齊艷,趙秀娟,徐琳琪,吳旭東△,汪建濤
細(xì)胞與分子生物學(xué)
白藜蘆醇對(duì)H2O2及TGF-β2誘導(dǎo)人小梁網(wǎng)細(xì)胞的影響及機(jī)制探討
齊艷1,2,趙秀娟2,徐琳琪1,2,吳旭東2△,汪建濤1△
目的 觀察過(guò)氧化氫(H2O2)及轉(zhuǎn)化生長(zhǎng)因子(TGF)-β2誘導(dǎo)人小梁網(wǎng)細(xì)胞(HTMCs)后對(duì)纖維連接蛋白(FN)、膠原蛋白1型(COL1)、核因子(NF)-κB P65蛋白和白細(xì)胞介素(IL)-1β基因表達(dá)的影響及白藜蘆醇(RSV)的干預(yù)作用。方法 (1)選取匯合度70%~80%的HTMCs分為5組。實(shí)驗(yàn)組于無(wú)血清培養(yǎng)基中分別加入濃度為150、300、450、800 μmol/L的H2O2處理,對(duì)照組的培養(yǎng)基中不加H2O2。Western blot法檢測(cè)各組FN、COL1、NF-κB P65、NF-κB P65磷酸化(P-NF-κB P65)蛋白的表達(dá),實(shí)時(shí)定量PCR法檢測(cè)IL-1β基因的表達(dá)。(2)HTMCs細(xì)胞分為3組。對(duì)照組以不含H2O2及RSV的無(wú)血清培基處理,H2O2組以300 μmol/L的H2O2處理,H2O2+RSV組同時(shí)加入300 μmol/L的H2O2及25 μmol/L的RSV處理。檢測(cè)各組上述蛋白和基因的表達(dá)情況。免疫熒光檢測(cè)各組NF-κB P65 在HTMCs中的定位。(3)HTMCs細(xì)胞分為3組。對(duì)照組以不含TGF-β2及RSV的無(wú)血清培基處理,TGF-β2組以5 μg/L的TGF-β2處理,TGF-β2+RSV組為同時(shí)加入5 μg/L的TGF-β2及25 μmol/L的RSV處理。檢測(cè)各組上述蛋白和基因的表達(dá)情況。結(jié)果 (1)與對(duì)照組比較,150、300、450、800 μmol/L組FN和P-NF-κB P65蛋白表達(dá)水平均增高,300、450、800 μmol/L組COL1蛋白和IL-1β基因表達(dá)水平增高(P<0.05),其他指標(biāo)比較差異均無(wú)統(tǒng)計(jì)學(xué)意義。(2)H2O2組較對(duì)照組FN、COL1、P-NF-κB P65蛋白和IL-1β基因表達(dá)水平均增高,而H2O2+RSV組較H2O2組上述指標(biāo)均降低,H2O2+RSV組較對(duì)照組僅IL-1β降低(P<0.05)。對(duì)照組僅細(xì)胞質(zhì)表達(dá)NF-κB P65,H2O2組細(xì)胞胞質(zhì)及核中均有NF-κB P65表達(dá),且核中表達(dá)較多;H2O2+RSV組細(xì)胞胞質(zhì)中表達(dá)NF-κB P65較核中多。(3)TGF-β2組較對(duì)照組FN、COL1、P-NF-κB P65的蛋白和IL-1β基因水平表達(dá)均增高(P<0.05),TGF-β2+RSV組較TGF-β2組上述指標(biāo)均降低(P<0.05)。結(jié)論 H2O2和TGF-β2能上調(diào)HTMCs的FN、COL1、P-NF-κB P65蛋白及IL-1β基因的表達(dá),可能參與青光眼的發(fā)生發(fā)展過(guò)程。RSV能抑制H2O2和TGF-β2對(duì)HTMCs的影響,對(duì)青光眼發(fā)揮一定的保護(hù)作用。
青光眼;小梁網(wǎng);過(guò)氧化氫;轉(zhuǎn)化生長(zhǎng)因子β2;細(xì)胞外基質(zhì);核因子-κB;白細(xì)胞介素1β;纖維連接蛋白;膠原蛋白1型;白藜蘆醇
青光眼在全球致盲眼病中居第2位,嚴(yán)重威脅患者的視覺(jué)質(zhì)量[1]。小梁網(wǎng)細(xì)胞(trabecular meshwork cells,TMCs)細(xì)胞外基質(zhì)(extracellular matrix,ECM)的異常沉積可使房水流出阻力增加,引起眼壓升高,這是開角型青光眼(open angle glaucoma,OAG)的主要發(fā)病機(jī)制之一[2]。氧化應(yīng)激、轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)-β2等可引起TMCs的ECM異常沉積[3-5]。其中,氧化應(yīng)激還可通過(guò)激活核因子(nuclear factor,NF)-κB,使多種炎性因子表達(dá)升高[6]。研究表明,OAG患者小梁網(wǎng)組織中炎性因子白細(xì)胞介素(IL)-1β表達(dá)升高[7]。因此,青光眼的發(fā)生發(fā)展也可能與炎癥的發(fā)生有關(guān)。白藜蘆醇(resveratrol,RSV)是非黃酮類多酚化合物,具有較強(qiáng)的抗氧化能力[8]。研究表明,RSV可抑制TMCs中活性氧的生成[9]及多種炎性因子的表達(dá)[10],但RSV能否抑制TMCs的ECM異常增多尚少見相關(guān)報(bào)道。本研究通過(guò)觀察RSV對(duì)H2O2及TGF-β2刺激下TMCs的ECM、NF-κB P65 及IL-1β的影響,探討RSV對(duì)青光眼的保護(hù)作用及可能機(jī)制。
