宋慧芳, 郭 蕊, 張 亮
(山西醫(yī)科大學(xué) 1人體解剖學(xué)教研室, 2形態(tài)學(xué)實(shí)驗(yàn)室, 3第二醫(yī)院,山西 太原 030001)
?
低氧預(yù)處理通過激活A(yù)KT通路提高老年hBM-MSCs對(duì)氧化應(yīng)激損傷的耐受能力*
宋慧芳1△,郭蕊2,張亮3△
(山西醫(yī)科大學(xué)1人體解剖學(xué)教研室,2形態(tài)學(xué)實(shí)驗(yàn)室,3第二醫(yī)院,山西 太原 030001)
[摘要]目的: 探討低氧預(yù)處理對(duì)老年人骨髓間充質(zhì)干細(xì)胞(hBM-MSCs)的保護(hù)作用,為提高老年自體干細(xì)胞移植治療效果提供實(shí)驗(yàn)支持。方法: 老年hBM-MSCs于低氧培養(yǎng)箱中培養(yǎng)24 h進(jìn)行低氧預(yù)處理,實(shí)驗(yàn)分為年輕hBM-MSCs組(young組),老年hBM-MSCs組(old組)及低氧預(yù)處理老年hBM-MSCs組(old+hypoxia組)。300 μmol/L H2O2作用30 min建立細(xì)胞氧化應(yīng)激模型,50 μmol/L LY294002作用2 h阻斷PI3K/AKT信號(hào)通路,BrdU摻入實(shí)驗(yàn)檢測細(xì)胞增殖能力; CCK-8法檢測細(xì)胞活力,Western blot檢測凋亡相關(guān)蛋白Bax、Bcl-2表達(dá)水平和AKT磷酸化水平。結(jié)果: BrdU摻入實(shí)驗(yàn)顯示低氧預(yù)處理的老年hBM-MSCs細(xì)胞陽性率為39.85%±3.45%,與old組相比增殖能力顯著提高(P<0.05)。300 μmol/L H2O2作用30 min誘導(dǎo)細(xì)胞氧化應(yīng)激后,old+hypoxia組與old組比較,細(xì)胞活力顯著提高(P<0.05),凋亡相關(guān)蛋白Bax表達(dá)量顯著降低(P<0.05),抑制凋亡的Bcl-2蛋白表達(dá)量顯著增高(P<0.05),且AKT磷酸化水平顯著增高,差異有統(tǒng)計(jì)學(xué)顯著性(P<0.05);應(yīng)用LY294002抑制PI3K/AKT信號(hào)通路后,細(xì)胞活力下降(P<0.05)。結(jié)論: 低氧預(yù)處理可以通過激活A(yù)KT信號(hào)通路提高老年人骨髓間充質(zhì)干細(xì)胞活力及增殖能力。
[關(guān)鍵詞]低氧; PI3K/AKT信號(hào)通路; 骨髓間充質(zhì)干細(xì)胞; 氧化應(yīng)激
骨髓間充質(zhì)干細(xì)胞易分離培養(yǎng),體外擴(kuò)增,并具有多向分化潛能,是干細(xì)胞移植治療的理想種子細(xì)胞。自體干細(xì)胞移植能夠克服移植遠(yuǎn)期免疫排斥及倫理學(xué)等問題,是針對(duì)冠狀動(dòng)脈粥樣硬化、腦梗死等缺血性疾病較為有前景的治療手段[1-4]。但老年患者自體干細(xì)胞增殖能力差,同時(shí)移植局部的缺血缺氧環(huán)境使得活性氧簇生成增多,引起局部氧化還原水平失調(diào),老年干細(xì)胞對(duì)此氧化應(yīng)激的微環(huán)境耐受力差,使得移植到損傷局部的細(xì)胞存活率低,增殖能力不足,影響治療效果[5-6]。
已有研究報(bào)道低氧預(yù)處理可減輕心肌細(xì)胞、內(nèi)皮細(xì)胞等體細(xì)胞的缺血損傷,同時(shí)經(jīng)過低氧預(yù)處理的間充質(zhì)干細(xì)胞移植后,也能夠提高移植受體的干細(xì)胞對(duì)體細(xì)胞的保護(hù)作用,對(duì)干細(xì)胞本身亦具有一定的保護(hù)作用[7],但老年干細(xì)胞反應(yīng)性降低,本研究擬探討低氧預(yù)處理能否提高老年骨髓間充質(zhì)干細(xì)胞自身的存活及增殖能力及其可能的機(jī)制。
材料和方法
1人骨髓間充質(zhì)干細(xì)胞(human bone marrow mesenchymal stem cells,hBM-MSCs)的分離及體外培養(yǎng)
