• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Double Biproduct Hom-Bialgebra and Related Quasitriangular Structures?

    2016-06-05 03:10:43TianshuiMAHaiyingLILinlinLIU

    Tianshui MA Haiying LI Linlin LIU

    1 Introduction

    Hom-structures(Lie algebras,algebras,coalgebras and Hopf algebras)have been intensively investigated in the literature recently(see[2,4,6,9,12–15,21–26]).Hom-algebras are generalizations of algebras obtained by a twisting map,which were introduced for the first time in[14]by Makhlouf and Silvestrov.The associativity is replaced by Hom-associativity,and Hom-coassociativity for a Hom-coalgebra can be considered in a similar way.

    In[21,25],Yau introduced and characterized the concept of module Hom-algebras as a twisted version of usual module algebras,and the dual version(i.e.,comodule Hom-coalgebras)was studied by Zhang in[27].Based on Yau’s definition of module Hom-algebras,the first two authors and Yang in[9]constructed the smash product Hom-Hopf algebra(A?H,α?β)generalizing the Molnar’s smash product(see[16]),gave the cobraided structure(in the sense of Yau’s definition in[24])on(A?H,α ? β),and also considered the case of twist tensor product Hom-Hopf algebra.Makhlouf and Panaite defined and studied a class of Yetter-Drinfeld modules over Hom-bialgebras in[12]and derived the constructions of twistors,pseudotwistors,twisted tensor product and smash product in the setting of Hom-case.Especially,in[6],we obtained the following result:Let(H,β)be a Hom-bialgebra such that β2=idH,and(A,α)be a left(H,β)-module Hom-algebra and a left(H,β)-comodule Hom-coalgebra.(,α?β)is a Radford’s biproduct Hom-bialgebra if and only if(A,α)is a Hom-bialgebra in the left-left Hom-Yetter-Drinfeld category.In[23],Yau introduced a twisted generalization of quantum groups,called quasitriangular Hom-bialgebras.They are non-associative and non-coassociative analogues of Drinfeld’s quasitriangular bialgebras.Each quasitriangular Hom-bialgebra comes with a solution of the quantum Hom-Yang-Baxter equation,which is a non-associative version of the quantum Yang-Baxter equation.Solutions of the Hom-Yang-Baxter equation can be obtained from modules of suitable quasitriangular Hom-bialgebras.

    As we all know,the Radford biproduct plays an important role in the lifting method for the classification of finite dimensional pointed Hopf algebras(see[1]).Some related results about Radford’s biproduct have recently been given in[3,7–8,10,18].Let H be a bialgebra.A is a bialgebra in the left-left Yetter-Drinfeld categoryand B is a bialgebra in the right-right Yetter-Drinfeld category.In[11],Majid gave a construction of bialgebraby combining the two-sided smash product algebra Awith the two-sided smash coproduct coalgebra A×H×B,which generalizes the Radford biproduct bialgebra.

    In this paper,we generalize the Majid’s double biproduct to the Hom-setting,and on the other hand,quasitriangular smash coproduct Hom-Hopf algebras are constructed.This is dual to the results in[9].

    This article is organized as follows.In Section 2,we recall some definitions and results which will be used later.In Section 3,we give the right version of Radford’s biproduct Hombialgebra(,αA?β)and Hom-Yetter-Drinfeld categoryin[6].We also introduce the notions of two-sided smash product Hom-algebra(,αA?β?αB)and two-sided smash coproduct Hom-coalgebra(,αA?β?αB).Then we derive the necessary and sufficient conditions for(,αA?β?αB)and,αA?β?αB)to be a Hom-bialgebra,which is called double biproduct Hom-bialgebra and denoted by(,αA?β?αB),generalizing the Majid’s double biproduct bialgebra.Note that the construction of(,αA? β ? αB)here is different from that defined by Makhlouf and Panaite in[13].Section 4 is devoted to deriving the necessary and sufficient conditions for the smash coproduct Hom-Hopf algebra(,αA?β)to be quasitriangular.A concrete example for quasitriangular smash coproduct Hom-Hopf algebra is given in Section 5.