1.1 材料 人小梁網(wǎng)細(xì)胞株(human trabecular meshwork cells,HTMCs)購(gòu)自美國(guó)ScienCell實(shí)驗(yàn)室;過(guò)氧化氫(H2O2)購(gòu)自中國(guó)aladdin公司;TGF-β2購(gòu)自美國(guó)Peprotech公司;RSV購(gòu)自美國(guó)Sigma公司;DMEM細(xì)胞培養(yǎng)液、胎牛血清、L-谷氨酰胺、丙酮酸鈉、非必需氨基酸、青霉素/鏈霉素均購(gòu)自美國(guó)Gibco公司。纖維連接蛋白(Fibronectin,F(xiàn)N)抗體、膠原纖維1型(Collagen 1,COL1)抗體均購(gòu)自英國(guó)Abcam公司,NF-κB P65磷酸化(P-NF-κB P65)抗體、NF-κB P65抗體均購(gòu)自美國(guó)CST公司,β-actin抗體購(gòu)自南京諾唯贊生物科技公司;Western blot用羊抗鼠二抗及羊抗兔二抗購(gòu)自美國(guó)KPL公司,免疫熒光用羅丹明標(biāo)記山羊抗兔二抗購(gòu)自北京中杉金橋公司;DAPI購(gòu)自北京索萊寶公司,Trizol試劑及逆轉(zhuǎn)錄試劑盒購(gòu)自美國(guó)Thermo公司;PVDF轉(zhuǎn)印膜購(gòu)自瑞士Roche公司,Bradford蛋白定量試劑購(gòu)自美國(guó)BIO-RAD公司;ECL試劑盒購(gòu)自美國(guó)PerkinElmer公司。
1.2 細(xì)胞培養(yǎng) HTMCs培養(yǎng)基為含10%胎牛血清、20 mmol/L L-谷氨酰胺、1 mmol/L丙酮酸鈉、100 μmol/L非必需氨基酸、100 U/mL青霉素、100 mg/L鏈霉素的DMEM高糖培養(yǎng)基,置于37℃含5%CO2的細(xì)胞培養(yǎng)箱培養(yǎng)。細(xì)胞生長(zhǎng)狀態(tài)良好,待匯合度達(dá)70%~80%后用于后續(xù)實(shí)驗(yàn)。
1.3 不同濃度H2O2對(duì)HTMCs的處理 選取匯合度70%~80%的HTMCs,在無(wú)血清培養(yǎng)基中分別加入濃度為150、300、450、800 μmol/L的H2O2處理2 h,另設(shè)不加H2O2處理HTMCs培養(yǎng)2 h為對(duì)照組。
1.3.1 Western blot法檢測(cè)FN蛋白、COL1蛋白、NF-κB P65蛋白、P-NF-κB P65蛋白的表達(dá)水平 不同濃度H2O2處理HTMCs 2 h后,收集細(xì)胞,用含蛋白酶抑制劑(PMSF)的RIPA裂解液(25 mmol/L Tris-HCl pH=7.6,5 mol/L NaCl,1%TritonX-100,1% Na-deoxycholate,0.1%SDS,1 mmol/L EDTA)裂解HTMCs,冰上操作提取蛋白。用Bradford試劑進(jìn)行蛋白定量后,取20~40 μg總蛋白進(jìn)行SDS-PAGE電泳。分離膠總丙烯酰胺百分濃度選為8%(W∶V)。電泳結(jié)束后,采用濕轉(zhuǎn)(4℃,300 mA,2 h)將蛋白轉(zhuǎn)至PVDF膜上,室溫封閉1 h,一抗4℃孵育過(guò)夜(FN抗體1∶8 000,COL1抗體1∶5 000,NF-κB P65抗體1∶3 000,P-NF-κB P65抗體1∶1 000,β-actin抗體1∶2 000)。次日,經(jīng)TBST漂洗3次后,室溫孵育二抗1 h(羊抗兔、羊抗鼠抗體1∶1 000)。TBST漂洗3次后,在PVDF膜上滴加ECL發(fā)光試劑,放入凝膠成像儀自動(dòng)成像系統(tǒng)曝光。以β-actin為內(nèi)參,Western blot法檢測(cè)FN蛋白、COL1蛋白、NF-κB P65蛋白、P-NF-κB P65蛋白的表達(dá)。
