• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Robustness of Orbit Spaces for Partially Hyperbolic Endomorphisms?

    2016-06-05 03:10:36LinWANG

    Lin WANG

    1 Introduction

    The main aim of this paper is to study the robustness of the orbit structure of a partially hyperbolic endomorphism.Two important properties concerning this subject,the stability property and the shadowing property,are investigated.

    It is well-known that structural stability implies that all topological properties of the orbit structure are robust and any Anosov diffeomorphism is structurally stable(see[1]),that is,if f is an Anosov diffeomorphism on a compact manifold M,then any diffeomorphism g C1-close to f is topologically conjugate to f,i.e.,there exists a homeomorphism ? on M such that

    Moreover,f is also topologically stable(see[20]),that is,for any homeomorphism g C0-close to f,there exists a continuous map ? from M onto M such that Equation(1.1)holds.Another important property to characterize the robustness of the orbit structure of a system is the shadowing property.It plays an important role in the investigation of the stability theory(see[14],for example).A well-known result is that an Anosov diffeomorphism f has the shadowing property,that is,for any δ-pseudo-orbit ξ={xk}+∞?∞for f,which satisfies

    there is a true orbit Orb(x) ε= ε(δ)-tracing(or,say,ε-shadowing)it,i.e.,

    For the non-invertible case,in 1969 Shub[19]showed that expanding maps are structurally stable and share many similar properties as of Anosov diffeomorphisms.At first,people did think that this is also true for any other non-invertible hyperbolic system,the so-called Anosov endomorphisms.In fact,it was not the case.In the 1970s,Ma?né-Pugh[12]and Przytycki[15]found independently some quite different properties for general Anosov endomorphisms.A remarkable result is that except for expanding maps,there is no Anosov endomorphism which is structurally stable.The main reason that makes general Anosov endomorphisms unstable is that the hyperbolicity may be destroyed under small C0perturbations when the negative orbits of some point are not unique.However,when we convert to investigate the robustness of the orbit space(an inverse limit space)which consists of the full orbits of Anosov endomorphisms,we can obtain many interesting results.For example,Liu[10]showed that the dynamical structure of its orbit space is stable with respect to C1perturbations and is semi-stable with respect to C0small perturbations.It is also showed(see[10,22]for example)that the shadowing property holds near the hyperbolic set of any endomorphism.The method of orbit spaces has turned out to be significant in the study of non-invertible dynamical systems(see,for instance,[17–18]for the role this method played in ergodic theory),and it even has some underlying connections with the study of random dynamical systems(see[11]).

    The partial hyperbolicity theory was first studied in the work of Brin and Pesin[4]which emerged as an attempt to extend the notion of complete hyperbolicity.A closely related notion of normal hyperbolicity was introduced earlier by Hirsh,Pugh and Shub[5].The ideas and methods in the study of partially hyperbolic dynamical systems extend those in the theory of uniformly hyperbolic dynamical systems,parts of which go well beyond that theory in several aspects.For the general theory of partial hyperbolicity and normal hyperbolicity,we refer to[2–3,5,13].

    For a partially hyperbolic diffeomorphism f,we can not expect that the stability and shadowing properties we state above hold because of the existence of the center direction.In[5,13],it was shown that if f has a C1center foliation,then there is a leaf conjugacy between f and its small C1perturbation g,that is,there is a homeomorphism on M which sends center leaves of f to those of g.Recently,Hu and Zhu[6]have shown that any partially hyperbolic diffeomorphism f is quasi-stable in the sense that for any g close to f,an equation similar to(1.1)holds,that is,

    in which τ maps points along the center direction.As an application,the continuity of entropy is also obtained for certain partially hyperbolic diffeomorphisms.In[7],Hu,Zhou and Zhu show that any partially hyperbolic diffeomorphism f has the quasi-shadowing property in the sense that for any pseudo-orbit{xk}k∈Z,there is a sequence of points{yk}k∈Ztracing it,in which yk+1is obtained from f(yk)by a motion τ along the center direction.As an application,they gave a version of the spectral decomposition theorem when f has a uniformly compact C1center foliation.We also mention that Kryzhevich and Tikhomirov[9]gave a version of the center shadowing property for partially hyperbolic diffeomorphisms which are dynamically coherent.

    In this paper,we shall investigate the robustness of the orbit structure of a partially hyperbolic endomorphism f.There are two main results which can be seen as the generalization of those in[6–7]for the diffeomorphism to the non-invertible case.The first one is that its orbit space is topologically quasi-stable under C0-small perturbations in the following sense:For any covering endomorphism g,there is a continuous map ? from MgtoM such that for any{yi}i∈Z∈ ?(Mg),yi+1and f(yi)differ only by a motion τ along the center direction.In particular,if f has a C1center foliation,then the above motion τ can be chosen along the center leaves.The second one is that f has the quasi-shadowing property in the following sense:For any pseudo-orbit{xi}i∈Z,there is a sequence of points{yi}i∈Ztracing it in which yi+1is obtained from f(yi)by a motion τ along the center direction.Similarly,we can also choose τ along the center leaves if f has a C1center foliation.We can see that to obtain the quasi-stability and quasi-shadowing properties,they used a unified method which combines the techniques of[8,10,20,22].We also mention that it seems impossible to get a kind of structural quasi-stability for this non-invertible case by using the method in[6],which they used to deal with the invertible case.The main reason is that the technique in[6]depends on the robustness of the center foliation,however,it generally does not hold for the partially hyperbolic endomorphism.

    This paper is organized as follows.The statements of results are given in Section 2.We also define some words and notations in the section.In Section 3 we deal with topological quasi-stability,including the proofs of Theorem A and Theorem B.Section 4 is devoted to the quasi-shadowing property,including a sketch of the proof of Theorem C.

