吳佳俊,江宇峰,伍 超,馬 瀅,陳 寧,陶李芬芳,張雨露,趙享龍,楊 雁
(安徽醫(yī)科大學(xué) 1.藥理學(xué)教研室和天然藥物研究所,2.藥學(xué)院,3.生命科學(xué)院,安徽 合肥 230032)
?
Smad3 WT、Smad3 EPSM、Smad3 3S-A3種質(zhì)粒穩(wěn)轉(zhuǎn)HepG2細(xì)胞株的建立與功能研究
吳佳俊1,江宇峰1,伍超1,馬瀅1,陳寧2,陶李芬芳2,張雨露2,趙享龍3,楊雁1
(安徽醫(yī)科大學(xué) 1.藥理學(xué)教研室和天然藥物研究所,2.藥學(xué)院,3.生命科學(xué)院,安徽 合肥230032)
摘要:目的建立Smad3 WT、Smad3 EPSM及Smad3 3S-A 3種質(zhì)粒穩(wěn)轉(zhuǎn)HepG2細(xì)胞株,探究單純轉(zhuǎn)染3種質(zhì)粒及選擇性上調(diào)pSmad3C、pSmad3L對(duì)HepG2細(xì)胞功能的影響。方法采用脂質(zhì)體轉(zhuǎn)染試劑盒將Smad3 WT(野生型Smad3基因)、Smad3 EPSM(Smad3L區(qū)磷酸化位點(diǎn)突變)、Smad3 3S-A(Smad3C區(qū)磷酸化位點(diǎn)突變)3種質(zhì)粒轉(zhuǎn)染至HepG2 細(xì)胞中,經(jīng)G418篩選陽(yáng)性細(xì)胞,Western blot法鑒定3種質(zhì)粒穩(wěn)轉(zhuǎn)細(xì)胞株的轉(zhuǎn)染效率。MTT法檢測(cè)細(xì)胞增殖情況。流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期及凋亡。結(jié)果Western blot結(jié)果顯示,轉(zhuǎn)染相應(yīng)質(zhì)粒的HepG2細(xì)胞高表達(dá)目的蛋白,提示穩(wěn)轉(zhuǎn)細(xì)胞株構(gòu)建成功。MTT結(jié)果顯示,在缺乏TGF-β1刺激情況下,轉(zhuǎn)染3種質(zhì)粒后對(duì)HepG2細(xì)胞增殖幾乎沒(méi)有影響,TGF-β1能夠誘導(dǎo)穩(wěn)轉(zhuǎn)細(xì)胞株的細(xì)胞增殖,且轉(zhuǎn)染Smad3 EPSM質(zhì)粒的HepG2細(xì)胞,較未轉(zhuǎn)染、轉(zhuǎn)染Smad3 WT或Smad3 3S-A質(zhì)粒的HepG2細(xì)胞對(duì)TGF-β1誘導(dǎo)的細(xì)胞增殖反應(yīng)減弱。細(xì)胞周期分析顯示,TGF-β1刺激下,轉(zhuǎn)染Smad3 EPSM質(zhì)粒組G0/G1期細(xì)胞數(shù)明顯增多,而轉(zhuǎn)染Smad3 3S-A質(zhì)粒組G2/M期細(xì)胞數(shù)增加明顯。細(xì)胞凋亡檢測(cè)顯示,TGF-β1刺激下,較未轉(zhuǎn)染和轉(zhuǎn)染Smad3 WT質(zhì)粒組,轉(zhuǎn)染Smad3 EPSM質(zhì)粒組細(xì)胞凋亡率明顯增加,而轉(zhuǎn)染Smad3 3S-A質(zhì)粒組細(xì)胞凋亡率明顯降低。結(jié)論成功建立Smad3 WT、Smad3 EPSM及Smad3 3S-A 3種質(zhì)粒穩(wěn)轉(zhuǎn)HepG2細(xì)胞株,為進(jìn)一步探討開發(fā)能夠經(jīng)由調(diào)控pSmad3C、pSmad3L的藥物提供一定的基礎(chǔ)。
關(guān)鍵詞:Smad3 WT質(zhì)粒;Smad3 EPSM質(zhì)粒;Smad3 3S-A質(zhì)粒;HepG2細(xì)胞;穩(wěn)定轉(zhuǎn)染;細(xì)胞增殖;細(xì)胞周期;細(xì)胞凋亡
目前常用的質(zhì)粒轉(zhuǎn)染技術(shù)主要有兩種:瞬時(shí)轉(zhuǎn)染、穩(wěn)定轉(zhuǎn)染[1]。穩(wěn)定轉(zhuǎn)染是將轉(zhuǎn)染的外源性基因整合進(jìn)入宿主細(xì)胞染色體中,實(shí)現(xiàn)長(zhǎng)期穩(wěn)定表達(dá),應(yīng)用較為廣泛[2]。實(shí)現(xiàn)穩(wěn)定轉(zhuǎn)染常用的轉(zhuǎn)染方法有磷酸鈣法、電穿孔法、慢病毒載體基因轉(zhuǎn)染法、脂質(zhì)體介導(dǎo)基因轉(zhuǎn)染法等。電穿孔法、磷酸鈣法基因轉(zhuǎn)染效率較低;慢病毒載體基因轉(zhuǎn)染法轉(zhuǎn)染率雖高,但存在的潛在危害性較大;脂質(zhì)體轉(zhuǎn)染法具有低細(xì)胞毒性,對(duì)多種類型的細(xì)胞都具有高轉(zhuǎn)染效率等優(yōu)點(diǎn),是目前最常用的轉(zhuǎn)染方法[3]。