• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modular Invariants and Singularity Indices of Hyperelliptic Fibrations

    2016-06-05 03:10:30XiaoleiLIU

    Xiaolei LIU

    1 Introduction

    The modular invariants of a family of curves were introduced by Tan[10].They are the degrees of the pullback of the corresponding divisors by the moduli map.In the language of arithmetic algebraic geometry,a modular invariant is a certain height of arithmetic curves,for example,Faltings height is the modular invariant corresponding to Hodge class.Modular invariants can be used to describe the lower bound for effective Bogomolov conjecture which is about the finiteness of algebraic points of small height(see[15–16]).More recently,Tan found that the modular invariants are invariants of differential equations,which were expected by mathematicians in 19th century to study the qualitative properties of differential equations(see[11]).

    Historically,the study of fibred surfaces is started by Kodaira[6],who gave a complete classification theory for elliptic fibrations.This combinatoric classification of elliptic fibers is used in the computation of the modular invariants.But such a classification is too complicate for the case when the genus g≥2.There are more than one hundred classes of singular fibers of genus 2(see[8–9]),and the number of classes of singular fibers increases quickly as the genus becomes bigger.Horikawa[5]classified the singular fibers of genus g=2 into 5 classes from a different point of view.Based on Horikawa’s work,Xiao[13–14]introduced the singularity indices(see definition 2.6)to classify singular fibers of hyperelliptic fibrations.Furthermore,he obtained the local-global formulas,and determined the fundamental group from his classification.

    In what follows,we will prove that the two basic invariants,the modular invariants corresponding to boundary divisor classes and the singularity indices,coincide with each other for semistable fibrations.

    Before starting this result,we explain our notations and assumptions.

    A family of curves of genus g is a fibration f:S→C whose general fiber F is a smooth curve of genus g,where S is a complex smooth projective surface,and C is a smooth curve of genus b.The family is called semistable if all the singular fibers are semistable curves(recall that a semistable curve F is a reduced connected curve that has only nodes as singularities and every smooth rational component of F meets the other components at no less than 2 points).If all the smooth fibers are hyperelliptic,we say that the family is hyperelliptic.We always assume that f is relatively minimal,i.e.,there is no(?1)-curve in any singular fiber.

    If r is a non-negative real number,we denote by[r]the integral part of r.Hence when m is a positive integer,m?2??is zero if m is even,or 1 otherwise.

    For a fibration f:S→C,we have three fundamental relative invariants which are nonnegative,

    Let f be a locally non-trivial fibration,the slope of f is defined as λf=

    For g≥2,the moduli map J:C→induced by f is a holomorphic map from C to the moduli spaceof semistable curves of genus g.For each Q-divisor class η of,we can define an invariant η(f)=degJ?η which satisfies the base change property,i.e.,if?f:→is the pullback fibration of f under a base change π :→ C of degree d,then=d ·η(f)(see[10]).Consequently,for a non-semistable family f,we have η(f)=,whereis the semistable model of f corresponding to a base change of degree d.We call η(f)the modular invariant of f corresponding to η.

    Let Δ0,···,be the boundary divisors of,and δi(f)be the modular invariant corresponding to the divisor class δi=[Δi]in? Q,i=0,1,···,.Let λ ∈? Q be the Hodge class,δ= δ0+ ···+,and κ =12λ ? δ.For these classes,we have modular invariants λ(f), δ(f)and κ(f)of f.If f is semistable,then

    We say that a singularity p in a semistable curve F is a node of type i if its partial normalization at p consists of two connected components of arithmetic genera i and g?i≥i,for i>0,and is connected for i=0.The node of the semistable curve corresponding to a general point of Δ0is α-type,i.e.,an ordinary double point of an irreducible curve,hence it is a node of type 0.For a general point in Δi,the corresponding node is of type i(i≥ 1)(see Figure 1).Denote by δi(F)the number of nodes of type i(i≥ 0)in F.

    Figure 1 Node of typei(i≥1)

    The general point in the intersection Δi1∩ ···∩ Δikof k distinct boundary divisors corresponds to a semistable curve with k nodes which are of types i1,···,ikrespectively.

    Letbe the moduli space of semistable hyperelliptic curves,the restriction of Δ0onbreaks up into Ξ0,Ξ1,···.We denote by Θithe restriction of Δi(i ≥ 1)onSuppose that F is a semistable hyperelliptic curve with hyperelliptic involution σ,and p ∈ F is a node of type 0.If p= σ(p),then we set k=0;if pσ(p),and the partial normalization of F at p and σ(p)consists of two connected components of arithmetic genera k and g?k?1≥ k,then the node p(resp.nodal pair{p,σ(p)})is called a node(resp.nodal pair)of type(0,k).Then the nodal pair of the semistable curve corresponding to a general point of Ξkis of type(0,k)(see Figure 2).

    Figure 2 Nodes of type(0,k)(k≥0)

    A semistable hyperelliptic curve is a double cover of a tree of rational curves branched over 2g+2 points(see[1,X.3]),which is induced by the involution map.Since the points p and σ(p)map to the same point in some P1,we treat them together as a nodal pair{p,σ(p)}.

    Let

    Denote by N2k+2(F)(resp.N2k+1(F))the set of all the nodal pairs{p,σ(p)}of type(0,k)(resp.nodes p of type k)(k>0).Then we define

    From now on,we assume that f is hyperelliptic and semistable.Let δk(f)(resp. ξk(f))be the modular invariants corresponding to Θk(resp. Ξk).Then(see[4])

    where F1,···,Fsare all singular fibers of f,and

    It is proved that in[4],if f is semistable,then

    On the other hand,for a hyperelliptic fibration f:S→C,Xiao introduced the singularity indices s2(f),s3(f),···,sg+2(f)(see definition 2.6),and he obtained the following formulas(see Theorem 2.1):

    Note that Xiao’s equations do not need the semistable condition and sg+2(f)=0 if f is semistable(see Corollary 3.1).

    Comparing(1.6)with(1.7),it is natural to build up the relation between modular invariants with singularity indices.

    A double point p of a semistable curve F is called separable if F becomes disconnected when we normalize F locally at p;otherwise,p is called inseparable.Xiao showed that for each semistable fibration f of genus 2,s2(f)(resp.s3(f))is the number of inseparable(resp.separable)double points of all singular fibers of f(see[14]),i.e.,ξ0(f)=s2(f), δ1(f)=s3(f).

    If we subdivide the inseparable nodal points into nodes of type(0,k)(k≥0),and subdivide the separable nodes into nodes of type i(i≥1),then we can get that the modular invariants δi(f),ξj(f)are the same as the singularity indices sk(f).

    Theorem 1.1If f is a semistable hyperelliptic fibration of genus g≥2,then

    and

    Considering the equations in(1.2)and(1.8),it is likely that there exists a more general correspondence between modular invariants and relative invariants.Precisely,we expect that if M is any kind of moduli space of curves,and η is a divisor class of M,especially the generator of Pic(M),then there is a reasonable relative invariant which coincides with the modular invariant η(f)corresponding to η for each semistable family f of curves in M.Recently,there is another such corresponding showed in[3].

