卡一卡二卡四卡免费| 他把我摸到了高潮在线观看 | 亚洲伊人色综图| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区精品| 亚洲中文字幕日韩| 十八禁人妻一区二区| 在线观看66精品国产| 欧美精品人与动牲交sv欧美| 免费日韩欧美在线观看| 大陆偷拍与自拍| 欧美乱码精品一区二区三区| 国产av精品麻豆| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 国产亚洲精品一区二区www | 国产一区二区激情短视频| 高潮久久久久久久久久久不卡| 免费在线观看完整版高清| 国产片内射在线| 十八禁高潮呻吟视频| av福利片在线| 国产无遮挡羞羞视频在线观看| 夜夜爽天天搞| 五月天丁香电影| 一个人免费在线观看的高清视频| 国产成人一区二区三区免费视频网站| 建设人人有责人人尽责人人享有的| 人成视频在线观看免费观看| 美国免费a级毛片| 极品教师在线免费播放| 91九色精品人成在线观看| 欧美激情 高清一区二区三区| 久久久久精品国产欧美久久久| 久久国产精品男人的天堂亚洲| 最新在线观看一区二区三区| 极品少妇高潮喷水抽搐| 99久久国产精品久久久| 一区二区三区激情视频| a级毛片在线看网站| 国产精品99久久99久久久不卡| 国产成人精品久久二区二区91| 咕卡用的链子| 亚洲中文av在线| av国产精品久久久久影院| 99在线人妻在线中文字幕 | 黄色怎么调成土黄色| 人妻一区二区av| 9色porny在线观看| 宅男免费午夜| 国产人伦9x9x在线观看| 在线观看一区二区三区激情| 最新在线观看一区二区三区| 在线亚洲精品国产二区图片欧美| 如日韩欧美国产精品一区二区三区| 老司机深夜福利视频在线观看| 51午夜福利影视在线观看| 成年人午夜在线观看视频| 亚洲av第一区精品v没综合| 国产成+人综合+亚洲专区| 日韩视频一区二区在线观看| 色播在线永久视频| 国产精品一区二区在线观看99| 免费一级毛片在线播放高清视频 | 黄片大片在线免费观看| 一区二区三区激情视频| 国产精品美女特级片免费视频播放器 | 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 欧美精品一区二区大全| 亚洲欧美激情在线| 视频在线观看一区二区三区| 久久久精品区二区三区| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 免费在线观看黄色视频的| 日韩欧美国产一区二区入口| 极品人妻少妇av视频| 在线观看一区二区三区激情| 夫妻午夜视频| 亚洲av美国av| 免费一级毛片在线播放高清视频 | 久久久久视频综合| 一区福利在线观看| 两个人看的免费小视频| av有码第一页| 亚洲专区字幕在线| 最近最新免费中文字幕在线| 妹子高潮喷水视频| 久久这里只有精品19| 亚洲第一av免费看| av天堂久久9| 岛国毛片在线播放| av电影中文网址| 母亲3免费完整高清在线观看| 亚洲欧美激情在线| bbb黄色大片| 搡老岳熟女国产| 亚洲欧洲精品一区二区精品久久久| 欧美日本中文国产一区发布| av电影中文网址| 国产精品 国内视频| 在线观看www视频免费| 免费在线观看黄色视频的| 国产欧美日韩一区二区三区在线| 欧美人与性动交α欧美精品济南到| 人人妻,人人澡人人爽秒播| 精品欧美一区二区三区在线| 日韩欧美一区二区三区在线观看 | 女警被强在线播放| 丁香欧美五月| 最近最新中文字幕大全电影3 | 久久久久网色| 黄片大片在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 精品午夜福利视频在线观看一区 | 一进一出抽搐动态| 丁香欧美五月| 久久热在线av| 欧美日韩中文字幕国产精品一区二区三区 | 一本色道久久久久久精品综合| 国产又色又爽无遮挡免费看| 亚洲情色 制服丝袜| 国产一卡二卡三卡精品| 国产精品一区二区在线不卡| 免费高清在线观看日韩| 欧美亚洲日本最大视频资源| 国产精品欧美亚洲77777| 国产在线免费精品| 成年人午夜在线观看视频| 男人操女人黄网站|