近年來(lái)研究發(fā)現(xiàn),轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-beta,TGF-β)/Smad信號(hào)通路在肝細(xì)胞癌(hepatocellular carcinoma,HCC)的發(fā)生發(fā)展過(guò)程中的作用隨階段不同而異,在HCC早期,TGF-β1可抑制上皮細(xì)胞增殖、誘導(dǎo)細(xì)胞凋亡,對(duì)腫瘤起抑制作用,在HCC晚期則促進(jìn)腫瘤浸潤(rùn)和轉(zhuǎn)移,推動(dòng)腫瘤進(jìn)程,TGF-β信號(hào)的雙重作用與Smad3的C末端和連接區(qū)磷酸化密切相關(guān)[4-5]。一方面,TGF-β通過(guò)活化I型TGF-β受體(TβRI)使Smad3C末端磷酸化形成pSmad3C,即TβRI/pSmad3C;另一方面,TGF-β可活化促絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)通路,促進(jìn)Smad3連接區(qū)磷酸化為pSmad3L,即MAPK/pSmad3L[5]。TβRI/pSmad3C介導(dǎo)的是腫瘤抑制信號(hào),而MAPK/pSmad3L介導(dǎo)的是致有絲分裂和促進(jìn)腫瘤發(fā)生信號(hào)[6]。提示,Smad3的不同位點(diǎn)磷酸化對(duì)腫瘤的發(fā)生發(fā)展起反向調(diào)控作用,降低Smad3L磷酸化水平、恢復(fù)或提高Smad3C磷酸化水平,可能阻斷肝細(xì)胞向肝癌細(xì)胞轉(zhuǎn)化或肝癌細(xì)胞向正常肝細(xì)胞轉(zhuǎn)歸。有關(guān)Smad3 WT、Smad3 EPSM及Smad3 3S-A 3種質(zhì)粒穩(wěn)定轉(zhuǎn)染對(duì)于HepG2肝癌細(xì)胞的增殖、周期及凋亡等功能研究未見(jiàn)相關(guān)報(bào)道。本研究擬采用脂質(zhì)體介導(dǎo)基因轉(zhuǎn)染法,將攜帶Smad3不同位點(diǎn)磷酸化基因的質(zhì)粒(Smad3 EPSM:Smad3連接區(qū)磷酸化位點(diǎn)突變,選擇性磷酸化Smad3C;Smad3 3S-A:Smad3 C-末端磷酸化位點(diǎn)突變,選擇性磷酸化Smad3L;以正常野生型基因Smad3 WT為對(duì)照)轉(zhuǎn)入人肝癌HepG2細(xì)胞,建立穩(wěn)轉(zhuǎn)Smad3 WT-HepG2、Smad3 EPSM-HepG2及Smad3 3S-A-HepG2細(xì)胞模型,探討穩(wěn)轉(zhuǎn)后不同目的基因的表達(dá)對(duì)肝癌HepG2細(xì)胞增殖、凋亡等功能的影響。
1材料與方法
1.1主要試劑與儀器
DMEM培養(yǎng)基購(gòu)自美國(guó)HyClone公司,新生胎牛血清購(gòu)自杭州四季青生物工程材料有限公司,Recombinant Human TGF-β1購(gòu)自Peprotech公司,Lipofectamine?LTX and Plus Reagent購(gòu)自Invitrogen公司,G418、四甲基偶氮唑鹽(MTT)購(gòu)自美國(guó)Sigma公司產(chǎn)品,Western 及IP細(xì)胞裂解液和細(xì)胞周期檢測(cè)試劑盒購(gòu)自碧云天生物技術(shù)研究所,Annexin V-FITC細(xì)胞凋亡檢測(cè)試劑盒購(gòu)自貝博公司產(chǎn)品,質(zhì)粒和兔抗pSmad3L抗體源于日本關(guān)西醫(yī)科大學(xué)Matsuzaki博士惠贈(zèng),兔抗Smad3抗體購(gòu)自Santa Cruz Biotechnology,兔抗pSmad3C抗體購(gòu)自Cell Signaling Technology,YJ-1450型醫(yī)用凈化工作臺(tái)購(gòu)自北京冠鵬凈化設(shè)備有限責(zé)任公司,Nap-co-6100 型CO2培養(yǎng)箱購(gòu)自美國(guó)杜邦公司,各種規(guī)格移液器購(gòu)自德國(guó)Eppendorf公司,多功能酶標(biāo)儀購(gòu)自荷蘭雷勃公司,流式細(xì)胞儀購(gòu)自美國(guó)Beckman公司。
1.2細(xì)胞
HepG2細(xì)胞株購(gòu)于中國(guó)科學(xué)院上海細(xì)胞庫(kù)。
1.3穩(wěn)轉(zhuǎn)Smad3 WT、Smad3 EPSM及Smad3 3S-AHepG2細(xì)胞株的構(gòu)建
[7]
1.3.1G418篩選濃度確定將2.5×108cells·L-1的HepG2細(xì)胞接種于24孔細(xì)胞培養(yǎng)板,每孔加入500 μL含10%胎牛血清的DMEM培養(yǎng),24 h后細(xì)胞達(dá)到80%~90%匯合率,分別加入100、200、300、400、500、600、700、800、900和1 000 mg·L-1濃度的G418培養(yǎng)液。培養(yǎng)7~14 d,細(xì)胞全部死亡的最低濃度即為篩選濃度(600 mg·L-1),維持濃度為篩選濃度一半(300 mg·L-1)。