1.3.2 實(shí)時(shí)定量PCR法檢測(cè)IL-1β基因的表達(dá) 不同濃度H2O2處理HTMCs 2 h后,收集細(xì)胞,按照試劑盒說(shuō)明書用Trizol試劑提取細(xì)胞總RNA,取吸光度比值(A260/280)在1.8~2.0之間的總RNA(1 μg)進(jìn)行實(shí)驗(yàn)。先使用DNase I去除可能的DNA污染后進(jìn)行逆轉(zhuǎn)錄合成cDNA。以cDNA為模板在7500實(shí)時(shí)熒光定量PCR儀上進(jìn)行qPCR擴(kuò)增。引物序列(5′→3′)GAPDH:上游GCACCGTCAAGGCTGAGAAC;下游TGGTGAAGACGCCAGTGGA;IL-1β:上游AACCTCTTCGAG GCACAAGG;下游GGCGAGCTCAGGTACTTCTG;GAPDH和IL-1β擴(kuò)增長(zhǎng)度分別為138和107 bp。反應(yīng)體系:模板cDNA 1 μL,10 μmol/L上、下游引物各 0.1 μL,2×SYBR GREEN Master Mix 5 μL,無(wú)RNA酶水補(bǔ)足反應(yīng)體系至10 μL。反應(yīng)條件:95℃預(yù)變性5 min;95℃變性15 s,60℃退火和延伸40 s,40個(gè)循環(huán)。選取GAPDH作為內(nèi)參基因。2-ΔΔCt法比較相對(duì)表達(dá)量,ΔΔCt=樣本ΔCt-對(duì)照ΔCt。各指標(biāo)重復(fù)3次取均值。
1.4 RSV對(duì)H2O2誘導(dǎo)的FN蛋白、COL1蛋白、NF-κB P65蛋白、P-NF-κB P65蛋白及IL-1β基因表達(dá)的影響 選取匯合度70%~80%的HTMCs,分為3組。對(duì)照組以不含H2O2及RSV的無(wú)血清培養(yǎng)基處理,H2O2組以300 μmol/L的H2O2處理,H2O2+RSV組同時(shí)加入300 μmol/L的H2O2及25 μmol/L 的RSV處理,以上各組均培養(yǎng)2 h。Western blot法檢測(cè)各組FN蛋白、COL1蛋白、NF-κB P65蛋白、P-NF-κB P65蛋白的表達(dá),方法同1.3.1。實(shí)時(shí)定量PCR法檢測(cè)各組細(xì)胞IL-1β基因的表達(dá),方法同1.3.2。
1.5 免疫熒光檢測(cè)RSV對(duì)H2O2誘導(dǎo)的NF-κB P65核移位的影響 分組同1.4。4%多聚甲醛固定細(xì)胞10 min后,用含0.5%Triton X-100的PBS溶液透化處理5 min,PBS洗3次后,用5 g/L BSA室溫封閉1 h。4℃過(guò)夜孵育一抗(NF-κB P65-抗體1∶400),PBST洗2次后,熒光二抗室溫避光孵育1 h,PBST洗2次后,1 mg/L DAPI室溫孵育5 min,PBS洗3次后,熒光顯微鏡下觀察。
1.6 RSV對(duì)TGF-β2誘導(dǎo)的FN蛋白、COL1蛋白、NF-κB P65蛋白、P-NF-κB P65蛋白及IL-1β基因表達(dá)的影響 選取匯合度70%~80%的HTMCs,分為3組。對(duì)照組以不含TGF-β2及RSV的無(wú)血清培養(yǎng)基處理,TGF-β2組以5 μg/L的TGF-β2處理HTMCs,TGF-β2+RSV組為同時(shí)加入5 μg/L的TGF-β2及25 μmol/L的RSV處理,以上各組均培養(yǎng)12 h。Western blot法檢測(cè)各組細(xì)胞FN蛋白、COL1蛋白、NF-κB P65蛋白、P-NF-κB P65蛋白的表達(dá),方法同1.3.1。實(shí)時(shí)定量PCR法檢測(cè)各組細(xì)胞IL-1β基因的表達(dá),方法同1.3.2。
1.7 統(tǒng)計(jì)學(xué)方法 采用SPSS 20.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)處理。符合正態(tài)分布的計(jì)量資料用±s表示。多組間比較采用單因素方差分析(ANOVA),多樣本組間兩兩比較先進(jìn)行方差齊性檢驗(yàn),方差齊采用LSD-t法,方差不齊采用Dunnett T3法。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
Tab.1 Comparison of related protein and gene expressions between H2O2-treated groups表1H2O2不同濃度組相關(guān)蛋白和基因表達(dá)水平比較 (±s)
Tab.1 Comparison of related protein and gene expressions between H2O2-treated groups表1H2O2不同濃度組相關(guān)蛋白和基因表達(dá)水平比較 (±s)
