荊瀛黎,劉小野,白帆,董浩,陳惠
褪黑素對脊髓損傷大鼠突觸可塑性的作用①
荊瀛黎1,2,3,4,劉小野5,白帆1,2,3,4,董浩1,2,3,4,陳惠1,2,3,4
目的探討褪黑素對脊髓損傷后突觸可塑性的影響。方法雌性Sprague-Dawley大鼠54只分為假手術組(n=18)、對照組(n=18)和褪黑素組(n=18)。采用改良Allen法復制大鼠T10中度損傷模型(10 g×25 mm)。免疫熒光法檢測運動神經(jīng)元數(shù)目,尼氏染色檢測神經(jīng)元中尼氏小體表達;Western blotting檢測神經(jīng)纖維絲-200(NF-200)、腦源性神經(jīng)營養(yǎng)因子(BDNF)、突觸素Ⅰ和神經(jīng)生長相關蛋白-43(GAP-43)的表達。結果術后7 d,與假手術組相比,對照組、褪黑素組運動神經(jīng)元數(shù)、神經(jīng)元中尼氏小體、NF-200、BDNF、突觸素Ⅰ和GAP-43表達下降;與對照組相比,褪黑素組運動神經(jīng)元數(shù)、神經(jīng)元中尼氏小體、NF-200、BDNF、突觸素Ⅰ和GAP-43的表達明顯增加(P<0.01)。結論褪黑素能夠修復損傷的突觸可塑性,可能是促進運動功能恢復的機制。
脊髓損傷;突觸可塑性;褪黑素;大鼠
[本文著錄格式]荊瀛黎,劉小野,白帆,等.褪黑素對脊髓損傷大鼠突觸可塑性的作用[J].中國康復理論與實踐,2016,22(7): 774-778.
CITED AS:Jing YL,Liu XY,Bai F,et al.Effects of melatonin on synaptic plasticity after spinal cord injury in rats[J].Zhongguo Kangfu Lilun Yu Shijian,2016,22(7):774-778.
突觸是神經(jīng)環(huán)路中相鄰神經(jīng)元之間進行信息傳遞和加工的關鍵結構;在中樞神經(jīng)系統(tǒng)中,整個神經(jīng)元表面積60%~80%被突觸所占據(jù)[1-2]。突觸可塑性是指突觸連接在形態(tài)和功能上的修飾,主要是指突觸在一定條件下調(diào)整功能、改變形態(tài)和增減數(shù)目的能力,包括突觸傳遞效能的變化和突觸結構的改變[3-4]。目前對脊髓損傷的研究主要集中在損傷后脊髓神經(jīng)功能的修復和重建,其中對突觸可塑性的研究已成為神經(jīng)康復領域的熱點和重點。
褪黑素是由松果體分泌的一種分布廣泛的吲哚胺類神經(jīng)遞質化合物,具有強大的調(diào)節(jié)免疫內(nèi)分泌、抗炎、抗氧化、抗腫瘤、抗衰老等功能。褪黑素在腦損傷和脊髓損傷模型中有神經(jīng)保護作用[5-6]。本研究選擇與突觸可塑性密切相關的神經(jīng)元細胞結構,檢測褪黑素對神經(jīng)纖維絲-200(neurofilament-200,NF-200)、腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factors,BDNF)、突觸素Ⅰ(synapsin I)、生長相關蛋白-43 (growth-associated protein-43,GAP-43)等的影響,為臨床褪黑素治療脊髓損傷及其繼發(fā)性損傷提供理論依據(jù)。
1.1主要試劑
褪黑素(Melatonin):美國SIGMA公司,用1%乙醇配成10 mg/ml。兔單克隆NeuN抗體、兔多克隆NF-200抗體、兔多克隆突觸素Ⅰ抗體、兔多克隆GAP-43抗體:美國ABCAM公司。FITC-標記的山羊抗兔抗體:美國INVITROGEN公司。HRP-標記的山羊抗兔二抗:美國SANTACRUZ公司。
1.2實驗動物和分組
