• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Quantum MDS Code from Constacyclic Codes?

    2016-06-05 03:10:35LiqinHUQinYUEXiaomengZHU

    Liqin HUQin YUEXiaomeng ZHU

    1 Introduction

    Quantum codes were introduced to protect quantum information from decoherence and quantum noise.After the pioneering work of Shor[24]and Steane[25],a systematic mathematical scheme has been employed to construct q-ary quantum codes from classical error-correcting codes over Fqor Fq2with certain orthogonality properties.The quantum codes obtained in this way are called stabilizer codes.After the establishment of the connection between quantum codes and classical codes(see[3]),the construction of stabilizer codes can be converted to that of classical codes with symplectic,Euclidean,or Hermitian self-orthogonal property.

    A q-ary quantum code Q of length n and size K is a K-dimensional subspace of a qndimensional Hilbert spaceAn important parameter of a quantum code is its minimum distance:If a quantum code has minimum distance d,then it can detect d? 1 and correctquantum errors.Let k=K,we useto denote a q-ary quantum code of length n with size qkand minimum distance d.The parameters of an[[n,k,d]]qquantum code must satisfy the quantum Singleton bound:2d ≤ n?k+2(see[19–20]).A quantum code achieving this quantum Singleton bound is called a quantum maximum-distanceseparable(MDS for short)code.Ketkar et al.in[19]pointed out that,for any odd prime power q,if the classical MDS conjecture holds,then the length of nontrivial quantum MDS codes can not exceed q2+1.As mentioned in[16],except for some sparse lengths n such as n=q2+1,and q2,almost all known q-ary quantum MDS codes have minimum distance less than or equal to+1.The following result gives a connection between classical Hermitian self-orthogonal MDS codes and quantum MDS codes.

    Theorem 1.1(see[2])If C is a q2-ary[n,k,n?k+1]MDS code such that C? C⊥H,then there exists a q-ary[[n,n?2k,k+1]]quantum code.

    In recent years,constructing quantum MDS codes has become a hot research topic.Many classes of quantum MDS codes have been found by employing different methods(see[1,4–5,7–17,22–23]).Recently,Kai et al.[17–18]constructed several classes of good quantum codes from classical constacyclic codes,including some new classes of quantum MDS codes.

    Motivated by the above works,a new family of quantum MDS code is constructed in this paper.The quantum code in this paper can be regarded as a generalization of[18,Theorems 3.14–3.15],in the sense that our quantum MDS code has bigger minimum distance.

    2 Preliminaries

    In this section,we recall some definitions and basic properties of constacyclic codes.Throughout this paper,q denotes an odd prime power and Fq2denotes the finite field with q2elements.Assume that n is a positive integer relatively prime to q,i.e.,gcd(n,q)=1.

    Letbe thevector space of n-tuples.A linear code C of length n is an Fq2subspace ofFor a nonzero element η of Fq2,a linear code C of length n over Fq2is said to be η-constacyclic if(ηcn?1,c0,···,cn?2) ∈ C for every(c0,c1,···,cn?1) ∈ C.If each codeword c=(c0,c1,···,cn?1)∈ C corresponds with its polynomial representation c(x)=c0+c1x+···+cn?1xn?1∈ Fq2[x],then the η-constacyclic code C is identified with exactly one ideal of the quotient ring Fq2[x]/(xn? η).Since Fq2[x]/(xn? η)is a principal ideal ring,an η-constacyclic code C is generated uniquely by a monic divisor g(x)of xn?η and denoted by C=?g(x)?.Hence g(x)and h(x)=are called the generator polynomial and the check polynomial of C,respectively.

    Similarly to cyclic codes,there exists the following BCH bound for η-constacyclic codes(see[21]).

    Lemma 2.1Let C=?g(x)?be an η-constacyclic code of length n overand gcd(q,n)=1.Suppose that the roots of g(x)include γαi,i=1,2,···,d ? 1(≤ degg(x)),where γ and α are nonzero elements in some extension field of Fq2,and α is an element of order n.Then the minimum distance of the code is at least d.

    For two vectors b=(b1,b2,···,bn)and c=(c1,c2,···,cn)in,we define the Hermitian inner productto be=where=for each 1≤i≤n.The vectors b and c are called orthogonal with respect to Hermitian inner product if=0.For a q2-ary linear code C,the Hermitian dual codes of C is defined as

    A q2-ary linear code C of length n is called Hermitian self-orthogonal if C? C⊥H.Conversely,if C⊥H? C,we say that C is a Hermitian dual-containing code.

    The automorphism of Fq2given by“?”,=aqfor any a∈ Fq2,can be extended to an automorphism of[x]in an obvious way:

    for any a0,a1,···,anin,which is also denoted by “ ? ” for simplicity.