    In §2,we recall Xiao’s study of hyperelliptic fibration.In §3,we repeat the work(see[12])of Yuping Tu on semistable criterion,and then we prove our result locally by constructing bijective maps between sets of singularities R?with sets of nodes(or nodal pairs)N?.

    2 Singularity Indices

    2.1 Genus g data

    Let P be a smooth surface,and R be a reduced even divisor(the image of R in Pic(P)is divisible by 2)on P.Let δ be an invertible sheaf such that OP(R)= δ?2,and we call δ the square root of R for convenience.In fact,a reduced even divisor R on P and an invertible sheaf δ with OP(R)= δ?2determine a unique double cover π :S → P branched along R(see[2,I.7]).Thus(R,δ)is called a double cover datum.If R is reduced smooth,then S is smooth.

    If ψ1:P1→ P is a blow-up of P at a singular point x of R of order m,set

    where E is the exceptional(?1)-curve of ψ1.Then(R1,δ1)is called a reduced even inverse image of(R,δ)under ψ1.In what follows,we call R1a reduced even inverse image of R brie fly,since δ1is determined by(R,δ)and R1.

    definition 2.1An even resolution of R is a sequence of blow-ups=ψ1?ψ2?···?ψr,

    satisfying the following conditions:

    (i)is a smooth reduced even divisor,

    (ii)Riis the reduced even inverse image of Ri?1under ψi.

    Furthermore,is called the minimal even resolution of the singularities of R if

    (iii) ψiis the blow-up of Pi?1at a singular point xiof Ri?1for any 1 ≤ i≤ r.

    If the even resolution of:→P of R is minimal,then for any even resolution ψ?:P?→P,there exists a morphism α:P?→P such that α(R?)=,α(δ?)=.Here α(δ?)=means that there exists a divisor D?∈Pic(P?)with δ?OP?(D?)such thatO?P(α(D?)).Note that the minimal even resolution is unique.

    If xi∈ Pi?1lies in Ej(ji)we have mj≤3,then xiis called a negligible singularity,since such a singularity does not change the invariants,χf(see[13,(2)]).

    Unless stated otherwise,the singularities(resp.smooth points)of R include all the in finitely near singularities(resp.smooth points)of Riin Pifor 1≤i≤r.If we want to specify a singularity(resp.smooth point)p of R,we will point out the surface which p lies in.

    Now we want to introduce the genus g datum associated to a hyperelliptic fibration f:S→C,according to Xiao’s approach in[13–14].

    Since the generic fiber F of f is hyperelliptic,we glue the involution σFof F together,and then we get a rational map σ :S → S.The map σ is in fact a morphism,because f is assumed to be relatively minimal.Let ρ:→ S be the minimal composition of blow-ups of S at all the isolated fixed points of σ,and:→be the induced map of σ onThen=is smooth.Let:→be the corresponding double cover branched along a smooth reduced divisorin.Then(O?S)O?P⊕,whereis an invertible sheaf with

    Let ΦK:S???Proj(f?ωCS)be the relative canonical map,then ΦKis a generic double cover,for its restriction on a generic fiber F is the double cover induced by σF.Let:→S be the minimal composition of blow-ups at all base points of ΦKand all isolated fixed points.Then the birational morphism→is an isomorphism because of the minimality of ρ.Hence=ρ and.This gives another process to get the double coverθ:→and the branch locus.

    The morphism:→C induced by f is a birational ruling(a fibration whose general if bers are rational curves).There are many choices to give a birational morphism:→P mapping to a geometric ruled surface P.The morphisminduces a reduced divisor R=in P.All such geometric ruled surfaces differ by elementary transforms.We want to choose one such that R2is the smallest.

    In the rest,a curve D means a nonzero effective divisor.

    definition 2.2Let D be an irreducible curve on a fibred surface S with fibration f:S→C.If f(D)is a point,we call D a vertical curve.

    Lemma 2.1(see[13,Lemma 6])There is a birational morphism:→P over C,where every fiber of the induced morphism ?:P→C is P1,such that,letting δ be the image ofin P,and Rhbe the sum of the non-vertical irreducible components of R.Then R2is the smallest among all such choices,and the singularities of Rhare at most of order g+1.Therefore as R is reduced,the singularities of R are of order at most g+2,and if p is a singular point of order g+2,R contains the fiber of ? passing through p.

    definition 2.3Let P be a geometric ruled surface over C,and(R,δ)be a double cover datum on P.If(R,δ)satisfies that RΓ =2g+2,where Γ is a generic fiber of ? :P → C,and the order of any singularity of the non-vertical part Rhof R is at most g+1,then we call(P,R,δ)a genus g datum.

    We have shown that there is a genus g datum(P,R,δ)(Lemma 2.1)associated to a given hyperelliptic fibration f.On the other hand,let(P,R,δ)be a genus g datum over a smooth curve C,:→P be the minimal even resolution of(P,R),and:→be the double cover determined by.Let ρ :→ S be the morphism of contracting all the vertical(?1)-curves,then we get a hyperelliptic fibration f:S → C.Hence we need to study the vertical(?1)-curves in.

    Lemma 2.2(see[14])Let(P,R,δ)be a genus g datum,and Γ be any fiber of P → C,whose inverse image inis a(?1)-curve.In other words,the strict transform of Γ inis a(?2)-curve contained in.If g is even,then one of the following two cases is satisfied:

    (1)Rhintersects with Γ at two distinct points x,y,mx(Rh)=my(Rh)=g+1;or

    (2)Rhintersects with Γ at one point,and the point is a singularity of type(g+1 → g+1)(see definition 2.4),which is tangent to Γ.

    If g is odd,then Rhintersects with Γ at one point,and it is a singularity of type(g+2→g+2),which is tangent to Γ.

    Lemma 2.3(see[14])Suppose that E is a vertical(?1)-curve in,then the imageof E inis an isolated(?2)-curve contained in,andeither comes from a blow-up of a singularity of R with odd order,or is a strict transform of a fiber in Lemma 2.2.Conversely,for any singularity of R with odd order or any fiber in Lemma 2.2,there is a corresponding vertical(?2)-curve.

    Remark 2.1As stated in[13],if we start from a hyperelliptic fibration f:S→C,we can choose a genus g datum(P,R,δ)such that R2is the smallest,and then the case(1)in Lemma 2.2 does not occur.Accordingly,Lemma 2.3 turns to be Lemma 7 in[13].In what follows,we always assume that the genus g datum associated with f satisfies that R2is the smallest.

    Consequently,we only need to consider genus g datum for hyperelliptic fibrations.

    2.2 Singularity indices

    Based on the above preparation,we are able to define the singularity indices.

