• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Same n-Types for the Wedges of the Eilenberg-Maclane Spaces?

    2016-06-05 03:10:47DaeWoongLEE

    Dae-Woong LEE

    1 Introduction

    Let us call X(n)the n-th Postnikov approximation of a connected CW-space X.X(n)is a CW-complex obtained from X by adjoining cells of dimension ≥ n+2 such that πi(X(n))=0 for i≥ n+1 and πi(X(n))= πi(X)for i≤ n.The Postnikov k-invariants kn+1(X)of X are maps X(n?1)→ K(πn(X),n+1)and thus cohomology classes in Hn+1(X(n?1);πn(X))for n≥2.We say that two connected CW-spaces X and X?have the same n-type if the n-th Postnikov approximations X(n)and X?(n)are homotopy equivalent for all n≥1.

    An interesting question raised by J.H.C.Whitehead is this:Suppose that X and X?are two spaces whose Postnikov approximations,X(n)and X?(n),are homotopy equivalent for each integer n.Does it follow that X and X?have the same homotopy type?It is well known that either if X isfinite dimensional(use the cellular approximation theorem)or if X has only a finite number of nonzero homotopy groups,then the answer to Whitehead’s question is yes!However,in general,there are examples,founded by Adams[1]and Gray[6]independently,saying that the answer to this question is no!It is also shown that in[16]if the base space of a sphere fibration ξ:is a topological manifold,then a Hopf index theorem can be obtained.

    Let Z be the ring of integers and let Σ denote the suspension functor.For a connected CW-space X,we let SNT(X)denote the set of all homotopy types[X?]such that the Postnikov approximations X(n)and X?(n)are homotopy equivalent for all n.This is a pointed set with base point?=[X].It is well known in[11]that the set of all the same homotopy n-types for the k-th iterated suspension of the Eilenberg-MacLane space K(Z,2b+1)is trivial for k≥0;that is,SNT(ΣkK(Z,2b+1))= ?.One reason of this fact is that ΣkK(Z,2b+1)has a rational homotopy type of a single sphere of dimension k+2b+1.As we can see,the even dimensional case is much more complicated because ΣK(Z,2a)has a rational homotopy type of a bouquet of in finitely many spheres of dimensions 2a+1,4a+1,···,2na+1,···.So it is natural to ask in the case of even integers.The first interesting case(a=1)is the following conjecture.

    Conjecture 1.1(see[11,p.287])SNT(ΣK(Z,2))= ?.

    The positive answer to this conjecture was given in[8].More generally,what will happen in the case of the suspension of the wedge products of the Eilenberg-MacLane spaces of various types?After suspensions or wedge products of the Eilenberg-MacLane spaces K(Z,2a)and K(Z,2b+1)for a,b≥1 as the in finite loop spaces,they become much more intractable,and they are worth mentioning what it is in the SNT-sense.The purpose of this paper is to provide an answer to the above query as a general version of the original same n-type conjecture.

    Theorem 1.1Let Y:=K(Z,2a1)∨ K(Z,2a2)∨ ···∨ K(Z,2ak)be the wedge products of the Eilenberg-MacLane spaces,where aiis the positive integer for i=1,2,···,k with a1

    In this paper we often do not distinguish notationally between a base point preserving map and its homotopy class.We denote Q by the set of all rational numbers.As an adjointness,we will make use of the notations Σ and Ω for the suspension and loop functors in the based homotopy category,respectively.

    2 Homotopy Self-Equivalences of CW-Spaces

    Let Aut(X)be the group of homotopy classes of homotopy self-equivalences of a space X and let Aut(π≤n(X))denote the group of automorphisms of the graded Z-module,π≤n(X),preserving the Whitehead product pairings.McGibbon and M?ller(see[11,Theorem 1])proved the following theorem.

    Theorem 2.1Let X be a 1-connected space with finite type over some subring of the rationals.Assume that X has the rational homotopy type of a bouquet of spheres.Then the following three conditions are equivalent:

    (a)SNT(X)=?;

    (b)the maphas a finite cokernel for each n;

    (c)the maphas a finite cokernel for each n.

    In 1976,Wilkerson(see[21,Theorem I])classified CW-spaces having the same n-type up to homotopy,and proved that for a connected CW-complex X,there is a bijection of pointed sets

    where lim1is the first derived limit of groups(not necessarily abelian)in the sense of Bous field and Kan[4].Thus,if X is a space of finite type,then the torsion subgroup of π?(X(n))can be ignored in the lim1-calculation(see[12]).

    We note that Y has a CW-decomposition of wedges based on the Eilenberg-MacLane spaces K(Z,2as)as follows:

    for s=1,2,···,k,where γnis an attaching map,anddenotes the other cells or the Moore spaces for torsions of the reduced homology groups for n=1,2,3,···.

    In order to define the homotopy self-maps of the suspension of wedges of the Eilenberg-MacLane spaces K(Z,2as),s=1,2,···,k,we first define maps:Y → ΩΣY for s=1,2,···,k and n=1,2,3,···as follows.

    definition 2.1Let

    for each s=1,2,···,k,and let Ytdenote the t-skeleton of Y:=K(Z,2a1)∨ K(Z,2a2)∨ ···∨K(Z,2ak).Then the co fibration sequences

    and

    induce the exact sequences of groups

    and

    for n ≥ 2 and s=1,2,···,k.We now take essential maps

    and

    for n ≥ 2 and s=1,2,···,k.Similarly,we can choose maps

    and

    withand s=1,2,···,k,respectively,by using the above exact sequences.