    For a monic polynomial f(x)∈Fq2[x]of degree k with f(0)?0,its reciprocal polynomial will be denoted by

    The following result gives the generator polynomial of C⊥H.

    Lemma 2.2(see[26,Lemma 2.1(ii)])Let C=?g(x)?be an η-constacyclic code of length n and dimensional k over.Set h(x)=.Then the Hermitian dual code C⊥His an-constacyclic code with the generator polynomialwhere

    and

    are the reciprocal and conjugate-reciprocal polynomials of h(x),respectively.

    By Lemma 2.2,we can get the following result.

    Lemma 2.3Let η∈Fq2be a primitive r-th root of unity and let C be a Hermitian dualcontaining η-constacyclic code of length n over Fq2.Then η = η?q,i.e.,r|q+1.

    Let C=?g(x)?be an η-constacyclic code of length n and let Ω ={1+jr|0 ≤ j ≤ n? 1}.The set Z={k ∈ Ω |g(ζk)=0}is called the defining set of C,where ζ is a primitive rn-th root of unity in some extension field of Fq2such that ζn= η.The following result presents a criterion to determine whether or not an η-constacyclic code of length n over Fq2is Hermitian dual-containing.

    Lemma 2.4(see[18,Lemma 2.2])Let r be a positive divisor of q+1 and let η ∈Fq2 be of order r.Assume that C is an η-constacyclic code of length n over Fq2with a defining set Z.Then C is a Hermitian dual-containing code if and only if Z ∩ (?q)Z= ?,where(?q)Z={?qz(mod rn)|z∈ Z}.

    The Hermitian construction suggests that we can obtain q-ary quantum codes as long as we can construct classical Hermitian dual-containing codes over Fq2.Constacyclic codes form an important class of linear codes due to their good algebraic structures.In this paper,we will use the Hermitian construction to obtain MDS quantum codes through constacyclic codes.

    3 New Quantum MDS Code

    Throughout this section,we always assume that η is a primitive r-th root of unity in Fq2 with r|(q+1),and n is a positive integer with rn|(q4?1)and rn?(q2?1).In this section,we construct a family of q-ary quantum codes with good parameters through the Hermitian construction.

    Let C be an η-constacyclic code and let Ω ={1+jr|0 ≤ j ≤ n?1}.Since rn|(q4?1),we always have that|C1+jr|≤2,0≤j≤n?1,where C1+jris the q2-cyclotomic coset containing 1+jr modulo rn.

    Lemma 3.1There exist exactly two q2-cyclotomic cosets C1+rkandwith|C1+rk|=|C1+r(k+n2)|=1 if and only if n|(q2+1)and n is even,where rk?1mod?,0≤k≤?1.

    ProofSuppose that i=1+jr∈Ω,0≤j≤n?1.Then there are exactly two q2-cyclotomic cosets Ciand Ci?(i,i?∈ Ω,ii?)with|Ci|=|Ci?|=1 if and only if the congruence equation(1+jr)q2≡1+jr(mod rn)has exactly two different solutions,which implies that

    has two solutions k and k?with 0≤k?=k?≤n?1.As rn|q4?1 and gcd(q2?1,q2+1)=2,(3.1)has two solutions if and only if gcd(n,q2?1)=2 if and only if n|(q2+1)and n is even,so i=1+rk,i?=1+r?k+?,where rk≡?1?mod?,0≤k≤?1.

    Suppose that n|q2+1 and n is even.By Lemma 3.1,there are exactly two q2-cyclotomic cosets Csandwith|Cs|==1,where s=

    Lemma 3.2Let n be an even divisor of q2+1.Suppose that s=.Then Ω={1+jr|0≤j≤n?1}is a disjoint union of q2-cyclotomic cosets:

    ProofSince n|q2+1 and n is even,by Lemma 3.1 there are exactly two q2-cyclotomic cosets Csandwith one element.

    For each j,1≤j≤?1,

    Hence Cs+rj={s?rj,s+rj}for 1≤j≤?1.

    In order to use Lemma 3.2 to construct Hermitian dual-containing MDS constacyclic code,we need the condition that?qCs=,i.e.,Cs?qCs.

    Proposition 3.1Let n be an even divisor of q2+1 and s=Then Cs??qCsif and only if 2,where Cs={s}is the q2-cyclotomic coset containing s.

    ProofFor s=,s≡?qs(mod rn)if and only if rn|(q+1)s,which implies n|By s=,we have|s with s odd,so n|if and only if 2|.Hence,we get the result.

    The following results are given in[18].

    Lemma 3.3(see[18,Theorem 3.14])Let q be an odd prime power with the form 20m+3 or 20m+7,where m is a positive integer.Let n=.Then,there exists a q-ary[[n,n?2d+2,d]]-quantum MDS code,where 2≤d≤is even.

