• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint*

    2016-10-18 01:45:41HuaiyuCHENG程懷玉XinpingLONG龍新平BinJI季斌YeZHU祝葉JiajianZHOU周加建
    關(guān)鍵詞:新平

    Huai-yu CHENG (程懷玉), Xin-ping LONG (龍新平), Bin JI (季斌), Ye ZHU (祝葉),Jia-jian ZHOU (周加建)

    1. Wuhan University, Wuhan 430072, China

    2. Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China

    3. Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,E-mail: chengiu@whu.edu.cn

    ?

    Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint*

    Huai-yu CHENG (程懷玉)1,2,3, Xin-ping LONG (龍新平)1,2, Bin JI (季斌)1,2,3, Ye ZHU (祝葉)1,Jia-jian ZHOU (周加建)3

    1. Wuhan University, Wuhan 430072, China

    2. Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China

    3. Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,E-mail: chengiu@whu.edu.cn

    Unsteady cavitating turbulent flow around twisted hydrofoil is simulated with Zwart cavitation model combined with the filter-based density correction model (FBDCM). Numerical results simulated the entire process of the 3-D cavitation shedding including the re-entrant jet and side-entrant jet dynamics and were compared with the available experimental data. The distribution of finite-time Lyapunov exponent (FTLE) was used to analyze the 3-D behavior of the re-entrant jet from the Lagrangian viewpoint,which shows that it can significantly influence the particle trackers in the attached cavity. Further analysis indicates that the different flow behavior on the suction side with different attack angle can be identified with Lagrangian coherent structures (LCS). For the area with a large attack angle, the primary shedding modifies the flow pattern on the suction side. With the decrease in attack angle,the attached cavity tends to be steady, and LCS A is close to the upper wall. A further decrease in attack angle eliminates LCS A in the boundary layer. The FTLE distribution also indicates that the decreasing attack angle induces a thinner boundary layer along the foil surface on the suction side.

    cavitating flow, twisted hydrofoil, LCS, CFD, cavitation

    Introduction

    Much attention has been focused on cavitating flow because of its complex flow pattern and usually undesirable influence on hydraulic machinery[1-3]. Numerous related experiments have been reported in recent decades and significantly improved knowledge about cavitating flow, such as the relationship between the re-entrant jet and the steady of cavitating flow[4]. At the same time, numerical simulation technology is attracting increasing interest with its notable success in predicting cavitating flows. Huang et al.[5]used filter-based density correction model (FBDCM) with the Zwart cavitation model to investigate unsteady sheet/cloud cavitating flows. Comparisons with experimental results showed that the method captured many details of the cavitating flows, such as the formation,breakup, shedding, and collapse of cavities. Ji et al.[6]numerically investigated complex cavitating flows around a NACA66 hydrofoil with LES. The cavity shedding was theoretically related to the pressure fluctuations by a simplified one dimensional model and 3-D numerical results agreed well with the experimental results.

    To provide an accurate experimental database for the validation of computational methods and contribute to the development guidelines for propeller design,F(xiàn)oeth[7]conducted a series of experiments on the cavitating flow around a twisted hydrofoil, namely, the Delft Twist-11 hydrofoil. Experiments indicated that the re-entrant flow direction was largely dictated by the cavity topology, and the side-entrant jet had a noticeable influence on the behavior of the shedding cycle[8-10]. The unsteady cavitation patterns and their evolution around the Delft twisted hydrofoil were simulated by Ji et al.[11]with PANS model. The numerical results reproduced the 3-D cavity structure well,and the frequency of the cavity shedding agreed well with the experimental observation. Zhao et al.[12]simulated the cavitating flow around a 2-D Clark-Y hydrofoil, and a relatively new technology, the Lagrangian investigations, including Lagrangian Coherent Structures (LCS) and particle trajectory, was applied to describe the 2-D flow patterns and capture substantial circumferential motion. Their work showed that the behaviors of vortex structure in different cavitation developing stages could be described with the distributions of LCSs. The findings demonstrated that LCS was a promising method in the study of cavitating flow also shown by Tseng et al.[3]. However,because of the 3-D characteristic of cavitating flow,the 2-D simulation cannot reproduce the cavitating flow well. As a result, some details may be lost in the analysis of LCS with 2-D numerical data.

    Inspired by previous research, this paper numerically investigates the 3-D cavitating flow around the twisted hydrofoil using the Zwart cavitation model combined with FBDCM turbulence model. Lagrangian investigations, including LCS and particle trajectory,were adopted to study the 3-D behavior of cavitating flow.