    In the above definition,we note that

    and

    We now have the following definition.

    definition 2.2We define the rationally non-trivial homotopy elementsandof the homotopy groups modulo torsions π2as(ΩΣY)/torsion and π2nas(ΩΣY)/torsion by=andrespectively,for s=1,2,···,k and n ≥ 2.

    We now take the self-maps:ΣY → ΣY and maps:S2nas+1→ ΣY as the adjointness of:Y→ ΩΣY and:S2nas→ ΩΣY,respectively,for s=1,2,···,k and n=1,2,3,···.We then order the basic Whitehead products(see[7])of weight 1 on the graded homotopy groups modulo torsion,π?(ΣY)/torsion,as follows:We order the rationally non-trivial elementsandaseither ifor ifand as

    LetΣY → ΣY be the commutator of self-mapsand;that is

    where the operations are the suspension additions on ΣY.By using this suspension structure,we construct self-maps of ΣY by I+where I is the identity map of ΣY andis the l-th iterated commutator of self-maps:ΣY → ΣY,i=1,2,···,l on the suspension structure for si=1,2,···,k,and ni=1,2,3,···.The Whitehead theorem asserts that the above self-mapsof ΣY are actually homotopy self-equivalences.

    We note that the above iterated commutator maps

    do make sense because there are in finitely many non-zero cohomology cup products in Y so that it has the in finite Lusternik-Schnirelmann category(see[20,Chapter X]and[18]).Moreover,Arkowitz and Curjel(see[2,Theorem 5])showed that the n-fold commutator is of finite order if and only if all n-fold cup products of any positive dimensional rational cohomology classes of a space vanish.

    Remark 2.1(a)Let x be a rationally non-trivial indecomposable element of the homotopy groups π2(n1as1+n2as2+··+nlasl)+1(ΣY).Then

    where the first addition is the one of suspension structure on ΣY,while the second addition refers to the one of homotopy groups(see[8,Lemma 3.2]).

    (b)Let J:Y→ΩΣY be the James map.Then we have

    in the group[Y,ΩΣY](see also[9,Lemma 4]).

    By using the Serre spectral sequence of a path space fibration

    for each s=1,2,···,k,we have an algebra isomorphism H?(K(Z,2as);Q) ~=Q[αs].Here Q[αs]is the polynomial algebra over Q generated by αsof dimension 2as;that is,αsis a generator of H2as(K(Z,2as);Q)withwhereis a rational homology generator of dimension 2nas.

    3 Proof of Theorem 1.1

    We point out that the proof of Theorem 1.1 depends highly on Theorem 2.1.We remark that the total rational homotopy group= π?(ΩΣY)? Q of ΩΣY is a graded Lie algebra over Q with Lie bracket?,?given by the Samelson product which is called the rational homotopy Lie algebra of ΣY(see[14]for the de Rham homotopy theory).For s=1,2,···,k and n=1,2,3,···,we letdenote the subalgebra of?L generated by all free algebra generators of degree less than or equal to 2nas,that is

    with generators(ΩΣYQ)so that njasi≤nas,whereis the compositionof the rationally non-trivial indecomposable elementΩΣY offor si=1,2,···,k and nj=1,2,3,···with the rationalization r:ΩΣY → ΩΣYQ.As an adjointness,

    with the Whitehead product[,]Whas the graded quasi-Lie algebra structure which is called the Whitehead algebra with generators

    Remark 3.1We consider the following co fibration sequence:

    where

    are the rationally non-trivial homotopy elements.By considering the homotopy co fibre of the above Whitehead product map and the cohomology cup product argument on it,we can see thatis rationally non-trivial,and that by induction on l the iterated basic Whitehead productsin the graded homotopy group π?(ΣY)/torsion are also rationally non-trivial(see[10,Lemma 3.5]for details).

    Thus we can define the following.

    definition 3.1The basic Whitehead productis said to be a purely decomposable generator of the rational homotopy group in dimension 2(n1a1+n2a2+ ···+nlal)+1 if s1=s2= ···=sl,and it is said to be a hybrid decomposable generator if there is at least one siwhich differs from one of those sj,where i ∈ {1,2,···,l}and j=1,2,···,l.

    Recall that

    as a graded Z-module and

    as a graded Q-module,whereandare the standard generators of the homology groups H2nas(Y;Z)/torsion and H2nas(Y;Q),respectively for n=1,2,3,···and s=1,2,···,k.The Bott-Samelson theorem(see[3])says that the Pontryagin algebra H?(ΩΣY;Q)is isomorphic to the tensor algebra TH?(Y;Q)generated by=1,2,3,···and s=1,2,···,k}.

    Let:Y ?→ ΩΣY be the adjoint of the iterated commutator mapΣY ?→ ΣY.Then we have

    since the map:[ΣY,ΣY]?→ [Y,ΩΣY]defined by

    is an isomorphism of groups,where ? ∈ [ΣY,ΣY],y ∈ Y,t∈ I and?y,t?∈ ΣY.Moreover,we have the following lemma.

    Lemma 3.1Let j:Yt?→ Y and q:Yt→ Stbe the inclusion map and the projection to the top cell of Yt,respectively.Then the following diagram

    is commutative up to homotopy,where t=2(n1as1+n2as2+···+nlasl)andis the iterated Samelson product.