    2 definitions,Notations and Statements of Results

    Let M be an m-dimensional C∞compact Riemannian manifold.We denote by?·?and d(·,·)the norm on TM and the metric on M induced by the Riemannian metric,respectively.Letbe the bi-in finite product of copies of M and endow it with the metric

    for={xi}i∈Z,={yi}i∈Z∈,which makesa compact metric space.By

    we denote the left shift operator on,and

    the natural i-th projection for any i∈Z.

    Let C0(M,M)be the space of continuous maps on M endowed with the metric

    for f,g∈C0(M,M).For any f∈C0(M,M),define

    and call it the orbit space or the inverse limit space of f.It is clearly a closed subset of?M.

    definition 2.1Assume that f,g ∈ C0(M,M).Let Λ and Δ be,respectively,an invariant set of f and g,and let ? :Λf→ Δgbe a continuous map.The map ? is called an orbit-space conjugacy if it is a homeomorphism and satisfies

    ? is called an orbit-space semi-conjugacy if it is surjective and satisfies the preceding equation.

    A map f in C0(M,M)is called a covering endomorphism of M if it is a local homeomorphism around every x∈M.By CE0(M)we denote the set of all covering endomorphisms of M.

    An endomorphism f∈Endo1(M)∩CE0(M)(where Endo1(M)is the set of C1endomorphisms of M)is an Anosov endomorphism(see[15])if there exists a constant λ with 0< λ <1,and an invariant decomposition TxM=⊕,?x∈M,such that for any n≥0,

    hold for some number C>0.

    Assume that f∈C1(M,M)is an Anosov endomorphism.Then there exists a neighborhood U of f in C1(M,M)and numbers δ0>0,such that ?g ∈ U has the shadowing property(see[10]),that is,for any ε>0,there exists 0< δ< δ0and any δ-pseudo-orbit of g that lies in M can be ε-shadowed by an orbit of g.

    We have known that a non-invertible endomorphism on a compact manifold is in general not stable except when it is expanding(see[15–16,21]).However,for an Anosov endomorphism,the dynamical structure of its orbit space(an inverse limit space)is stable with respect to C1-small perturbations and is semi-stable with respect to C0-small perturbations.

    Let f be an Anosov endomorphism on M,then f is weakly structurally stable(the dynamical structure of its orbit space is stable with respect to C1-small perturbations)in the following sense:There is ε0>0 and for any 0< ε< ε0,one can find a neighborhood U of f in C1(M,M)such that for any g∈U,there is a unique orbit-space conjugacy ?:Mg→Mfsatisfying d(,?())< ε for all∈ Mg(see[10]for example).

    Let f be an Anosov endomorphism on M,then f is weakly topologically stable(the dynamical structure of its orbit space is semi-stable with respect to C0-small perturbations)in the following sense:Given ε>0,one can find a neighborhood U of f in CE0(M)such that for any g ∈ U there is an orbit-space semi-conjugacy ? :Mg→ Mfsatisfying d(,?())< ε for all∈Mg(see[10]for example).

    As is mentioned in the introduction,for any partially hyperbolic system,we cannot expect that the shadowing property holds in general since in this case a center direction is allowed in addition to the hyperbolic directions.Therefore,how to find an analogous property is interesting.

    Now,we introduce the definition of partially hyperbolic endomorphisms.

    definition 2.2An endomorphism f∈Endor(M)∩CE0(M)(where Endor(M)is the set of Crendomorphisms of M,1≤r≤∞)is said to be(uniformly)partially hyperbolic if there exist numbers λ, λ?, μ and μ?with 0< λ <1< μ and λ < λ?≤ μ?< μ,and an invariant decomposition TxM=Esx⊕⊕E,?x∈M,such that for any n≥0,

    hold for some number C>0.

    andare called stable,center and unstable subspaces,respectively.Via a change of the Riemannian metric,we always assume that C=1.Moreover,for simplicity of notation,we assume that λ=

    In the following,we always assume that f is a partially hyperbolic endomorphism as mentioned above and g is a covering endomorphism C0-close to f.

    Denote by(resp.,t=s,c,u)the restriction of the pull-back bundle(TM)(resp.(Et),t=s,c,u)via the projection π0:?→M to the orbit space Mgof g.We will identify(resp.,t=s,c,u)with Tπ0(?x)M(resp.,t=s,c,u)via the obvious isomorphism.Let Γ = Γ(Mg)be the Banach space of all continuous sections ofwith the norm

    Similarly,we denote by Γs,Γcand Γuthe spaces of continuous sections of,andrespectively.Also,we denote Γus= Γu⊕ Γs.Let:→be the projection ontoalong.It is obvious thatis actually the projectionandare defined in a similar way.

    Since M is compact and f is locally homeomorphic,we can take the constant ρ0>0 such that for any x∈M,the standard exponential mapping expx:{v∈TxM:?v?<ρ0}→M and the restriction of f to B(x,ρ0)are all diffeomorphisms to the image.Clearly,we have d(x,expxv)=?v?for v ∈ TxM with?v?< ρ0.Takesuch that for any x,y∈M,any z∈f?1(x)with d(z,y)≤ρ,v∈TyM with?v?≤ρ,

    Decrease ρ if necessary,such that both sides of equations(3.3)and(3.17),in the proofs of Theorem A and Theorem B respectively,are contained in the set{v∈TxM:?v?<ρ0}.

    For any given continuous center section u∈Γcwith?u?<ρ and∈Mg,we define a family of smooth mapson B(π0(),ρ)by

    Theorem ALet f be a partially hyperbolic endomorphism.Then f is topological quasistable in the following sense:For any ε∈ (0,ρ),there exists δ>0 such that for any g ∈CE0(M)with d(f,g)< δ,there exists a continuous center section u ∈ Γcand a continuous map ?:Mg→such that for any∈Mg,

    in which

    for any i∈Z.