    2 Preliminaries

    Throughout this paper,we follow the definitions and terminologies in[9,21,23,27],with all algebraic systems assumed to be over the field K.Given a K-space M,we write idMfor the identity map on M.

    We now recall some useful definitions.

    Hom-algebraA Hom-algebra is a quadruple(A,μ,1A,α)(abbr.(A,α)),where A is a K-linear space,μ:A?A ?→A is a K-linear map,1A∈A,and α is an automorphism of A,such that

    are satisfied for a,a?,a??∈ A.Here we use the notation μ(a ? a?)=aa?.

    Hom-coalgebraA Hom-coalgebra is a quadruple(C,Δ,εC,β)(abbr.(C,β)),where C is a K-linear space,Δ :C ?→ C ?C,εC:C ?→ K are K-linear maps,and β is an automorphism of C,such that

    are satisfied for c ∈ A.Here we use the notation Δ(c)=c1? c2(summation implicitly understood).

    Hom-bialgebraA Hom-bialgebra is a sextuple(H,μ,1H,Δ,ε,γ)(abbr.(H,γ)),where(H,μ,1H,γ)is a Hom-algebra and(H,Δ,ε,γ)is a Hom-coalgebra,such that Δ and ε are morphisms of Hom-algebras,i.e.,

    Furthermore,if there exists a linear map S:H ?→H such that

    then we call(H,μ,1H,Δ,ε,γ,S)(abbr.(H,γ,S))a Hom-Hopf algebra.

    Let(H,γ)and(H?,γ?)be two Hom-bialgebras.The linear map f:H ?→ H?is called a Hom-bialgebra map if f?γ=γ??f and at the same time f is a bialgebra map in the usual sense.

    Left Hom-module(see[21,25])Let(A,β)be a Hom-algebra.A left(A,β)-Hom-module is a triple(M,?,α),where M is a linear space,?:A?M ?→ M is a linear map,and α is an automorphism of M,such that

    are satisfied for a,a?∈A and m∈M.

    Remark 2.1(1)It is obvious that(A,μ,β)is a left(A,β)-Hom-module.

    (2)When β =idAand α =idM,a left(A,β)-Hom-module is the usual left A-module.

    Right Hom-module(see[13])Let(A,β)be a Hom-algebra.A right(A,β)-Hom-module is a triple(M,?,α),where M is a linear space,?:M ? A ?→ M is a linear map,and α is an automorphism of M,such that

    are satisfied for a,a?∈A and m∈M.

    Left module Hom-algebra(see[21,25])Let(H,β)be a Hom-bialgebra and(A,α)be a

    Hom-algebra.If(A,?,α)is a left(H,β)-Hom-module and for all h ∈ H and a,a?∈ A,

    then(A,?,α)is called a left(H,β)-module Hom-algebra.

    Remark 2.2(1)When α =idAand β =idH,a left(H,β)-module Hom-algebra is the usual left H-module algebra.

    (2)In a way similar to the case of Hopf algebras,in[21,25],Yau concluded that the equation(LMA1)is satisfied if and only if μAis a morphism of H-modules for suitable H-module structures on A?A and A,respectively.

    Right module Hom-algebra(see[13])Let(H,β)be a Hom-bialgebra and(A,α)be a Hom-algebra.If(A,?,α)is a right(H,β)-Hom-module and for all h ∈ H and a,a?∈ A,

    then(A,?,α)is called a right(H,β)-module Hom-algebra.

    Left Hom-comodule(see[27]) Let(C,β)be a Hom-coalgebra.A left(C,β)-Homcomodule is a triple(M,ρ,α),where M is a linear space,ρ :M ?→ C ? M(write ρ(m)=m(?1)?m(0), ?m ∈ M)is a linear map,and α is an automorphism of M,such that

    are satisfied for all m∈M.

    Remark 2.3(1)It is obvious that(C,ΔC,β)is a left(C,β)-Hom-comodule.

    (2)When β =idAand α =idM,a left(C,β)-Hom-comodule is the usual left C-comodule.