    Let(P,R,δ)be a genus g datum over a smooth curve C,andin(2.2)be the minimal even resolution of(P,R).We decomposeinto ψ?:→followed by:→P,where ψ?andare composed respectively of negligible and non-negligible blow-ups.We may assume=ψ1?···?ψtfor t≤r.Denote bythe reduced even inverse image of(R,δ)inP

    definition 2.4Let xibe a singularity of Ri?1of order 2k+1If Rhas

    ia unique singularity on the inverse image of xi,say xi+1,with order 2k+2,then we call xia singularity of type(2k+1→2k+1).

    definition 2.5Let f:S→C be a fibration and D be a reduced curve on S.Let φ:D→C be the natural morphism induced by f.Let ν :→D be the normalization of D,Dhbe the union of all the irreducible components ofwhich maps projectively onto C,and νh:Dh→ D be the induced map.The ramification index r(D)of φ is defined as follows:

    If q ∈ Dhis a ramification point of φ ? νh,then the ramification index rq(D)is defined as usual.

    If p is a singularity of D of order mp,then the ramification index is rp(D)=mp(mp?1).

    If E is an isolated vertical curve of?D,then the ramification index is rE(D)=χtop(E).

    Furthermore,we define

    Remark 2.2It is easy to see that r(D)=D2+from the adjoint formula KSD+D2=?2χ(O(D))(see[14]).

    When we consider a singular fiber F of f,the singularities and ramification points of branch locus are those over f(F)if there is no confusion.

    definition 2.6(see[13–14])Let f:S → C be a hyperelliptic fibration,and(P,R,δ)be the corresponding genus g datum.Suppose that F is a singular fiber of f.We denote by Γ the fiber of P→C over f(F).The singularity indices sk(F)(2≤k≤g+2)are defined as follows.

    (1)Let E1,···,Ekbe all the isolated vertical(?2)-curves in.Letting=?E1?···?Ek,then s2(F)is defined to be the ramification index ofover the point f(F).Concisely,if we denote by R2,1(F)the set of all ramification points ofover f(F),by R2,2(F)the set of all singularities of,and by R2,?(F)the set of all vertical components in,then

    (2)If k is odd,denote by Rk(F)the set of all singularities of R of type(k→k),then sk(F):=|Rk(F)|.

    (3)If k≥4 is even,denote by Rk(F)the set of all singularities of R of order k,not belonging to a singularity of type(k+1→k+1)or(k?1→k?1),then sk(F):=|Rk(F)|.

    define

    where F1,···,Fsare all the singular fibers of f.

    Remark 2.3Xiao introduced the singularity indices in order to compute the contribution of singular fibers to the invariants,χf.It is convenient to put xi,xi+1in definition 2.4 together,and regard the pair{xi,xi+1}of points as one singularity of type(2k+1→2k+1),that is,the total contribution of xiand xi+1to singularity indices adds one to s2k+1only.

    Example 2.1Let(x,t)be the local coordinate of P1× Δ,where Δ is the open unit disc of C.Let

    where ai’s are distinct nonzero complex numbers.Let f:SΔ→ Δ be the local fibration of genus g defined by y2=h(x,t).Let F=f?1(0)be the fiber of f over the origin,and Γ be the fiber of P1×Δ→Δ over the origin.

    Figure 3 The minimal even resolution

    The branch locus is R={(x,t)∈ P1×Δ :h(x,t)=0},and RΓ?=12,where Γ?is the generic fiber of P1×Δ→Δ.Hence g=5 by Riemann-Hurwitz formula.Let pi=(ai,0)(i=0,1,2,3),then p2and p3are non-negligible.

    Let p21and p22be the in finitely near points of p2,which are smooth points of.Let p31be the in finitely near singularity of p3,then{p3,p31}is a singularity of type(3→3).Therefore=R which is the strict transform in,and

    Furthermore,the singularity indices are

    Using the singularity indices,Xiao obtained the following formulas.

    Theorem 2.1(see[14,Theorem 5.1.7])Let f:S→C be a hyperelliptic fibration of genus g,then

    where ak=6((k+1)(g?k)?4g?2)and bk=12k(g?k)?2g?1.

    Corollary 2.1(see[14])If f is hyperelliptic,then the slope of f

    Moreover,the left equality holds if and only if s2(f)0,sk=0(k>2),and the right equality holds if and only ifand the rest singularity indices are all zero.

    3 Modular Invariants in Semistable Case

    At the beginning of this section,we fix notations firstly.

    Let(P,R,δ)be a genus g datum over a smooth curve C,andin(2.2)be the minimal even resolution.Let f:S→C be the fibration determined by the datum,and F be a singular fiber of f.Denote bythe total transform of F by ρ:→ S,which is a birational morphism contracting all the vertical(?1)-curves.Let Γ be the fiber of ? :P → C over t=f(F),and we call Γ the image of F in P brie fly.Let=(Γ)be the total transform of Γ by the minimal even resolution:→P of R.To keep it simple,we also denote by R(resp.Γ)the strict transform of R(resp.Γ)under the even resolution

    Denote by B=(Γ)the inverse image of Γ in,and by Bi=?θ?1(Ei)the inverse image of the exceptional curve Ei.Then B(resp.Bi)may be composed by two irreducible curves B?and B??(resp.and).Letting

    then

    where n=1,2 and ni=mior ni=2mi.Therefore,F=is obtained by contracting(?1)-curves in

    definition 3.1An even resolution at point p of R is a sequence of blow-ups=ψ1?ψ2?···? ψl

    satisfying the following conditions:

    (i)All the points ofˇR in finitely near p,including p,are smooth.

    (ii)Riis the reduced even inverse image of Ri?1under ψi.

    Furthermore,is called the minimal even resolution at p if

    (iii) ψiis the blow-up of Pi?1at a singular point piof Ri?1,which is in finitely near p,for any 1≤i≤l.

    If the resolutionis minimal,we call the desired number lpof blow-ups the length of the minimal even resolutionat p.The exceptional curves Ei’s(1≤i≤l)in Plare called exceptional curves from p brie fly.For example,if p is an ordinary singularity of even order,then lp=1;if p is a singularity of type(3→3),then lp≥2.

    Let p be a singularity of R,and E1,···,Elpbe all the exceptional curves from p in Plp.Set Ep:=m1E1+···+mlpElp,Bp:=(Ep),where mi=multEi(Ep)=multEi.Then we call Epthe block offrom p,and call Fp:=ρ(Bp)the block of F from p.Assume that Γ is not contained in R.Let p1,···,pebe all the singularities of R on Γ in P,and Bp0=(Γ).Then we can decompose F into finite blocks F=Fp0+Fp1+···+Fpe,and we call this decomposition the modular decomposition of F.

    Example 3.1(Continuation of Example 2.1)Let f:SΔ→ Δ be the local fibration in Example 2.1.Then lp1=1,lp2=1,lp3=2.The blocks ofare Ep1=E1,Ep2=E2,Ep3=E31+E32.