    Moreover,u and ? can be chosen uniquely so as to satisfy the following conditions:

    It is well-known that if f is a partially hyperbolic diffeomorphism,then there always exist stable and unstable foliations,but the existence of center foliation is a rather delicate matter and is known under several rather stringent assumptions(see Chapter 5 of[13]for the details).When f is a partially hyperbolic endomorphism,the existence of these invariant foliations is more subtle since the invariant manifolds rely on the whole orbits of the system but the negative orbits of a point are not uniquely determined under the endomorphism.However,we can see that for the systems in the following example,these invariant foliations exist,in particular,the center foliation is even smooth.

    Example 2.1Let N be a smooth closed Riemannian manifold,h:N ?→N an Anosov endomorphism.Then

    and

    are all partially hyperbolic endomorphisms,where R is a rotation on the unit circle S1.

    If f has C1center foliation,then we can require τ in Theorem A to move along the center foliation.In this case,for any ε>0 and∈ Mg,we denotewhereis the ε-ball in⊕Obviously,is a smooth disk transversal toatSince the center foliationis C1,we can conclude that if y is close enough to π0(),then there is a locally defined mapon some neighborhood U(π0())of π0()and a constant K1>1 which is independent ofsuch that for any y ∈ U(π0()),we have

    and

    Theorem BLet f be a partially hyperbolic endomorphism with a C1center foliationThen f is topological quasi-stable in the following sense:For any ε∈ (0,ρ),there exists δ>0 such that for any g∈ CE0(M)with d(f,g)<δ,there exists a continuous map ?:Mg→such that for any∈Mg,

    in which

    for any i∈Z.

    Moreover,? can be chosen uniquely so as to satisfy the conditions in(2.3).

    In the following,we will apply the unified method we used in Theorem A and Theorem B to study the so-called quasi-shadowing property for a partially hyperbolic endomorphism f.For a sequence of points{xk}k∈Zand a sequence of vectors{uk∈}k∈Zwith?uk?< ρ for any k ∈ Z,we define a family of smooth maps=(·,uk)on B(xk,ρ),k ∈ Z,by

    Theorem CLet f be a partially hyperbolic endomorphism.Then f has the quasi-shadowing property in the following sense:For any ε∈ (0,ρ),there exists δ>0 such that for any δ-pseudoorbit{xk}k∈Zof f,there exists{yk}k∈Zand a sequence of vectors{uk∈ Ecxk}k∈Zsuch that

    where

    Moreover,{yk}k∈Zand{uk}k∈Zcan be chosen uniquely so as to satisfy

    If f has C1center foliation,then we can require τ in Theorem C to move along the center foliation.In this case,for any ε>0,we denote Σε(x)=expx(Hx(ε)),where Hx(ε)is the ε-ball in⊕,andis the locally defined map on some neighborhood U(x)of x satisfying that for any y∈U(x),

    and

    for the constant K1>1.

    Theorem DLet f be a partially hyperbolic endomorphism with C1center foliationThen f has the quasi-shadowing property in the following sense:For any ε∈ (0,ρ),there exists δ>0 such that for any δ-pseudo-orbit{xk}k∈Zof f,there exists a sequence of points{yk}k∈Zsuch that

    where

    Moreover,{yk}k∈Zcan be chosen uniquely so as to satisfy(2.10).

    3 Topological Quasi-stability

    Recall that?·?is the norm on TM.We define the norm?·?1on TM by?w?1=?u?+?v?if w=u+v∈TxM with u∈and v∈⊕Similarly,if w=u+v∈Γ with u∈Γcand v∈Γus,we also define?w?1=?u?+?v?.By the triangle inequality and the fact that the angles between Ecand Eu⊕Esare uniformly bounded away from zero,we know that there exists a constant L such that

    For any ε>0,we denote

    3.1 The general case

    Proof of Theorem ATo find a continuous center section u∈Γcand a continuous map ? :Mg→satisfying(2.1)and the conditions in(2.2)–(2.3)of this theorem,we shall first try to solve the equation

    which satisfies(2.2)–(2.3)for unknown u and ?.

    Let={xi}i∈Z∈ Mg.Putting πi? ?()=expxi(v(σi()))for v ∈ Bus(ρ)and i∈ Z,we see that(3.2)is equivalent to

    for any i∈Z.

    By the definition ofwe have

    define an operator β :B(ρ)→ Γ and a linear operator F:Γ → Γ by

    respectively.

    Let

    Therefore,by(3.4)–(3.5),(3.3)is equivalent to

    and is further equivalent to

    define a linear operator P from a neighborhood of 0∈ Γ to Γ by

    for ω =u+v∈ Γ,where u ∈ Γcand v∈ Γus.

    define an operator Φ from a neighborhood of 0 ∈ Γ to Γ by

    Hence,Equation(3.2)is equivalent to

    namely,u+v is a fixed point of Φ.

    We will prove that for any ε∈ (0,ρ),there exists δ= δ(ε)such that for any g ∈ CE(M)with d(f,g) ≤ δ,Φ :B1(ε)→ B1(ε)is a contracting map,and therefore has a fixed point in B1(ε).Hence,(3.2)has a unique solution.

    Recall that λ is the hyperbolic constant of the partially hyperbolic endomorphism f on M.Let∈(λ,1)be given.We can find

    such that for any ε∈ (0,ε1),there exists

    which ensures that for any d(f(y),x)<δ,the following claims hold.

    (1)The map(here Bx(ε)={v ∈ TxM:|v|≤ ε}and By(ρ0)={v ∈ TyM:|v|≤ ρ0})is well defined,since for any v in Bx(ε),

    (2)

    and for any v?,v??∈ Hx(ε)and any t∈ [0,1],

    We will prove that Φ :B1(ε)→ B1(ε)is a contracting map in the following steps.