    Left comodule Hom-coalgebra(see[27])Let(H,β)be a Hom-bialgebra and(C,α)be a Hom-coalgebra.If(C,ρ,α)is a left(H,β)-Hom-comodule and for all c ∈ C,

    then(C,ρ,α)is called a left(H,β)-comodule Hom-coalgebra.

    Remark 2.4(1)It is obvious that(H,ΔH,β)is a left(H,β)-comodule Hom-coalgebra.

    (2)When α =idAand β =idH,a left(H,β)-comodule Hom-coalgebra is the usual left H-comodule coalgebra.

    (3)In a way similar to the case of Hopf algebras,in[27],Zhang and Li concluded that the equation(LCMC1)is satisfied if and only if ΔCis a morphism of H-comodules for suitable H-comodule structures on C?C and C,respectively.

    Left module Hom-coalgebra(see[9])Let(H,β)be a Hom-bialgebra and(C,α)be a Hom-coalgebra.If(C,,α)is a left(H,β)-Hom-module and for all h ∈ H and c∈ A,

    then(C,,α)is called a left(H,β)-module Hom-coalgebra.

    Remark 2.5When α =idCand β =idH,a left(H,β)-module Hom-coalgebra is the usual left H-module coalgebra.

    Left comodule Hom-algebra(see[22])Let(H,β)be a Hom-bialgebra and(A,α)be a Hom-algebra.If(A,ρ,α)is a left(H,β)-Hom-comodule and for all a,a?∈ A,

    then(A,ρ,α)is called a left(H,β)-comodule Hom-algebra.

    Remark 2.6When α =idAand β =idH,a left(H,β)-comodule Hom-algebra is the usual left H-comodule algebra.

    Left smash product Hom-algebra(see[6,9])Let(H,β)be a Hom-bialgebra and(A,,α)be a left(H,β)-module Hom-algebra.Then(,α ? β)(=A ? H as a linear space)and unit 1A?1His a Hom-algebra with the multiplication

    where a,a?∈A,h,h?∈H,and we call it a left smash product Hom-algebra denoted by(,α?β).

    Remark 2.7(1)Here the multiplication of smash product Hom-algebra is different from that defined by Makhlouf and Panaite in[13,Theorem 3.1].

    (2)When α =idAand β =idH,we can get the usual smash product algebra A#H(see[16–17]).

    Left smash coproduct Hom-coalgebra(see[6])Let(H,β)be a Hom-bialgebra and(C,ρ,α)be a left(H,β)-comodule Hom-coalgebra.Then(C?H,α ? β)(C?H=C ? H as a linear space)and counit εC? εHis a Hom-coalgebra with the comultiplication

    where c∈C,h∈H,and we call it a left smash coproduct Hom-coalgebra denoted by(C?H,α?β).

    Left Radford biproduct(see[6])Let(H,β)be a Hom-bialgebra,and(A,α)be a left(H,β)-module Hom-algebra with module structure?:H?A ?→ A and a left(H,β)-comodule Hom-coalgebra with comodule structure ρ:A?→H ?A.Then the following are equivalent:

    (i)(,,1A? 1H,ΔA?H,εA? εH,α ? β)is a Hom-bialgebra,where A?H is a left smash product Hom-algebra and A?H is a left smash coproduct Hom-coalgebra.

    (ii)The following conditions hold(?a,b∈ A and h ∈ H):

    (LR1)(A,ρ,α)is a left(H,β)-comodule Hom-algebra,

    (LR2)(A,,α)is a left(H,β)-module Hom-coalgebra,

    (LR3)εAis a Hom-algebra map and ΔA(1A)=1A?1A,

    (LR4)and

    (LR5)

    Left-left Hom-Yetter-Drinfeld module(see[6])Let(H,β)be a Hom-bialgebra,(M,?M,αM)be a left(H,β)-module with action?M:H ? M ?→ M,h ? m?→ h?Mm,and(M,ρM,αM)be a left(H,β)-comodule with coaction ρM:M ?→ H ? M,m?→ m(?1)?m(0).Then we call(M,?M,ρM,αM)a left-left Hom-Yetter-Drinfeld module over(H,β)if the following condition holds:

    where h∈H and m∈M.