1.3.2細(xì)胞轉(zhuǎn)染將對(duì)數(shù)生長(zhǎng)期的HepG2細(xì)胞接種于6孔板內(nèi),過(guò)夜培養(yǎng),當(dāng)細(xì)胞密度為70%~80%時(shí),進(jìn)行轉(zhuǎn)染。實(shí)驗(yàn)分為空白對(duì)照組、G418對(duì)照組、Smad3 WT轉(zhuǎn)染組、Smad3 EPSM轉(zhuǎn)染組、Smad3 3S-A轉(zhuǎn)染組。取對(duì)數(shù)生長(zhǎng)期的HepG2細(xì)胞,操作按脂質(zhì)體轉(zhuǎn)染試劑盒說(shuō)明書進(jìn)行。轉(zhuǎn)染前1 d,接種待轉(zhuǎn)染細(xì)胞于6孔板中,調(diào)整細(xì)胞數(shù)為每孔約5×108cells·L-1×2 ml培養(yǎng)基(含10%胎牛血清,不含抗生素)中。待細(xì)胞達(dá)到80%~85%融合時(shí)轉(zhuǎn)染:分別用250 μL opti-MEM培養(yǎng)基稀釋4 μg Smad3 EPSM質(zhì)粒、Smad3 3S-A質(zhì)粒、Smad3 WT質(zhì)粒;250 μL opti-MEM培養(yǎng)基稀4 μL lipofectamine?,并在室溫下孵育5 min;將稀釋了的質(zhì)粒和稀釋了的lipofectamine?混合,在室溫下孵育20 min,促使二者復(fù)合物的形成,并在30 min內(nèi)與HepG2細(xì)胞混合孵育;棄去原先6孔板中的培養(yǎng)液,用無(wú)血清的培養(yǎng)基沖洗待轉(zhuǎn)染細(xì)胞兩次,然后在5個(gè)孔中每孔分別加入高糖的DMEM(無(wú)血清)1.5 mL,再分別加入500 μL混合物,前后左右輕輕晃動(dòng)培養(yǎng)板使混勻;5% CO2、37 ℃、飽和濕度的CO2細(xì)胞培養(yǎng)箱中孵育6 h后,將無(wú)血清培養(yǎng)基更換為含10%胎牛血清的DMEM(每孔2 ml)。
1.3.3G418篩選穩(wěn)定轉(zhuǎn)染的細(xì)胞轉(zhuǎn)染48 h后,細(xì)胞用含600 mg·L-1的G418和含10%胎牛血清的培養(yǎng)液篩選2周左右,直到空白對(duì)照組細(xì)胞完全死亡,然后用含300 mg·L-1的G418和含10%胎牛血清的培養(yǎng)液維持篩選并擴(kuò)增培養(yǎng),篩選成功的陽(yáng)性細(xì)胞分別命名為Smad3 WT-HepG2細(xì)胞、Smad3 EPSM-HepG2細(xì)胞及Smad3 3S-A-HepG2細(xì)胞。
1.4Western blot檢測(cè)轉(zhuǎn)染細(xì)胞株中Smad3、pSmad3C、pSmad3L蛋白水平
實(shí)驗(yàn)分為轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒的HepG2細(xì)胞,無(wú)(或有)TGF-β1(9 pmol·L-1,1 h)刺激的轉(zhuǎn)染細(xì)胞組,和無(wú)(或有)TGF-β1(9 pmol·L-1,1 h)刺激的正常HepG2細(xì)胞組。分別收集對(duì)數(shù)生長(zhǎng)期HepG2細(xì)胞(HepG2)、轉(zhuǎn)染Smad3 WT質(zhì)粒的HepG2細(xì)胞(Smad3 WT-HepG2)、轉(zhuǎn)染Smad3 EPSM質(zhì)粒的HepG2細(xì)胞(Smad3 EPSM-HepG2)、轉(zhuǎn)染Smad3 3S-A質(zhì)粒的HepG2細(xì)胞(Smad3 3S-A-HepG2),調(diào)整細(xì)胞密度至2.5×108cells·L-1,種瓶(25 cm2培養(yǎng)瓶,4 mL),待細(xì)胞單層鋪展面積達(dá)80%~90%,更換為無(wú)血清DMEM培養(yǎng)基,繼續(xù)培養(yǎng)24 h,在培養(yǎng)結(jié)束前1 h,于相應(yīng)細(xì)胞組加9 pmol·L-1TGF-β1共培養(yǎng)。培養(yǎng)結(jié)束后,提取細(xì)胞總蛋白,Western blot檢測(cè)pSmad3C、pSmad3L、Smad3蛋白水平,以GAPDH為內(nèi)參[8]。
1.5MTT比色法檢測(cè)轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒對(duì)HepG2細(xì)胞增殖的影響