    Step 1For δ>0 satisfying(3.8)–(3.11)and for any v,v?∈ Bus(ε),

    By the definition of η,we can write it in a neighborhood of 0 ∈ Γus:

    where

    and

    for={xi}i∈Z∈ Mg.Note that for v?,v??∈ Bus(ε),we have

    Therefore,from(3.11)we have

    By(3.10),we have,for v?,v??∈ Bus(ε),

    Combining(3.12)–(3.13),for v?,v??∈ Bus(ε),we have

    Hence,we can get the result we need immediately.

    Step 2For any δ>0 satisfying(3.8)–(3.11)and any g ∈ CE(M)with d(f,g) ≤ δ,the operator P defined as(3.6)is invertible and

    By the definition of P,we have P|Γc=idΓcand P|Γt=idΓt ? Ft,t=s,u,where the operators Ft:Γ → Γ,t=s,u,are defined by

    for v∈ Γsu.So P(Γt)= Γi,t=u,s,c.

    By(3.8)–(3.9),?Fs?.?(Fu)?1?≤<1.Hence,both P|Γsand P|Γuare invertible and

    It follows that

    It is obvious that

    So we obtain that

    This is what we need.

    Step 3For any ε∈ (0,ε1),there exists δ= δ(ε)>0 such that for any g ∈ CE(M)with d(f,g)≤ δ,Φ(B1(ε))? B1(ε)and for any ω,ω?∈ B1(ε),

    For any ε∈ (0,ε1),take δ∈ (0,min)such that(3.8)–(3.11)hold.

    By step 2 above,we have

    Take w=u+v∈ B1(ε)with u ∈ Γcand v∈ Γus.By(3.15)and the step 1,we can get

    which implies that Φ(B1(ε)) ? B1(ε).

    Similarly,for two elements w=u+v,w?=u?+v?∈ B1(ε)with u,u?∈ Γcand v,v?∈ Γus,we have

    This proves that Φ :B1(ε)→ B1(ε)is a contracting map.

    3.2 The center foliation is C1

    Proof of Theorem BThe proof is similar to that of Theorem A.

    To find a continuous map ?:Mg→satisfying(2.1)and the conditions in(2.7)and(2.3)of this theorem,we shall first try to solve the equation

    which satisfies(2.3)and(2.7)for unknown ?.

    Let={xi}i∈Z∈ Mg.Putting πi? ?()=expxi(v(σi()))for v ∈ Bus(ρ)and i∈ Z,we see that(3.16)is equivalent to

    for any i∈Z.

    define an operator β :Bus(ρ)→ Γusand a linear operator F:Γus→ Γusby

    Let

    Therefore,by(3.18)–(3.19),(3.17)is equivalent to

    and is further equivalent to

    define a linear operator P from a neighborhood of 0 ∈ Γusto Γusby

    for v∈ Γus.

    define an operator Φ from a neighborhood of 0 ∈ Γusto Γusby

    Hence,the equation(3.2)is equivalent to

    namely,v is a fixed point of Φ.

    The remaining work is to show that for any ε∈ (0,ρ),there exists δ= δ(ε)such that for any g ∈ CE0(M)with d(g,f)≤ δ,Φ :Bus(ε)→ Bus(ε)is a contracting map,and therefore has a fixed point in Bus(ε).Hence,(3.16)has a unique solution.To this end,we only need to slightly modify the proof of Theorem A.

    4 Quasi-shadowing Property

    As we mentioned above,the proofs of Theorem C and Theorem D follow essentially the ideas presented in the proofs of Theorem A and Theorem B,respectively.Instead of applying the contraction principle for the operator built on the space of continuous sections of the bundle on the whole orbit spaces,we now only need to do the similar work for the operator built on the space of continuous sections of the bundle on a single pseudo-orbit.So we will only modify the notations to the new settings and give a sketch of the proof of Theorem C.

    For any sequence{xk}k∈Z,denote

    and

    For any

    where u∈Xcand v∈Xus,we also define

    and

    For any ε>0,we denote

    A sketch of the proof of Theorem CGiven a δ-pseudo-orbit{xk}k∈Zof f,to find a sequence of points{yk}k∈Zand a sequence of vectors{uk∈}k∈Zsatisfying(2.8)–(2.10),we shall try to solve the equation

    for unknown{yk}k∈Zand{uk∈}k∈Z.Putting

    then the equation(4.1)is equivalent to

    i.e,

    define an operator β :Cus(ρ)→ X and a linear operator A:Cus(ρ)→ Xusby

    where

    and

    Let the operator

    and then by(4.3)–(4.4),(4.2)is equivalent to

    and is further equivalent to

    define a linear operator P from a neighborhood of 0∈X to X by

    for w=u+v∈X,where u∈Xcand v∈Xus.

    define an operator Φ from a neighborhood of 0 ∈ X to X by

    for w=u+v in a neighborhood of 0∈X,where u∈Xcand v∈Xus.Hence,Equation(4.2)is equivalent to

    namely,w is a fixed point of Φ.

    The remaining work is to show that for any ε∈ (0,ρ),there exists δ= δ(ε)such that for a δ-pseudo-orbit{xk}k∈Zof f,Φ :Cus(ε) → Cus(ε)is a contracting map,and therefore has a fixed point in Cus(ε).It is almost a verbatim proof of Theorem A.

    AcknowledgementI would like to thank Professor Zhu Yujun for the helpful discussion and suggestions.

    [1]Anosov,D.,Geodesic flows on closed Riemann manifolds with negative curvature,Proc.Steklov Inst.Math.,90,1967,3–210.

    [2]Barreira,L.and Pesin,Y.,Nonuniform Hyperbolicity,Cambridge University Press,Cambridge,2007.

    [3]Bonatti,C.,Diaz,L.and Viana,M.,Dynamics Beyond Uniform Hyperbolicity:A Global Geometric and Probabilistic Perspective,Encyclopaedia Math.Sci.,102,Springer-Verlag,Berlin,2005.