    ProofWe first consider the exact sequence

    induced by a co fibration sequence

    Let:Y →Y ∧Y be the reduced diagonal map(i.e.,the composite of the diagonal Δ:Y →Y×Y with the projection π:Y×Y→Y∧Y onto the smash product)and let pni,asi:Y→Y/Y2niasi?1be the projection for i=1,2.Then by using the cellular approximation theorem,and considering the cell structure of Y∧Y and the composition with

    we haveFrom the above exact sequence,there exists a map

    such that

    By using this fact,we now consider the following commutative diagram up to homotopy(see also[13]in the case of the in finite complex projective space):

    where t=2(n1as1+n2as2)and C:ΩΣY ∧ΩΣY → ΩΣY is the commutator map with respect to the loop operation,that is

    Here the multiplication is the loop multiplication and the inverse means the loop inverse ν:ΩΣY → ΩΣY defined by ν(ω)= ω?1,where ω?1(t)= ω(1?t),t∈ [0,1].It shows that

    The proof in case of the l-fold iterated commutators and the Samelson products goes to the same way by substitutingandrespectively(similarly for the iterated Samelson products of homotopy classes).

    Lemma 3.2Let h:π?(ΩΣY)→ H?(ΩΣY;Q)be the Hurewicz homomorphism.Then

    whereis the standard generator of rational homology in dimension 2(n1as1+n2as2+ ···+

    ProofBy applying homology to the above homotopy commutative diagram(3.2)in the case of the two-fold commutators and the Samelson products,we obtain in rational homology of ΩΣY.Here nas=n1as1+n2as2andis the standard generator of H2(n1as1+n2as2)(Y;Q).The homotopy commutative diagram(3.1)in Lemma 3.1 shows that this lemma is still true for the l-th iterated commutators and the iterated Samelson products,as required.

    By considering the cell structure of the product of CW-spaces(this works for countable CW-complexes or when one factor is locally finite),we have the following lemma.

    Lemma 3.3If X is a CW-complex of finite type with base point x0as the zero skeleton and if f and g:X → ΩX?are the base point preserving maps withrespectively,then the restriction of the commutator[f,g]:X→ΩX?to the(p+q)-skeleton of X is inessential.

    ProofFor details,see[10,Lemma 2.3].

    Lemma 3.4Let t=2(n1as1+n2as2+ ···+nlasl).Then

    is inessential,where si=1,2,···,k and ni=1,2,3,···for i∈ {1,2,···,l}.

    ProofWe prove this lemma by induction on l.Sinceandfor s=1,2,···,k,and n=1,2,3,···,by Lemma 3.3,we seeiithat the commutatorrestricts to the trivial map on the skeleton Y2(na+na)?2.1s12s2By considering the cell structures of the Eilenberg-MacLane spaces described above,we see that Y has no cells in some ranges of dimensions,more precisely,between dimensions 2n1as1+2n2as2?2 and 2n1as1+2n2as2?1,that is

    The cellular approximation theorem shows that the restrictionto the skeleton is null homotopic.

    We now suppose thatis inessential.Sincethe similar argument as described above shows that

    By induction on l,we complete the proof of this lemma.

    Lemma 3.5For each basic Whitehead productof the graded homotopy group π?(ΣY),we can construct the corresponding iterated commutatorin the group[ΣY,ΣY]such that

    where λ0,andandare rationally non-trivial indecomposable elements,and nas=n1as1+n2as2+ ···+nlasl.

    ProofWe argue about a matter with induction on l again.We first show that

    where λ?0,and nas=n1as1+n2as2.To do this,we consider the following commutative diagram:

    The Cartan-Serre theorem(see[5,Theorem 16.10])asserts that the Hurewicz homomorphism h:π?(ΩΣY)→ H?(ΩΣY;Q)becomes an isomorphism

    where the latter is a primitive subspace of H?(ΩΣY;Q).Thus we observe that

    for each s=1,2,···,k and n=1,2,3,···(compare with the Hurewicz map of the Brown-Peterson spectra in[15,p.166]).Hereis the rationally non-trivial indecomposable element of the homotopy groups,andis the rational homology generator in dimension 2nas,where E:Y→ΩΣY is the canonical inclusion.We now have

    It can be noticed that the above zero term is derived from the fact that the restrictionto the skeleton is inessential by Lemma 3.4;that is

    for dim()≤ 2(n1as1+n2as2)?1 in rational homology of ΩΣY.Moreover,we see thatandare rationally non-trivial indecomposable and decomposable elements,respectively,in π2(n1as1+n2as2)(ΩΣY)/torsion,by Remark 3.1 as adjointness for decomposable generators,and thatis spherical,and thus primitive.Now considering the above equation(3.3),we observe that

    On the other hand,is a loop map,thus it is an H-map.Furthermore,the Scheerer’s theorem(see[17,p.75])says that there is a bijection between[ΣY,ΣY]and the set[ΩΣY,ΩΣY]Hof homotopy classes of H-maps ΩΣY → ΩΣY.Therefore,by taking the adjoint of the Samelson product,we obtain the result.

    We now suppose that the result holds for the(l?1)-fold Whitehead product.Since

    and the iterated Samelson productis rationally non-trivial,by using the first result above and combining with:Y→ΩΣY,we can construct an iterated commutator mapsuch that,after taking the adjointness,the desired formula of this lemma is obtained.

    Remark 3.2We turn now to the other types of purely decomposable generators,namelyandconsisting of the basic Whitehead products of the rational homotopy.It can be shown that we can also consider the iterated commutatorsand(corresponding to the basic Whitehead productsandrespectively)satisfying Lemma 3.5 whose proof goes to the similar way.

    By using the results described above,we now proceed to the proof of Theorem 1.1 as follows.