SPF級健康雌性Sprague-Dawley大鼠54只,體質量(200±20)g,購自首都醫(yī)科大學實驗動物中心,許可證號SCXK(京)2012-0001。飼養(yǎng)于有空調(diào)的房間,人工控制光照12 h∶12 h光/暗周期,溫度(22±2)℃,相對濕度(55±10)%。食物和水自行攝取。分為假手術組、對照組和褪黑素組,每組18只。實驗方案已獲得首都醫(yī)科大學實驗動物倫理委員會批準。
1.3方法
1.3.1模型制備
采用改良Allen打擊裝置制作中度脊髓損傷模型。大鼠苯巴比妥鈉35 mg/kg腹腔注射麻醉,俯臥位固定在手術臺上,備皮,常規(guī)消毒,以T10為中心行后正中線縱行切口,顯露T9-11棘突及椎板,切除T10椎板。以脊髓后正中血管為中心,10 g打擊棒自25 mm高自由落下撞擊T10脊髓,并壓迫脊髓1 min。打擊后鼠尾出現(xiàn)無規(guī)則痙攣性擺動、大鼠損傷平面以下完全癱瘓為成功標志。術畢用青霉素鹽水沖洗傷口,逐層縫合組織。早晚各按壓排尿1次,直至恢復排尿反射。
假手術組只切除椎板,不打擊脊髓。
術后30 min內(nèi),褪黑素組予褪黑素10 mg/kg腹腔注射,對照組予同體積1%乙醇。每天2次,共7 d。假手術組不給藥。
1.3.2運動功能評定
分別在損傷后1 d、2 d、3 d、4 d和7 d對各組大鼠采用BBB評分法[7]進行評分。
1.3.3免疫熒光染色
術后7 d,各組取6只大鼠,苯巴比妥鈉35 mg/kg腹腔注射麻醉。4%PFA灌流,取出脊髓,4%PFA后固定4 h,30%蔗糖脫水過夜。冰凍切片機切片,厚20 μm。PBS漂洗玻片;4%BSA 37℃封閉非特異性抗原30 min;加兔單克隆NeuN抗體(1∶100),4℃過夜;PBS漂洗玻片;加FITC-標記的山羊抗兔抗體(1 ∶100),37℃孵育60 min;漂洗玻片;加入防淬滅劑,熒光顯微鏡下觀察、拍照。
1.3.4尼氏染色
同前法取材,冰凍切片;梯度酒精分別脫水1 min;蒸餾水浸洗玻片2次;0.1%焦油紫染液37℃水浴120 min;蒸餾水浸洗玻片3次;冰醋酸乙醇(0.75 ml∶300 ml)分色2 min;100%酒精脫水4 min;二甲苯透明4 min;中性樹膠封片;顯微鏡下觀察,拍照。
1.3.5Western blotting
各組6只大鼠,苯巴比妥鈉35 mg/kg腹腔注射麻醉,以打擊點為中心取脊髓組織1 cm,剪碎,加裂解液冰浴60 min。14000 g離心10 min,BCA法定量蛋白。樣品于12%SDS-PAGE凝膠電泳分離,轉至PVDF膜,加兔多克隆NF-200抗體、兔多克隆突觸素Ⅰ抗體、兔多克隆GAP-43抗體,結合上含有辣根過氧化酶的抗兔IgG,ECL顯色。ChemiDoc MP System獲取圖像,以β-actin為內(nèi)參,Quantity One軟件測定條帶的相對光密度。
1.3.6圖像分析[8]
從損傷中心向前后各延伸0.5 mm,每5張切片取1張,熒光顯微鏡20倍視野下對脊髓橫斷面目標位置拍照。用Image Pro Plus 7.0分析NeuN陽性神經(jīng)元數(shù)目和尼氏小體灰度值。
1.4統(tǒng)計學分析
利用SPSS 17.0軟件對數(shù)據(jù)進行統(tǒng)計學分析。計數(shù)資料用(±s)表示,符合正態(tài)分布的用t檢驗或單因素方差分析,非正態(tài)分布資料用秩和檢驗。顯著性水平α=0.05。
2.1運動功能
損傷后1~4 d,褪黑素組BBB評分與對照組間無顯著性差異(P>0.05);損傷后7 d,褪黑素組BBB評分明顯高于對照組(P<0.01)。見表1。
表1 脊髓損傷后7 d內(nèi)各組BBB評分比較
2.2運動神經(jīng)元