    Figure 4 Modular decomposition of F

    Here E1,E2,E32are not contained in?R,and E31is contained in?R.Then the blocks of F are Fp0=B,Fp1=B1,Fp2=+,Fp3=B32.In these equations,B is a rational curve with a node q0;B1is P1meeting B at two points q11,q12;andare both P1meeting with B at q21,q22respectively and meeting with each other at two points q23,q24;and B32is a smooth elliptic curve meeting with B at q3.Then F is semistable,and the modular decomposition of F is=B+B1+(+)+B32.

    3.1 Semistable criterion

    There is a criterion for semistable hyperelliptic fiber given by Tu[12].We rewrite the result and its proof here,because the reference is in Chinese.

    Lemma 3.1(see[12])If F is a semistable singular fiber of a hyperelliptic fibration f:S→C,then we have the following results:

    (1)If g is odd,then Γ is not contained in R;if g is even and Γ is contained in R,then Γ is the fiber in Lemma 2.2.

    (2)If p is a smooth point of R in P,then the intersection number of R with Γ at p is(R,Γ)p≤ 2.

    (3)If p is a singularity of R in P,then we have(R,Γ)p=ordp(R).

    (4)Let q∈Ri(i≥1)be an in finitely near singularity,then there is exactly one exceptional curve Eqpassing through q,and(R,Eq)q=ordq(R).

    (5)Let q∈Riand Eqbe the same as(4).If ordq(R)=l is even,then Eqis not contained in?R.If ordq(R)=l is odd,then either Eqis contained inand thus Eqis from a singularity of type(k→k)(k is odd,k≥l);or Eqis not contained in,and thus q is a singularity of type(l→l).

    (6)Let q be an in finitely near smooth point,and Eqbe the irreducible component passing through q,then(R,Eq)q≤2 and Eqis not contained in.

    Proof(1)Suppose Γ ?.Then B is a component of?F with multiplicity 2,for π?(Γ)=2B,furthermore,B2=.If Γ2≤ ?4,then B2≤ ?2.Hence B is a multiple component inwhich can not be contracted,contradicting with the assumption that F is semistable.Thus we get that if Γ ?then Γ is a(?2)-curve in.If g is odd,then any singularity of R is of type(g+2 → g+2),and we need twice blow-up so that the intersection point of Γ with the exceptional curve is a smooth point of R.Hence there is a(?1)-curve,say E2,with multiplicity 2 in.It is easy to see that E2is not contained in,and π?(2E2)=2B2in F is irreducible with≤?2.Therefore B2is an un-contractible multiple component in semistable curvewhich is impossible.So when g is odd,Γ is not contained in R.

    (2)In what follows,we may assume that Γ is not contained in R since(1).Let n=(R,Γ)p,we take the local coordinate(x,t)of p such that the local equations of Γ and R near p are t=0 and t+xn=0 respectively.Then the local equation of F in S is y2?xn=0.If n≥3,it is a singularity of type An?1on F,and thus F is not semistable.

    (3)Suppose not,then(R,Γ)p>ordp(R).Let ψ1be the blow-up at p,and E1be the exceptional curve.Then the intersection point p?of Γ with E1is still on R.Let ψ2be the successive blow-up at p1and E2be the exceptional curve.Then the total transform of Γ by ψ1?ψ2is=Γ+2E2+E1,and B2is with multiplicity at least 2 in F.Hence B2is a(?1)-curve in,E2is a(?2)-curve in,and p1is a singularity of type(k → k)(k is odd)(see Lemma 2.2).Furthermore,there is a singularity p2on E2of order k+1.Let ψ3be the blow-up at p2with exceptional curve E3.Then=Γ+2E3+2E2+E1,E3is not contained in,and B3is an un-contractile multiple component in.

    (4)Suppose that E1and E2are both through q.When ordq(R)is even,then the exceptional curve E3of the blow-up at q is of multiplicity at least 2,and E3is not contained in.So B3is an un-contractile multiple component in F.When ordq(R)=k is odd,then q should be of type(k→k),and E3is contained inwith multiplicity at least 2.Blowing up the in finitely near singularity q?of q,then the exceptional curve E4is not contained inof multiplicity at least 2,which is impossible.The proof of the second part of(5)is analogous to that of(3).

    (5)Suppose that ordq(R)is even and Eqis contained in?R,then ordq(Ri)is odd.The exceptional curve E?of the blow-up ψ :Pi+1→ Piat q is contained in?R.Thus≤ ?2 in,and≤ ?4 in.So Eqcorresponds to an un-contractile multiple component in F.Consequently,we proved the first part of(4).The second part of(4)is a direct corollary of Lemma 2.3.

    (6)The proof of the second part is the same as that of(1),and the rest is the same as that of(2).We omit the detail.

    Remark 3.1Let F be a semistable fiber of f,and p be a singularity of R.Then there is exactly one irreducible component Eppassing through p.We call Epthe exceptional curve through p.Note that Epis either Γ or an exceptional curve.

    Corollary 3.1If F is a semistable hyperelliptic fiber of genus g,then sg+2(F)=0.

    ProofBy Lemma 3.1(1),we know that if g is odd,then sg+2(F)=0;if g is even,then Γ is the fiber in Lemma 2.2,and we can check the result directly.

    3.2 Proof of Theorem 1.1

    We first consider the effect of the smooth points of R to the arithmetic genus.

    Lemma 3.2Let F be a semistable fiber of f.Assume that the image Γ of F in P is not contained in R.Suppose that all the intersection points p1,···,pk1,q1,···,qk2of R with Γ are smooth,where(Γ,R)pi=2 and(Γ,R)qj=1.

    (1)If k20,then F is an irreducible curve with k1nodes corresponding to pi’s,the g

    eometric genus of F isand

    (2)If k2=0,then F is composed of two smooth rational curves which meet with each other at k1distinct points.Thus

    where every irreducible component is a smooth rational curve,Bimeets B?and B??normally at one point respectively for each 1≤i≤k1,and there is no other intersection.Hence

    ProofThe proof is obvious,and we omit it.

    Then we consider the effect of singularities.

    Lemma 3.3Suppose that F is a semistable fiber of f,and the image Γ of F in P is not contained in R.If p is a singularity of R such that the exceptional curve Epthrough p is not contained in the branch locus,then the arithmetic genus of the block Fpof F from p is

    ProofWe use induction on the length lpof the minimal even resolutionof R at p.Note that=k,and ord(R)=(R,E)for any singularity of R on Efrom

    ppppLemma 3.1.We may assume that Epis Γ,since the proof for exceptional curves is similar.

    If lp=1,then ordp(R)=2k+2 is even and p is an ordinary singularity.The exceptional curve E1from p is not contained in R,and E1meets R in P1transversely at 2k+2 distinct points.Hence Ep=E1,and Bp=B1with pa(B1)=k.

    If lp=2 and ordp(R)=2k+2 is even,then there is exactly one in finitely near singularity p1of R in P1,which is an ordinary singularity of even order,say 2k2.Hence E1,E2are not contained in R,Ep=E1+E2,and Epmeets R in P2transversely at 2k+2 distinct points.Let E1R=2k1+2,then k1+k2=k.Thus pa(B1)=k1,pa(B2)=k2?1,and B1intersects with B2at two points transversely.So pa(Fp)=pa(Bp)=pa(B1)+pa(B2)+1=k.