收集對(duì)數(shù)生長(zhǎng)期HepG2、Smad3 WT-HepG2、Smad3 EPSM-HepG2、Smad3 3S-A-HepG2細(xì)胞,調(diào)整細(xì)胞密度至1.0×104cells·L-1接種于96孔培養(yǎng)板,每孔200 μL。實(shí)驗(yàn)分為HepG2組、HepG2+TGF-β1(9 pmol·L-1)組、Smad3 WT-HepG2組、Smad3 WT-HepG2+TGF-β1(9 pmol·L-1)組、Smad3 EPSM-HepG2組、Smad3 EPSM-HepG2+TGF-β1(9 pmol·L-1)組、Smad3 3S-A-HepG2組、Smad3 3S-A-HepG2+TGF-β1(9 pmol·L-1)組,每組設(shè)3個(gè)復(fù)孔。待細(xì)胞單層鋪展面積達(dá)80%時(shí),更換無(wú)血清培養(yǎng)基,繼續(xù)培養(yǎng)12 h后,于相應(yīng)組別加9 pmol·L-1TGF-β1共培養(yǎng)16 h,每孔加MTT(5 g·L-1)20 μL,繼續(xù)培養(yǎng)4 h,棄孔內(nèi)上清液,每孔加二甲基亞砜(DMSO)150 μL,水平搖床上震蕩10 min后,置酶標(biāo)儀上檢測(cè)各孔吸光度值(A570nm)[9]。實(shí)驗(yàn)重復(fù)3次。
1.6流式細(xì)胞術(shù)(flow cytometry,F(xiàn)CM)檢測(cè)轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒對(duì)HepG2細(xì)胞周期的影響
取對(duì)數(shù)生長(zhǎng)期的HepG2、Smad3 WT-HepG2、Smad3 EPSM-HepG2及Smad3 3S-A-HepG2細(xì)胞,調(diào)整細(xì)胞密度至1.0×108cells·L-1接種于6孔培養(yǎng)板,繼續(xù)培養(yǎng)至細(xì)胞單層鋪展面積達(dá)90%時(shí),更換為無(wú)血清培養(yǎng)基培養(yǎng)過(guò)夜,加9 pmol·L-1TGF-β1共培養(yǎng)16 h,棄上清液,加PBS洗滌、胰酶消化,收集各組細(xì)胞液至EP管中,離心(1 000×g,5 min;下同)沉淀細(xì)胞,加預(yù)冷的PBS重懸細(xì)胞,離心,棄上清,加預(yù)冷的70%乙醇固定(4 ℃,過(guò)夜)。次日,離心,棄上清,加預(yù)冷的PBS洗滌,離心,棄上清,加300 μL預(yù)冷的PBS重懸細(xì)胞后,加入RNaseA溶液20 μL,輕輕震蕩混勻,37 ℃水浴30 min,再加入400 μL碘化丙碇(propidium iodide,PI)染液,混勻后4 ℃避光孵育1 h,上流式細(xì)胞儀檢測(cè)細(xì)胞周期分布,Multicycles軟件分析結(jié)果。
1.7FCM檢測(cè)轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒對(duì)HepG2細(xì)胞周期及凋亡的影響
細(xì)胞分組及處理同“1.7”,培養(yǎng)結(jié)束后收集細(xì)胞,采用Annexin V-FITC試劑盒檢測(cè)細(xì)胞凋亡率,實(shí)驗(yàn)操作嚴(yán)格按照試劑盒說(shuō)明書執(zhí)行。Cell Questt軟件分析實(shí)驗(yàn)。
1.8統(tǒng)計(jì)學(xué)分析
2結(jié)果
2.1動(dòng)態(tài)觀察各組細(xì)胞篩選情況及形態(tài)學(xué)特征
篩選d 1 HepG2細(xì)胞呈典型梭形,各組細(xì)胞形態(tài)基本一致。篩選d 7 G418對(duì)照組及轉(zhuǎn)染3種質(zhì)粒的HepG2細(xì)胞組因抗生素G418長(zhǎng)期高壓篩選作用,細(xì)胞有一定死亡。篩選d 14 G418對(duì)照組細(xì)胞最終全部死亡,而轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒組細(xì)胞仍有大部分存活(Fig 1)。
Fig 1 Inverted microscope observing screening solution of each cell results and morphological feature(×200)
2.2轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒對(duì)HepG2細(xì)胞中pSmad3C/L蛋白水平的影響