    If X is a connected H-space of finite type,then X has k-invariants of finite order,and H?(X;Q)becomes a Hopf algebra which is the tensor product of exterior algebras with odd degree generators and polynomial algebras with even degree generators.On the space level,this means that every H-space has a rational homotopy type of a product of rational Eilenberg-MacLane spaces.The Eckmann-Hilton dual of the Hopf-Thom theorem(see[19,p.263–269]and[20,Chapter III])says that ΣK(Z,2as)has the rational homotopy type of the wedge products of the in finite number of spheres,that is

    for each s=1,2,···,k.By using both the basic Whitehead products and the Hilton’s theorem(see[7]),we can find various kinds of rational homotopy indecomposable and purely decomposable generators on π?(ΣY)? Q as follows:

    Table 1 s=1,2,···,k

    Moreover,we can see that there exist hybrid decomposable generators of the rational homotopy.The hybrid decomposable generator might be occurred firstly in dimension 2a3+1.For example,if a1=1,a2=3 and a3=4,thenandare the hybrid decomposable generators in π9(ΣY)?Q and π17(ΣY)? Q,respectively.The number of purely or hybrid decomposable generators increases dramatically as the homotopy dimensions are on the increase.

    Since the ranks between the graded homotopy group modulo torsion and the graded rational homotopy group coincide with each other,we can also find the corresponding indecomposable and decomposable elements on π?(ΣY)/torsion.More precisely,it can be seen from the above table that there is only one indecomposable generator,up to sign,of the homotopy group π2nas+1(ΣY)/torsion for each n=1,2,3,···and s=1,2,···,k,while there are various kinds of purely or hybrid decomposable generators in it(possibly)for n≥2.

    We now let L=(π?(ΣY)/torsion,[,]W)and L≤as,n=(π≤2nas+1(ΣY)/torsion,[,]W)be the Whitehead algebras(corresponding to L and L≤as,n,respectively)under the Whitehead products.And we denoteandby the indecomposable and decomposable components,respectively,of the homotopy group modulo torsions,namely,π2nas+1(ΣY)/torsion.Then we have thatand thusfor each s=1,2,···,k and n=1,2,3,···.Moreover,the following sequence

    is exact for each s=1,2,···,k and n=1,2,3,···(see[11]).Here the map f sends

    to

    and the map g is given by restriction and projection,where q:is the projection and j:is the inclusion.We observe that the above short exact sequence is still valid since we are working on π≤2nas+1(ΣY)/torsion.Furthermore,we get Aut(π2as+1(ΣY)/torsion) ~=Z2for s=1,2,···,k,and Aut(π≤2nas+1(ΣY)/torsion)is in finite for all n ≥ 3 and s=1,2,···,k.Therefore the induction step begins.We now suppose that the map Aut(ΣY)→ Aut(L

    completely depending on the form ofsuch that the restrictionto the subalgebra L

    where λ0,and nas=n1as1+n2as2+ ···+nlasl.By considering the indecomposable and(purely or hybrid)decomposable generators,induction hypothesis and Theorem 2.1,we finally complete the proof of Theorem 1.1.

    Remark 3.3One may wonder why the k-th suspensions are not mentioned in this paper(or the previous papers[9–10])for k ≥ 2.Indeed,the homotopy self-equivalences I+constructed in our main theorem are not as well behaved as one might wish on the self-maps of the k-th suspension of a given CW-space Y for k≥2 since the group[ΣkY,ΣkY]becomes abelian for k ≥ 2.However,it is reasonable for us to conjecture that there are lots of self-maps in this abelian group which are nontrivial rationally,but suspend to the trivial self-map of Σk+1Y.

    AcknowledgementThe author is grateful to the anonymous referees for their careful readings and many helpful suggestions that improved the quality of the paper.

    [1]Adams,J.F.,An example in homotopy theory,Proc.Camb.Phil.Soc.,53,1957,922–923.

    [2]Arkowitz,M.and Curjel,C.R.,Homotopy commutators of finite order(I),Quart.J.Math.Oxford,Ser.2,14,1963,213–219.

    [3]Bott,R.and Samelson,H.,On the Pontryagin product in spaces of paths,Comment.Math.Helv.,27,1953,320–337.

    [4]Bous field,A.K.and Kan,D.M.,Homotopy limits,completions and localizations,Lecture Notes Math.,304,1972.

    [5]Félix,Y.,Halperin,S.and Thomas,J.C.,Rational Homotopy Theory,GTM,205,Springer-Verlag,New York,2001.

    [6]Gray,B.I.,Spaces on the same n-type for all n,Topology,5,1966,241–243.

    [7]Hilton,P.J.,On the homotopy groups of the union of spheres,J.Lond.Math.Soc.,30(2),1955,154–172.

    [8]Lee,D.-W.,On the same n-type conjecture for the suspension of the in finite complex projective space,Proc.Amer.Math.Soc.,137(3),2009,1161–1168.

    [9]Lee,D.-W.,On the same n-type structure for the suspension of the Eilenberg-MacLane spaces,J.Pure Appl.Algebra,214,2010,2027–2032.

    [10]Lee,D.-W.,On the same n-type of the suspension of the in finite quaternionic projective space,J.Pure Appl.Algebra,217,2013,1325–1334.

    [11]McGibbon,C.A.and M?ller,J.M.,On in finite dimensional spaces that are rationally equivalent to a bouquet of spheres,Proceedings of the 1990 Barcelona Conference on Algebraic Topology,Lecture Notes Math.,1509,1992,285–293.