    Left-left Hom-Yetter-Drinfeld category(see[6])Let(H,β)be a Hom-bialgebra.Then the left-left Hom-Yetter-Drinfeld categoryis a braided tensor category(see[5]),with tensor product(M ?N,αM? αN)and associativity constraints,and the braiding is defined by

    and

    where h∈H,m∈M and n∈N,

    and

    respectively,as well as unit(K,idK).

    Left Radford biproduct and left-left Yetter-Drinfeld category(see[6])Let(H,β)be a Hom-bialgebra such that β2=idH,and(A,α)be a left(H,β)-module Hom-algebra and a left(H,β)-comodule Hom-coalgebra.Then,,1A? 1H,,εA? εH,α ? β)is a left Radford biproduct Hom-bialgebra if and only if(A,α)is a Hom-bialgebra in the left-left Hom-Yetter-Drinfeld category

    Quasitriangular Hom-Hopf algebra(see[23])A quasitriangular Hom-Hopf algebra is a octuple(H,μ,1H,Δ,ε,S,β,R)(abbr.(H,β,R))in which(H,μ,1H,Δ,ε,S,β)is a Hom-Hopf algebra and R=R1?R2∈H?H,satisfying the following axioms(for all h∈H and R=r):

    Remark 2.8(1)When α=idH,a quasitriangular Hom-Hopf algebra is exactly the usual quasitriangular Hopf algebra.

    (2)It is slightly different from the definition in[23].Here we replace the Hom-bialgebra with the Hom-Hopf algebra and also add another two conditions(QT1)and(QT5).Similar to the Hopf algebra setting,the quasitriangular structure R is invertible.

    (3)Based on Yau’s results in[23],each quasitriangular Hom-Hopf algebra comes with solutions of the quantum Hom-Yang-Baxter equations.

    3 Double Biproduct Hom-Bialgebra

    In this section,we mainly generalize the double biproduct bialgebra to the Hom-setting.In order to define double biproduct Hom-bialgebra,we need first the right-handed versions of some concepts and results.The proofs are similar to the left-handed versions,so we omit them.

    definition 3.1Let(C,β)be a Hom-coalgebra.A right(C,β)-Hom-comodule is a triple(M,δ,α),where M is a linear space,δ:M ?→ M ?C(write δ(m)=m[0]?m[1], ?m ∈ M)is a linear map,and α is an automorphism of M,such that

    are satisfied for all m∈M.

    definition 3.2Let(H,β)be a Hom-bialgebra and(C,α)be a Hom-coalgebra.If(C,δ,α)is a right(H,β)-Hom-comodule and for all c∈ C,

    then(C,δ,α)is called a right(H,β)-comodule Hom-coalgebra.

    definition 3.3Let(H,β)be a Hom-bialgebra and(C,α)be a Hom-coalgebra.If(C,?,α)is a right(H,β)-Hom-module and for all h ∈ H and c∈ A,

    then(C,?,α)is called a right(H,β)-module Hom-coalgebra.

    definition 3.4Let(H,β)be a Hom-bialgebra and(A,α)be a Hom-algebra.If(A,δ,α)is a right(H,β)-Hom-comodule and for all a,a?∈ A,

    then(A,δ,α)is called a right(H,β)-comodule Hom-algebra.

    definition 3.5Let(H,β)be a Hom-bialgebra and(A,,α)be a right(H,β)-module Homalgebra.Then(,β?α)(=H?A as a linear space)and unit 1H?1Ais a Hom-algebra with the multiplication

    where a,a?∈A,h,h?∈H,and we call it a right smash product Hom-algebra denoted by(,β?α).

    Proposition 3.1Let(H,β)be a Hom-bialgebra and(C,δ,α)be a right(H,β)-comodule Hom-coalgebra.Then(H?C,β ? α)(H?C=H ? C as a linear space)and counit εH? εCis a Hom-coalgebra with the comultiplication

    where c∈C,h∈H,and we call it a right smash coproduct Hom-coalgebra denoted by(H?C,β ? α).