    Lagrangian method has been widely used in flow visualization and its comprehensive introduction can be found in Ref.[13]. The geometric structure of the Delft Twist-11 hydrofoil was introduced in detail by Foeth[7]. In the present paper, the attract angle of the entire foil was set to -2oand the chord Cwas 0.15 m in accordance with the experiment by Foeth[7].

    Only half of the Delft Twist-11 hydrofoil was considered because of its symmetry. The hydrofoil was located in a channel with a length of7C , a width of C , and a height of2C . The inlet was at2Cupstream of the hydrofoil, and the inlet velocity was set tou-∞=6.97 m/s. The pressure at the outlet 5C downstream of the origin was determined by the cavitation number. The top, bottom, and side of the channel were set as free slip walls, while the foil surface was set as a non-slip wall. The Zwart cavitation model combined with the FBDCM turbulence model[14]was used in the present simulation. A series of mesh studies was conducted,and findings indicate that the mesh used in the simulation provided a good balance between computational efficiency and accuracy. The cavitation simulation was initialized from steady state results with fully wetted model. Then, the cavitation model combined with FBDCM and the unsteady solver was turned on for the cavitation flow simulation.

    The predicted cavity shedding frequency was 27.7 Hz, which was slightly underestimated compared with the measured frequency of 32.2 Hz[7]. Even though some differences exist between the predicted and measured cavitation shedding cycles, the numerical results still predict the cavitation shedding dynamics well.

    Fig.1 Comparison of the predicted top views of the iso-surfaces of αv=0.1(left) and the experimental pictures (right)[7]

    To show the shedding behavior of cavitation in detail, the time evolution of the predicted cavitating flow is shown by seven snapshots of typical instants in a cycle shown in Fig.1, with the experimental top-view pictures[7]at each instant given for comparison. The numerical cavity shape is depicted by the iso-surface of vapor volume fraction αvwith a value of 0.1. As shown in Fig.1(a), the attached cavity reached its maximum length with a convex closure, here considered as fully developed. The flow on the sides of the attached cavity is forced into the cavity because of the pressure gradient resulting side-entrant jets. At the closure region, the 3-D shape of the hydrofoil induces the re-entrant jet to radially diverge upstream from the closure at mid-plane. The side-entrant and re-entrant jets both reach the leading edge and collide with the main stream. As a result, the attached cavity is cut off at the leading edge, thereby introducing primary shedding, as shown in Fig.1(b). The shedding cavity is advected downstream with the main flow and finally collapses, thereby inducing a U-shaped vortex at the rear of the foil and leaving a concave closure line, as shown in Figs.1(c)-1(e). During this process, the radial divergence of the re-entrant jet is further enhanced because of the concave closure line. The side-entrant and re-entrant jets finally converge, thereby causing secondary shedding, which agrees well with the experimental observation as shown in Fig.1(f). The secondary shedding is much weaker but modifies the closure line topology to a near-convex shape as Fig.1(g)shows. The topology of the attached cavity grows back to its original convex shape and repeats the process. Thus, the present simulation clearly reproduces the cavitation patterns and their evolution around the Delft Twist-11 hydrofoil and captures the behaviors of the re-entrant flow well and show good agreement with experimental observation.

    Fig.2 FTLE field and the time-averaged vorticity distribution in a typical cycle on the symmetry plane

    Fig.3 Vorticity distributions on the symmetry plane

    Fig.4 Lagrangian particle's trackers with different initial locations

    Figure 2(a) shows the FTLE distribution around the Delft Twist-11 hydrofoil on the symmetry plane. The integral time to calculate the FTLE field is the cavity shedding period from t0to t0+Tcycle, where t0corresponds to the instant (a) in Fig.1 and Tcycleis approximately 0.034 s. Two distinct LCSs, LCS A and LCS B, can be observed at the suction side of hydrofoil and upstream the leading edge shown in Fig.2(a). Figure 2(b) describes the time-averaged vorticity distribution on the symmetry plane in the same cycle. The flow separation due to the hydrofoil geometric structure is responsible for the formation of LCS B. A reasonable agreement between the FTLE field and the vorticity distribution near the leading edge at the suction side indicates a connection between LCS A and the vorticity distribution. The relatively steady vortex induced by the attached cavity at the leading edge separates the flow into two parts: the particles near the foil are trapped into the vortex, and those far away from the foil surface are advected downstream with the main stream. The separation tendency between the particles of the two parts leads to a relatively high value of FTLE near the interface, thereby resulting in the formation of LCS A. Figure 4(a) shows the particle trackers initially located at 0.133C downstream the leading edge. Most of the particles move downstream in order because of the uniform main stream. The particles near the hydrofoil surface are transported upstream first and then downstream along the vortex boundary as a result of the behavior of the re-entrant jet. Unlike the vortex near the leading edge, the vortex structure near the trailing edge, which is caused by the U-typed vortex that forms from the shedding cavity,does not induce a distinct region with high FTLE. Figure 3 shows the vorticity distributions on the symmetry plane at instant (a) and instant (d), and indicates that the vortex structure near the trailing edge is unsteady and has little influence on the particle trackers. Figure 4(b) shows the particle trackers initially located near the vortex structure at the trailing edge advected downstream orderly.