    [12]McGibbon,C.A.and Steiner,R.,Some questions about the first derived functor of the inverse limit,J.Pure Appl.Algebra,103(3),1995,325–340.

    [13]Morisugi,K.,Projective elements in K-theory and self-maps of ΣCP∞,J.Math.Kyoto Univ.,38,1998,151–165.

    [14]Moriya,S.,The de Rham homotopy theory and differential graded category,Math.Z.,271,2012,961–1010.

    [15]Ravenel,D.C.,Nilpotence and periodicity in stable homotopy theory,Annals of Mathematics Studies,128,Princeton University Press,Princeton,1992.

    [16]Ruiz,F.G.,A note on residue formulas for the Euler class of sphere fibrations,Chin.Ann.Math.Ser.B.,32(4),2011,615–618.

    [17]Scheerer,H.,On rationalized H-and co-H-spaces with an appendix on decomposable H-and co-H-spaces,Manuscripta Math.,51,1984,63–87.

    [18]Scoville,N.A.,Lusternik-Schnirelmann category and the connectivity of X,Algebr.Geom.Topol.,12,2012,435–448.

    [19]Spanier,E.,Algebraic Topology,McGraw-Hill,New York,1966.

    [20]Whitehead,G.W.,Elements of Homotopy Theory,GTM,61,Springer-Verlag,New York,1978.

    [21]Wilkerson,C.W.,Classification of spaces of the same n-type for all n,Proc.Amer.Math.Soc.,60,1976,279–285.