    Lemma 3.4(see[18,Theorem 3.15])Let q be an odd prime power with the form 20m?3 or 20m?7,where m is a positive integer.Let n=.Then,there exists a q-ary[[n,n?2d+2,d]]-quantum MDS code,where 2≤d≤is even.

    Using the Hermitian construction,we will obtain q-ary quantum codes of lengthfrom constacyclic codes over Fq2.The main code of this paper has much larger minimum distance than the one of[18]when q>23.

    Let q be an odd prime power with q≡ 3(mod 10)or q≡ ?3(mod 10),and n=.We consider η-constacyclic code of length n over Fq2.

    In order to construct quantum MDS codes,we give a sufficient condition for η-constacyclic codes which contain their Hermitian duals.For any odd prime power q with q≡±3(mod 10),we first consider the case q≡3(mod 10).

    Lemma 3.5Assume that q is an odd prime power with q≡3(mod 10)andodd.Let s=and n=.If C is an η-constacyclic code over Fq2of length n with defining setwhere 0 ≤ δ≤,then C is a Hermitian dual-containing code.

    ProofBy Lemma 2.4,it is sufficient to prove that Z∩(?q)Z= ?.Suppose that Z∩(?q)Z?.Then,there exist two integers j,k,0≤ j,k ≤,such that s?rj≡ ?q(s?rk)(mod rn)or s?rj≡?q(s+rk)(mod rn).

    Case Is?rj≡?q(s?rk)(mod rn).This is equivalent to

    By s=andodd,we obtain

    Since 0≤ j,k ≤,0≤ j+qk≤.We have that j+qk≡(mod n)if and only if qk+j=.Since

    we have

    By division algorithm,j=.This is impossible,because

    Case IIs?rj≡?q(s+rk)(mod rn).This is equivalent to

    As s=andodd,we obtain

    Since 0≤ j,k≤,we have

    We have that?qk+j≡(mod n)if and only if

    Hence

    By division algorithm,

    This is impossible.

    Theorem 3.1Let q be an odd prime power with q≡3(mod 10).Then,there exist quantum MDS codes with parameterswhereis even.

    ProofPut s=withodd.Let η be an r-th primitive root in Fq2.Consider the η-constacyclic code C over Fq2of length n=with defining setwhere 0≤ δ≤From Lemma 3.5,C⊥? C.From Lemma 3.2 we can see that Z contains 2δ+1 consecutive integers.This implies that C has minimum distance at least 2δ+2.Hence,C is an[n,n?2δ?1,2δ+2]MDS constacyclic code.Combining the Hermitian construction with quantum Singleton bound,we can obtain a quantum MDS code with parameterswhere d,2≤d≤,is even.

    Compare our quantum MDS codes in Theorem 3.1 with quantum MDS codes in[18],our quantum MDS codes has much bigger minimum distance than the known codes in[18]when q>23,because

    for q>23.

    Example 3.1Take q=43,and so n=370.Using Theorem 3.1 produces a new quantum MDS code with parameters[[370,320,26]]43.

    For the case q≡ ?3(mod 10),we can produce the following quantum MDS codes.The proof is similar to that in the case q≡3(mod 10)and we omit it.

    Theorem 3.2Let q be an odd prime power with q≡ ?3(mod 10).Then,there exist quantum MDS codes with parameterswhere 2≤ d≤is even.

    Example 3.2Take q=37,and so n=137.Using Theorem 3.2 produces a new quantum MDS code with parameters[[137,95,22]]37.

    [1]Aly,S.A.,Klappenecker,A.and Sarvepalli,P.K.,On quantum and classical BCH codes,IEEE Trans.Inf.Theory,53(3),2007,1183–1188.

    [2]Ashikhmin,A.and Knill,E.,Nonbinary quantum stablizer codes,IEEE Trans.Inf.Theory,47(7),2001,3065–3072.

    [3]Calderbank,A.R.,Rains,E.M.,Shor,P.W.and Sloane,N.J.A.,Quantum error correction via codes over GF(4),IEEE Trans.Inf.Theory,44(4),1998,1369–1387.

    [4]Chen,H.,Some good quantum error-correcting codes from algebraic-geometric codes,IEEE Trans.Inf.Theory,47(5),2001,2059–2061.

    [5]Chen,H.,Ling,S.and Xing,C.,Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound,IEEE Trans.Inf.Theory,47(5),2001,2055–2058.

    [6]Chen,H.,Ling,S.and Xing,C.,Quantum codes from concatenated algebraic-geometric codes,IEEE Trans.Inf.Theory,51(8),2005,2915–2920.

    [7]Chen,B.,Ling,S.and Zhang,G.,Application of constacyclic codes to quantum MDS codes,IEEE Trans.Inf.Theory,61(3),2015,1474–1484.