Western blot檢測(cè)結(jié)果顯示,與正常HepG2細(xì)胞相比,穩(wěn)定轉(zhuǎn)染3種不同質(zhì)粒(Smad3 WT、Smad3 EPSM、Smad3 3S-A)組Smad3蛋白的表達(dá)量明顯增多,TGF-β1刺激后,轉(zhuǎn)染Smad3 WT質(zhì)粒組細(xì)胞pSmad3C/L蛋白水平明顯上調(diào);轉(zhuǎn)染Smad3 EPSM質(zhì)粒組細(xì)胞pSmad3C蛋白水平上調(diào)明顯,而pSmad3L蛋白表達(dá)較正常HepG2細(xì)胞差異無(wú)顯著性;轉(zhuǎn)染Smad3 3S-A質(zhì)粒組細(xì)胞pSmad3L蛋白水平明顯增加,pSmad3C蛋白水平較正常HepG2細(xì)胞微有上調(diào)(Fig 2)。上述結(jié)果表明,Smad3 WT-HepG2、Smad3 EPSM-HepG2及Smad3 3S-A-HepG2穩(wěn)轉(zhuǎn)細(xì)胞株構(gòu)建成功,外源性TGF-β1刺激是實(shí)現(xiàn)3種質(zhì)粒穩(wěn)轉(zhuǎn)HepG2細(xì)胞選擇性高表達(dá)相應(yīng)目的蛋白的必要條件。
2.3轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒對(duì)HepG2細(xì)胞增殖的影響
MTT結(jié)果顯示,轉(zhuǎn)染3種質(zhì)粒后對(duì)HepG2細(xì)胞的增殖影響較小,無(wú)統(tǒng)計(jì)學(xué)差異,9 pmol·L-1TGF-β1刺激16 h后,對(duì)正常HepG2細(xì)胞,轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒的HepG2細(xì)胞的細(xì)胞增殖均有一定的促進(jìn)作用(Fig 3);轉(zhuǎn)染Smad3 EPSM質(zhì)粒的HepG2細(xì)胞,較未轉(zhuǎn)染、轉(zhuǎn)染Smad3 WT或Smad3 3S-A質(zhì)粒的HepG2細(xì)胞對(duì)TGF-β1誘導(dǎo)的細(xì)胞增殖反應(yīng)減弱,差異有顯著性,轉(zhuǎn)染Smad3 3S-A質(zhì)粒的HepG2細(xì)胞,較未轉(zhuǎn)染或轉(zhuǎn)染Smad3 WT質(zhì)粒組細(xì)胞,對(duì)TGF-β1誘導(dǎo)的細(xì)胞增殖反應(yīng)略有增強(qiáng)(Fig 3)。提示選擇性上調(diào)pSmad3C蛋白水平能夠抑制HepG2細(xì)胞增殖,而上調(diào)pSmad3L蛋白水平,可能促進(jìn)HepG2細(xì)胞的惡性增殖。
2.4轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒對(duì)HepG2細(xì)胞周期的影響
結(jié)果顯示,TGF-β1刺激下,轉(zhuǎn)染Smad3 WT質(zhì)粒的HepG2細(xì)胞較正常HepG2細(xì)胞周期分布差異無(wú)顯著性;轉(zhuǎn)染Smad3 EPSM質(zhì)粒的HepG2細(xì)胞,較正常HepG2或轉(zhuǎn)染Smad3 WT質(zhì)粒的HepG2細(xì)胞,表現(xiàn)出明顯的G1期阻滯,進(jìn)入S期細(xì)胞數(shù)明顯減少;轉(zhuǎn)染Smad3 3S-A質(zhì)粒的HepG2細(xì)胞,較正常HepG2或轉(zhuǎn)染Smad3 WT質(zhì)粒的HepG2細(xì)胞,S期細(xì)胞數(shù)明顯減少,而G2/M期細(xì)胞數(shù)增多(Fig 4)。提示,選擇性上調(diào)pSmad3C蛋白水平,誘導(dǎo)HepG2細(xì)胞G1期阻滯;選擇性上調(diào)pSmad3L蛋白水平,促進(jìn)HepG2細(xì)胞由S期進(jìn)入G2/M期,推動(dòng)細(xì)胞周期進(jìn)程。
2.5轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒對(duì)HepG2細(xì)胞凋亡的影響
FCM檢測(cè)結(jié)果顯示,TGF-β1刺激下,轉(zhuǎn)染Smad3 WT質(zhì)粒組較正常HepG2細(xì)胞組,細(xì)胞凋亡率差異無(wú)顯著性;轉(zhuǎn)染Smad3 EPSM質(zhì)粒組,較轉(zhuǎn)染Smad3 WT質(zhì)粒組,細(xì)胞凋亡率明顯升高(P<0.01);轉(zhuǎn)染Smad3 3S-A質(zhì)粒組,較轉(zhuǎn)染Smad3 WT質(zhì)粒組,細(xì)胞凋亡率明顯降低(P<0.05,Fig 5)。提示,選擇性上調(diào)pSmad3C蛋白水平,促進(jìn)HepG2細(xì)胞凋亡,而選擇性上調(diào)pSmad3L蛋白水平抑制HepG2細(xì)胞凋亡。
Fig 2 The target gene expression level of transfecting Smad3 WT,Smad3 EPSM and Smad3 3S-A plasmids