    If lp=2 and ordp(R)=2k+1 is odd,then p is a singularity of(2k+1→2k+1).So E1is contained in R,E2is not contained in R,and Ep=E1+E2,where E2meets R2in P2transversely at 2k+2 distinct points.It is easy to see that B1is a(?1)-curve and B2is a smooth curve with genus k.Hence pa(Fp)=pa(B2)=k.

    Assume that(3.4)holds for any positive integer l

    If ordp(R)=2k+1 is odd,let ψ1:P1→ P be the blow-up at p.Then there is exactly one in finitely near singularity q of R in P1,and(R,E1)q=2k+1,ordq(R1)=2k+2.Let ψ2:P2→ P1be the successive blow-up at q.It is clear that E1is contained in R,but E2is not.

    Let q1,···,qαbe all the in finitely near singularities of q in P2.Hence lqi

    Hence

    It is easy to see that in,=(R,E2)sm+(α ? β)+1.By Lemma 3.2,

    The block offrom p isCombining(3.5)and(3.6),then

    where the block Fqiintersects with B2at two points,and adds one to the arithmetic genus for each 1≤ i≤ β.Here we used the induction assumption.

    If ordp(R)=2k+2 is even,take ψ1:P1→ P,the blow-up at p.Let q1,···,qαbe all the in finitely near singularities of p on p1.Then the rest of the proof is the same as the odd case above.

    Now we can prove the identities between singularity indices(definition 2.6)with modular invariants δi(F), ξj(F)(see(1.3)–(1.5)).

    Theorem 3.1Let f:S→C be a semistable hyperelliptic fibration of genus g,and F be a singular fiber of f,then

    Proof(1)Proof of s2k+1(F)= δk(F),k≥ 1.

    We define a bijective map

    between sets as follows.

    If p∈R2k+1(F),then Ep(the exceptional curve through p)is not contained in.Let=+Ep,where Epis the block of?Γ from p.Then the decomposition of F is F=+Fp,where pa(Fp)==k,andintersects withat a point,say q,which is a node of type k.We define α2k+1(p)=q ∈ N2k+1(F),then α2k+1is well-defined.

    On the other hand,if q∈N2k+1(F),then F consists of a genus k curve Fqand a genus g?k curve,and Fqmeetsat q transversely.Then q is an isolated fixed point of the hyperelliptic involution σ.Thus the inverse image of q inunder ρ :→ S is a(?1)-curve B.Henceis a(?2)-curve contained inwhich is from a singularity,say p,of type(2k?+1→2k?+1)(see Lemma 2.3 and Lemma 3.1(4)).Since(Ep)=ρ?(Fq),the arithmetic genus of the block of F from p is k?=pa((Ep))=pa(Fq)=k.Thus p∈R2k+1(F),and α2k+1(p)=q.Hence it is clear that α2k+1is surjective and injective.

    Therefore,s2k+1(F)=|R2k+1(F)|=|N2k+1(F)|=δk(F).

    (2)Similar proof of s2k+2(F)= ξk(F),k ≥ 1.

    We define a bijective map

    between sets as follows.

    If p∈R2k+2(F),then Epis not contained in,and the exceptional curve E1of the blow-up at p is not in?R either.Hence(p)consists of two points q and σ(q).Let=Ep+,then F=Fq+,pa(Fq)=k and Fqmeetsat q and σ(q)transversely.So the nodal pair{q,σ(q)} ∈ N2k+2(F).Hence we are able to define α2k+1(p)={q,σ(q)}.

    On the other hand,if{q,σ(q)} ∈ N2k+2(F),then F=Fq+,where pa(Fq)=k,and they intersect with each other at two points q and σ(q)transversely.We may assume that?F=Fq+,which meet at q and σ(q).Then=,say p,is an intersection point of two curves not in?R.Hence we can decomposeas=Ep+,where REp=2k+2 and Epmeetsat p only.The curve Epis from a singularity of order ordp(R)=REq=2k+2.Therefore,p is the inverse image of{q,σ(q)}under α2k+2,and α2k+2is bijective.

    So s2k+2(F)=|R2k+2(F)|=|N2k+2(F)|=ξk(F).

    (3)Proof of s2(F)=ξ0(F).

    If E is a vertical components of,then B=(E)is a multiple component of.So B is a(?1)-curve for F is semistable,and then we know that E is a(?2)-curve inHenceis the strict transform of R in,and|R2,?(F)|=0.

    If p∈R2,1(F),then p is a smooth point of R,(R,Ep)p=2,rp(R)=1,and(p)is an α-type node q.Conversely,each α-type node q is a singularity p of type A1whose local equation is t+x2=0.So we get a bijective map

    If p∈R2,2(F),then p is an ordinary double point,and rp(R)=2.By the same discussion in(2),we can obtain a bijective map

    Hence s2(F)=|R2,1(F)|+2|R2,2(F)|=|N2,1(F)|+2|N2,2(F)|=ξ0(F).

    Proof of Theorem 1.1It is a corollary of the above theorem.

    Remark 3.2Let f:S→C be a hyperelliptic fibration of genus g≥2,and:→be a semistable model of f.Then by Corollary 2.1 and Theorem 1.1,we know thathas the lowest slope if and only if the image[f]of f by the moduli map intersects with Ξ0only,andhas the highest slope if and only if[f]intersects withonly.See[7]for families with the highest slope.

    Example 3.2(Continuation of Example 3.1)From the analysis of the blocks of F in Example 3.1,we can easy to know that pa(Fp1)=1,pa(Fp2)=1,pa(Fp3)=1,and the sets of nodes are

    Hence the numbers of nodes on F are

    Comparing these equations with(2.7)and(2.8),we give an example for Theorem 3.1.

    AcknowledgementsI would like to thank Prof.Sheng-Li Tan and Prof.Jun Lu for their interesting and fruitful discussions.Thanks to Fei Ye for reading the preliminary version of this paper and making many valuable suggestions and discussions.Finally,I wish to thank the referees for their suggestions,which greatly improved the exposition of this paper.

    [1]Arbarello,E.,Cornalba,M.and Griffiths,P.A.,Geometry of Algebraic Curves,Vol.II,Springer-Verlag,Berlin Heidelberg,2011.

    [2]Bath,W.,Peters,C.and Van de Ven,A.,Compact Complex Surfaces,Springer-Verlag,Berlin Heidelberg,1984.

    [3]Chen,Z.,Lu,J.and Tan,S.-L.,On the modular invariants of a family of non-hyperelliptic curves of genus 3,http://math.ecnu.edu.cn/preprint/2010-006.pdf

    [4]Cornalba,M.and Harris,J.,Divisor classes associated to families of stable varieties,with applications to the moduli space of curves,Ann.Scient.Ec.Norm.Sup.,21,1988,455–475.