    [8]Feng,K.,Quantum codes[[6,2,3]]pand[[7,3,3]]p(p≥3)exist,IEEE Trans.Inf.Theory,48(8),2002,2384–2391.

    [9]Feng,K.,Ling,S.and Xing,C.,Asymptotic bounds on quantum codes from algebraic geometry codes,IEEE Trans.Inf.Theory,52(3),2006,986–991.

    [10]Grassl,M.,Beth,T.and R¨otteler,M.,On optimal quantum codes,Int.J.Quantum Inform.,2(1),2004,757–766.

    [11]R¨otteler,M.,Grassl,M.and Beth,T.,On quantum MDS codes,Information Theory,Proceedings International Symposium on IEEE,2004,356.

    [12]Guardia,G.G.L.,New quantum MDS codes,IEEE Trans.Inf.Theory,57(8),2011,5551–5554.

    [13]Hu,X.,Zhang,G.and Chen,B.,Constructions of new nonbinary quantum codes,Int.J.Theor.Phys.,54(1),2014,92–99.

    [14]Jin,L.,Ling,S.,Luo,J.and Xing,C.,Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes,IEEE Trans.Inf.Theory,56(9),4735–4740,2010.

    [15]Jin,L.and Xing,C.,Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes,IEEE Trans.Inf.Theory,58,2012,5484–5489.

    [16]Jin,L.and Xing,C.,A construction of new quantum MDS codes,IEEE Trans.Inf.Theory,60,2014,2921–2925.

    [17]Kai,X.and Zhu,S.,New quantum MDS codes from negacyclic codes,IEEE Trans.Inf.Theory,59(2),2013,1193–1197.

    [18]Kai,X.,Zhu,S.and Li,P.,Constacyclic codes and some new quantum MDS codes,IEEE Trans.Inf.Theory,60(4),2014,2080–2086.

    [19]Ketkar,A.,Klappenecker,A.,Kumar,S.and Sarvepalli,P.K.,Nonbinary stabilizer codes over finite fields,IEEE Trans.Inf.Theory,52(11),2006,4892–4914.

    [20]Knill,E.and La flamme,R.,Theory of quantum error-correcting codes,Phys.Rev.A,55(2),1997,900–911.

    [21]Krishna,A.and Sarwate,D.V.,Pseudocyclic maximum-distance separable codes,IEEE Trans.Inf.Theory,36(4),1990,880–884.

    [22]Li,Z.,Xing,L.J.and Wang,X.M.,Quantum generalized Reed-Solomon codes:Unified framework for quantum maximum-distance separable codes,Phys.Rev.A,77,2008,012308(1)–012308(4).

    [23]Ling,S.,Luo,L.and Xing,C.,Generalization of Steane’s enlargement construction of quantum codes and applications,IEEE Trans.Inf.Theory,56(8),2010,4080–4084.

    [24]Shor,P.W.,Scheme for reducing decoherence in quantum computer memory,Phys.Rev.A,52(4),1995,2493–2496.

    [25]Steane,A.M.,Multiple particle interference and quantum error correction,Proc.Roy.Soc.London A,452(1),1996,2551–2577.

    [26]Yang,Y.and Cai,W.,On self-dual constacyclic codes over finite fields,Des.,Codes Cryptogr.,74(2),2013,355–364.