**P<0.01vsHepG2 or HepG2+TGF-β1;#P<0.05,##P<0.01vsSmad3 WT+TGF-β1.
Fig 3 Effects of transfecting Smad3 WT, Smad3 EPSM and Smad3 3S-A plasmids on cell proliferation in different groups stimulated by TGF-β1
**P<0.01vsSmad3 EPSM+TGF-β1;#P<0.05vsSmad3WT+TGF-β1.
Fig 4 Effects of transfecting Smad3 WT, Smad3EPSM and Smad3 3S-A plasmids on cell cycle distribution of
##P<0.01vsSmad3 WT
Fig 5 Effects of transfecting Smad3 WT, Smad3 EPSM and Smad3 3S-A plasmids on apoptotic rate of
#P<0.05,##P<0.01vsSmad3 WT
3討論
TGF-β是一類對(duì)于細(xì)胞生長(zhǎng)、增殖、分化、凋亡等生命活動(dòng)均具有調(diào)節(jié)作用的多功能細(xì)胞因子[10]。TGF-β首先結(jié)合靶細(xì)胞膜上的TGF-β受體,受體活化,進(jìn)而磷酸化胞質(zhì)中的Smad蛋白,磷酸化的Smad蛋白異位入核,調(diào)控靶基因的轉(zhuǎn)錄,最終影響靶細(xì)胞的生物學(xué)功能[11]。目前研究表明,Smad3是參與TGF-β信號(hào)胞內(nèi)提取和轉(zhuǎn)化的關(guān)鍵節(jié)點(diǎn),依賴TβRI活化的Smad3 C-末端(即pSmad3C),介導(dǎo)的是腫瘤抑制信號(hào);依賴絲裂原活化蛋白激酶(MAPK)活化的Smad3連接區(qū)(即pSmad3L),介導(dǎo)的是致有絲分裂或促腫瘤發(fā)生信號(hào)[12]。臨床研究發(fā)現(xiàn),最終發(fā)展成為HCC的慢性乙肝及慢性丙肝患者肝組織中pSmad3L大量表達(dá),而pSmad3C則表達(dá)有限;反之,pSmad3C大量表達(dá),而pSmad3L表達(dá)有限的慢性乙肝及丙肝患者則不發(fā)展為HCC[13]。提示,在HCC發(fā)生發(fā)展過(guò)程中,pSmad3L發(fā)揮著類似癌基因的作用,而pSmad3C扮演著抑癌基因的作用。
隨著分子生物學(xué)技術(shù)的發(fā)展與革新,基因水平的干預(yù)或基因治療,已逐漸成為人類防病治病的應(yīng)對(duì)策略。脂質(zhì)體轉(zhuǎn)染、慢病毒轉(zhuǎn)染技術(shù)的逐步成熟,幫助人類實(shí)現(xiàn)外源基因?qū)胨拗骷?xì)胞轉(zhuǎn)錄翻譯,產(chǎn)生功能蛋白而調(diào)控靶細(xì)胞生物學(xué)功能的設(shè)想。本實(shí)驗(yàn)中,采用脂質(zhì)體轉(zhuǎn)染法將攜帶正常Smad3基因的質(zhì)粒Smad3 WT、連接區(qū)磷酸化位點(diǎn)突變的Smad3基因的質(zhì)粒Smad3 EPSM、C-末端磷酸化位點(diǎn)突變的Smad3基因的質(zhì)粒Smad3 3S-A導(dǎo)入人肝癌細(xì)胞株HepG2,倒置顯微鏡動(dòng)態(tài)觀察篩選過(guò)程,結(jié)果顯示,篩選d 14轉(zhuǎn)染組細(xì)胞仍有部分存活,而未轉(zhuǎn)染組幾乎全部死亡,因?yàn)檗D(zhuǎn)入細(xì)胞的質(zhì)粒中含有抗性基因neo,其攜帶的氨基糖苷磷酸轉(zhuǎn)移酶可以將G418轉(zhuǎn)變?yōu)闊o(wú)毒形式,而未轉(zhuǎn)染組不含抗性基因neo,推測(cè)可能獲得穩(wěn)轉(zhuǎn)細(xì)胞株。Western blot法對(duì)篩選結(jié)果作進(jìn)一步驗(yàn)證,結(jié)果顯示,TGF-β1刺激下,轉(zhuǎn)染相應(yīng)質(zhì)粒的HepG2細(xì)胞選擇性高表達(dá)相應(yīng)質(zhì)粒攜帶的目的基因蛋白,提示,已成功獲得Smad3 WT、Smad3 EPSM及Smad3 3S-A穩(wěn)轉(zhuǎn)HepG2細(xì)胞株。
隨后,初步探究了轉(zhuǎn)染Smad3 WT、Smad3 EPSM及Smad3 3S-A質(zhì)粒后HepG2細(xì)胞的功能學(xué)。結(jié)果顯示,單純轉(zhuǎn)染3種質(zhì)粒后對(duì)HepG2細(xì)胞功能幾乎沒(méi)有影響;與轉(zhuǎn)染野生型質(zhì)粒經(jīng)TGF-β1刺激后相比,當(dāng)Smad3C末端磷酸化位點(diǎn)突變,經(jīng)TGF-β1刺激僅pSmad3L蛋白表達(dá),能明顯抑制HepG2細(xì)胞增殖、誘導(dǎo)HepG2細(xì)胞G1期阻滯和促進(jìn)HepG2細(xì)胞凋亡, 當(dāng)Smad3鏈接區(qū)末端磷酸化位點(diǎn)突變,經(jīng)TGF-β1刺激僅表達(dá)pSmad3C蛋白,對(duì)HepG2細(xì)胞增殖略有促進(jìn)作用、誘導(dǎo)HepG2細(xì)胞由S期向G2/M期轉(zhuǎn)變,并抑制HepG2細(xì)胞凋亡。提示,轉(zhuǎn)染3種質(zhì)粒本身對(duì)細(xì)胞本身影響較小,選擇性上調(diào)HepG2細(xì)胞中pSmad3C、pSmad3L蛋白水平,可影響HepG2細(xì)胞的增殖,推測(cè)選擇性增加pSmad3C蛋白水平可能通過(guò)誘導(dǎo)細(xì)胞周期阻滯和促進(jìn)細(xì)胞凋亡,從而抑制肝癌細(xì)胞的增殖,發(fā)揮抗癌作用;選擇性上調(diào)HepG2細(xì)胞中pSmad3L蛋白水平,可能通過(guò)促進(jìn)細(xì)胞周期進(jìn)程和抑制細(xì)胞凋亡,從而促進(jìn)肝癌細(xì)胞的惡性增殖,發(fā)揮促癌作用。