    在线播放无遮挡| 观看美女的网站| 美女主播在线视频| 中文字幕av成人在线电影| 国产成人a区在线观看| 日韩一区二区视频免费看| 国产乱来视频区| 亚洲av电影不卡..在线观看| 精品人妻一区二区三区麻豆| 久久午夜福利片| 欧美激情在线99| av一本久久久久| 亚洲熟妇中文字幕五十中出| 日韩欧美三级三区| 国产午夜精品论理片| 欧美人与善性xxx| 三级国产精品片| 乱系列少妇在线播放| 只有这里有精品99| 最新中文字幕久久久久| 亚洲伊人久久精品综合| 免费看a级黄色片| 少妇丰满av| 九九在线视频观看精品| 久久久久久九九精品二区国产| 国产高潮美女av| 国产大屁股一区二区在线视频| 欧美变态另类bdsm刘玥| 欧美高清成人免费视频www| 亚洲av电影不卡..在线观看| 国产高清三级在线| 成人综合一区亚洲| 免费大片18禁| 欧美xxxx黑人xx丫x性爽| 日本wwww免费看| 亚洲精品成人久久久久久| 伊人久久精品亚洲午夜| 亚洲国产高清在线一区二区三| 日韩,欧美,国产一区二区三区| 午夜福利在线观看免费完整高清在| 亚洲电影在线观看av| 国产伦在线观看视频一区| av天堂中文字幕网| 免费观看av网站的网址| 男人舔奶头视频| 男人舔女人下体高潮全视频| 欧美另类一区| 亚洲精品乱久久久久久| 国产一区二区亚洲精品在线观看| 你懂的网址亚洲精品在线观看| 午夜福利在线观看免费完整高清在| 插逼视频在线观看| 成人欧美大片| 黄色配什么色好看| 91精品国产九色| 99久久人妻综合| 午夜免费观看性视频| 日韩亚洲欧美综合| 2021少妇久久久久久久久久久| 成人性生交大片免费视频hd| 国产69精品久久久久777片| 国产久久久一区二区三区| 少妇人妻精品综合一区二区| 蜜桃亚洲精品一区二区三区| 在线观看人妻少妇| 国产精品蜜桃在线观看| 亚洲国产成人一精品久久久| 特大巨黑吊av在线直播| 亚洲av在线观看美女高潮| 欧美极品一区二区三区四区| 性色avwww在线观看| 少妇熟女欧美另类| videossex国产| 午夜福利视频1000在线观看| 久久久精品欧美日韩精品| 欧美日韩国产mv在线观看视频 | 久久久久久国产a免费观看| 精品久久久久久久久av| 听说在线观看完整版免费高清| 欧美激情在线99| 国产精品爽爽va在线观看网站| av国产久精品久网站免费入址| 精品国产三级普通话版| 国产精品日韩av在线免费观看| 精品一区在线观看国产| 成人漫画全彩无遮挡| 99久久精品国产国产毛片| 欧美日韩国产mv在线观看视频 | 亚洲天堂国产精品一区在线| 欧美激情国产日韩精品一区| 亚洲欧美日韩东京热| 老师上课跳d突然被开到最大视频| 亚洲精品一二三| 国产精品一区二区三区四区免费观看| 国产成人a区在线观看| 亚洲在久久综合| 成年女人看的毛片在线观看| 身体一侧抽搐| 日韩av不卡免费在线播放| 美女国产视频在线观看| 日韩一本色道免费dvd| 精品一区二区免费观看| 1000部很黄的大片| 亚洲怡红院男人天堂| 亚洲av成人精品一区久久| 欧美激情国产日韩精品一区| 22中文网久久字幕| 精品久久久久久久久亚洲| 亚洲国产精品专区欧美| 免费观看精品视频网站| 波多野结衣巨乳人妻| 国产又色又爽无遮挡免| www.av在线官网国产| 天天躁夜夜躁狠狠久久av| 我的女老师完整版在线观看| 久久人人爽人人爽人人片va| 午夜福利视频精品| 麻豆精品久久久久久蜜桃| 亚洲精品影视一区二区三区av| 超碰97精品在线观看| 91精品伊人久久大香线蕉| 成人鲁丝片一二三区免费| 丝袜美腿在线中文| 久久人人爽人人片av| 国产在视频线在精品| 亚洲丝袜综合中文字幕| 国产在线男女| 全区人妻精品视频| 身体一侧抽搐| 日产精品乱码卡一卡2卡三| 亚洲精品色激情综合| 欧美精品国产亚洲| 一边亲一边摸免费视频| 亚洲aⅴ乱码一区二区在线播放| 成人漫画全彩无遮挡| 精品久久久久久久末码| 丝袜美腿在线中文| 狂野欧美白嫩少妇大欣赏| 男女那种视频在线观看| 国产日韩欧美在线精品| 国产成人精品福利久久| 日本与韩国留学比较| 麻豆国产97在线/欧美| 高清av免费在线| 亚洲四区av| 国产v大片淫在线免费观看| 直男gayav资源| 亚洲最大成人中文| 永久网站在线| 亚洲国产精品sss在线观看| 久久久午夜欧美精品| 2018国产大陆天天弄谢| 天天躁夜夜躁狠狠久久av| 亚洲av免费在线观看| 久久久久久伊人网av| 五月玫瑰六月丁香| 欧美xxxx黑人xx丫x性爽| 久久精品久久久久久久性| 色视频www国产| 久久亚洲国产成人精品v| 乱码一卡2卡4卡精品| 黄色一级大片看看| 精品久久久噜噜| 国产成人精品久久久久久| 人妻制服诱惑在线中文字幕| 国产极品天堂在线| 黑人高潮一二区| 好男人视频免费观看在线| 亚洲人成网站在线播| 婷婷色av中文字幕| 午夜久久久久精精品| 日韩国内少妇激情av| 色网站视频免费| 男人舔女人下体高潮全视频| 亚洲一级一片aⅴ在线观看| 久久午夜福利片| 久久久久久久大尺度免费视频| 嘟嘟电影网在线观看| 亚洲在线观看片| 精品国产一区二区三区久久久樱花 | 久久久欧美国产精品| av天堂中文字幕网| 别揉我奶头 嗯啊视频| 亚洲欧美日韩东京热| 国内少妇人妻偷人精品xxx网站| 亚洲av福利一区| 精品久久久久久久久av| 精品人妻熟女av久视频| 蜜桃久久精品国产亚洲av| 麻豆精品久久久久久蜜桃| 91精品一卡2卡3卡4卡| 亚洲第一区二区三区不卡| 边亲边吃奶的免费视频| 欧美bdsm另类| 亚洲精品久久午夜乱码| 啦啦啦中文免费视频观看日本| 五月天丁香电影| 如何舔出高潮| 赤兔流量卡办理| 亚洲精品视频女| 少妇人妻一区二区三区视频| 日韩强制内射视频| 一区二区三区乱码不卡18| 亚洲av.av天堂| 18禁在线无遮挡免费观看视频| 午夜福利视频精品| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久久久久久| 内射极品少妇av片p| 亚洲精品久久久久久婷婷小说| 天堂√8在线中文| 毛片一级片免费看久久久久| 亚洲精品日本国产第一区| 欧美97在线视频| 久久亚洲国产成人精品v| 自拍偷自拍亚洲精品老妇| 日本免费在线观看一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品久久久久久噜噜老黄| 国产黄频视频在线观看| 日韩大片免费观看网站| 欧美xxxx黑人xx丫x性爽| 午夜福利视频精品| 久久精品国产鲁丝片午夜精品| av.