*P<0.05,**P<0.01;a與對(duì)照組比較,b與150 μmol/L組比較,P<0.05
組別對(duì)照組150 μmol/L組300 μmol/L組450 μmol/L組800 μmol/L組F n 3 3 3 3 3蛋白表達(dá)FN 1.140±0.122 2.621±0.067a2.312±0.198ab2.187±0.157ab1.782±0.143ab47.198**COL1 1.053±0.161 1.709±0.402 2.521±0.511a2.250±0.708a2.480±0.592a4.459*P-NF-κB P65 0.988±0.018 1.155±0.046a1.813±0.115ab2.067±0.026ab1.815±0.059ab165.067**NF-κB P65 0.939±0.053 0.985±0.075 1.049±0.087 1.056±0.072 0.934±0.025 2.339基因表達(dá)IL-1β 1.052±0.072 1.703±0.737 2.192±0.520a3.982±0.162a9.939±1.752a66.712**
2.1 H2O2不同濃度組相關(guān)蛋白和基因表達(dá)水平比較 與對(duì)照組比較,150、300、450、800 μmol/L組FN 和P-NF-κB P65蛋白表達(dá)水平均增高,300、450、800 μmol/L組COL1蛋白和IL-1β基因表達(dá)水平增高(P<0.05),其他指標(biāo)比較差異均無(wú)統(tǒng)計(jì)學(xué)意義。與150 μmol/L組比較,300、450、800 μmol/L組PNF-κB P65蛋白表達(dá)水平增高,F(xiàn)N蛋白表達(dá)水平下降,但仍高于對(duì)照組(P<0.05)。不同濃度組NF-κB P65蛋白表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)意義,見表1、圖1。
2.2 RSV干預(yù)對(duì)H2O2誘導(dǎo)的HTMCs中相關(guān)指標(biāo)的影響 各組NF-κB P65蛋白表達(dá)水平差異無(wú)統(tǒng)計(jì)學(xué)意義。H2O2組較對(duì)照組FN蛋白、COL1蛋白、PNF-κB P65蛋白及IL-1β基因表達(dá)水平均增高,而H2O2+RSV組較H2O2組上述指標(biāo)均降低(P<0.05)。H2O2+RSV組較對(duì)照組僅IL-1β降低(P<0.05),其他指標(biāo)差異均無(wú)統(tǒng)計(jì)學(xué)意義,見圖2、表2。
2.3 RSV干預(yù)對(duì)TGF-β2誘導(dǎo)的HTMCs中相關(guān)指標(biāo)的影響 各組NF-κB P65蛋白表達(dá)水平差異無(wú)統(tǒng)計(jì)學(xué)意義。TGF-β2組較對(duì)照組FN蛋白、COL1蛋白、P-NF-κB P65蛋白和IL-1β基因水平表達(dá)均增高(P<0.05),TGF-β2+RSV組較TGF-β2組上述指標(biāo)均降低(P<0.05),見圖3、表3。
Fig.1 Comparison of related protein expressions between H2O2-treated groups圖1 H2O2干預(yù)下各組相關(guān)蛋白表達(dá)水平比較
Fig.2 Comparison of H2O2-induced related protein expressions under RSV treatment圖2 RSV對(duì)H2O2干預(yù)下各組相關(guān)蛋白表達(dá)水平比較
Fig.3 Comparison of TGF-β2-induced related protein expressions under RSV treatment圖3 RSV對(duì)TGF-β2干預(yù)下各組相關(guān)蛋白表達(dá)水平比較
Tab.2 Comparison of H2O2-induced related protein and gene expressions under RSV treatment表2 RSV對(duì)H2O2干預(yù)下各組相關(guān)蛋白和基因表達(dá)水平比較 (±s)
Tab.2 Comparison of H2O2-induced related protein and gene expressions under RSV treatment表2 RSV對(duì)H2O2干預(yù)下各組相關(guān)蛋白和基因表達(dá)水平比較 (±s)