    [5]Horikawa,E.,On algebraic surfaces with pencils of curves of genus 2,Complex Analysis and Algebraic Geometry,Cambridge Univ.Press,London,1977,79–90.

    [6]Kodaira,K.,On compact analytic surfaces,III,Ann.Math.,78(1),1963,1–40.

    [7]Liu,X.L.and Tan,S.L.,Families of hyperelliptic curves with maximal slopes,Science China Mathematics,56(9),2013,1743–1750.

    [8]Namikawa,Y.and Ueno,K.,The complete classification of fibres in pencils of curves of genus two,Manuscripta Math.,9,1973,143–186.

    [9]Ogg,A.P.,On pencils of curves of genus two,Topology,5,1966,355–362.

    [10]Tan,S.L.,Chern numbers of a singular fiber,modular invariants and isotrivial families of curves,Acta Math.Viet.,35(1),2010,159–172.

    [11]Tan,S.L.,Chern numbers of holomorphic foliations and Poincaré problems,in preprint.

    [12]Tu,Y.,A criterion of semi-stable hyperelliptic fibration,Journal of Sichuan University(Natural Science Edition),45(5),2008,1049–1050(in Chinese).

    [13]Xiao,G.,π1of elliptic and hyperelliptic surfaces,Internat.J.Math.,2(5),1991,599–615.

    [14]Xiao,G.,The fibrations of algbraic surfaces,Shanghai Scientific&Technical Publishers,Shanghai,1992(in Chinese).

    [15]Zhang,S.,Admissible pairing on a curve,Invent.Math.,112(1),1993,171–193.

    [16]Zhang,S.,Gross-Schoen cycles and dualising sheaves,Invent.Math.,179(1),2010,1–73.