    Fig.5 FTLE fields on different planes

    To qualitatively investigate the 3-D cavitation structure due to the effect of attack angle on the LCS structure, Fig.5 shows the FTLE fields on symmetry plane (y/ C =1.0), Plane 1(y/ C =0.8), Plane 2(y/ C =0.6), and Plane 3(y/ C=0.4)and the corresponding attack angles are9o,7.9o,5.1oand 1.9o, respectively. Considering the expensive computational cost for a 3-D FTLE calculation, the 2-D flow calculating method is adopted on these planes. Three types of flow behavior at the suction side can be identified clearly with LCS: (1) for the area near the symmetry plane with a large attack angle, the attached cavity periodically grows and breaks off corresponding to the primary shedding, which induces distinct flow separation along the interface of liquid and vapor. As shown in Fig.5(a), the FTLE distribution on the symmetryplane suggests that the cavitating flow near the symmetry plane significantly modifies the local flow pattern not only near the foil surface but also at the entire suction side, (2) with the decrease in the attack angle,the cavitating flow tends to be steady and only small scale shedding, the secondary shedding, can be observed at the rear part of the attached cavity. The region with high FTLE is concentrated on the boundary of the attached cavity, and LCS A is close to the upper wall, (3) for the area with a lower attack angle, the flow is almost fully wetted, and no separation is observed. LCS A vanishes in the boundary layer in correspondence to this condition. The particles near the hydrofoil pass smoothly along the foil surface. A comparison of the distributions of FTLE on Plane 2 and Plane 3 shows a decrease in the boundary layer thickness with a decreasing attack angle.

    The cavitating flow around Delft twisted hydrofoil was simulated with Zwart cavitation model combined with the FBDCM turbulence model and analyzed with LCS and particle trajectory from the Lagrangian viewpoint. The main conclusions are as follows:

    (1) The Zwart cavitation model combined with the FBDCM turbulence model can accurately capture the flow features in cavitating flows around Delft twisted hydrofoil with reasonable cost. The predicted cavitation evolution agrees well with the experimental results.

    (2) Two distinct LCSs, namely, LCS A and LCS B, are observed at the suction side of the hydrofoil and upstream the leading edge, respectively. The main contributor to the formation of LCS A is the relatively steady vortex near the leading edge, and LCS B is induced by the flow separation because of the geometric structure of hydrofoil. The particle trackers show that the behavior of the re-entrant jet significantly affects the flow in the attached cavity.

    (3) Three types of flow behavior at the suction side can be identified clearly with LCS. For the area with a large attack angle, the FTLE distribution shows that the cavitating flow, especially the primary shedding, modifies the flow pattern on the suction side,with the decrease in attack angle, the attached cavity tends to be steady, and LCS A is close to the upper wall, a further decrease in attack angle causes LCS A to disappear in the boundary layer. The FTLE distribution also indicates that the decreasing attack angle induces a thinner boundary layer along the foil surface on the suction side.

    The 2-D flow calculating method adopted in present paper provides the particle trackers on the symmetry plane and some qualitative conclusions. However, due to the 3-D characteristics of cavitation, it cannot reproduce the behavior of cavitating flow with high accuracy, while the expensive cost for 3-D FTLE calculation method hinders its application in practice. A FTLE calculation method for 3-D flow with reasonnable costs and good accuracies is urgently needed and the relevant work is in progress in our team.

    References

    [1] LUO Xian-wu, JI Bin and TSUJIMOTO Yoshinobu. A review of cavitation in hydraulic machinery[J]. Journal of Hydrodynamics, 2016, 28(3): 335-358.

    [2] KRAVTSOVA A. Y., MARKOVICH D. M. and PERVUNIN K. S. et al. High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil[J]. International Journal of Multiphase Flow, 2014, 60(2): 119-134.

    [3] TSENG C. C., LIU P. B. Dynamic behaviors pf the turbulent cavitating flows based on the Eulerian and Lagrangian view points[J]. International Journal of Heat and Mass Transfer, 2016, 102: 479-500.