**P<0.01;a與對(duì)照組比較,b與H2O組比較,P<0.05
組別對(duì)照組H2O2組H2O2+RSV組F n 3 3 3蛋白表達(dá)FN 1.254±0.313 2.238±0.229a1.540±0.157b13.126**COL1 1.093±0.104 1.826±0.027a0.997±0.046b136.362**P-NF-κB P65 1.163±0.147 1.738±0.035a1.218±0.074b32.282**NF-κB P65 1.049±0.050 1.101±0.107 0.890±0.082 2.339基因表達(dá)IL-1β 1.020±0.447 1.832±0.203a0.345±0.093ab159.856**
2.4 RSV干預(yù)對(duì)H2O2誘導(dǎo)的NF-κB p65蛋白核移位的影響 對(duì)照組NF-κB P65只在細(xì)胞胞質(zhì)中表達(dá);H2O2組細(xì)胞的胞質(zhì)及核中均有NF-κB P65表達(dá),且部分細(xì)胞中細(xì)胞核表達(dá)NF-κB P65較細(xì)胞質(zhì)中多;H2O2+RSV組的大部分細(xì)胞的細(xì)胞質(zhì)中表達(dá)NF-κB P65較細(xì)胞核中多,見圖4。
Tab.3 Comparison of TGF-β2-induced related protein and gene expressions under RSV treatment表3 RSV對(duì)TGF-β2干預(yù)下各組相關(guān)蛋白和基因表達(dá)水平比較 (±s)
Tab.3 Comparison of TGF-β2-induced related protein and gene expressions under RSV treatment表3 RSV對(duì)TGF-β2干預(yù)下各組相關(guān)蛋白和基因表達(dá)水平比較 (±s)
**P<0.01;a與對(duì)照組比較,b與TGF-β2組比較,P<0.05
組別對(duì)照組TGF-β2組TGF-β2+RSV組F n 3 3 3蛋白表達(dá)FN 0.985±0.054 1.438±0.069a0.850±0.059b75.449**COL1 0.918±0.076 1.561±0.065a1.231±0.102b47.124**P-NF-κB P65 0.932±0.075 1.551±0.038a0.975±0.072b88.084**NF-κB P65 1.179±0.156 1.133±0.082 1.093±0.044 0.507基因表達(dá)IL-1β 1.029±0.078 3.082±0.692a0.995±0.684b13.495**
研究顯示,青光眼眼壓升高與TMCs的ECM異常沉積有關(guān)[2]。氧化應(yīng)激是造成ECM異常積聚的重要機(jī)制之一[3]。Shen等[11]用300 μmol/L的H2O2處理HTMCs 2 h構(gòu)建氧化應(yīng)激損傷模型,發(fā)現(xiàn)ECM成分FN、COL1等表達(dá)水平升高。Li等[6]用200 μmol/L的H2O2處理豬TMCs造成慢性氧化應(yīng)激后,發(fā)現(xiàn)NF-κB活性及炎性因子IL-1表達(dá)均升高。因此,氧化應(yīng)激損傷不僅上調(diào)ECM相關(guān)蛋白表達(dá),而且可以激活NF-κB信號(hào)通路,引發(fā)炎癥反應(yīng)的參與。本研究結(jié)果顯示,與對(duì)照組比較,150、300、450、800 μmol/L組FN和P-NF-κB P65蛋白表達(dá)水平均增高,300、450、800 μmol/L組COL1蛋白和IL-1β基因表達(dá)水平增高,表明300 μmol/L H2O2處理HTMCs即可建立氧化應(yīng)激損傷模型,從而激活NF-κB,上調(diào)炎性因子表達(dá),造成ECM成分異常積聚。Yun等[12]用1 μmol/L的H2O2處理間充質(zhì)干細(xì)胞,分別在處理15、30、60、90 min時(shí)檢測(cè)發(fā)現(xiàn)NF-κB蛋白表達(dá)水平無(wú)明顯變化,但其磷酸化水平均升高;在處理12 h 時(shí) FN表達(dá)下降,基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)-12表達(dá)升高,表明H2O2可通過(guò)激活NF-κB來(lái)上調(diào)MMP相關(guān)蛋白的表達(dá),使FN蛋白降解。