在病人知情同意的前提下,無菌條件收集無明顯血液系統(tǒng)及全身系統(tǒng)性疾病患者骨髓3~5 mL,并依據(jù)患者年齡分為年輕(20~30歲)和老年(大于60歲)2組。采用我室建立的全貼壁法[8]于10% FBS-IMDM培養(yǎng)基中分離培養(yǎng)2組人骨髓間充質(zhì)干細(xì)胞。培養(yǎng)基中含青霉素1×105U/L, 鏈霉素1×105U/L及2 mmol L-谷氨酰胺。常規(guī)體外培養(yǎng),傳代至第3~4代用于相關(guān)實(shí)驗(yàn)檢測。
2主要方法
2.1細(xì)胞分組實(shí)驗(yàn)細(xì)胞分為老年(old)組(大于60歲的老年供體來源hBM-MSCs,常氧培養(yǎng))、年輕(young)組(20~30歲之間年輕供體來源hBM-MSCs,常氧培養(yǎng))、氧預(yù)處理老年(old+hypoxia)組(大于60歲的老年供體來源hBM-MSCs,低氧預(yù)處理24 h)。
2.2細(xì)胞低氧預(yù)處理細(xì)胞在Thermo Scientific低氧(1% O2、5% CO2)培養(yǎng)箱中培養(yǎng)24 h進(jìn)行低氧預(yù)處理,而后進(jìn)行后續(xù)干預(yù)實(shí)驗(yàn)及相關(guān)指標(biāo)檢測,正常對(duì)照組使用同樣培養(yǎng)基(10% FBS-IMDM)于常氧培養(yǎng)箱中培養(yǎng)。
2.3過氧化氫(H2O2)誘導(dǎo)細(xì)胞氧化應(yīng)激 hBM-MSCs中加入300 μmol/L H2O2于常氧培養(yǎng)箱中作用30 min以誘導(dǎo)細(xì)胞氧化應(yīng)激后,即刻進(jìn)行后續(xù)相關(guān)檢測。
2.4LY294002抑制PI3K/AKT信號(hào)通路細(xì)胞貼壁后,在進(jìn)行低氧預(yù)處理及H2O2誘導(dǎo)細(xì)胞氧化應(yīng)激前加入含50 μmol/L LY294002的培養(yǎng)基培養(yǎng)2 h以阻斷PI3K/AKT信號(hào)通路的激活。
2.5BrdU摻入實(shí)驗(yàn)檢測細(xì)胞增殖能力無菌24孔板接種細(xì)胞,內(nèi)附無菌圓玻片,各組細(xì)胞貼壁后,加入含10 μmol/L BrdU的10% FBS-IMDM培養(yǎng)基常規(guī)培養(yǎng)72 h后4%多聚甲醛固定。 PBS洗3次后用2 N鹽酸37 ℃孵育10 min使DNA變性,10%山羊血清封閉,濕盒中I抗4 ℃孵育過夜(小鼠抗BrdU,1∶100, Abtech),II 抗37 ℃避光孵育2 h(山羊抗小鼠Cy3熒光 II 抗,1∶100,康為公司),DAPI染核,水溶性抗熒光淬滅封片劑封片。顯微鏡拍片、計(jì)數(shù)BrdU陽性細(xì)胞數(shù)(紅色)及DAPI著色的細(xì)胞總數(shù)(藍(lán)色),計(jì)算BrdU陽性率以檢測細(xì)胞增殖能力。
2.6CCK-8實(shí)驗(yàn)檢測細(xì)胞活力無菌96孔板接種細(xì)胞,各組細(xì)胞接種密度一致,均為每孔2 000個(gè),依照CCK-8實(shí)驗(yàn)試劑盒檢測流程操作,酶標(biāo)儀讀取450 nm處吸光度(A)值反映細(xì)胞活力。
2.7Western blot實(shí)驗(yàn)含蛋白酶抑制劑及磷酸酶抑制劑的磷酸化蛋白提取裂解液提取蛋白,蛋白定量后行SDS電泳,濕轉(zhuǎn)法轉(zhuǎn)膜,5% BSA封閉,I 抗于4 ℃過夜孵育,TBST充分清洗后相應(yīng)II 抗37 ℃孵育2 h,ECL顯影曝光,使用Image J計(jì)算條帶灰度值,以β-actin作為內(nèi)參照計(jì)算相對(duì)蛋白量。
3統(tǒng)計(jì)學(xué)處理
使用SPSS 16.0統(tǒng)計(jì)分析軟件,數(shù)據(jù)均用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,經(jīng)過或未經(jīng)過低氧預(yù)處理的兩組老年hBM-MSCs 檢測指標(biāo)的均數(shù)比較采用配對(duì)樣本t檢驗(yàn),3組比較使用單因素方差分析,隨后用Bonferroni校正的t檢驗(yàn)進(jìn)行兩兩比較,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