    [4]Brin,M.and Pesin,Y.,Partially hyperbolic dynamical systems,MAth.USSR-Izv.,8,1974,177–218.

    [5]Hirsch,M.,Pugh,C.and Shub,M.,Invariant Manifolds,Lect.Notes in Math.,Vol.583,Springer-Verlag,Berlin,1977.

    [6]Hu,H.and Zhu,Y.,Quasi-stability of partially hyperbolic diffeomorphisms,Tran.Amer.Math.Soc.,366(7),2014,3787–3804.

    [7]Hu,H.,Zhou,Y.and Zhu,Y.,Quasi-shadowing for partially hyperbolic diffeomorphisms,Ergodic Theory Dynam.Systems,35,2015,412–430.

    [8]Kato,K.and Morimoto,A.,Topological stability of Anosov flows and their centerizers,Topology,12,1973,255–273.

    [9]Kryzhevich,S.and Tikhomirov,S.,Partial hyperbolicity and central shadowing,Discrete Contin.Dyn.Syst.,33,2013,2901–2909.

    [10]Liu,P.,Stability of orbit spaces of endomorphisms,Manuscripta Math.,93(1),1997,109–128.

    [11]Liu,P.and Qian,M.,Smooth Ergodic Theory of Random Dynamical Systems,Lect.Notes in Math.,Vol.1606,Springer-Verlag,Berlin,1995.

    [12]Ma,R.and Pugh,C.,Stability of Endomorphisms,Lect.Notes in Math.,Vol.468,Springer-Verlag,Berlin,1974,175–184.

    [13]Pesin,Y.,Lectures on Partial Hyperbolicity and Stable Ergodicity,Zurich Lectures in Advanced Mathematics.European Mathematical Society,Zurich,2004.

    [14]Pilyugin,S.Y.,Shadowing in Dynamical Systems,Lect.Notes in Math.,Vol.1706,Springer-Verlag,Berlin,1999.

    [15]Przytycki,F.,Anosov endomorphisms,Studia Math.,58,1976,249–285.

    [16]Przytycki,F.,Ω-stability and structural stability of endomorphisms,Studia Math.,60,1977,61–77.

    [17]Pugh,C.and Shub,M.,Ergodic attractors,Trans.Amer.Math.Society,312,1989,1–54.

    [18]Qian,M.,Xie,J.and Zhu,S.,Smooth Ergodic Theory for Endomorphisms,Lect.Notes in Math.,Vol.1978,Springer-Verlag,Berlin,2009.

    [19]Shub,M.,Endomorphisms of compact differentiable manifolds,Amer.J.Math.,91,1969,171–199.

    [20]Walters,P.,Anosov diffeomorphisms are topologically stable,Topology,9,1970,71–78.

    [21]Yang,S.L.,More-to-one hyperbolic endomorphisms and hyperbolic sets,Acta Mathematica Sinica,3,1986,420–427.

    [22]Zhu,Y.,Zhang,J.and He,L.,Shadowing and inverse shadowing for C1endomorphisms,Acta Mathematica Sinica,22(5),2006,1321–1328.