    亚洲成人久久性| 丰满乱子伦码专区| 熟妇人妻久久中文字幕3abv| 色视频www国产| 男女边吃奶边做爰视频| 亚洲精品在线观看二区| 男女那种视频在线观看| 亚洲精品影视一区二区三区av| 亚洲专区中文字幕在线| 国产aⅴ精品一区二区三区波| 啪啪无遮挡十八禁网站| 国产精品综合久久久久久久免费| 一级av片app| 美女高潮喷水抽搐中文字幕| 国产成人一区二区在线| 欧美激情在线99| 久久精品91蜜桃| 成人亚洲精品av一区二区| 国产av在哪里看| 午夜激情欧美在线| av中文乱码字幕在线| av在线老鸭窝| 欧美黑人巨大hd| 亚洲美女黄片视频| 国产免费男女视频| 国模一区二区三区四区视频| 日韩中文字幕欧美一区二区| 婷婷精品国产亚洲av在线| 久久天躁狠狠躁夜夜2o2o| av中文乱码字幕在线| 亚洲三级黄色毛片| 久久99热这里只有精品18| 人妻制服诱惑在线中文字幕| 国产真实乱freesex| 日韩精品有码人妻一区| 伊人久久精品亚洲午夜| 中文字幕精品亚洲无线码一区| 久久精品91蜜桃| 国产伦精品一区二区三区四那| 成熟少妇高潮喷水视频| 最近中文字幕高清免费大全6 | 一级毛片久久久久久久久女| 日本-黄色视频高清免费观看| 久久精品国产鲁丝片午夜精品 | 乱系列少妇在线播放| 男女做爰动态图高潮gif福利片| 欧美潮喷喷水| 高清毛片免费观看视频网站| 国产精品一区二区三区四区久久| 国产一级毛片七仙女欲春2| 精品一区二区三区视频在线| 十八禁网站免费在线| 精品一区二区三区人妻视频| 国产视频内射| a级毛片免费高清观看在线播放| 夜夜看夜夜爽夜夜摸| 国产精品久久电影中文字幕| 琪琪午夜伦伦电影理论片6080| 精品不卡国产一区二区三区| 欧美成人免费av一区二区三区| 最近在线观看免费完整版| 亚洲性夜色夜夜综合| 99视频精品全部免费 在线| 国产aⅴ精品一区二区三区波| 干丝袜人妻中文字幕| 中国美女看黄片| 97人妻精品一区二区三区麻豆| av在线亚洲专区| 欧美色欧美亚洲另类二区| 国产人妻一区二区三区在| 久久亚洲真实| 天天躁日日操中文字幕| videossex国产| 一个人观看的视频www高清免费观看| 99久久无色码亚洲精品果冻| 露出奶头的视频| 99热只有精品国产| 日韩欧美三级三区| 欧美黑人欧美精品刺激| 日本精品一区二区三区蜜桃| 九色成人免费人妻av| 香蕉av资源在线| 国内揄拍国产精品人妻在线| 亚洲成人中文字幕在线播放| 亚洲精品成人久久久久久| 无遮挡黄片免费观看| .国产精品久久| 日日摸夜夜添夜夜添av毛片 | 韩国av在线不卡| 欧美黑人欧美精品刺激| 99久久久亚洲精品蜜臀av| 在线观看舔阴道视频| 久久久色成人| 国产精品一区二区三区四区久久| 九九在线视频观看精品| 天堂av国产一区二区熟女人妻| 欧美高清性xxxxhd video| 午夜爱爱视频在线播放| 草草在线视频免费看| 成人特级黄色片久久久久久久| 国产在线男女| 桃色一区二区三区在线观看| 亚洲va在线va天堂va国产| 男人舔女人下体高潮全视频| 少妇熟女aⅴ在线视频| 国产精品永久免费网站| 日本免费a在线| 婷婷精品国产亚洲av在线| 成人午夜高清在线视频| 亚洲最大成人av| 亚洲av中文av极速乱 | 欧美区成人在线视频| 真人一进一出gif抽搐免费| 免费电影在线观看免费观看| 亚洲av二区三区四区| 成年女人毛片免费观看观看9| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩东京热| 91精品国产九色| 久久6这里有精品| 日本精品一区二区三区蜜桃| 又黄又爽又免费观看的视频| 99久国产av精品| 黄色视频,在线免费观看| 最好的美女福利视频网| av天堂中文字幕网| 亚洲av成人精品一区久久| 18禁黄网站禁片午夜丰满| av视频在线观看入口| 99九九线精品视频在线观看视频| 亚洲av.av天堂| av天堂在线播放| 内射极品少妇av片p| 成人av在线播放网站| 三级国产精品欧美在线观看| 啦啦啦观看免费观看视频高清| 三级毛片av免费| 制服丝袜大香蕉在线| 在线观看美女被高潮喷水网站| 听说在线观看完整版免费高清| 久久天躁狠狠躁夜夜2o2o| 久久久久久久午夜电影| 色哟哟·www| 国产成人福利小说| 亚洲精品国产成人久久av| 男女边吃奶边做爰视频| 99热这里只有是精品在线观看| 欧美+日韩+精品| 久久精品国产自在天天线| 亚洲国产精品成人综合色| 亚洲图色成人| 亚洲成人久久性| 成人特级av手机在线观看| 一级黄片播放器| 欧美+日韩+精品| 99久久精品热视频| 在线免费十八禁| 日韩欧美在线乱码| 