在线天堂| 22中文网久久字幕| 中国国产av一级| 精品一区在线观看国产| 欧美3d第一页| 国产亚洲av片在线观看秒播厂 | 中文欧美无线码| 2022亚洲国产成人精品| 欧美性感艳星| 欧美激情在线99| 18禁动态无遮挡网站| 伦精品一区二区三区| 男人舔奶头视频| 国产一区二区亚洲精品在线观看| 99热6这里只有精品| 国产老妇伦熟女老妇高清| 亚洲av中文字字幕乱码综合| 成年女人看的毛片在线观看| 国产av不卡久久| 性插视频无遮挡在线免费观看| 精品久久久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 日产精品乱码卡一卡2卡三| 久久99热这里只频精品6学生| 免费观看无遮挡的男女| 中文字幕制服av| 99热这里只有是精品在线观看| 少妇高潮的动态图| 亚洲第一区二区三区不卡| 在线观看一区二区三区| 欧美日韩国产mv在线观看视频 | av国产免费在线观看| 一个人观看的视频www高清免费观看| 美女高潮的动态| 午夜视频国产福利| 中文字幕av成人在线电影| 丰满乱子伦码专区| 少妇熟女欧美另类| 国产一区二区三区综合在线观看 | 丰满乱子伦码专区| 一级黄片播放器| 欧美激情久久久久久爽电影| 我的老师免费观看完整版| 国产精品国产三级专区第一集| 少妇裸体淫交视频免费看高清| 一级黄片播放器| 中文字幕久久专区| 亚洲精品自拍成人| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品成人久久小说| 欧美人与善性xxx| 日韩制服骚丝袜av| 亚洲熟妇中文字幕五十中出| 亚洲精品456在线播放app| av天堂中文字幕网| 免费不卡的大黄色大毛片视频在线观看 | 两个人视频免费观看高清| 99热这里只有是精品在线观看| 人人妻人人澡人人爽人人夜夜 | 热99在线观看视频| 亚洲熟妇中文字幕五十中出| 国产乱来视频区| 亚洲国产日韩欧美精品在线观看| av在线观看视频网站免费| 在线免费观看的www视频| 老司机影院成人| 亚洲精品中文字幕在线视频 | 日韩国内少妇激情av| 最近最新中文字幕免费大全7| 国产黄色视频一区二区在线观看| 国产一区亚洲一区在线观看| 国产视频内射| 久久久久久久久久久免费av| 亚洲欧美日韩无卡精品| 久久6这里有精品| 韩国高清视频一区二区三区| 黄色一级大片看看| 日本三级黄在线观看| 国产成人精品久久久久久| a级毛片免费高清观看在线播放| 91精品国产九色| 18禁动态无遮挡网站| 波野结衣二区三区在线| 日韩三级伦理在线观看| 97在线视频观看| 国产一级毛片在线| 伦理电影大哥的女人| 日韩成人伦理影院| 99热网站在线观看| 三级毛片av免费| 人人妻人人看人人澡| 精品99又大又爽又粗少妇毛片| 三级国产精品欧美在线观看| av在线播放精品| 日韩一区二区三区影片| 欧美区成人在线视频| 最新中文字幕久久久久| 国产高清有码在线观看视频| 国产色爽女视频免费观看| av播播在线观看一区| 最近中文字幕高清免费大全6| 亚洲在线自拍视频| 精品久久久久久久人妻蜜臀av| 自拍偷自拍亚洲精品老妇| 男插女下体视频免费在线播放| 免费av观看视频| 99久久精品热视频| 亚洲欧美一区二区三区国产| 最近最新中文字幕大全电影3| 久久久久久九九精品二区国产| 免费观看性生交大片5| 可以在线观看毛片的网站| 26uuu在线亚洲综合色| 乱系列少妇在线播放| 欧美激情久久久久久爽电影| 亚洲av成人av| 午夜精品在线福利| 国产探花在线观看一区二区| 欧美日韩精品成人综合77777| 少妇丰满av| 最近2019中文字幕mv第一页| 成人高潮视频无遮挡免费网站| 亚洲av二区三区四区| 最近视频中文字幕2019在线8| 秋霞在线观看毛片| 久久久欧美国产精品| 免费不卡的大黄色大毛片视频在线观看 | 一区二区三区乱码不卡18| 尾随美女入室| 国产精品综合久久久久久久免费| 久久6这里有精品| av专区在线播放| 国内揄拍国产精品人妻在线| 三级毛片av免费| 精品国产露脸久久av麻豆 | 国产91av在线免费观看| 国产精品综合久久久久久久免费| 在线观看免费高清a一片| 国产又色又爽无遮挡免| av在线观看视频网站免费| 春色校园在线视频观看| 免费av观看视频| 国产 亚洲一区二区三区 | 少妇熟女欧美另类| 免费观看在线日韩| 日本av手机在线免费观看| 国产色婷婷99| 成人国产麻豆网| 国产成人aa在线观看| 欧美区成人在线视频| 少妇裸体淫交视频免费看高清| 免费少妇av软件| 亚洲熟女精品中文字幕| 精品欧美国产一区二区三| 免费无遮挡裸体视频| 中国国产av一级| 亚洲精品乱码久久久v下载方式| 成人毛片a级毛片在线播放| 最近中文字幕高清免费大全6| 国产欧美日韩精品一区二区| 亚洲美女视频黄频| 建设人人有责人人尽责人人享有的 | eeuss影院久久| 水蜜桃什么品种好| 插逼视频在线观看| 在线观看美女被高潮喷水网站| 精品一区二区三卡| 国产伦精品一区二区三区视频9| 午夜激情福利司机影院| 国产有黄有色有爽视频| 一个人免费在线观看电影| 久久这里有精品视频免费| av免费在线看不卡| 蜜桃亚洲精品一区二区三区| 成人毛片60女人毛片免费| 搡老乐熟女国产| 成年女人在线观看亚洲视频 | 国产成人精品婷婷| 久久精品国产鲁丝片午夜精品| 亚洲熟女精品中文字幕| 97精品久久久久久久久久精品| 日韩成人伦理影院| 国产成人免费观看mmmm| 免费看日本二区| 亚洲精品乱码久久久久久按摩| 国产免费视频播放在线视频 | 26uuu在线亚洲综合色| 美女cb高潮喷水在线观看| 赤兔流量卡办理| 我的女老师完整版在线观看| 一级av片app| 老司机影院毛片| 美女xxoo啪啪120秒动态图| 免费人成在线观看视频色| 九九久久精品国产亚洲av麻豆| 久热久热在线精品观看| 男女边摸边吃奶| 国内精品宾馆在线| .