假手術組脊髓前角運動神經(jīng)元胞體較大,軸突較多。對照組灰質中NeuN陽性神經(jīng)元數(shù)目降低,大部分出現(xiàn)皺縮,染色質濃染,軸突變性。褪黑素組NeuN陽性神經(jīng)元數(shù)增加。見圖1、表2。
圖1 各組脊髓神經(jīng)元(NeuN染色,20×)
尼氏染色觀察,對照組神經(jīng)元中尼氏小體較假手術組明顯減少甚至溶解,染色淺淡或著色不均;褪黑素組尼氏小體有所增加。見圖2、表2。
圖2 各組脊髓神經(jīng)元尼氏小體(尼氏染色,20×)
表2 各組運動神經(jīng)元數(shù)及尼氏小體比較
2.3Western blotting
對照組NF-200、BDNF、突觸素Ⅰ和GAP-43表達水平較假手術組下降(P<0.05),褪黑素組NF-200、 BDNF、突觸素Ⅰ和GAP-43水平較對照組上升(P<0.05)。見圖3、表3。
圖3 各組Western blotting結果
表3 各組Western blotting結果比較(相對光密度)
本研究顯示,脊髓損傷后,支持神經(jīng)功能和神經(jīng)可塑性的分子系統(tǒng)受到削弱;而在損傷后30 min內(nèi)給予褪黑素能發(fā)揮保護作用,促進運動功能恢復,顯著增加突觸可塑性相關蛋白表達。
尼氏小體的主要功能是合成蛋白質,包括復制細胞器、產(chǎn)生與神經(jīng)遞質有關的蛋白質和酶[9-10]。尼氏小體的多少可以反映神經(jīng)細胞生物信息傳遞能力的強弱[11]。脊髓損傷后,前角運動神經(jīng)細胞合成蛋白質及相關酶的能力明顯下降,細胞固縮,結構改變,神經(jīng)細胞接收和傳遞信息的能力減弱。給予褪黑素后,大鼠脊髓前角運動神經(jīng)細胞增加,尼氏小體也隨之增加支持褪黑素對神經(jīng)元的保護作用。
NF是構成神經(jīng)元胞體和神經(jīng)軸突細胞骨架的主要成分,在神經(jīng)系統(tǒng)發(fā)育、神經(jīng)系統(tǒng)損傷后修復及神經(jīng)退行性疾病中起重要作用[12]。NF基因轉錄的調(diào)控對NF的表達至關重要,尤其是在神經(jīng)再生和神經(jīng)退行性疾病中[13]。按相對分子質量,NF可分為NF-68、NF-140和NF-200三種。正常情況下,NF-200只存在于軸突中;軸突損傷后,軸突的延長和重構可以被重新誘導,NF-200是重要的誘導合成蛋白之一[14-15]。研究發(fā)現(xiàn),脊髓損傷后,在多種誘導因子的作用下,損傷區(qū)神經(jīng)元合成大量NF-200,有利于神經(jīng)再生[15-16]。褪黑素增加脊髓損傷后NF-200表達,改善神經(jīng)元的形態(tài),在神經(jīng)系統(tǒng)軸漿運輸和可塑性方面發(fā)揮重要作用。
脊髓損傷降低損傷區(qū)BDNF水平,這可能是多種機制的綜合結果,如神經(jīng)沖動的輸入減少、鄰近區(qū)域的映射降低,BDNF的產(chǎn)生也可能受生長抑制劑如髓鞘相關糖蛋白的影響[17-18]。BDNF是強有力的突觸促進劑,也是神經(jīng)可塑性的啟動者[19-22]。GAP-43是軸突再生的標志物,被用于觀察中樞神經(jīng)系統(tǒng)隨時間的再生過程,有效的干預可促進GAP-43標記軸突纖維的生長[23-24]?;貧w分析顯示,在脊髓半切模型中,突觸素與后肢運動功能的恢復有很強的相關性[25]。本研究顯示,褪黑素能有效逆轉損傷造成的BDNF、GAP-43和突觸素的降低。
因此,褪黑素神經(jīng)保護作用的重要機制可能涉及突觸可塑性的修復。
[1]Menon V,Musial TF,Liu A,et al.Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites[J].Neuron,2013,80(6):1451-1463.