    Theorem 3.1Let(H,β)be a Hom-bialgebra,and(A,α)be a right(H,β)-module Homalgebra with module structure?:A?H ?→ A and a right(H,β)-comodule Hom-coalgebra with comodule structure δ:A ?→ A?H.Then the following are equivalent:

    (i)(,μH?A,1H? 1A,ΔH?A,εH? εA,β ? α)is a Hom-bialgebra,where H?A is a right smash product Hom-algebra and H?A is a right smash coproduct Hom-coalgebra.

    (ii)The following conditions hold(?a,b∈ A and h ∈ H):

    (RR1)(A,δ,α)is a right(H,β)-comodule Hom-algebra,

    (RR2)(A,?,α)is a right(H,β)-module Hom-coalgebra,

    (RR3) εAis a Hom-algebra map and ΔA(1A)=1A? 1A,

    (RR4)and

    (RR5)

    definition 3.6Let(H,β)be a Hom-bialgebra,(M,?M,αM)be a right(H,β)-module with action?M:M?H ?→ M,m?h?→ m?Mh and(M,δM,αM)be a right(H,β)-comodule with coaction δM:M ?→ M ? H,m?→ m[0]? m[1].Then we call(M,?M,δM,αM)a right-right Hom-Yetter-Drinfeld module over(H,β)if the following condition holds:

    where h∈H and m∈M.

    definition 3.7Let(H,β)be a Hom-bialgebra.Then the right-right Hom-Yetter-Drinfeld categoryis a braided tensor category,with tensor product(M ?N,αM? αN)and associativity constraints,and the braiding is defined by

    and

    respectively,as well as unit(K,idK).

    Theorem 3.2Let(H,β)be a Hom-bialgebra such that β2=idH,and(A,α)be a right(H,β)-module Hom-algebra and a right(H,β)-comodule Hom-coalgebra.Then(,μH?A,1H?1A,ΔH?A,εH? εA,β ? α)is a right Radford biproduct Hom-bialgebra if and only if(A,α)is a Hom-bialgebra in the right-right Hom-Yetter-Drinfeld category

    Next we introduce the two-sided smash product Hom-algebra,the two-sided smash coproduct Hom-coalgebra and the double biproduct Hom-bialgebra.

    Proposition 3.2Let(H,β)be a Hom-bialgebra,(A,?,αA)be a left(H,β)-module Homalgebra and(B,?,αB)be a right(H,β)-module Hom-algebra.Then(,αA? β ? αB)(=A?H?B as a linear space)and unit 1A?1H?1Bis a Hom-algebra with the multiplication

    where a,a?∈A,h,h?∈H,b,b?∈B,and we call it a two-sided smash product Hom-algebra denoted by(,αA?β?αB).

    ProofIt is direct to prove that

    On the other hand,for all a,a?,a??∈A,h,h?,h??∈H and b,b?,b??∈B,we have

    which finishes the proof.

    Dually,we have the following proposition.

    Proposition 3.3Let(H,β)be a Hom-bialgebra,(A,ρ,αA)be a left(H,β)-comodule Homcoalgebra and(B,δ,αB)be a right(H,β)-comodule Hom-coalgebra.Then(A?H?B,αA?β ?αB)(A?H?B=A ? H ? B as a linear space)and counit εA? εH? εBis a Hom-coalgebra with comultiplication

    where a∈A,h∈H,b∈B,and we call it a two-sided smash coproduct Hom-coalgebra denoted by(A?H?B,αA?β?αB).

    Theorem 3.3Let(H,β)be a Hom-bialgebra such that β2=idH,(A,αA)be a Hombialgebra in the left-left Hom-Yetter-Drinfeld categoryand(B,αB)be a Hom-bialgebra in the right-right Hom-Yetter-Drinfeld category.Then the two-sided smash product Homalgebra(,αA? β ? αB)equipped with the two-sided smash coproduct Hom-coalgebra(A?H?B,αA?β?αB)becomes a Hom-bialgebra if and only if

    where a∈A and b∈B.