    [4] KAWANAMI Y., KATO H. and YAMAGUCHI H. et al. Mechanism and control of cloud cavitation[J]. Journal of Fluids Engineering, 1997, 119(4): 788-794.

    [5] HUANG B., YOUNG Y. L. and WANG G. et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation[J]. Journal of Fluids Engineering, 2013, 135(7): 071301.

    [6] JI B., LUO X. and ARNDT R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow,2015, 68: 121-134.

    [7] FOETH E. J. The structure of three-dimensional sheet cavitation[R]. Delft, The Netherlands: Delft University of Technology, 2008.

    [8] FOETH E. J., Van DOORNE C. W. H. and Van TERWISGA T. et al. Time resolved PIV and flow visualization of 3D sheet cavitation[J]. Experiments in Fluids,2006, 40(4): 503-513.

    [9] PENG X. X., JI B. and CAO Y. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils[J]. International Journal of Multiphase Flow, 2016, 79: 10-22.

    [10] WU X. C., WANG Y. W. and HUANG C. G. Effect of mesh resolution on large eddy simulation of cloud cavitating flow around a three dimensional twisted hydrofoil[J]. European Journal of Mechanics-B/Fluids, 2015, 55(1): 229-240.

    [11] JI B., LUO X. and WU Y. et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2013, 51(5): 33-43.

    [12] ZHAO Y., WANG G. and HUANG B. et al. Lagrangian investigations of vortex dynamics in time-dependent cloud cavitating flows[J]. International Journal of Heat and Mass Transfer, 2016, 93: 167-174.

    [13] HALLER G. Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence[J]. Physics of Fluids, 2001, 13(11): 3365-3385.

    [14] HUANG Biao, WANG Guo-yu and ZHAO Yu. Numerical simulation unsteady cloud cavitating flow with a filterbased density correction model[J]. Journal of Hydrodynamics, 2014, 26(1): 26-36.

    10.1016/S1001-6058(16)60674-1

    August 1, 2016, Revised August 8, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51576143, 11472197) and Science and Technology on Water Jet Propulsion Laboratory (Grant No. 61422230101162223002).