    亚洲欧美日韩卡通动漫| 久久久久久久久久久免费av| 男女视频在线观看网站免费| 亚洲欧洲日产国产| 欧美成人a在线观看| 亚洲精品中文字幕在线视频 | av一本久久久久| 国产黄频视频在线观看| 亚洲av日韩在线播放| 十八禁网站网址无遮挡 | 国产精品.久久久| 边亲边吃奶的免费视频| 国产高潮美女av| 亚洲欧美精品自产自拍| 人妻一区二区av| 日日啪夜夜爽| 精品人妻一区二区三区麻豆| 国产单亲对白刺激| 韩国高清视频一区二区三区| 国产乱来视频区| 日韩欧美一区视频在线观看 | 国产不卡一卡二| 日韩中字成人| 国产成人精品久久久久久| 看免费成人av毛片| 一级毛片aaaaaa免费看小| 联通29元200g的流量卡| 在线观看人妻少妇| 乱码一卡2卡4卡精品| 色综合色国产| av播播在线观看一区| 91久久精品国产一区二区三区| 久久久久九九精品影院| 熟妇人妻不卡中文字幕| 岛国毛片在线播放| 大话2 男鬼变身卡| 欧美三级亚洲精品| 亚洲电影在线观看av| 免费看不卡的av| 80岁老熟妇乱子伦牲交| 久久久久性生活片| 性色avwww在线观看| av卡一久久| 禁无遮挡网站| videos熟女内射| 黄色一级大片看看| 亚洲熟女精品中文字幕| 深爱激情五月婷婷| 国产黄色视频一区二区在线观看| 最近的中文字幕免费完整| 三级毛片av免费| 乱系列少妇在线播放| 国产人妻一区二区三区在| 亚洲四区av| 国产在视频线精品| 丰满少妇做爰视频| 国产精品久久视频播放| 午夜精品国产一区二区电影 | 国产精品不卡视频一区二区| 国产精品1区2区在线观看.| 国产精品1区2区在线观看.| 久久久久久久久中文| 国产伦精品一区二区三区四那| 极品少妇高潮喷水抽搐| 老女人水多毛片| 成人欧美大片| 大香蕉久久网| 日本黄大片高清| 大话2 男鬼变身卡| 亚洲成色77777| 免费少妇av软件| 免费观看精品视频网站| 久久久a久久爽久久v久久| 亚洲在线观看片| 亚洲在线观看片| 精品少妇黑人巨大在线播放| 国产有黄有色有爽视频| 天天躁夜夜躁狠狠久久av| 国产爱豆传媒在线观看| 日本-黄色视频高清免费观看| 在线天堂最新版资源| 日韩av在线免费看完整版不卡| 两个人的视频大全免费| 成人毛片60女人毛片免费| 国内少妇人妻偷人精品xxx网站| 2022亚洲国产成人精品| 久久久久久久久久黄片| 亚洲精品影视一区二区三区av| 精品久久久精品久久久| 国产淫片久久久久久久久| 能在线免费看毛片的网站| 99久国产av精品国产电影| 插阴视频在线观看视频| 久久久久九九精品影院| 美女cb高潮喷水在线观看| 婷婷色综合www| 午夜福利成人在线免费观看| 日韩视频在线欧美| 国产精品人妻久久久久久| 免费观看精品视频网站| 久久久久免费精品人妻一区二区| 美女脱内裤让男人舔精品视频| 国产精品福利在线免费观看| 两个人视频免费观看高清| 国产91av在线免费观看| 国产有黄有色有爽视频| av又黄又爽大尺度在线免费看| 麻豆国产97在线/欧美| av在线天堂中文字幕| 亚洲av一区综合| 大片免费播放器 马上看| 日本欧美国产在线视频| 亚洲精品国产av成人精品| 简卡轻食公司| 中文字幕亚洲精品专区| 青春草视频在线免费观看| 男的添女的下面高潮视频| 男女国产视频网站| 亚洲精品中文字幕在线视频 | 成人美女网站在线观看视频| 久久这里有精品视频免费| 高清视频免费观看一区二区 | 一级片'在线观看视频| 爱豆传媒免费全集在线观看| 国产成人福利小说| 国产精品爽爽va在线观看网站| 免费观看的影片在线观看| 天堂网av新在线| 午夜福利高清视频| 超碰av人人做人人爽久久| 三级国产精品片| 免费少妇av软件| 内射极品少妇av片p| 国产激情偷乱视频一区二区| 免费少妇av软件| 日韩国内少妇激情av| 国内少妇人妻偷人精品xxx网站| 搡老乐熟女国产| 男人狂女人下面高潮的视频| 亚洲欧美日韩东京热| 久久热精品热| 日本wwww免费看| 精品一区在线观看国产| 国产精品日韩av在线免费观看| 18禁在线播放成人免费| 91在线精品国自产拍蜜月| 久久久久九九精品影院| 麻豆成人午夜福利视频| 亚洲av不卡在线观看| 精品国产一区二区三区久久久樱花 | 成人综合一区亚洲| 国产一区有黄有色的免费视频 | 国产免费福利视频在线观看| 中文字幕av成人在线电影| 色综合亚洲欧美另类图片| 我要看日韩黄色一级片| 亚洲va在线va天堂va国产| 亚洲国产最新在线播放| 一本久久精品| 国产麻豆成人av免费视频| 亚洲美女搞黄在线观看| 日韩欧美 国产精品| 乱人视频在线观看| 国产美女午夜福利| 亚洲一区高清亚洲精品| 老女人水多毛片| av在线亚洲专区| 国产免费福利视频在线观看| 亚洲精品视频女| 97超视频在线观看视频| 免费看美女性在线毛片视频| 五月天丁香电影| 极品少妇高潮喷水抽搐| 日韩欧美一区视频在线观看 | 男女下面进入的视频免费午夜| 99热网站在线观看| 淫秽高清视频在线观看| 日韩亚洲欧美综合| 简卡轻食公司| 亚洲人成网站在线播| 80岁老熟妇乱子伦牲交| 在线a可以看的网站| 国产精品国产三级专区第一集| 亚洲欧洲国产日韩| 亚洲欧洲日产国产| 国产在视频线精品| 中文字幕亚洲精品专区| 中国美白少妇内射xxxbb| 纵有疾风起免费观看全集完整版 | 91aial.com中文字幕在线观看| xxx大片免费视频| 国产av国产精品国产| 久久草成人影院| 日韩,欧美,国产一区二区三区| 我的女老师完整版在线观看| 亚洲高清免费不卡视频| 国产一级毛片在线| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线观看99 | 欧美日韩精品成人综合77777| 一级a做视频免费观看| 视频中文字幕在线观看| 国产美女午夜福利| 午夜久久久久精精品| 人妻一区二区av| 午夜福利在线观看免费完整高清在| 亚洲欧美精品专区久久| 亚洲av免费在线观看| 一区二区三区免费毛片| 欧美成人午夜免费资源| 国产高潮美女av| 国产综合精华液| 又爽又黄无遮挡网站| 日韩在线高清观看一区二区三区| 亚洲精品aⅴ在线观看| 蜜臀久久99精品久久宅男| 免费播放大片免费观看视频在线观看| 国产成年人精品一区二区| 亚洲精品影视一区二区三区av| 久久99热6这里只有精品| 成人午夜精彩视频在线观看| 三级经典国产精品| 日本与韩国留学比较| 久久久国产一区二区| 青春草亚洲视频在线观看| 亚洲成人久久爱视频| 18禁动态无遮挡网站| 赤兔流量卡办理| 精品一区二区三区人妻视频| 日韩中字成人| 国产精品精品国产色婷婷| 一个人观看的视频www高清免费观看| 成人性生交大片免费视频hd| 最近最新中文字幕大全电影3| 国产精品.久久久| 亚洲熟女精品中文字幕| 国产综合精华液| 成年人午夜在线观看视频 | 中文在线观看免费www的网站| 色综合色国产| 神马国产精品三级电影在线观看| 国产精品一区二区三区四区久久| 国产亚洲精品久久久com| 亚洲av电影不卡..在线观看| 欧美+日韩+精品| 你懂的网址亚洲精品在线观看| 欧美日韩精品成人综合77777| 亚洲熟妇中文字幕五十中出| 大片免费播放器 马上看| 久久久久久久国产电影| 国产又色又爽无遮挡免| ponron亚洲| 我的女老师完整版在线观看| 日日摸夜夜添夜夜爱| 久久精品久久久久久久性| 少妇的逼水好多| 91久久精品电影网| 日韩强制内射视频| 简卡轻食公司| 亚洲精品一二三| 高清午夜精品一区二区三区| freevideosex欧美| 国产黄a三级三级三级人| 99久久精品国产国产毛片| 乱码一卡2卡4卡精品| 人妻制服诱惑在线中文字幕| 在线观看一区二区三区| 青青草视频在线视频观看| 麻豆av噜噜一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲电影在线观看av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人综合色| 婷婷色av中文字幕| 麻豆成人av视频| 2022亚洲国产成人精品| 一级毛片电影观看| 亚洲欧美清纯卡通| 狠狠精品人妻久久久久久综合| 熟妇人妻久久中文字幕3abv| 日本色播在线视频| 国产黄片视频在线免费观看| av专区在线播放| 日日撸夜夜添| 日本三级黄在线观看| 国产黄频视频在线观看| 97精品久久久久久久久久精品| 肉色欧美久久久久久久蜜桃 | 热99在线观看视频| 91精品伊人久久大香线蕉| 如何舔出高潮| 免费看光身美女| 欧美bdsm另类| 国产成人a∨麻豆精品| 全区人妻精品视频| 少妇被粗大猛烈的视频| 欧美一区二区亚洲| 免费看日本二区| 搞女人的毛片| 久久国产乱子免费精品| 91久久精品国产一区二区成人| 亚洲人成网站在线播| 大陆偷拍与自拍| 免费播放大片免费观看视频在线观看| 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 国产白丝娇喘喷水9色精品| 亚洲怡红院男人天堂| 成人鲁丝片一二三区免费| 日韩人妻高清精品专区| 成人av在线播放网站| 91精品一卡2卡3卡4卡| 亚洲欧美日韩无卡精品| 一二三四中文在线观看免费高清| 青春草国产在线视频| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕| 乱人视频在线观看| 国产精品伦人一区二区| 少妇熟女aⅴ在线视频| 