    国产av一区在线观看免费| 麻豆成人午夜福利视频| 成人永久免费在线观看视频| av黄色大香蕉| 俺也久久电影网| 哪里可以看免费的av片| 欧美一区二区精品小视频在线| 一本精品99久久精品77| 欧美zozozo另类| 久久久久久久久大av| 日韩人妻高清精品专区| 内射极品少妇av片p| 午夜精品在线福利| 精品久久久久久久久av| 久久精品人妻少妇| 国产欧美日韩精品一区二区| 国产日本99.免费观看| 天美传媒精品一区二区| 一区二区三区高清视频在线| 欧美国产日韩亚洲一区| 午夜福利在线观看吧| 欧美一区二区精品小视频在线| 可以在线观看毛片的网站| 99久国产av精品| 在线免费十八禁| 国产精品久久视频播放| 亚洲一级一片aⅴ在线观看| 一区二区三区激情视频| 日韩欧美在线乱码| 亚洲欧美日韩高清在线视频| 真人一进一出gif抽搐免费| 99在线人妻在线中文字幕| 午夜福利在线在线| 欧美人与善性xxx| 人妻久久中文字幕网| 久久久精品欧美日韩精品| 亚洲成人中文字幕在线播放| 欧美日韩黄片免| 中文字幕久久专区| 干丝袜人妻中文字幕| 国产精品自产拍在线观看55亚洲| 久久久午夜欧美精品| 亚洲中文日韩欧美视频| 啦啦啦啦在线视频资源| 91久久精品国产一区二区成人| 91麻豆精品激情在线观看国产| 波野结衣二区三区在线| 亚洲在线观看片| 无人区码免费观看不卡| 亚洲性夜色夜夜综合| 不卡视频在线观看欧美| 能在线免费观看的黄片| 99久久无色码亚洲精品果冻| 天堂网av新在线| 嫩草影院精品99| 精品久久久久久,| 一区二区三区高清视频在线| h日本视频在线播放| 中文字幕久久专区| 久久久国产成人精品二区| 亚洲成人久久爱视频| 免费人成视频x8x8入口观看| 久久精品国产自在天天线| 午夜福利在线在线| 小说图片视频综合网站| 黄色欧美视频在线观看| 免费看av在线观看网站| 嫩草影院入口| 国内毛片毛片毛片毛片毛片| 亚洲美女视频黄频| 欧美不卡视频在线免费观看| 日韩一区二区视频免费看| 亚洲欧美激情综合另类| 最近中文字幕高清免费大全6 | 网址你懂的国产日韩在线| 真实男女啪啪啪动态图| 夜夜夜夜夜久久久久| 桃红色精品国产亚洲av| 狂野欧美激情性xxxx在线观看| av国产免费在线观看| 国产一区二区三区视频了| 国产亚洲精品av在线| 在线播放国产精品三级| 可以在线观看的亚洲视频| 亚洲最大成人av| 99久久中文字幕三级久久日本| 日本五十路高清| 欧美区成人在线视频| 波多野结衣巨乳人妻| 国产久久久一区二区三区| x7x7x7水蜜桃| 亚洲黑人精品在线| 日本-黄色视频高清免费观看| 国产视频内射| 九九热线精品视视频播放| 久久香蕉精品热| 精品久久久久久久久久久久久| videossex国产| 欧美又色又爽又黄视频| 亚洲,欧美,日韩| 精品一区二区三区视频在线| 久久久久久久久久黄片| 国产伦在线观看视频一区| 国产亚洲精品久久久com| 日本免费一区二区三区高清不卡| 可以在线观看的亚洲视频| 搡女人真爽免费视频火全软件 | 国产精品美女特级片免费视频播放器| 精品国产三级普通话版| 欧美+日韩+精品| 国产av一区在线观看免费| 国产美女午夜福利| 欧美在线一区亚洲| 琪琪午夜伦伦电影理论片6080| 此物有八面人人有两片| 国产伦一二天堂av在线观看| 久久久久精品国产欧美久久久| 精品无人区乱码1区二区| 观看美女的网站| 午夜爱爱视频在线播放| 国产精品三级大全| 亚洲一区高清亚洲精品| 毛片一级片免费看久久久久 | 日本 欧美在线| 99九九线精品视频在线观看视频| 中文字幕熟女人妻在线| 五月玫瑰六月丁香| eeuss影院久久| 无遮挡黄片免费观看| 男人舔女人下体高潮全视频| 色综合亚洲欧美另类图片| 国产精品,欧美在线| 精品久久国产蜜桃| 五月玫瑰六月丁香| 亚洲一级一片aⅴ在线观看| 日本 av在线| 最新中文字幕久久久久| 91麻豆精品激情在线观看国产| 国产精品无大码| 日本与韩国留学比较| 日韩欧美精品v在线| 亚洲美女黄片视频| 欧美+亚洲+日韩+国产| 亚洲精品一卡2卡三卡4卡5卡| 国产白丝娇喘喷水9色精品| 日本黄色视频三级网站网址| 精品福利观看| 国产精品乱码一区二三区的特点| 国产免费男女视频| 国产精品乱码一区二三区的特点| 亚洲无线观看免费| 成人欧美大片| 成人美女网站在线观看视频| 日韩欧美在线二视频| 国产69精品久久久久777片| 能在线免费观看的黄片| 麻豆国产av国片精品| 18禁在线播放成人免费| 又粗又爽又猛毛片免费看| 联通29元200g的流量卡| 久久国内精品自在自线图片| 国产高清激情床上av| 欧美+日韩+精品| 男女那种视频在线观看| 国产高清三级在线| 在线免费观看不下载黄p国产 | 久久这里只有精品中国| 少妇人妻一区二区三区视频| 亚洲中文字幕一区二区三区有码在线看| 欧美绝顶高潮抽搐喷水| 真实男女啪啪啪动态图| 直男gayav资源| 听说在线观看完整版免费高清| 国产精品女同一区二区软件 | 成人无遮挡网站| 日韩中字成人| 欧美中文日本在线观看视频| 一区二区三区免费毛片| 一区二区三区四区激情视频 | 能在线免费观看的黄片| АⅤ资源中文在线天堂| 又爽又黄无遮挡网站| 深爱激情五月婷婷| 搡老熟女国产l中国老女人| 日本在线视频免费播放| 超碰av人人做人人爽久久| 男女做爰动态图高潮gif福利片| 亚洲成av人片在线播放无| 国产在视频线在精品| 久久99热6这里只有精品| 春色校园在线视频观看| 淫秽高清视频在线观看| 老熟妇乱子伦视频在线观看| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 久久久久久伊人网av| 精品久久久久久久久亚洲 | 免费不卡的大黄色大毛片视频在线观看 | 波野结衣二区三区在线| 免费无遮挡裸体视频| 欧美精品啪啪一区二区三区| 又紧又爽又黄一区二区| 亚洲一区二区三区色噜噜| 99久久精品一区二区三区| 国产精品一区www在线观看 | 日韩在线高清观看一区二区三区 | 国产伦精品一区二区三区四那| 亚洲精品乱码久久久v下载方式| 精品99又大又爽又粗少妇毛片 | 久久久久性生活片| 免费看av在线观看网站| 中文在线观看免费www的网站| 国产一区二区三区视频了| 国产亚洲精品av在线| 日本一本二区三区精品| 亚洲av电影不卡..