    Biography: Huai-yu CHENG (1993-), Male, Ph. D. Candidate

    Bin JI, E-mail: jibin@whu.edu.cn

    2016,28(4):709-712

    猜你喜歡
    新平
    幼兒園里歡樂(lè)多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    劉新平 油畫(huà)作品
    祝福中國(guó)
    Large eddy simulation of tip leakage cavitating flow focusing on cavitation-vortex interaction with Cartesian cut-cell mesh method *
    URANS simulations of the tip-leakage cavitating flow with verification and validation procedures *
    你總是給我力量
    3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis *
    亚洲av成人不卡在线观看播放网| 搡老妇女老女人老熟妇| 欧美日韩一级在线毛片| 久久 成人 亚洲| 亚洲国产高清在线一区二区三| 精品久久久久久,| 天堂动漫精品| 国产亚洲av嫩草精品影院| 成人三级做爰电影| 白带黄色成豆腐渣| www日本黄色视频网| 99国产综合亚洲精品| bbb黄色大片| 淫妇啪啪啪对白视频| 亚洲精品一卡2卡三卡4卡5卡| 国产一区在线观看成人免费| 亚洲aⅴ乱码一区二区在线播放 | 他把我摸到了高潮在线观看| 一个人免费在线观看电影 | 亚洲中文日韩欧美视频| 久久久久久免费高清国产稀缺| 午夜福利在线在线| 精品少妇一区二区三区视频日本电影| 国产精品精品国产色婷婷| 国产欧美日韩一区二区三| 精品国产美女av久久久久小说| 18禁观看日本| 午夜影院日韩av| 999久久久精品免费观看国产| 国产精品久久久久久久电影 | 又黄又爽又免费观看的视频| 国产精品永久免费网站| 特大巨黑吊av在线直播| 日本一区二区免费在线视频| 一本一本综合久久| www国产在线视频色| 操出白浆在线播放| 欧美性长视频在线观看| 亚洲人与动物交配视频| 欧美日韩瑟瑟在线播放| 亚洲精品av麻豆狂野| 国产成人av激情在线播放| 丰满人妻熟妇乱又伦精品不卡| 桃色一区二区三区在线观看| 国产成人一区二区三区免费视频网站| 99久久精品国产亚洲精品| 首页视频小说图片口味搜索| 18禁黄网站禁片午夜丰满| 日本撒尿小便嘘嘘汇集6| 女人被狂操c到高潮| 亚洲国产中文字幕在线视频| 欧美色欧美亚洲另类二区| 精品国内亚洲2022精品成人| 波多野结衣高清无吗| 国产精品日韩av在线免费观看| 久久天躁狠狠躁夜夜2o2o| 国产精品久久电影中文字幕| 午夜两性在线视频| 亚洲精品粉嫩美女一区| 欧美人与性动交α欧美精品济南到| 中文字幕最新亚洲高清| 国产一区二区三区视频了| 岛国视频午夜一区免费看| 午夜免费激情av| xxx96com| 大型黄色视频在线免费观看| 亚洲av成人av| 桃色一区二区三区在线观看| 成年版毛片免费区| 精品国产美女av久久久久小说| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 黄色 视频免费看| 亚洲精品美女久久av网站| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 麻豆久久精品国产亚洲av| 天堂√8在线中文| 好男人在线观看高清免费视频| 黄色a级毛片大全视频| 亚洲一区二区三区色噜噜| 亚洲精品美女久久久久99蜜臀| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩亚洲综合一区二区三区_| 欧美丝袜亚洲另类 | 国产精品免费视频内射| 天堂√8在线中文| 欧美日韩福利视频一区二区| 一级毛片高清免费大全| 午夜视频精品福利| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 亚洲av成人一区二区三| 五月伊人婷婷丁香| 丝袜人妻中文字幕| 可以在线观看毛片的网站| 亚洲全国av大片| 久久久久久大精品| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看 | 丁香六月欧美| 人人妻人人澡欧美一区二区| a级毛片在线看网站| 国产aⅴ精品一区二区三区波| 国产午夜福利久久久久久| 一二三四社区在线视频社区8| 亚洲人成电影免费在线| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 毛片女人毛片| 在线观看舔阴道视频| 亚洲自拍偷在线| 狠狠狠狠99中文字幕| 国产激情久久老熟女| 午夜激情av网站| 国产欧美日韩一区二区三| 男插女下体视频免费在线播放| 亚洲 欧美一区二区三区| 久久久久亚洲av毛片大全| 