搡女人真爽免费视频火全软件| 免费观看的影片在线观看| 午夜免费观看性视频| 久久99精品国语久久久| 91久久精品国产一区二区成人| 午夜精品国产一区二区电影 | 亚洲欧美清纯卡通| 精品一区二区三卡| 亚洲精品久久久久久婷婷小说| 久久久精品欧美日韩精品| 久热久热在线精品观看| 亚洲成色77777| 亚洲av成人精品一二三区| 在线观看免费高清a一片| 熟妇人妻不卡中文字幕| 身体一侧抽搐| or卡值多少钱| 亚洲在线观看片| 国产成人免费观看mmmm| 国产在线一区二区三区精| 91午夜精品亚洲一区二区三区| 久久精品久久精品一区二区三区| 国产v大片淫在线免费观看| 熟女电影av网| 一级毛片 在线播放| 高清欧美精品videossex| av在线老鸭窝| 国产午夜福利久久久久久| 亚洲最大成人av| 极品教师在线视频| 肉色欧美久久久久久久蜜桃 | 国产欧美另类精品又又久久亚洲欧美| 国产淫片久久久久久久久| 色5月婷婷丁香| av播播在线观看一区| 久久6这里有精品| 晚上一个人看的免费电影| 99re6热这里在线精品视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产最新在线播放| 欧美潮喷喷水| 黄片wwwwww| 在现免费观看毛片| 老女人水多毛片| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 又爽又黄无遮挡网站| 一个人看的www免费观看视频| 亚洲av.av天堂| 久久久久网色| 亚洲国产日韩欧美精品在线观看| 亚洲成人精品中文字幕电影| 欧美日韩国产mv在线观看视频 | 亚洲激情五月婷婷啪啪| 精品一区在线观看国产| 最近2019中文字幕mv第一页| 欧美变态另类bdsm刘玥| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 直男gayav资源| 人妻夜夜爽99麻豆av| 国国产精品蜜臀av免费| 久久久久性生活片| 波野结衣二区三区在线| 成人特级av手机在线观看| 亚洲美女搞黄在线观看| av在线蜜桃| 校园人妻丝袜中文字幕| 色尼玛亚洲综合影院| 日韩av不卡免费在线播放| 精品一区在线观看国产| 久久草成人影院| 全区人妻精品视频| 国产视频首页在线观看| 中文字幕免费在线视频6| av播播在线观看一区| 水蜜桃什么品种好| 欧美区成人在线视频| 床上黄色一级片| 亚洲图色成人| av网站免费在线观看视频 | 国产在视频线精品| 中文字幕久久专区| 男女下面进入的视频免费午夜| 乱系列少妇在线播放| 黄色配什么色好看| 又粗又硬又长又爽又黄的视频| 乱系列少妇在线播放| 成年版毛片免费区| 久久久国产一区二区| 秋霞在线观看毛片| 免费大片黄手机在线观看| 久久久国产一区二区| 国产91av在线免费观看| 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 99re6热这里在线精品视频| 麻豆国产97在线/欧美| 国产在视频线在精品| 国产亚洲5aaaaa淫片| 18禁裸乳无遮挡免费网站照片| 久久久精品免费免费高清| 亚洲精品成人久久久久久| 午夜精品在线福利| 日日摸夜夜添夜夜添av毛片| 国产成人免费观看mmmm| 国产精品一区www在线观看| 久久久久久久久久久免费av| 777米奇影视久久| 亚洲av电影不卡..在线观看| 在线观看av片永久免费下载| 欧美日韩国产mv在线观看视频 | 国产精品福利在线免费观看| 国产精品久久久久久精品电影小说 | 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 自拍偷自拍亚洲精品老妇| 插阴视频在线观看视频| 成年女人在线观看亚洲视频 | 亚洲精品日韩在线中文字幕| 久久6这里有精品| 秋霞伦理黄片| 丰满人妻一区二区三区视频av| 色视频www国产| 精品一区二区三区人妻视频| 久久97久久精品| 小蜜桃在线观看免费完整版高清| 在线免费观看的www视频| 欧美 日韩 精品 国产| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频 | 国国产精品蜜臀av免费| 日本一本二区三区精品| 中文欧美无线码| 精品欧美国产一区二区三| 国产成人freesex在线| 欧美精品国产亚洲| 久久草成人影院| 国产黄频视频在线观看| 国产探花极品一区二区| 日韩在线高清观看一区二区三区| 久久99热这里只有精品18| 久久99热6这里只有精品| 大香蕉久久网| 爱豆传媒免费全集在线观看| 亚洲精品乱码久久久v下载方式| 三级国产精品欧美在线观看| 亚洲精品影视一区二区三区av| 搞女人的毛片| 欧美性感艳星| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 久久韩国三级中文字幕| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 麻豆成人午夜福利视频| 岛国毛片在线播放| 搡老乐熟女国产| 男女那种视频在线观看| 亚洲精品成人久久久久久| 日韩 亚洲 欧美在线| 亚洲电影在线观看av| 乱人视频在线观看| 国产一区有黄有色的免费视频 | 国产精品一及| 欧美高清性xxxxhd video| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 亚洲,欧美,日韩| 少妇的逼好多水| 亚洲av不卡在线观看| 我的老师免费观看完整版| 日本av手机在线免费观看| 青春草视频在线免费观看| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 丰满乱子伦码专区| 色尼玛亚洲综合影院| 欧美xxⅹ黑人| 国产高清有码在线观看视频| 成人综合一区亚洲| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人与动物交配视频| 国产白丝娇喘喷水9色精品| 青春草亚洲视频在线观看| 国产日韩欧美在线精品| 婷婷六月久久综合丁香| 女的被弄到高潮叫床怎么办| 亚洲自拍偷在线| 三级国产精品片| 黄色日韩在线| 欧美另类一区| 成年av动漫网址| 自拍偷自拍亚洲精品老妇| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| 91久久精品国产一区二区三区| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 欧美丝袜亚洲另类| 午夜福利网站1000一区二区三区| 国产亚洲av嫩草精品影院| 国产一区二区三区综合在线观看 | 亚洲内射少妇av| 直男gayav资源| 自拍偷自拍亚洲精品老妇| 最近的中文字幕免费完整| 免费观看av网站的网址| 日韩av在线大香蕉| 色5月婷婷丁香| 日韩强制内射视频| 免费av观看视频| 淫秽高清视频在线观看| 国产 一区 欧美 日韩| 久久国产乱子免费精品| 非洲黑人性xxxx精品又粗又长| 高清午夜精品一区二区三区| 亚洲欧美日韩卡通动漫| 少妇的逼水好多| av又黄又爽大尺度在线免费看| 中文字幕制服av| 亚洲成人中文字幕在线播放| 特大巨黑吊av在线直播| av免费观看日本| 最近最新中文字幕大全电影3| 99九九线精品视频在线观看视频| 在线天堂最新版资源| 亚洲国产精品成人久久小说| 日韩一本色道免费dvd| 久99久视频精品免费| 男女边摸边吃奶| videossex国产| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 国产精品.久久久| 日韩成人av中文字幕在线观看| 国产亚洲精品av在线| 欧美另类一区| 尾随美女入室| 一级毛片久久久久久久久女| 亚洲精华国产精华液的使用体验| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 婷婷六月久久综合丁香| 高清毛片免费看| 免费av毛片视频| 成年女人在线观看亚洲视频 | 欧美丝袜亚洲另类| 日韩精品有码人妻一区| 国产大屁股一区二区在线视频| 国产在线一区二区三区精| 精品久久久久久久久亚洲| 亚洲精品456在线播放app| 亚洲av中文av极速乱| 免费黄色在线免费观看| freevideosex欧美| 婷婷色综合www| 亚洲欧美日韩东京热| 久久人人爽人人爽人人片va| 免费观看精品视频网站| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 日韩精品有码人妻一区| 精品99又大又爽又粗少妇毛片| eeuss影院久久| 中文字幕人妻熟人妻熟丝袜美| 日韩大片免费观看网站| 免费观看精品视频网站| 床上黄色一级片| 久久久久免费精品人妻一区二区| 亚洲精品国产成人久久av| 国产伦精品一区二区三区四那| 久久久久久国产a免费观看| 97超碰精品成人国产| 久久综合国产亚洲精品| 日本熟妇午夜| 日韩av在线大香蕉| 国产精品一区二区在线观看99 | 免费无遮挡裸体视频| 国产乱来视频区| 亚洲熟妇中文字幕五十中出| 一个人看的www免费观看视频| 午夜激情福利司机影院| eeuss影院久久| 国产精品麻豆人妻色哟哟久久 | 成人欧美大片| 少妇裸体淫交视频免费看高清| 免费看光身美女| 亚洲精品影视一区二区三区av| 美女脱内裤让男人舔精品视频| 毛片女人毛片|