在线观看| 久久99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美潮喷喷水| 黄色丝袜av网址大全| 校园春色视频在线观看| 亚洲在线观看片| av在线亚洲专区| 女同久久另类99精品国产91| 亚洲精品亚洲一区二区| 欧美一级a爱片免费观看看| 精品一区二区三区av网在线观看| 直男gayav资源| 精品无人区乱码1区二区| 一夜夜www| 黄色日韩在线| 成人一区二区视频在线观看| 男人和女人高潮做爰伦理| 国产免费av片在线观看野外av| 夜夜看夜夜爽夜夜摸| 联通29元200g的流量卡| 亚洲天堂国产精品一区在线| 99热这里只有是精品50| 久久国产精品人妻蜜桃| 欧美色欧美亚洲另类二区| 能在线免费观看的黄片| 能在线免费观看的黄片| 亚洲成人久久爱视频| 99精品久久久久人妻精品| 国产亚洲欧美98| 国产亚洲欧美98| 亚洲人成伊人成综合网2020| 国产亚洲精品久久久com| 成年人黄色毛片网站| 真人一进一出gif抽搐免费| 日韩 亚洲 欧美在线| 国产麻豆成人av免费视频| 毛片一级片免费看久久久久 | 精品人妻1区二区| 一级黄色大片毛片| 亚洲av五月六月丁香网| 日本熟妇午夜| 日韩,欧美,国产一区二区三区 | 老司机福利观看| 婷婷丁香在线五月| 成人亚洲精品av一区二区| 内地一区二区视频在线| 成熟少妇高潮喷水视频| 高清在线国产一区| 99久久成人亚洲精品观看| 亚洲美女搞黄在线观看 | 毛片女人毛片| 国产精品伦人一区二区| 久久久久久久久中文| 亚洲av二区三区四区| 亚洲第一区二区三区不卡| 小说图片视频综合网站| 变态另类成人亚洲欧美熟女| 欧美日韩综合久久久久久 | 国产色爽女视频免费观看| 麻豆国产av国片精品| 18禁黄网站禁片午夜丰满| 很黄的视频免费| 婷婷丁香在线五月| 久久久久精品国产欧美久久久| 91精品国产九色| 真实男女啪啪啪动态图| 亚洲图色成人| 国产精品自产拍在线观看55亚洲| 男女边吃奶边做爰视频| 国产一区二区在线观看日韩| 少妇熟女aⅴ在线视频| 成人鲁丝片一二三区免费| 老司机午夜福利在线观看视频| 无人区码免费观看不卡| 97超级碰碰碰精品色视频在线观看| 亚洲欧美清纯卡通| 国产淫片久久久久久久久| 免费看日本二区| 日本三级黄在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲在线观看片| 韩国av一区二区三区四区| 大又大粗又爽又黄少妇毛片口| 亚洲性久久影院| 国产精品99久久久久久久久| 天堂影院成人在线观看| 春色校园在线视频观看| 最近中文字幕高清免费大全6 | 最近最新中文字幕大全电影3| 美女xxoo啪啪120秒动态图| 久久久久久久午夜电影| 嫩草影院新地址| 午夜精品在线福利| 少妇人妻精品综合一区二区 | 亚洲精品国产成人久久av| 欧美黑人巨大hd| 久久久久性生活片| 中文字幕久久专区| 国产乱人伦免费视频| 免费av不卡在线播放| 国产成人a区在线观看| 亚洲av中文字字幕乱码综合| 国语自产精品视频在线第100页| 人人妻人人澡欧美一区二区| 男女下面进入的视频免费午夜| 色在线成人网| 91麻豆精品激情在线观看国产| 久久人人精品亚洲av| 免费av毛片视频| 女人十人毛片免费观看3o分钟| 午夜免费激情av| 午夜亚洲福利在线播放| 91在线精品国自产拍蜜月| 俺也久久电影网| 国产精品一区www在线观看 | 男人狂女人下面高潮的视频| 日日夜夜操网爽| 欧美激情国产日韩精品一区| 波野结衣二区三区在线| 三级国产精品欧美在线观看| 少妇人妻一区二区三区视频| 国产91精品成人一区二区三区| 麻豆国产97在线/欧美| 欧美成人a在线观看| 最近在线观看免费完整版| 欧美黑人巨大hd| 国产麻豆成人av免费视频| 欧美另类亚洲清纯唯美| 成人一区二区视频在线观看| 中文字幕av在线有码专区| 色综合色国产| 免费观看在线日韩| 一区福利在线观看| 国产黄a三级三级三级人| 国产精品一区二区免费欧美| 欧美+日韩+精品| 国内精品美女久久久久久| 黄色女人牲交| 国产精品爽爽va在线观看网站| 91在线精品国自产拍蜜月| 一本一本综合久久| 级片在线观看| 在线观看舔阴道视频| 亚洲中文字幕日韩| 2021天堂中文幕一二区在线观| 久久久久久伊人网av| 国产黄a三级三级三级人| 免费搜索国产男女视频| 一级黄片播放器| 国产精品亚洲美女久久久| av在线观看视频网站免费| 九色成人免费人妻av| 国产欧美日韩一区二区精品| av专区在线播放| ponron亚洲| 亚洲成人精品中文字幕电影| 久久婷婷人人爽人人干人人爱| 少妇的逼好多水| 亚洲欧美清纯卡通| 日本一本二区三区精品| 少妇的逼水好多| 在线观看免费视频日本深夜| 深夜a级毛片| 午夜福利在线在线| 亚洲无线在线观看| 精品一区二区三区视频在线| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 在线观看美女被高潮喷水网站| 国产成人aa在线观看| 国产又黄又爽又无遮挡在线| 九九在线视频观看精品| 3wmmmm亚洲av在线观看| 日韩欧美免费精品| 亚洲四区av| 精品久久久久久成人av| 亚洲性久久影院| 深夜a级毛片| 亚洲内射少妇av| 久久6这里有精品| 精品欧美国产一区二区三| 婷婷丁香在线五月| 天堂av国产一区二区熟女人妻| 在线a可以看的网站| .国产精品久久| 久久精品国产自在天天线| 最近视频中文字幕2019在线8| 夜夜爽天天搞| 麻豆av噜噜一区二区三区| 一级av片app| 波多野结衣巨乳人妻| 成年版毛片免费区| 婷婷色综合大香蕉| 色播亚洲综合网| 久久久久久久久久久丰满 | 99riav亚洲国产免费| 一夜夜www| av女优亚洲男人天堂| 99热这里只有是精品在线观看| 亚洲av电影不卡..