精品国产乱码久久久久久男人| 久久草成人影院| 国产黄片美女视频| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 亚洲最大成人中文| 亚洲av成人av| 两人在一起打扑克的视频| 9191精品国产免费久久| 久久亚洲精品不卡| 成人手机av| 国产激情偷乱视频一区二区| 色噜噜av男人的天堂激情| 欧美成人一区二区免费高清观看 | 黄色 视频免费看| a级毛片a级免费在线| 首页视频小说图片口味搜索| 亚洲 欧美 日韩 在线 免费| 成在线人永久免费视频| 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 色播亚洲综合网| 精品一区二区三区av网在线观看| 午夜影院日韩av| 国产精品 国内视频| 日本在线视频免费播放| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 50天的宝宝边吃奶边哭怎么回事| 少妇人妻一区二区三区视频| 免费看十八禁软件| 亚洲中文日韩欧美视频| 国产免费av片在线观看野外av| 两性夫妻黄色片| 看黄色毛片网站| 国产成人系列免费观看| 嫁个100分男人电影在线观看| 一级毛片精品| 久久精品夜夜夜夜夜久久蜜豆 | 国产黄片美女视频| 久久久国产精品麻豆| 欧美成人免费av一区二区三区| 日本成人三级电影网站| 亚洲精品国产精品久久久不卡| 桃色一区二区三区在线观看| 999久久久精品免费观看国产| 亚洲无线在线观看| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 18禁裸乳无遮挡免费网站照片| 可以在线观看毛片的网站| 久久久国产欧美日韩av| 午夜福利视频1000在线观看| 99国产精品一区二区三区| 在线永久观看黄色视频| 夜夜夜夜夜久久久久| 色老头精品视频在线观看| 美女黄网站色视频| 免费看日本二区| 国产亚洲av高清不卡| 亚洲av日韩精品久久久久久密| 狂野欧美激情性xxxx| 在线观看免费视频日本深夜| 欧美日韩亚洲综合一区二区三区_| 亚洲第一电影网av| 国产三级在线视频| 1024手机看黄色片| 亚洲色图av天堂| 岛国视频午夜一区免费看| 久久久精品国产亚洲av高清涩受| 国产黄片美女视频| 国内毛片毛片毛片毛片毛片| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| 99在线视频只有这里精品首页| 一本大道久久a久久精品| 国产精品,欧美在线| 亚洲人成伊人成综合网2020| 亚洲专区国产一区二区| av在线天堂中文字幕| 国产激情久久老熟女| 国内少妇人妻偷人精品xxx网站 | 精品第一国产精品| 一区福利在线观看| av片东京热男人的天堂| 999精品在线视频| 亚洲精品中文字幕一二三四区| 欧美久久黑人一区二区| 国产又色又爽无遮挡免费看| 午夜激情福利司机影院| 国产亚洲精品久久久久久毛片| 亚洲人成77777在线视频| 在线播放国产精品三级| 欧美av亚洲av综合av国产av| 一进一出抽搐动态| 亚洲 欧美 日韩 在线 免费| 最近最新中文字幕大全免费视频| 人妻丰满熟妇av一区二区三区| 2021天堂中文幕一二区在线观| a级毛片在线看网站| 中文字幕久久专区| 亚洲美女视频黄频| 精品欧美一区二区三区在线| 日韩欧美国产一区二区入口| 制服诱惑二区| 小说图片视频综合网站| 久久精品国产亚洲av高清一级| 99热这里只有是精品50| 亚洲片人在线观看| 桃色一区二区三区在线观看| 中文亚洲av片在线观看爽| 国产精品日韩av在线免费观看| 色尼玛亚洲综合影院| av中文乱码字幕在线| 日韩大码丰满熟妇| 午夜激情av网站| 天天添夜夜摸| 国产激情欧美一区二区| 国产精品一及| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利高清视频| 欧美性长视频在线观看| 九九热线精品视视频播放| 高清在线国产一区| av国产免费在线观看| 精品熟女少妇八av免费久了| 国产精品久久久久久久电影 | 欧美黑人欧美精品刺激| 国产v大片淫在线免费观看| 动漫黄色视频在线观看| 亚洲国产欧美一区二区综合| 少妇熟女aⅴ在线视频| 女生性感内裤真人,穿戴方法视频| 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 最近最新免费中文字幕在线| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 夜夜躁狠狠躁天天躁| 亚洲自拍偷在线| 好男人在线观看高清免费视频| 老司机在亚洲福利影院| 男女之事视频高清在线观看| 亚洲av成人一区二区三| 久久精品影院6| 精品午夜福利视频在线观看一区| 男人舔奶头视频| 中国美女看黄片| 久久久久久久久中文| 18禁国产床啪视频网站| 国产精品久久电影中文字幕| 日韩欧美精品v在线| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av| 午夜福利免费观看在线| 脱女人内裤的视频| 