結(jié)果
1低氧預(yù)處理對(duì)老年人骨髓間充質(zhì)干細(xì)胞增殖能力的影響
BrdU摻入實(shí)驗(yàn)結(jié)果顯示,old組hBM-MSCs的BrdU陽性率為24.55%±6.17%, 較young組顯著降低(P<0.01)。經(jīng)低氧預(yù)處理的老年hBM-MSCs BrdU陽性率增高至39.85%±3.45%,與old組比較,差異有統(tǒng)計(jì)學(xué)顯著性(P<0.05),但仍顯著低于young組(P<0.01),見圖1。
2低氧預(yù)處理對(duì)氧化應(yīng)激條件下老年hBM-MSCs活力的影響
3組細(xì)胞經(jīng)300 μmol/L H2O2作用30 min誘導(dǎo)氧化應(yīng)激后,CCK-8法檢測細(xì)胞活力,結(jié)果顯示在氧化應(yīng)激條件下,old組細(xì)胞活力顯著降低,相當(dāng)于young組的49.81%±7.80%(P<0.01),經(jīng)過低氧預(yù)處理的老年hBM-MSCs雖然其活力仍然低于young組(P<0.01),但較old組顯著提高,相當(dāng)于young組的66.30%±6.24%(P<0.05),見圖2。
Figure 1.The effect of hypoxic preconditioning on the proliferation of old hBM-MSCs by BrdU incorporation. Mean±SD. n=5.*P<0.05,**P<0.01 vs old group;##P<0.01 vs old+hypoxia group.
圖1BrdU摻入法檢測低氧預(yù)處理對(duì)老年hBM-MSCs增殖能力的影響
Figure 2.The effect of hypoxic preconditioning on the cell viability of H2O2stimulated-old hBM-MSCs by CCK-8 assay. Mean±SD. n=5.*P<0.05,**P<0.01 vs old group;##P<0.01 vs old+hypoxia group.
圖2CCK-8法檢測低氧預(yù)處理對(duì)氧化應(yīng)激條件下老年hBM-MSCs活力的影響
3低氧預(yù)處理有效降低氧化應(yīng)激引起的老年hBM-MSCs凋亡
3組細(xì)胞經(jīng)300 μmol/L H2O2作用30 min誘導(dǎo)氧化應(yīng)激后,Western blot檢測凋亡相關(guān)蛋白Bax和Bcl-2的表達(dá)水平。實(shí)驗(yàn)結(jié)果顯示與old組相比,低氧預(yù)處理組細(xì)胞凋亡相關(guān)蛋白Bax表達(dá)量顯著降低(P<0.05),同時(shí)抑制凋亡的Bcl-2蛋白表達(dá)量顯著增高(P<0.05),見圖3。
4低氧預(yù)處理可激活老年hBM-MSCs中AKT蛋白
低氧預(yù)處理的老年人骨髓間充質(zhì)干細(xì)胞中磷酸化AKT(p-AKT)蛋白顯著增強(qiáng),與正常培養(yǎng)的老年人骨髓間充質(zhì)干細(xì)胞相比,差異有統(tǒng)計(jì)學(xué)顯著性(P<0.05),提示低氧預(yù)處理可以激活A(yù)KT信號(hào)通路,見圖4。
5抑制AKT活化減弱低氧預(yù)處理對(duì)老年hBM-MSCs的保護(hù)作用
CCK-8法實(shí)驗(yàn)結(jié)果顯示,低氧預(yù)處理可以提高氧化應(yīng)激條件下老年hBM-MSCs的細(xì)胞活力(P<0.01),抑制劑LY294002組細(xì)胞活力低于未使用抑制劑組(P<0.05),但仍高于未經(jīng)過低氧預(yù)處理的普通老年hBM-MSCs組(P<0.05),見圖5。
Figure 3.The effect of hypoxic preconditioning on the apoptosis of H2O2stimulated-old hBM-MSCs.Mean±SD. n=5.*P<0.05,**P<0.01 vs old group;##P<0.01 vs old+hypoxia group.