在线观看| 日日夜夜操网爽| av.在线天堂| 国产精品一及| 久久午夜福利片| 99久久成人亚洲精品观看| 天天一区二区日本电影三级| 一区二区三区高清视频在线| 3wmmmm亚洲av在线观看| 国产精品一区二区三区四区久久| 国产一区二区激情短视频| 嫩草影院入口| 美女cb高潮喷水在线观看| 国产精品久久电影中文字幕| 成人综合一区亚洲| 成人av一区二区三区在线看| 亚洲av免费在线观看| 国模一区二区三区四区视频| 欧美xxxx性猛交bbbb| 国内久久婷婷六月综合欲色啪| 欧美最黄视频在线播放免费| 亚洲av二区三区四区| 久久精品91蜜桃| 日韩欧美一区二区三区在线观看| 色精品久久人妻99蜜桃| 欧美另类亚洲清纯唯美| 天天一区二区日本电影三级| 亚洲真实伦在线观看| 国国产精品蜜臀av免费| x7x7x7水蜜桃| 国产精品人妻久久久久久| 精品人妻偷拍中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 日本-黄色视频高清免费观看| 国产精品av视频在线免费观看| av视频在线观看入口| 国产精品久久电影中文字幕| 国产高潮美女av| 国产蜜桃级精品一区二区三区| 国产亚洲欧美98| 国产成人影院久久av| 久久精品国产鲁丝片午夜精品 | 午夜福利在线在线| 久久人人爽人人爽人人片va| 男女视频在线观看网站免费| 亚洲国产精品久久男人天堂| 久久久久久久久久久丰满 | av在线老鸭窝| 日韩,欧美,国产一区二区三区 | 最后的刺客免费高清国语| 精品欧美国产一区二区三| 久久精品国产亚洲网站| 午夜久久久久精精品| 精品久久久久久久人妻蜜臀av| 成人三级黄色视频| 两个人视频免费观看高清| 精品欧美国产一区二区三| 蜜桃亚洲精品一区二区三区| 欧美激情国产日韩精品一区| 99国产极品粉嫩在线观看| 午夜爱爱视频在线播放| 国产伦在线观看视频一区| 97碰自拍视频| 99九九线精品视频在线观看视频| 最新在线观看一区二区三区| 国产精品电影一区二区三区| 国产不卡一卡二| 久久久久国内视频| 天堂影院成人在线观看| 99视频精品全部免费 在线| 久久精品国产自在天天线| 草草在线视频免费看| videossex国产| 黄色欧美视频在线观看| 1000部很黄的大片| 欧美一区二区国产精品久久精品| 国产大屁股一区二区在线视频| 一区二区三区高清视频在线| 免费不卡的大黄色大毛片视频在线观看 | 日本黄大片高清| 白带黄色成豆腐渣| 永久网站在线| 亚洲美女视频黄频| 长腿黑丝高跟| 久久久色成人| 国产亚洲精品综合一区在线观看| 18禁黄网站禁片免费观看直播| 男女之事视频高清在线观看| 久久久久性生活片| 在线播放无遮挡| 久久久久久久久久黄片| 俺也久久电影网| 色综合婷婷激情| 久久久久久九九精品二区国产| 91av网一区二区| 欧美zozozo另类| 精品人妻一区二区三区麻豆 | 亚洲七黄色美女视频| 校园春色视频在线观看| 看十八女毛片水多多多| 国产一区二区在线观看日韩| 欧美成人一区二区免费高清观看| 性欧美人与动物交配| 色综合色国产| 亚洲综合色惰| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 国产一区二区三区av在线 | 国产精品美女特级片免费视频播放器| 真人做人爱边吃奶动态| 深夜a级毛片| 毛片女人毛片| 欧美日韩瑟瑟在线播放| 日韩欧美一区二区三区在线观看| 国内精品宾馆在线| 成人美女网站在线观看视频| 99国产极品粉嫩在线观看| 亚洲欧美日韩卡通动漫| 日韩欧美在线二视频| 免费观看在线日韩| 舔av片在线| 内地一区二区视频在线| 久久精品人妻少妇| 亚洲七黄色美女视频| 久久草成人影院| 亚洲电影在线观看av| 欧美性猛交黑人性爽| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 色播亚洲综合网| 亚洲欧美日韩高清在线视频| 久久欧美精品欧美久久欧美| 国模一区二区三区四区视频| 精品99又大又爽又粗少妇毛片 | 国产真实乱freesex| 校园春色视频在线观看| 色综合色国产| 男女做爰动态图高潮gif福利片| 91午夜精品亚洲一区二区三区 | 久久热精品热| 色在线成人网| 69人妻影院| 国产精品久久电影中文字幕| 亚洲乱码一区二区免费版| 国产黄a三级三级三级人| 国产真实乱freesex| 观看免费一级毛片| 在线免费十八禁| 欧美一级a爱片免费观看看| 免费观看在线日韩| 深夜a级毛片| 亚洲av成人av| 婷婷六月久久综合丁香| 88av欧美| 国产麻豆成人av免费视频| 三级毛片av免费| 黄色欧美视频在线观看| 精品人妻1区二区| 午夜精品在线福利| 国产在线男女| 99热网站在线观看| 免费观看的影片在线观看| 成人综合一区亚洲| 亚洲 国产 在线| 亚洲av一区综合| 99精品久久久久人妻精品| 中文在线观看免费www的网站| 国内精品一区二区在线观看| 久久中文看片网| 日韩 亚洲 欧美在线| 啦啦啦韩国在线观看视频| 夜夜看夜夜爽夜夜摸| 18禁在线播放成人免费| 亚洲欧美激情综合另类| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久精品电影| 久久九九热精品免费| 亚洲无线观看免费| 亚洲七黄色美女视频| 波多野结衣巨乳人妻| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| 黄色欧美视频在线观看| 最新中文字幕久久久久| 精品一区二区三区视频在线| 国产精品一区二区三区四区免费观看 | 欧美性感艳星| 国产视频内射| .国产精品久久| 少妇被粗大猛烈的视频| 91在线精品国自产拍蜜月| 免费在线观看日本一区| 午夜福利在线在线| 中文字幕熟女人妻在线| 欧美xxxx性猛交bbbb| 免费看a级黄色片| 国产亚洲精品久久久com| 真实男女啪啪啪动态图| 国产高清视频在线观看网站| 女的被弄到高潮叫床怎么办 |