亚洲精品色激情综合| 成人亚洲精品av一区二区| 午夜福利在线在线| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 欧美zozozo另类| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 国产片内射在线| 久久人人精品亚洲av| 久久久国产成人免费| 免费无遮挡裸体视频| 叶爱在线成人免费视频播放| 91在线观看av| 亚洲狠狠婷婷综合久久图片| 日韩大尺度精品在线看网址| 岛国视频午夜一区免费看| 亚洲国产中文字幕在线视频| 亚洲乱码一区二区免费版| 一级作爱视频免费观看| 在线观看www视频免费| 日日干狠狠操夜夜爽| 丁香六月欧美| 天堂√8在线中文| 日本三级黄在线观看| 午夜免费成人在线视频| 国产熟女午夜一区二区三区| 精品不卡国产一区二区三区| a级毛片在线看网站| 亚洲最大成人中文| 制服丝袜大香蕉在线| 麻豆一二三区av精品| 亚洲激情在线av| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 可以在线观看的亚洲视频| 黑人巨大精品欧美一区二区mp4| av在线天堂中文字幕| 啦啦啦观看免费观看视频高清| 欧美黑人精品巨大| www.精华液| 国产成人系列免费观看| 99热6这里只有精品| 老汉色∧v一级毛片| 男女视频在线观看网站免费 | a在线观看视频网站| 久久久久国产精品人妻aⅴ院| 黄色视频,在线免费观看| 窝窝影院91人妻| 色综合亚洲欧美另类图片| 国产69精品久久久久777片 | 日日干狠狠操夜夜爽| 国产午夜精品论理片| 91成年电影在线观看| 成人18禁高潮啪啪吃奶动态图| 精华霜和精华液先用哪个| 狂野欧美白嫩少妇大欣赏| 国产99白浆流出| 一边摸一边抽搐一进一小说| 在线a可以看的网站| 色播亚洲综合网| 又黄又爽又免费观看的视频| 国产精品久久久久久人妻精品电影| 日韩国内少妇激情av| 91av网站免费观看| 欧美乱码精品一区二区三区| 国产亚洲欧美在线一区二区| 夜夜躁狠狠躁天天躁| 国产免费av片在线观看野外av| 欧美中文日本在线观看视频| 欧美+亚洲+日韩+国产| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区mp4| 日本 欧美在线| 欧美性长视频在线观看| 91av网站免费观看| 亚洲国产欧美网| 国产三级黄色录像| 免费观看精品视频网站| 精品国产美女av久久久久小说| 特大巨黑吊av在线直播| 国产不卡一卡二| 免费在线观看亚洲国产| 日韩精品青青久久久久久| bbb黄色大片| 亚洲 国产 在线| 好男人在线观看高清免费视频| 黑人巨大精品欧美一区二区mp4| 99久久无色码亚洲精品果冻| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 久久久久久免费高清国产稀缺| 禁无遮挡网站| 日韩欧美 国产精品| 久久香蕉激情| 嫩草影视91久久| 亚洲欧美日韩高清专用| 日韩欧美 国产精品| 99精品久久久久人妻精品| 亚洲成人久久性| 久久香蕉激情| 91字幕亚洲| 国产成人aa在线观看| 日韩免费av在线播放| 欧美色视频一区免费| 久久香蕉精品热| 久久精品成人免费网站| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品成人综合色| 欧美不卡视频在线免费观看 | 身体一侧抽搐| 好男人在线观看高清免费视频| 两个人的视频大全免费| 黄色片一级片一级黄色片| 大型黄色视频在线免费观看| 热99re8久久精品国产| 天天躁夜夜躁狠狠躁躁| 国产成人av教育| 国产爱豆传媒在线观看 | 午夜福利在线在线| 亚洲一区高清亚洲精品| 男女午夜视频在线观看| 桃色一区二区三区在线观看| 成人三级黄色视频| 精品久久久久久成人av| 亚洲激情在线av| 亚洲在线自拍视频| 国产一区二区激情短视频| 国内精品久久久久精免费| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 亚洲性夜色夜夜综合| 99国产精品99久久久久| 欧美性猛交黑人性爽| 精品久久久久久久人妻蜜臀av| 国产精品日韩av在线免费观看| 国产亚洲精品av在线| 制服丝袜大香蕉在线| 色老头精品视频在线观看| 国产成人精品久久二区二区91| 757午夜福利合集在线观看| 国产高清有码在线观看视频 | 国内毛片毛片毛片毛片毛片| 成人高潮视频无遮挡免费网站| 夜夜爽天天搞| 黄色成人免费大全| 岛国在线免费视频观看| 午夜日韩欧美国产| 99国产综合亚洲精品| 无限看片的www在线观看| 亚洲无线在线观看| 国产亚洲精品一区二区www| 国内毛片毛片毛片毛片毛片| 亚洲va日本ⅴa欧美va伊人久久| 精品免费久久久久久久清纯| 国语自产精品视频在线第100页| 中国美女看黄片| 精品免费久久久久久久清纯| www日本在线高清视频| 久久亚洲真实| 精品国产超薄肉色丝袜足j| 欧美日韩福利视频一区二区| 亚洲全国av大片| 夜夜夜夜夜久久久久| www日本黄色视频网| 