圖3低氧預(yù)處理對(duì)氧化應(yīng)激條件下老年hBM-MSCs凋亡水平的影響
Figure 4.AKT protein phosphorylation in hypoxically preconditioned old hBM-MSCs. Mean±SD. n=3.*P<0.05 vs old group.
圖4低氧預(yù)處理對(duì)老年hBM-MSCs中AKT蛋白磷酸化的影響
Figure 5.The cell viability of old hBM-MSCs in the presence or absence of PI3K/AKT pathway inhibitor (LY294002). Mean±SD. n=5.*P<0.05,**P<0.01 vs H2O2group;#P<0.05 vs hypoxic precondition+H2O2group.
圖5PI3K/AKT通路抑制劑LY294002對(duì)氧化應(yīng)激條件下老年hBM-MSCs活力的影響
討論
冠狀動(dòng)脈粥樣硬化、腦梗死等缺血性疾病發(fā)病率高,致死率高,是危害人類健康的主要疾病,尤其是隨著年齡增長,其發(fā)病風(fēng)險(xiǎn)和死亡率隨之增高,已成為老年人群的高發(fā)病和主要死亡原因[9]。自體干細(xì)胞移植治療是新的較有前景的治療手段,但作為缺血性疾病自體干細(xì)胞移植的主要受眾——老年患者,其老年干細(xì)胞對(duì)于移植局部氧化應(yīng)激的微環(huán)境耐受能力差,移植細(xì)胞凋亡率高,存活率低,活力差,成為限制其治療效果的主要瓶頸[5-6]。因而迫切需要尋找提高干細(xì)胞尤其是老年自體干細(xì)胞移植后局部干細(xì)胞數(shù)量和活力的有效手段,為改善老年患者自體干細(xì)胞移植治療效果提供技術(shù)支持。
已有研究顯示,利用番茄紅素等藥物處理干細(xì)胞,c-Maf、血紅素加氧酶等基因改建干細(xì)胞或是micro-RNAs等干預(yù)干細(xì)胞可以提高移植干細(xì)胞的存活率[5, 10-13],但我們提高干細(xì)胞存活率的主要目的是指向改善臨床移植治療預(yù)后,因而需要更加具有臨床應(yīng)用安全性的非化學(xué)試劑處理,非基因修飾等方式。低氧預(yù)處理是在細(xì)胞應(yīng)用前于低氧培養(yǎng)環(huán)境中培養(yǎng),使之對(duì)低氧高活性氧簇的生長環(huán)境預(yù)適應(yīng),從而提高細(xì)胞活力的干預(yù)方式,已有研究證實(shí)此種處理方式對(duì)肝細(xì)胞、腦細(xì)胞、心肌細(xì)胞等體細(xì)胞以及年輕干細(xì)胞具有保護(hù)作用[7],我們的研究結(jié)果證實(shí)給予老年人骨髓干細(xì)胞低氧預(yù)處理24 h同樣可以顯著降低凋亡水平,增加細(xì)胞活力。
PI3K/AKT信號(hào)通路是生物體內(nèi)非常重要的信號(hào)通路,參與細(xì)胞增殖、分化、凋亡等生物學(xué)功能的調(diào)節(jié),亦是應(yīng)激狀態(tài)下影響細(xì)胞存活的重要信號(hào)通路。 已有研究報(bào)道證實(shí)間充質(zhì)干細(xì)胞衰老進(jìn)程中AKT磷酸化水平顯著降低,通過增強(qiáng)AKT信號(hào)通路的活化,可以顯著抑制老年間充質(zhì)干細(xì)胞凋亡,提示PI3K/AKT通路活化不足可能是干細(xì)胞衰老眾多機(jī)制中的一環(huán)[14-17]。本文觀察到低氧預(yù)處理老年骨髓間充質(zhì)干細(xì)胞,可顯著提高AKT磷酸化水平,提示AKT信號(hào)通路被激活是低氧預(yù)處理提高老年人骨髓間充質(zhì)干細(xì)胞存活及增殖能力的可能機(jī)制;同時(shí)應(yīng)用LY294002阻斷PI3K/AKT信號(hào)通路,低氧預(yù)處理對(duì)老年骨髓間充質(zhì)干細(xì)胞的保護(hù)作用明顯降低,更進(jìn)一步證實(shí)AKT通路參與了這一過程。但我們亦觀察到阻斷PI3K/AKT信號(hào)通路后,低氧預(yù)處理對(duì)老年干細(xì)胞的保護(hù)作用雖明顯減弱但并未完全喪失,提示可能尚有其它信號(hào)通路及分子機(jī)制參與此過程,因此尚需要在今后課題進(jìn)展中進(jìn)一步探討。
[參考文獻(xiàn)]