搡女人真爽免费视频火全软件 | 五月玫瑰六月丁香| 成人鲁丝片一二三区免费| 欧美日韩瑟瑟在线播放| 五月玫瑰六月丁香| 国产v大片淫在线免费观看| 国产乱人伦免费视频| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 婷婷亚洲欧美| 色综合站精品国产| 日韩欧美在线二视频| 熟女电影av网| 亚洲性夜色夜夜综合| 人妻久久中文字幕网| 国产老妇女一区| 亚洲国产欧美人成| 亚洲avbb在线观看| 12—13女人毛片做爰片一| 国产一区二区三区在线臀色熟女| 日韩欧美国产在线观看| 欧美日本亚洲视频在线播放| 俺也久久电影网| 美女被艹到高潮喷水动态| 精品久久久久久,| 欧美成人a在线观看| av在线老鸭窝| 美女大奶头视频| 欧美xxxx黑人xx丫x性爽| 成人综合一区亚洲| 精品久久久久久久久亚洲 | 成人毛片a级毛片在线播放| 丰满乱子伦码专区| 又爽又黄无遮挡网站| 狂野欧美白嫩少妇大欣赏| 亚洲国产欧洲综合997久久,| 久久久久精品国产欧美久久久| 亚洲av免费高清在线观看| 免费看美女性在线毛片视频| 亚洲aⅴ乱码一区二区在线播放| 日韩av在线大香蕉| x7x7x7水蜜桃| 国产精品久久久久久久久免| 联通29元200g的流量卡| 国内精品一区二区在线观看| 成人av一区二区三区在线看| 国内揄拍国产精品人妻在线| 久久久久久国产a免费观看| 一个人观看的视频www高清免费观看| 99精品久久久久人妻精品| 麻豆av噜噜一区二区三区| a级一级毛片免费在线观看| 国产午夜福利久久久久久| 国产一区二区在线观看日韩| 国产精品三级大全| 久久国内精品自在自线图片| 亚洲精品乱码久久久v下载方式| 免费av观看视频| 国产蜜桃级精品一区二区三区| 国产精品一区www在线观看 | 日本爱情动作片www.在线观看 | 一区二区三区激情视频| or卡值多少钱| 99热精品在线国产| 国产蜜桃级精品一区二区三区| 午夜激情福利司机影院| 精品一区二区三区视频在线观看免费| 日日干狠狠操夜夜爽| 成人美女网站在线观看视频| 美女免费视频网站| 国产精品美女特级片免费视频播放器| 精品不卡国产一区二区三区| 亚洲av一区综合| 尤物成人国产欧美一区二区三区| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 日韩人妻高清精品专区| 亚洲国产精品sss在线观看| 在线观看一区二区三区| 岛国在线免费视频观看| 欧美色视频一区免费| 日本黄色片子视频| 乱码一卡2卡4卡精品| 亚洲av二区三区四区| 搡老岳熟女国产| 欧美日韩中文字幕国产精品一区二区三区| 国产成人影院久久av| 欧美日韩亚洲国产一区二区在线观看| 伦精品一区二区三区| 亚洲成人久久性| 精品久久久久久久久av| 日韩高清综合在线| 久久99热6这里只有精品| 久久久久免费精品人妻一区二区| 日韩一区二区视频免费看| 国产高清视频在线播放一区| 国产蜜桃级精品一区二区三区| 欧美激情在线99| 亚洲欧美清纯卡通| 久久精品夜夜夜夜夜久久蜜豆| 欧美精品国产亚洲| 最近视频中文字幕2019在线8| 三级毛片av免费| 老师上课跳d突然被开到最大视频| 久久香蕉精品热| 久久中文看片网| 亚洲av免费高清在线观看| 亚洲三级黄色毛片| 两个人的视频大全免费| 日韩欧美一区二区三区在线观看| 成年女人看的毛片在线观看| 久久国产乱子免费精品| 观看美女的网站| 免费大片18禁| 成人鲁丝片一二三区免费| 日韩在线高清观看一区二区三区 | 国产高清激情床上av| 亚洲精品粉嫩美女一区| 麻豆国产av国片精品| 亚洲精品乱码久久久v下载方式| 少妇熟女aⅴ在线视频| 97人妻精品一区二区三区麻豆| 色哟哟·www| 非洲黑人性xxxx精品又粗又长| netflix在线观看网站| 国产一区二区三区av在线 | 日韩精品青青久久久久久| 长腿黑丝高跟| 可以在线观看的亚洲视频| 精品久久久噜噜| 成人毛片a级毛片在线播放| 久久久久久大精品| 午夜福利成人在线免费观看| 日本-黄色视频高清免费观看| 欧美黑人欧美精品刺激| 俺也久久电影网| 国产探花极品一区二区| 九九热线精品视视频播放| 国产在视频线在精品| 美女大奶头视频| 韩国av在线不卡| 亚洲一区二区三区色噜噜| 毛片一级片免费看久久久久 | 国产欧美日韩精品亚洲av| 久久精品国产鲁丝片午夜精品 | 老师上课跳d突然被开到最大视频| 精品久久久久久久久亚洲 | 一区福利在线观看| 精品午夜福利视频在线观看一区| 人人妻人人澡欧美一区二区| 国内精品久久久久久久电影| 日韩精品青青久久久久久| 亚洲欧美日韩高清专用| av在线蜜桃| 日本一二三区视频观看| 