[2]O'Rourke NA,Weiler NC,Micheva KD,et al.Deep molecular diversity of mammalian synapses:why it matters and how to measure it[J].Nat Rev Neurosci,2012,13(6):365-379.
[3]Lohmann C,Kessels HW.The developmental stages of synaptic plasticity[J].J Physiol,2014,592(Pt 1):13-31.
[4]Henley JM,Wilkinson KA.AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging[J].Dialogues Clin Neurosci,2013,15(1):11-27.
[5]Shinozuka K,Staples M,Borlongan CV.Melatonin-based therapeutics for neuroprotection in stroke[J].Int J Mol Sci,2013,14 (5):8924-8947.
[6]Wang Z,Ma C,Meng CJ,et al.Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model[J].J Pineal Res,2012,53 (2):129-137.
[7]Basso DM,Beattie MS,Bresnahan JC.A sensitive and reliable locomotor rating scale for open field testing in rats[J].J Neurotrauma,1995,12(1):1-21.
[8]Loy DN,Crawford CH,Darnall JB,et al.Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat[J].J Comp Neurol,2002,445 (4):308-324.
[9]Wang BG,Zhu QS,Man XX,et al.Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury[J]. Neural Regen Res,2014,9(18):1678-1687.
[10]Jing L,Wang JG,Zhang JZ,et al.Upregulation of ICAM-1 in diabetic rats after transient forebrain ischemia and reperfusion injury[J].J Inflamm(Lond),2014,11(1):35.
[11]Meng XJ,Wang F,Li CK.Resveratrol is neuroprotective and improves cognition in pentylenetetrazole-kindling model of epilepsy in rats[J].Indian J Pharm Sci,2014,76(2):125-131.
[12]Lin AC,Holt CE.Function and regulation of local axonal translation[J].Curr Opin Neurobiol,2008,18(1):60-68.
[13]Wang HT,Wu MF,Zhan ChN,et al.Neurofilament proteins in axonal regeneration and neurodegenerative diseases[J].Neural Regen Res,2012,7(8):620-626.
[14]Ding P,Liu M,Gu XS,et al.Effect of nerve regeneration factor on GAP-43HE and NF-L gene expression in dorsal root ganglia cell[J].J Chin Pharm Univ,2001,32(3):231-234.
[15]Korshunova I,Mosevitsky M.Role of the growth-associated protein GAP-43 in NCAM-mediated neurite outgrowth[J]. Adv Exp Med Biol,2010,663:169-182.
[16]Emery DL,Royo NC,F(xiàn)ischer I,et al.Plasticity following injury to the adult central nervous system:is recapitulation of a developmental state worth promoting[J].J Neurotrauma,2003,20(12):1271-1292.
[17]Ghiani CA,Ying Z,de Vellis J,et al.Exercise decreases myelin-associated glycoprotein expression in the spinal cord and positively modulates neuronal growth[J].Glia,2007,55(9): 966-975.
[18]Filbin MT.Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS[J].Nat Rev Neurosci,2003,4(9):703-713.
[19]Tanaka J,Horiike Y,Matsuzaki M,et al.Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines[J].Science,2008,319(5870):1683-1687.
[20]Gómez-Pinilla F,Ying Z,Roy RR,et al.Afferent input modulates neurotrophins and synaptic plasticity in the spinal cord[J].J Neurophysiol,2004,92(6):3423-3432.