[1] Chen B, Zhang F, Li QY, et al. Protective effect of Ad-VEGF-bone mesenchymal stem cells on cerebral infarction[J]. Turk Neurosurg, 2016, 26(1):8-15.
[2]Kim SW, Houge M, Brown M, et al.Cultured human bone marrow-derived CD31(+) cells are effective for cardiac and vascular repair through enhanced angiogenic, adhesion, and anti-inflammatory effects[J]. J Am Coll Cardiol, 2014, 64(16):1681-1694.
[3]宋慧芳,楊佳超,牛曉潔,等. 叔丁基對(duì)苯二酚激活骨髓間充質(zhì)干細(xì)胞蛋白酶體活性延緩復(fù)制性衰老[J]. 中國病理生理雜志, 2015, 31(9):1647-1651.
[4]Russo V, Young S, Hamilton A, et al. Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury[J]. Biomaterials, 2014, 35(13):3956-3974.
[5]Kim JY, Lee JS, Han YS, et al. Pretreatment with lycopene attenuates oxidative stress-induced apoptosis in human mesenchymal stem cells[J]. Biomol Ther (Seoul),2015, 23(6):517-524.
[6]Li SH, Sun Z, Brunt KR, et al. Reconstitution of aged bone marrow with young cells repopulates cardiac-resident bone marrow-derived progenitor cells and prevents cardiac dysfunction after a myocardial infarction[J]. Eur Heart J, 2013, 34(15):1157-1167.
[7]Bader AM, Klose K, Bieback K, et al. Hypoxic preconditioning increases survival and pro-angiogenic capacity of human cord blood mesenchymal stromal cellsinvitro[J]. PLoS One, 2015, 10(9):e0138477.
[8]Zhai XY, Yan P, Zhang J, et al. Knockdown of SIRT6 enables human bone marrow mesenchymal stem cell senescence[J]. Rejuvenation Res, 2016 Mar 14. [Epub ahead of print]
[9]Moran AE, Forouzanfar MH, Roth GA, et al. The global burden of ischemic heart disease in 1990 and 2010: The Global Burden of Disease 2010 Study[J]. Circulation, 2014, 129(14):1493-1501.
[10]Chen PM, Lin CH, Li NT, et al. C-Maf regulates pluripotency genes, proliferation self-renewal, and lineage commitment in ROS-mediated senescence of human mesenchymal stem cells[J]. Oncotarget, 2015, 6(34):35404-35418.
[11]Tsubokawa T, Yagi K, Nakanishi C, et al. Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia[J]. Am J Physiol Heart Circ Physiol, 2010, 298(5):H1320-H1329.