成人特级黄色片久久久久久久| 久久亚洲真实| 少妇高潮的动态图| 丝袜美腿在线中文| 国产白丝娇喘喷水9色精品| 超碰av人人做人人爽久久| 国产激情偷乱视频一区二区| 变态另类丝袜制服| 大又大粗又爽又黄少妇毛片口| 99久久精品热视频| 黄色丝袜av网址大全| 五月伊人婷婷丁香| 欧美另类亚洲清纯唯美| 日韩中字成人| 欧美成人免费av一区二区三区| 国产男靠女视频免费网站| 国产真实乱freesex| 不卡一级毛片| 麻豆成人午夜福利视频| 色哟哟哟哟哟哟| 日韩欧美精品免费久久| 麻豆成人av在线观看| 欧美黑人巨大hd| 老熟妇乱子伦视频在线观看| 性插视频无遮挡在线免费观看| 国产午夜精品论理片| 国产黄a三级三级三级人| 观看免费一级毛片| 免费不卡的大黄色大毛片视频在线观看 | 国产高清有码在线观看视频| 黄色一级大片看看| а√天堂www在线а√下载| 搞女人的毛片| 成人午夜高清在线视频| 看免费成人av毛片| 欧美zozozo另类| 尾随美女入室| 最近视频中文字幕2019在线8| 国产伦精品一区二区三区四那| 国产成年人精品一区二区| 国产在视频线在精品| 久久亚洲精品不卡| 精品人妻一区二区三区麻豆 | 欧美精品国产亚洲| 窝窝影院91人妻| 国产亚洲91精品色在线| 精品国内亚洲2022精品成人| 久久中文看片网| av黄色大香蕉| 亚洲18禁久久av| 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| 欧美丝袜亚洲另类 | 一进一出抽搐动态| 成人毛片a级毛片在线播放| 99精品久久久久人妻精品| 亚洲中文字幕一区二区三区有码在线看| 免费观看人在逋| 国产av麻豆久久久久久久| 免费看av在线观看网站| 国产伦在线观看视频一区| 一区福利在线观看| 熟女人妻精品中文字幕| 免费看光身美女| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 亚洲最大成人中文| 波多野结衣高清作品| 桃色一区二区三区在线观看| 麻豆成人av在线观看| 少妇裸体淫交视频免费看高清| 国产探花在线观看一区二区| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 欧美最新免费一区二区三区| 乱人视频在线观看| 亚洲在线观看片| 精品久久久久久久久亚洲 | 国语自产精品视频在线第100页| a级毛片a级免费在线| 99久久成人亚洲精品观看| 最好的美女福利视频网| 最近在线观看免费完整版| 伦理电影大哥的女人| 欧美在线一区亚洲| 麻豆成人av在线观看| 男人的好看免费观看在线视频| 成人特级黄色片久久久久久久| 毛片女人毛片| 在线观看av片永久免费下载| 热99在线观看视频| 亚洲成人精品中文字幕电影| 亚洲精品久久国产高清桃花| 亚洲成av人片在线播放无| 3wmmmm亚洲av在线观看| 午夜激情欧美在线| 免费观看在线日韩| 99国产精品一区二区蜜桃av| 人人妻人人看人人澡| 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式| 欧美日本亚洲视频在线播放| 1024手机看黄色片| 国产黄片美女视频| 偷拍熟女少妇极品色| 国产av麻豆久久久久久久| 91麻豆精品激情在线观看国产| 啦啦啦啦在线视频资源| 久久久久久九九精品二区国产| 一个人观看的视频www高清免费观看| 欧美日本视频| 亚洲国产欧洲综合997久久,| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 国产精品一区www在线观看 | 淫秽高清视频在线观看| 国产欧美日韩一区二区精品| 午夜福利在线观看吧| 美女被艹到高潮喷水动态| eeuss影院久久| 可以在线观看的亚洲视频| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 欧美人与善性xxx| 国产黄a三级三级三级人| 国产高清三级在线| avwww免费| 久久99热6这里只有精品| 久久热精品热| 日韩亚洲欧美综合| 国产精品一区二区三区四区免费观看 | 久久精品国产清高在天天线| av专区在线播放| 国产一区二区激情短视频| 尾随美女入室| 中亚洲国语对白在线视频| 亚洲一区二区三区色噜噜| 非洲黑人性xxxx精品又粗又长| 成人三级黄色视频| 国产又黄又爽又无遮挡在线| 久久久久久大精品| 欧美不卡视频在线免费观看| 午夜福利视频1000在线观看| 人人妻,人人澡人人爽秒播| 女的被弄到高潮叫床怎么办 | 午夜日韩欧美国产| 亚洲七黄色美女视频| 熟女电影av网| 国内精品久久久久久久电影| 热99在线观看视频| 国产欧美日韩精品一区二区| 日本a在线网址| 亚洲人成网站在线播放欧美日韩| 午夜免费激情av| 男女啪啪激烈高潮av片| 干丝袜人妻中文字幕| www.