本研究結(jié)果顯示,與對(duì)照組比較,150、300、450、800 μmol/L組NF-κB P65蛋白表達(dá)水平無(wú)明顯變化,與150 μmol/L組比較,300、450、800 μmol/L組P-NF-κB P65蛋白表達(dá)水平增高,F(xiàn)N蛋白表達(dá)水平下降,與上述研究結(jié)果相近。因此,結(jié)合相關(guān)研究,筆者認(rèn)為,F(xiàn)N蛋白在低濃度的H2O2處理下升高明顯,在高濃度的H2O2處理下表達(dá)下降,可能與相關(guān)MMP蛋白表達(dá)升高,進(jìn)而導(dǎo)致FN蛋白發(fā)生降解有關(guān)。
RSV為多酚化合物,具有抗炎、抗氧化等多種生物活性[8]。研究表明,RSV可有效抑制氧化應(yīng)激狀態(tài)下活性氧的增多及炎性因子的表達(dá)[9-10]。另外,RSV可通過(guò)上調(diào)去乙?;福╯irtuin type 1,SIRT1)表達(dá)活性,從而延緩TMCs衰老[13]。以上研究均表明RSV對(duì)TMCs的氧化應(yīng)激損傷具有一定保護(hù)作用,然而有關(guān)RSV對(duì)TMCs的ECM成分的影響如何均未明確。本研究結(jié)果顯示,與H2O2組相比,H2O2+RSV組FN、COL1、P-NF-κB P65的蛋白和IL-1β基因表達(dá)水平均降低,NF-κB P65核移位現(xiàn)象也被有效抑制,提示RSV可有效抑制H2O2誘導(dǎo)的NF-κB信號(hào)通路激活以及ECM相關(guān)蛋白的上調(diào),從而發(fā)揮對(duì)TMCs的保護(hù)作用。但是,本研究還發(fā)現(xiàn),H2O2+RSV組FN、COL1、P-NF-κB P65蛋白表達(dá)與對(duì)照組無(wú)明顯差異,因此,RSV在一定程度上可體現(xiàn)出對(duì)HTMCs的保護(hù)作用,但仍需結(jié)合其他手段對(duì)青光眼進(jìn)行綜合治療。
TGF-β2是存在于人眼房水中的多功能多肽,其在原發(fā)性O(shè)AG患者房水中的濃度明顯高于正常人[14]。研究表明,TGF-β2可誘導(dǎo)TMCs的ECM成分表達(dá)增加[15-16]。TGF-β可通過(guò)激活NF-κB P65的核移位來(lái)促進(jìn)FN的表達(dá),從而影響肺纖維化過(guò)程[17]。NF-κB P65作為轉(zhuǎn)錄因子還可以調(diào)控FN的轉(zhuǎn)錄水平,從而參與上皮間質(zhì)轉(zhuǎn)化過(guò)程[18]。ECM成分FN、COL1異常沉積加快了心肌的纖維化,NF-κB抑制劑PDTC可通過(guò)抑制NF-κB活性,從而阻止FN、COL1的異常積聚[19]。因此,TGF-β2與NF-κB均能調(diào)控FN、COL1的表達(dá)。本研究結(jié)果顯示,與對(duì)照組相比,TGF-β2組FN、COL1、P-NF-κB P65蛋白和IL-1β基因表達(dá)水平均增高,提示在HTMCs中,TGF-β2誘導(dǎo)FN、COL1表達(dá)增加可能與NF-κB的激活密切相關(guān)。有關(guān)腎纖維化的相關(guān)研究表明,RSV可通過(guò)上調(diào)SIRT1來(lái)抑制TGF-β信號(hào)通路,降低COL1、FN的表達(dá)[20-21]。本研究結(jié)果顯示,與TGF-β2組相比,TGF-β2+RSV組FN、COL1、P-NF-κB P65蛋白和IL-1β基因表達(dá)水平均降低,證實(shí)了RSV能有效抑制TGF-β2誘導(dǎo)的FN、COL1表達(dá)增加及NF-κB的激活。然而,TGF-β2+RSV組NF-κB P65與TGF-β2組差異無(wú)統(tǒng)計(jì)學(xué)意義,表明RSV并不能完全抑制ECM的異常積聚。
綜上所述,青光眼的發(fā)生、發(fā)展與氧化應(yīng)激損傷、TGF-β2及NF-κB信號(hào)通路密切相關(guān)。RSV可通過(guò)抑制NF-κB的激活、降低HTMCs炎性因子及ECM蛋白的表達(dá),從而對(duì)青光眼TMCs的應(yīng)激損傷產(chǎn)生一定的保護(hù)作用。RSV有望成為治療青光眼的一種潛在藥物。
(圖4見插頁(yè))
[1]Tham YC,Li X,Wong TY,et al.Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J].Ophthalmology,2014,121(11):2081-2090.doi:10.1016/j.ophtha.2014.05.013.