[12]胡明,黎佼,劉寧寧,等. miR-486-5p 在氧化應(yīng)激引起人骨髓間充質(zhì)干細(xì)胞凋亡中的作用[J]. 中國病理生理雜志, 2015, 31(3):524-529.
[13]Shi XF, Wang H, Xiao FJ, et al. MiRNA-486 regulates angiogenic activity and survival of mesenchymal stem cells under hypoxia through modulating Akt signal[J]. Biochem Biophys Res Commun, 2016, 470(3):670-677.
[14]Park BK, Gonzales EL, Yang SM, et al. Effects of triclosan on neural stem cell viability and survival[J]. Biomol Ther (Seoul), 2016, 24(1):99-107.
[15]Hu Y, Zhang Y, Tian K, et al. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cellsinvitro[J]. Mol Med Rep, 2016, 13(1):49-58.
[16]Yang L, Wu Z, Yin G, et al. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling[J]. Biochem Biophys Res Commun, 2014, 455(3-4):256-261.
[17]Zhang Z, Zhao C, Liu B, et al. Inositol pyrophosphates mediate the effects of aging on bone marrow mesenchymal stem cells by inhibiting Akt signaling [J]. Stem Cell Res Ther, 2014, 5(2):33.
(責(zé)任編輯: 林白霜, 余小慧)
Hypoxic preconditioning increases tolerant ability of old human bone marrow mesenchymal stem cells to oxidative stress injury through AKT pathway
SONG Hui-fang1, GUO Rui2, ZHANG Liang3
(1Department of Anatomy,2Morphology Laborator,3The Second Hospital, Shanxi Medical University, Taiyuan 030001, China. E-mail: songhuifang0111@yeah.net; ZL81vip@126.com)
[ABSTRACT]AIM: To investigate the protective effect of hypoxic preconditioning on human bone marrow mesenchymal stem cells (hBM-MSCs), and to provide basic experimental support for more effective autologous stem cell transplantation in aged patients. METHODS: The old hBM-MSCs were subjected to hypoxic preconditioning using a hypoxia incubator chamber for 24 h. The cells were divided into young group, old group and old+hypoxia group (with 24 h hypoxic preconditioning). Hydrogen peroxide (H2O2, 300 μmol/L) was applied to simulate the oxidative stress. The cells were treated with 50 μmol/L LY294002 for 2 h to inhibit PI3K/AKT pathway. BrdU incorporation and CCK-8 assay were used for analyzing the cell proliferation and viability. The protein levels of Bax, Bcl-2 and p-AKT were measured by Western blot. RESULTS: BrdU-positive cells, which represented the cell proliferation, and the cell viability were significantly increased in old+hypoxia group compared with old group (P<0.05). The protein level of Bax decreased (P<0.05) and Bcl-2 increased (P<0.05) in old+hypoxia group compared with old group after using 300 μmol/L H2O2 simulate. the oxidative stress. The phosphorylation of AKT was enhanced by hypoxic preconditioning in old group (P<0.05). The protective effect of hypoxic preconditioning on the cell survival was decreased after treated with LY294002 (inhibitor of the PI3K/AKT pathway) (P<0.05). CONCLUSION: Hypoxic preconditioning increases the survival and proliferation of old hBM-MSCs by activation of AKT pathway.
[KEY WORDS]Hypoxia; PI3K/AKT signal pathway; Bone marrow mesenchymal stem cells; Oxidative stress
[文章編號(hào)]1000- 4718(2016)05- 0912- 05
[收稿日期]2016- 02- 18[修回日期] 2016- 04- 07
*[基金項(xiàng)目]山西醫(yī)科大學(xué)青年基金資助項(xiàng)目(No. 02201002);山西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院331基金資助項(xiàng)目(No. 201217)
通訊作者△宋慧芳 Tel: 0351-4135787; E-mail: songhuifang0111@yeah.net; 張亮 Tel: 0351-3365402; E-mail: ZL81vip@126.com
[中圖分類號(hào)]R363
[文獻(xiàn)標(biāo)志碼]A
doi:10.3969/j.issn.1000- 4718.2016.05.024
雜志網(wǎng)址: http://www.cjpp.net