色视频.com| 美女被艹到高潮喷水动态| 日本免费a在线| 人妻制服诱惑在线中文字幕| 俺也久久电影网| 91午夜精品亚洲一区二区三区 | 五月玫瑰六月丁香| 国产午夜精品论理片| 亚洲五月天丁香| 国产高潮美女av| 欧美中文日本在线观看视频| 91麻豆精品激情在线观看国产| 免费一级毛片在线播放高清视频| 国产黄色小视频在线观看| 国产老妇女一区| 18禁黄网站禁片午夜丰满| 精华霜和精华液先用哪个| 直男gayav资源| 亚洲av美国av| 国产精品不卡视频一区二区| 91久久精品国产一区二区成人| 国产一级毛片七仙女欲春2| xxxwww97欧美| 日日撸夜夜添| 亚洲中文日韩欧美视频| 欧美成人a在线观看| 国产精品综合久久久久久久免费| 免费看av在线观看网站| 免费不卡的大黄色大毛片视频在线观看 | 日本熟妇午夜| 午夜老司机福利剧场| 成人毛片a级毛片在线播放| 中出人妻视频一区二区| 国产男人的电影天堂91| 不卡视频在线观看欧美| 禁无遮挡网站| 国产真实伦视频高清在线观看 | 成人特级av手机在线观看| 99久久九九国产精品国产免费| 好男人在线观看高清免费视频| 亚洲成人精品中文字幕电影| 国产高清三级在线| 免费观看人在逋| 成人特级黄色片久久久久久久| 久久久久性生活片| 我的女老师完整版在线观看| 精品久久久久久久人妻蜜臀av| 91在线精品国自产拍蜜月| 亚洲国产高清在线一区二区三| 97超级碰碰碰精品色视频在线观看| 最新中文字幕久久久久| 99精品在免费线老司机午夜| 搡老妇女老女人老熟妇| 人妻夜夜爽99麻豆av| 女人被狂操c到高潮| 在线免费观看的www视频| 欧美日韩国产亚洲二区| 国产成人影院久久av| 最好的美女福利视频网| av在线老鸭窝| 免费看美女性在线毛片视频| 动漫黄色视频在线观看| 美女高潮的动态| 深夜精品福利| 欧美精品啪啪一区二区三区| 久久久色成人| 一a级毛片在线观看| 成人欧美大片| 亚洲精华国产精华精| 久久欧美精品欧美久久欧美| 一本精品99久久精品77| 我要看日韩黄色一级片| 国产精品亚洲一级av第二区| 亚洲欧美激情综合另类| 97超视频在线观看视频| 不卡视频在线观看欧美| 久9热在线精品视频| 少妇丰满av| 麻豆一二三区av精品| 99久久无色码亚洲精品果冻| 22中文网久久字幕| 久久精品国产鲁丝片午夜精品 | 又紧又爽又黄一区二区| 97超级碰碰碰精品色视频在线观看| 色吧在线观看| 日韩国内少妇激情av| 午夜精品久久久久久毛片777| av国产免费在线观看| av专区在线播放| 久久天躁狠狠躁夜夜2o2o| 99国产极品粉嫩在线观看| 99久久成人亚洲精品观看| 国产精品精品国产色婷婷| 在线观看免费视频日本深夜| 97超级碰碰碰精品色视频在线观看| 国产精品免费一区二区三区在线| 久久久久免费精品人妻一区二区| 国内精品宾馆在线| 男女下面进入的视频免费午夜| 小蜜桃在线观看免费完整版高清| 色精品久久人妻99蜜桃| 欧美日本亚洲视频在线播放| 人妻丰满熟妇av一区二区三区| 亚洲国产精品成人综合色| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久久丰满 | 欧美潮喷喷水| 午夜福利在线观看吧| 午夜福利18| 精品久久久久久久久久免费视频| 国产精品女同一区二区软件 | 美女高潮的动态| 国产亚洲91精品色在线| 一个人看的www免费观看视频| 97超级碰碰碰精品色视频在线观看| 国产成年人精品一区二区| 黄色一级大片看看| 国内精品久久久久久久电影| 日本精品一区二区三区蜜桃| 看免费成人av毛片| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片 | 在现免费观看毛片| 在线观看免费视频日本深夜| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 国产精华一区二区三区| 久久精品91蜜桃| av女优亚洲男人天堂| 久久人人精品亚洲av| 亚洲不卡免费看| 国产国拍精品亚洲av在线观看| 午夜日韩欧美国产| 免费搜索国产男女视频| 欧美日韩黄片免| 三级毛片av免费| 国内揄拍国产精品人妻在线| 日韩大尺度精品在线看网址| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 中国美女看黄片| 国产高潮美女av| 国产中年淑女户外野战色| 日韩中字成人| 午夜精品一区二区三区免费看|