本研究證實(shí)了在HepG2細(xì)胞中選擇性調(diào)控pSmad3C/L蛋白水平或含量比值,能夠改善癌細(xì)胞的惡性程度,可能促進(jìn)癌細(xì)胞向正常細(xì)胞轉(zhuǎn)歸。而研究中建立的Smad3 WT、Smad3 EPSM及Smad3 3S-A穩(wěn)轉(zhuǎn)HepG2細(xì)胞株,為下一步本課題組在細(xì)胞和分子水平研究能夠經(jīng)由pSmad3C/pSmad3L調(diào)控的藥物奠定基礎(chǔ)。
參考文獻(xiàn):
[1]劉家云,李慶霞,黃紅艷,等.瞬時(shí)轉(zhuǎn)染和穩(wěn)定轉(zhuǎn)染對(duì)RNAi抑制乙型肝炎病毒S基因表達(dá)的影響[J].第四軍醫(yī)大學(xué)學(xué)報(bào),2005,26(11):961-4.
[1]Liu J Y,Li Q X,Huang H Y,et al.Effect of transient and stable transfection on inhibition of hepatitis B virus S gene expression by RNA interference[J].JFouthMilMedUniv,2005,26(11):961-4.
[2]張富東,高麗輝,馮國(guó)華,等.hSGLTs-CHO-K1穩(wěn)定轉(zhuǎn)染細(xì)胞株的建立及芒果苷對(duì)SGLTs轉(zhuǎn)運(yùn)蛋白表達(dá)的影響[J].中國(guó)藥理學(xué)通報(bào),2013,29(4):553-6.
[2]Zhang F D,Gao L H,Feng G H,et al.Establishment of CHO-K1 cell lines stably expressing hSGLTs structure protein and effect of mangiferin on expression of SGLTs[J].ChinPharmacolBull,2013,29(4):553-6.
[3]王月麗,魏繼樓,程紅蕾,等.外源基因轉(zhuǎn)染細(xì)胞技術(shù)的研究進(jìn)展[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2014,14(7):1382-4.
[3]Wang Y L,Wei J L,Cheng H L,et al.Advances in technology of heterologous genes thansfecting cells[J].ProgrModBiomed,2014,14(7):1382-4.
[4]Pardali K,Moustakas A.Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer[J].BiochimBiophysActa,2007,1775(1):21-62.
[5]Sekimoto G,Matsuzaki K,Yoshida K,et al.Reversible Smad-dependent signaling between tumor suppression and oncogenesis[J].CancerRes,2007,67(11):5090-6.
[6]Yoshida K,Murata M,Yamaguchi T,Matsuzaki K.TGF-beta/Smad signaling during hepatic fibro-carcinogenesis(review)[J].IntJOncol,2014,45(4):1363-71.
[7]劉春亮,馮惠枝,劉燕,等.IDO基因穩(wěn)定轉(zhuǎn)染HepG2細(xì)胞系的建立[J].醫(yī)學(xué)研究雜志,2012,41(2):68-70.
[7]Liu C L,Feng H Z,Liu Y,et al.Construction of a HepG2 cell line with IDO gene steady transfection[J].JMedRes,2012,41(2):68-70.
[8]Liu X,Yang Y,Zhang X,et al.Compound astragalus and salvia miltiorrhiza extract inhibits cell invasion by modulating transforming growth factor-beta/Smad in HepG2 cell[J].JGastroenterolHepatol,2010,25(2):420-6.