[2]Vranka JA,Kelley MJ,Acott TS,et al.Extracellular matrix in the trabecular meshwork:intraocular pressure regulation and dysregulation in glaucoma[J].Exp Eye Res,2015,133:112-125.doi:10.1016/j. exer.2014.07.014.
[3]Nita M,Grzybowski A.The role of the reactive oxygen species and oxidative stress in the pathomechanisms of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults[J].Oxid Med Cell Longev,2016,2016:3164734.doi:10.1155/2016/3164734.
[4]Medina-Ortiz WE,Belmares R,Neubauer S,et al.Cellular fibronectin expression in human trabecular meshwork and induction by transforming growth Factor-β2[J].Invest Ophthalmol Vis Sci,2013,54(10):6779-6788.doi:10.1167/iovs.13-12298.
[5]Luna C,Li G,Qiu J,et al.Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress[J].Mol Vis,2009,15:2488-2497.
[6]Li G,Luna C,Liton PB,et al.Sustained stress response after oxidative stress in trabecular meshwork cells[J].Mol Vis,2007,13:2282-2288.
[7]Taurone S,Ripandelli G,Pacella E,et al.Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: immunohistochemical profile of a number of inflammatory cytokines[J].Mol Med Rep,2015,11(2):1384-1390.doi:10.3892/mmr.2014.2772.
[8]Bola C,Bartlett H,Eperjesi F.Resveratrol and eye:activity and molecular mechanisms[J].Graefes Arch Clin Exp Ophthalmol,2014,252(5):699-713.doi:10.1007/s00417-014-2604-8.
[9]Ammar DA,Hamweyah KM,Kahook MY.Antioxidants protect trabecular meshwork cells from hydrogen peroxide-induced cell death [J].Transl Vis Sci Technol,2012,1(1):4.doi:10.1167/tvst.1.1.4.
[10]Luna C,Li G,Liton PB,et al.Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells[J].Food Chem Toxicol,2009,47(1):198-204.doi:10.1016/j.fct.2008.10.029.
[11]Shen W,Han Y,Huang B,et al.MicroRNA-483-3p inhibits extracellular matrix production by targeting smad4 in human trabecular meshwork cells[J].Invest Ophthalmol Vis Sci,2015,56 (13):8419-8427.doi:10.1167/iovs.15-18036.
[12]Yun SP,Lee SJ,Oh SY,et al.Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord- devived mesenchymal stem cells[J].Br J Pharmacol,2014,171(13):3283-3297.doi:10.1111/bph.12681.
[13]Ren ML,F(xiàn)an XJ,Yang XL,et al.SIRT1 promote GTM cell DSBs repair and resist cellular senescence[J].Journal of Sichuan University(Medical Science Edition),2014,45(4):572-577.[任朋亮,范雪嬌,楊曉龍,等.SIRT1增強(qiáng)青光眼小梁網(wǎng)細(xì)胞DSBs修復(fù)能力及抗細(xì)胞衰老的研究[J].四川大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2014,45(4):572-577.doi:10.13464/j.scuxbyxb.2014.04.006.
[14]Tripathi RC,Li J,Chan WF,et al.Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2[J].Exp Eye Res,1994,59(6):723-727.
[15]Wordinger RJ,F(xiàn)leenor DL,Hellberg PE,et al.Effects of TGF-β2,BMP-4,and gremlin in the trabecular meshwork:Implications for glaucoma[J].Invest Ophthalmol Vis Sci,2007,48(3):1191-1200. doi:10.1167/iovs.06-0296.
[16]Webber HC,Bermudez JY,Sethi A,et al.Crosstalk between TGFβand Wntsignalingpathwaysin thehuman trabecular meshwork[J].Exp Eye Res,2016,148:97-102.doi:10.1016/j. exer.2016.04.007.
[17]Sun X,Chen E,Dong R,et al.Nuclear factor(NF)-kappaB p65 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta[J].Life Sciences,2015,122:8-14.doi:10.1016/j.lfs.2014.11.033.
[18]Stanisavljevic J,Porta-de-la-Riva M,Batlle R,et al.The p65 subunit of NF-kappaB and PARP1 assist Snail1 in activating fibronectin transcription[J].J Cell Sci,2011,124(24):4161-4171.doi:10.1242/jcs.078824.
[19]Kumar S,Seqqat R,Chigurupati S,et al.Inhibition of nuclear factor kappaB regresses cardiac hypertrophy by modulating the expression of extracellular matrix and adhesion molecules[J].Free Radic Biol Med,2011,50(1):206-215.doi:10.1016/j. freeradbiomed.2010.10.711.
[20]Xiao Z,Chen C,Meng T,et al.Resveratrol attenuates renal injury and fibrosis by inhibiting transforming growth factor-β pathway on matrix metalloproteinase 7[J].Exp Biol Med(Maywood),2016,241(2):140-146.doi:10.1177/1535370215598401.