[21]Gulino R,Gulisano M.Involvement of brain-derived neurotrophic factor and sonic hedgehog in the spinal cord plasticity after neurotoxic partial removal of lumbar motoneurons[J]. Neurosci Res,2012,73(3):238-247.
[22]Chen S,Wu B,Lin J.Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury[J].Neural Regen Res,2012,7(19):1445-1453.
[23]Chen M,Xiang Z,Cai J.The anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells(hUCB-MSCs)on acute optic nerve injury is transient[J]. Brain Res,2013,1532:63-75.
[24]Fouad K,Vavrek R,Cho S.A TrkB antibody agonist promotes plasticity following cervical spinal cord injury in adult rats[J]. J Neurotrauma,2010.[Epub ahead of print].
[25]Gulino R,Dimartino M,Casabona A,et al.Synaptic plasticity modulates the spontaneous recovery of locomotion after spinal cord hemisection[J].Neurosci Res,2007,57(6):148-156.
Effects of Melatonin on Synaptic Plasticity after Spinal Cord Injury in Rats
JING Ying-li1,2,3,4,LIU Xiao-ye5,BAI Fan1,2,3,4,DONG Hao1,2,3,4,CHEN Hui1,2,3,4
1.Capital Medical University School of Rehabilitation Medicine,Beijing 100068,China;2.Institute of Rehabilitation Science of China,China Rehabilitation Research Center,Beijing 100068,China;3.Center of Neural Injury and Repair,Beijing Institute for Brain Disorders,Beijing 100068,China;4.Beijing Municipal Key Laboratory for Neural Injury and Rehabilitation,Beijing 100068,China;5.Beijing Friendship Hospital,Capital Medical University,Beijing 100050,China
Correspondence to CHEN Hui.E-mail:chenhui55299@163.com
Objective To observe the effects of melatonin on synaptic plasticity impaired by spinal cord injury in rats.Methods A total of 54 female Sprague-Dawley rats were divided into sham group(n=18),control group(n=18)and melatonin group(n=18).Spinal cord injury model was established with modified Allen's method at T10(10 g from 25 mm height).The number of neurons and the expression of the Nissl body were detected with immunofluorescence and Nissl staining.The expression of neurofilament-200(NF-200),brain-derived neurotrophic factors(BDNF),Synapsin I and growth-associated protein-43(GAP-43)was detected with Western blotting.Results Seven days after injury,the number of motoneurons,the expression of Nissl body in motoneurons,and the expression of BDNF,Synapsin I and GAP-43 decreased in the control group compared with those in the sham group,and they increased in the melatonin group compared with those in the control group.Conclusion Melatonin can repair the impaired synaptic plasticity,which might promote the functional recovery after spinal cord injury.
spinal cord injury;synaptic plasticity;melatonin;rats
10.3969/j.issn.1006-9771.2016.07.007
R651.2
A
1006-9771(2016)07-0774-05
1.北京腦重大疾病研究院科研促進項目(No.PXM2014_014226_000016)11421311;2.神經(jīng)損傷與康復北京市重點實驗室2015年度科技創(chuàng)新基地培育與發(fā)展專項項目(No.Z151100001615055);3.中央級公益性科研院所基本科研業(yè)務費專項資金項目(No.2015CZ-12)。
1.首都醫(yī)科大學康復醫(yī)學院,北京市100068;2.中國康復研究中心中國康復科學所,北京市100068;3.北京腦重大疾病研究院神經(jīng)損傷與修復研究所,北京市100068;4.神經(jīng)損傷與康復北京市重點實驗室,北京市100068;5.首都醫(yī)科大學附屬北京友誼醫(yī)院,北京市100050。作者簡介:荊瀛黎(1983-),女,山東煙臺市人,博士研究生,主要研究方向:病理生理。通訊作者:陳惠(1955-),女,研究員,主要研究方向:神經(jīng)生物學。E-mail:chenhui55299@163.com。
2015-12-09
2016-03-01)