国内久久婷婷六月综合欲色啪| 深夜精品福利| 在线国产一区二区在线| 少妇裸体淫交视频免费看高清 | 国产精品精品国产色婷婷| 在线十欧美十亚洲十日本专区| 一级片免费观看大全| 亚洲国产高清在线一区二区三| 亚洲人成电影免费在线| 成人三级黄色视频| 中文在线观看免费www的网站 | 搞女人的毛片| 18美女黄网站色大片免费观看| 精品国产超薄肉色丝袜足j| 女警被强在线播放| 少妇人妻一区二区三区视频| 午夜久久久久精精品| 亚洲精品粉嫩美女一区| 超碰成人久久| 十八禁人妻一区二区| 国产爱豆传媒在线观看 | 国产精品,欧美在线| 丁香六月欧美| 最近最新中文字幕大全免费视频| 黑人巨大精品欧美一区二区mp4| 久久久国产成人免费| 国产三级在线视频| 久久久久精品国产欧美久久久| 欧美黑人欧美精品刺激| 欧美乱码精品一区二区三区| 亚洲精华国产精华精| 悠悠久久av| 成人国语在线视频| 国产精品久久久久久精品电影| 99精品在免费线老司机午夜| 久久人妻福利社区极品人妻图片| 精品少妇一区二区三区视频日本电影| 可以在线观看的亚洲视频| 亚洲国产精品999在线| 天堂影院成人在线观看| 亚洲av日韩精品久久久久久密| 国产精品乱码一区二三区的特点| 99riav亚洲国产免费| 一进一出抽搐gif免费好疼| 久久久国产成人精品二区| 男女做爰动态图高潮gif福利片| 精品国内亚洲2022精品成人| 男女之事视频高清在线观看| 欧美三级亚洲精品| 国产视频内射| 亚洲激情在线av| 男男h啪啪无遮挡| 大型av网站在线播放| 国产99白浆流出| 国产麻豆成人av免费视频| 欧美一区二区精品小视频在线| 日韩有码中文字幕| 午夜福利成人在线免费观看| 又紧又爽又黄一区二区| 日日干狠狠操夜夜爽| 好看av亚洲va欧美ⅴa在| 极品教师在线免费播放| 久久 成人 亚洲| 琪琪午夜伦伦电影理论片6080| 国产激情欧美一区二区| 老汉色av国产亚洲站长工具| 欧美久久黑人一区二区| 亚洲av美国av| 中文在线观看免费www的网站 | 美女 人体艺术 gogo| 成人国产一区最新在线观看| 可以在线观看的亚洲视频| 亚洲全国av大片| 热99re8久久精品国产| 人人妻,人人澡人人爽秒播| 午夜老司机福利片| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站| 国内少妇人妻偷人精品xxx网站 | 首页视频小说图片口味搜索| 天天躁狠狠躁夜夜躁狠狠躁| 欧美一级毛片孕妇| 午夜a级毛片| 日韩大尺度精品在线看网址| 久久精品国产亚洲av高清一级| 国产精品久久久久久久电影 | 禁无遮挡网站| 亚洲欧美日韩无卡精品| 国产在线精品亚洲第一网站| 一个人免费在线观看电影 | 波多野结衣高清作品| 欧美乱色亚洲激情| 成人手机av| 少妇人妻一区二区三区视频| 夜夜躁狠狠躁天天躁| 我要搜黄色片| 日本黄大片高清| 性欧美人与动物交配| 黄片小视频在线播放| 国产精品亚洲美女久久久| 国产亚洲av嫩草精品影院| 在线视频色国产色| 夜夜躁狠狠躁天天躁| 国产高清有码在线观看视频 | 国产精品久久视频播放| 午夜福利在线在线| 最新美女视频免费是黄的| 亚洲av日韩精品久久久久久密| 91九色精品人成在线观看| 亚洲av第一区精品v没综合| 国产精品久久久久久人妻精品电影| 精品国产乱子伦一区二区三区| 精品国产美女av久久久久小说| 国产人伦9x9x在线观看| 亚洲精品色激情综合| 人人妻人人看人人澡| 成在线人永久免费视频| 又黄又粗又硬又大视频| 亚洲狠狠婷婷综合久久图片| 国产午夜精品论理片| 91av网站免费观看| 亚洲最大成人中文| av超薄肉色丝袜交足视频| 日本黄色视频三级网站网址| 后天国语完整版免费观看| 91字幕亚洲| www国产在线视频色| 草草在线视频免费看| 国产又黄又爽又无遮挡在线| 长腿黑丝高跟| 精品高清国产在线一区| 免费看美女性在线毛片视频| 亚洲国产精品合色在线| 丝袜人妻中文字幕| 久久久久久人人人人人| 久久久久性生活片| 18禁黄网站禁片免费观看直播| 国产v大片淫在线免费观看| 黄色女人牲交| 一级毛片女人18水好多| 视频区欧美日本亚洲| 国产亚洲精品一区二区www| 大型av网站在线播放| 中文亚洲av片在线观看爽| 欧美日韩福利视频一区二区| av天堂在线播放| 亚洲男人的天堂狠狠| 亚洲中文av在线| 女同久久另类99精品国产91| 国产69精品久久久久777片 | 久久久精品欧美日韩精品| 亚洲电影在线观看av| 亚洲第一欧美日韩一区二区三区| 黄色视频不卡| 亚洲精品一卡2卡三卡4卡5卡| 国产97色在线日韩免费| 长腿黑丝高跟| av福利片在线观看| 欧美黄色淫秽网站| 麻豆国产97在线/欧美 | а√天堂www在线а√下载| 日韩免费av在线播放| 制服人妻中文乱码| 欧美成人性av电影在线观看| 亚洲全国av大片| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯| 好男人电影高清在线观看| xxx96com| 男女视频在线观看网站免费 | 国产aⅴ精品一区二区三区波| 午夜亚洲福利在线播放| 大型黄色视频在线免费观看|