[21]Huang XZ,Wen D,Zhang M,et al.Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway[J].J Cell Biochem,2014,115(5):996-1005.doi:10.1002/jcb.24748.
(2016-03-11收稿 2016-04-29修回)
(本文編輯 陸榮展)
The role and mechanism of resveratrol on trabecular meshwork cells induced by H2O2and TGF-β2
QI Yan1,2,ZHAO Xiujuan2,XU Linqi1,2,WU Xudong2△,WANG Jiantao1△
1 Tianjin Medical University Eye Hospital,School of Optometry and Ophthalmology,Eye Institute,Tianjin 300384,China;2 Deparment of Cell Biology,College of Basic Medicine,Tianjin Medical University△
Objective To investigate hydrogen peroxide(H2O2)and transforming growth factor-β2(TGF-β2)induced fibronectin(FN),collagen 1(COL1),nuclear factor(NF)-κB P65 proteins and interlukin(IL)-1β gene expression in human trabecular meshwork cells(HTMCs),and the interventional mechanism of resveratrol(RSV).Methods (1)HTMCs with 70 to 80%confluency were divided into 5 groups.The experimental groups were treated with serum-free medium and with H2O2at concentrations of 150,300,450 and 800 μmol/L.The control group was treated with 0 μmol/L H2O2.The protein levels of FN,COL1,NF-κB P65 and NF-κB P65 phosphorylation(P-NF-κB P65)were measured by Western blot assay.The expression of IL-1β gene was measured by qPCR.(2)HTMCs were divided into 3 groups.The control group was treated withserum-free medium and without H2O2and RSV.The H2O2group was treated with 300 μmol/L H2O2.The H2O2+RSV group was treated with 300 μmol/L H2O2and 25 μmol/L resveratrol(RSV).The expressions of proteins and genes mentioned above were detected in three groups.NF-κB P65 nuclear translocation was assessed by immunofluorescence technique.(3)HTMCs were divided into 3 groups.The control group was treated with serum-free medium and without TGF-β2and RSV.The TGF-β2group was treated with 5 μg/L TGF-β2.The TGF-β2+RSV group was treated with 5 μg/L TGF-β2and 25 μmol/L RSV. The expressions of proteins and genes mentioned above were detected in three groups.Results (1)Compared with control group,the protein levels of FN and P-NF-κB P65 were significantly increased in 150,300,450 and 800 μmol/L groups,the expression levels of COL1 protein and IL-1β gene were significantly increased in 300,450 and 800 μmol/L groups(P<0.05).There were no statistical significances between other indicators.(2)The expression levels of FN,COL1,P-NF-κB P65 proteins and IL-1β gene were significantly higher in H2O2group than those in control group,and which were significantly lower in H2O2+RSV group than those in H2O2group.Compared with control group,only the expression of IL-1β gene was decreased in H2O2+RSV group(P<0.05).NF-κB P65 was only expressed in cytoplasm in control group,while it was expressed in both cytoplasm and nucleus in H2O2group.Compared with H2O2group,NF-κB P65 was mainly expressed in cytoplasm.(3)Compared with control group,the expressions of FN,COL1,P-NF-κB P65 proteins and IL-1β gene were significantly increased in TGF-β2group(P<0.05).Compared with TGF-β2group,the indicators mentioned above were significantly decreased in TGF-β2+RSV group(P<0.05).Conclusion H2O2and TGF-β2can upregulate the expression of FN,COL1,P-NF-κB P65 proteins and IL-1β gene in HTMCs,which may be involved in the development and progression of glaucoma.RSV can inhibit the influence of H2O2and TGF-β2in HTMCs and exert a protective effect on glaucoma.
glaucoma;trabecular meshwork;hydrogen peroxide;transforming growth factor beta2;extracellular matrix;NF-kappa B;interleukin-1beta;protein fiber connection;collagen 1;Resveratrol
R775.2
A
10.11958/20160149
國(guó)家自然科學(xué)基金(81270994,31570774,81500170);天津市科技計(jì)劃項(xiàng)目(10ZCKFSY08400);天津市教育委員會(huì)基金(093-201301)
1天津醫(yī)科大學(xué)眼科醫(yī)院,天津醫(yī)科大學(xué)眼科研究所,天津醫(yī)科大學(xué)眼視光學(xué)院(郵編300384);2天津醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院細(xì)胞生物學(xué)系
齊艷(1990),女,碩士在讀,主要從事眼視光學(xué)、青光眼研究
△通訊作者 吳旭東E-mail:wuxudong@tijmu.edu.cn;汪建濤E-mail:wangjiantao65@126.com