[9]王玉美,梁佳玉,楊雁.3種MAPK抑制因子對(duì)HepG2細(xì)胞中Smad2/3磷酸化的影響[J].安徽醫(yī)科大學(xué)學(xué)報(bào),2006,41(6):648-50.
[9]Wang Y M,Liang J Y,Yang Y.The effect of three MAPK inhibitors on Smad2/3 phosphorylation[J].ActaUnivMedAnhui,2006,41(6):648-50.
[10]Mehra A,Wrana J.TGF-beta and the Smad signal transduction pathway[J].BiochemCellBiol,2002,80(5):605-22.
[11]Shi Y,Massagué J.Mechanisms of TGF-β signaling from cell membrane to the nucleus[J].Cell,2003,113(6):685-700.
[12]Nagata H,Hatano E,Tada M,et al.Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor-suppression in rat hepatocellular carcinoma[J].Hepatology,2009,49(6):1944-53.
[13]Murata M,Matsuzaki K,Yoshida K,et al.Hepatitis B virus X protein shifts human hepatic transforming growth factor(TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B[J].Hepatology,2009,49(4):1203-17.
Construction and functional study of three plasmids including Smad3 WT, Smad3 EPSM and Smad3 3S-A stably transfected HepG2 cell lines
WU Jia-jun1, JIANG Yu-feng1, WU Chao1, MA Ying1, CHEN Ning2, TAO Li-fen-fang2,ZHANG Yu-lu2, ZHAO Xiang-long3, YANG Yan1
(1.DeptofPharmacologyandInstituteofNaturalMedicine,2.CollegeofPharmacy,3.SchoolofLifeSciences,AnhuiMedicalUniversity,Hefei230032China)
Abstract:AimTo construct three plasmids including Smad3 WT, Smad3 EPSM and Smad3 3S-A stable transfection in HepG2 cell lines to investigate phospho-domains of Snad3(pSmad3C or pSmad3L), their protein expression and roles in HepG2 cell proliferation, apoptosis and cell cycle.MethodsThree plasmids including Smad3 WT(Carry the wild Smad3 gene), Smad3 EPSM(Carry the mutated phosphorylation site in linker region of Smad3 gene) and Smad3 3S-A(Carry the mutated phosphorylation site in C-terminal of Smad3 gene) were respectively transfected into HepG2 cells by using a liposome transfection reagent. Verification of positive cells was done by screening with G418 via co-culture. Transfection efficiency was determined by Western blot.Cell proliferation was induced by exogenous TGF-β1in the respective stably transfected HepG2 cell lines. Cell proliferation was monitored by MTT. Cell cycle and apoptosis were determined by flow cytometry(FCM).ResultsThere was elevated protein expression of the respective phospho-domain sites in the stably transfected HepG2 cells for Smad3 WT(C-terminus and Linker), Smad3 EPSM(C-terminus) and Smad3 3S-A(Linker), which indicated successful stable transfection of HepG2 cell lines. The results from MTT experiment showed that TGF-β1could induce proliferation of HepG2 cells with or without the transfection of Smad3 WT, Smad3 EPSM and Smad3 3S-A plasmids, meanwhile transfected Smad3 EPSM plasmids could significantly inhibit proliferation of HepG2 cells induced by TGF-β1, and transfected Smad3 3S-A plasmids accelerate proliferation of HepG2 cells induced by TGF-β1. Cell cycle analysis showed that the G0/G1phase of HepG2 cells with stable transfection of Smad3 EPSM plasmid increased compared with HepG2 cells with or without stable transfection of Smad3 WT plasmid, meanwhile the G2/M phase of HepG2 cells with stable transfection of Smad3 3S-A plasmid increased. Compared with Smad3 WT transfected cells, apoptosis in Smad3 EPSM transfected cells was markedly increased, while that of Smad3 3S-A transfected cells decreased.ConclusionsThe three plasmids of Smad3 WT, Smad3 EPSM and Smad3 3S-A stably transfected HepG2 cell lines have been successively constructed. The construction of three plasmids transfected HepG2 cell lines provides the research foundation for studying medical as well as possible regulatory mechanism of pSmad3C/pSmad3L.
Key words:Smad3 WT;Smad3 EPSM;Smad3 3S-A;HepG2 cells;stable transfection;cell proliferation;cell cycle;apoptosis
收稿日期:2016-01-06,修回日期:2016-03-15
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(No 81374012,81573652)
作者簡(jiǎn)介:吳佳俊(1990-),女,碩士生,研究方向:免疫藥理學(xué),E-mail:1005883518@qq.com;
doi:10.3969/j.issn.1001-1978.2016.06.017
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1001-1978(2016)06-0825-07
中國(guó)圖書分類號(hào):R329.24;R329.25;R329.28;R394.2;R735.7
網(wǎng)絡(luò)出版時(shí)間:2016-5-25 15:39網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20160525.1539.034.html
楊雁(1964-),女,博士,教授,博士生導(dǎo)師,通訊作者,E-mail:yangyan@ahmu.edu.cn