国产精品久久| 嫩草影院新地址| 97超碰精品成人国产| 夫妻午夜视频| 国产成人精品一,二区| 国产成人免费观看mmmm| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 久久人人爽人人片av| 男的添女的下面高潮视频| 国产在视频线精品| 国产一区二区三区综合在线观看 | av专区在线播放| 国产成年人精品一区二区| 直男gayav资源| 亚洲欧美成人综合另类久久久| 国产精品一区www在线观看| 内射极品少妇av片p| 青春草亚洲视频在线观看| 国产伦精品一区二区三区四那| 亚州av有码| 国产亚洲av片在线观看秒播厂 | 大香蕉97超碰在线| av福利片在线观看| 色播亚洲综合网| 国产伦精品一区二区三区四那| 亚洲国产欧美在线一区| 又爽又黄a免费视频| 又大又黄又爽视频免费| 成人二区视频| 亚洲欧美精品专区久久| 秋霞在线观看毛片| 国产乱人视频| 亚洲欧美中文字幕日韩二区| 精品国产露脸久久av麻豆 | 黄色欧美视频在线观看| 丰满人妻一区二区三区视频av| 在现免费观看毛片| 免费观看在线日韩| 国语对白做爰xxxⅹ性视频网站| 一个人看的www免费观看视频| 国产精品精品国产色婷婷| 精品亚洲乱码少妇综合久久| 婷婷六月久久综合丁香| 久久草成人影院| 亚洲精品日韩av片在线观看| 国产人妻一区二区三区在| 一区二区三区高清视频在线| 国产精品嫩草影院av在线观看| 国产有黄有色有爽视频| 欧美xxxx黑人xx丫x性爽| 色综合色国产| 日日摸夜夜添夜夜爱| 国产午夜精品论理片| 97在线视频观看| 亚洲av中文字字幕乱码综合| 久久久久久国产a免费观看| a级一级毛片免费在线观看| 亚洲内射少妇av| 国产欧美日韩精品一区二区| 有码 亚洲区| av专区在线播放| 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 国产成人精品婷婷| 免费观看精品视频网站| 国产成人精品婷婷| 国产色婷婷99| 高清av免费在线| 亚洲av中文字字幕乱码综合| 2018国产大陆天天弄谢| 久久精品熟女亚洲av麻豆精品 | 最近的中文字幕免费完整| 国产免费福利视频在线观看| 精品一区二区三区视频在线| 91久久精品电影网| 国产黄色视频一区二区在线观看| 精品一区二区三区人妻视频| 日韩av在线大香蕉| 欧美最新免费一区二区三区| 亚洲婷婷狠狠爱综合网| h日本视频在线播放| 国产黄色小视频在线观看| 九草在线视频观看| 一个人观看的视频www高清免费观看| 成人高潮视频无遮挡免费网站| 卡戴珊不雅视频在线播放| 国产精品1区2区在线观看.| 丰满少妇做爰视频| 亚洲电影在线观看av| 国产精品熟女久久久久浪| 成人毛片a级毛片在线播放| 99热6这里只有精品| 亚洲精品乱码久久久久久按摩| 一级黄片播放器| 国产极品天堂在线| 又爽又黄无遮挡网站| 中文欧美无线码| 亚洲国产成人一精品久久久| 亚洲美女视频黄频| videos熟女内射| 亚州av有码| 亚洲天堂国产精品一区在线| 日韩大片免费观看网站| 国产色婷婷99| 淫秽高清视频在线观看| 麻豆成人av视频| 一二三四中文在线观看免费高清| 波野结衣二区三区在线| 美女cb高潮喷水在线观看| 国产女主播在线喷水免费视频网站 | 国产色爽女视频免费观看| 久久人人爽人人爽人人片va| 波多野结衣巨乳人妻| 乱人视频在线观看| 内射极品少妇av片p| 嫩草影院入口| 国产av码专区亚洲av| 99久国产av精品国产电影| 日韩一本色道免费dvd| a级毛色黄片| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久v下载方式| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 非洲黑人性xxxx精品又粗又长| 91av网一区二区| 亚洲美女搞黄在线观看| 亚洲av.av天堂| 免费观看精品视频网站| 噜噜噜噜噜久久久久久91| 天天一区二区日本电影三级| 欧美成人一区二区免费高清观看| 身体一侧抽搐| 熟女人妻精品中文字幕| 街头女战士在线观看网站| 午夜精品国产一区二区电影 | 亚洲成人精品中文字幕电影| 亚洲国产成人一精品久久久| 久久99热这里只有精品18| 亚洲在线自拍视频| 狂野欧美激情性xxxx在线观看| 亚洲欧美成人精品一区二区| 日日干狠狠操夜夜爽| 亚洲成色77777| 久久国内精品自在自线图片| 男女边摸边吃奶| 如何舔出高潮| 亚洲av男天堂| 午夜免费观看性视频| 国产精品女同一区二区软件| 免费av观看视频| 国产av国产精品国产| 精品不卡国产一区二区三区| 在线 av 中文字幕| 日韩欧美 国产精品| 成人鲁丝片一二三区免费| www.色视频.com| 国产欧美日韩精品一区二区| 亚洲av一区综合| 免费av不卡在线播放| 禁无遮挡网站| 日韩精品青青久久久久久| 成年av动漫网址| 亚洲欧美成人综合另类久久久| 国产色婷婷99| 视频中文字幕在线观看| av福利片在线观看| 能在线免费观看的黄片| 国产真实伦视频高清在线观看| av黄色大香蕉| 国产精品三级大全| 久久鲁丝午夜福利片| 性色avwww在线观看| 91午夜精品亚洲一区二区三区| 久久久久久久国产电影| 久久人人爽人人爽人人片va| 99re6热这里在线精品视频| 最近手机中文字幕大全| 国产黄色免费在线视频| 久久精品国产亚洲av天美| 亚洲av福利一区| 亚洲在久久综合| 高清欧美精品videossex| 久久99精品国语久久久| 高清在线视频一区二区三区| 综合色av麻豆| 夫妻性生交免费视频一级片| 熟女人妻精品中文字幕| 久久久久精品久久久久真实原创| 国产淫语在线视频| 两个人视频免费观看高清| 永久免费av网站大全|