    In this case,we call this Hom-bialgebra a double biproduct Hom-bialgebra and denote it by(,αA?β?αB).

    Proof(?)We only need to check that ΔA?H?Bis a Hom-algebra map.For all a,a?∈A,h,h?∈H and b,b?∈B,we have

    and Δ(1A?1H?1B)=1A?1H?1B?1A?1H?1Bis easy.

    and we have

    Then,applying εA?idH?idB?idA?idH?εBto the above equation,by(C1),we obtain the condition(DB).

    Remark 3.1(1)When αA=idA, β =idH,and αB=idB,we get Majid’s double biproduct bialgebra in[11].

    (2)Let B=K,and we obtain the left Radford’s biproduct Hom-bialgebra.Let A=K,and we obtain the following right Radford’s biproduct Hom-bialgebra

    Corollary 3.1Let(H,β)be a Hom-bialgebra,and(A,α)be a right(H,β)-module Homalgebra with module structure?:A?H ?→ A and a right(H,β)-comodule Hom-coalgebra with comodule structure δ:A ?→ A?H.Then the following are equivalent:

    (i)is a Hom-bialgebra,where H?A is a right smash product Hom-algebra and H?A is a right smash coproduct Hom-coalgebra.

    (ii)The following conditions hold(?a,b∈ A and h ∈ H):

    (RR1)(A,δ,α)is a right(H,β)-comodule Hom-algebra,

    (RR2)(A,?,α)is a right(H,β)-module Hom-coalgebra,

    (RR3) εAis a Hom-algebra map and ΔA(1A)=1A? 1A,

    (RR4)and

    (RR5)

    Also,we have the following corollary.

    Corollary 3.2Let(H,β)be a Hom-bialgebra such that β2=idH,and(A,α)be a right(H,β)-module Hom-algebra and a right(H,β)-comodule Hom-coalgebra.Then1A,ΔH?A,εH? εA,β ? α)is a right Radford biproduct Hom-bialgebra if and only if(A,α)is a Hom-bialgebra in the right-right Hom-Yetter-Drinfeld category

    4 Quasitriangular Smash Coproduct Hom-Hopf Algebras

    In this section,we introduce a class of new Hom-Hopf algebras:The T-smash coproduct C?TH,generalizing the T-smash coproduct studied in[3,14].The Hom-smash coproduct Hom-Hopf algebra is a special case.Necessary and sufficient conditions for the smash coproduct Hom-Hopf algebra to be quasitriangular are given.

    In a way dual to[9,Theorem 3.1],we have the following proposition.

    Proposition 4.1Let(C,ΔC,εC,α)and(H,ΔH,εH,β)be two Hom-coalgebras,and T:C?H ?→H?C(write T(c?h)=hT?cT,?c∈C,h∈H)be a linear map such that for all c∈C and h∈H,

    Then(C?TH,α ? β)(C?TH=C ? H as a linear space)and counit εC? εHwith the comultiplication

    becomes a Hom-coalgebra if and only if the following conditions hold:

    where c∈C,h∈H and t is a copy of T.

    We call this a Hom-coalgebra T-smash coproduct Hom-coalgebra and denote it by(C?TH,α?β).

    Remark 4.1(1)Let T(c?h)=c?1h?c0in C?TH,and we can get the smash coproduct Hom-coalgebra C?H.

    (2)When α =idCand β =idH,we can get the usual T-smash coproduct coalgebra(see[3,10]).

    Theorem 4.1Let(C,α,SC)and(H,β,SH)be two Hom-Hopf algebras,and T:C?H ?→H?C be a linear map.Then the T-smash coproduct Hom-coalgebra(C?TH,α?β)equipped with the tensor product Hom-algebra structure becomes a Hom-bialgebra if and only if T is a Hom-algebra map.Furthermore,the T-smash coproduct Hom-bialgebra(C?TH,α ? β)is a Ho

    m-Hopf algebra with antipodedefined by

    ProofWe only prove thatis an antipode of(C?TH,α?β).The rest is straightforward by direct computation.For all c∈C and h∈H,

    and

    while

    which finishes the proof.

    Theorem 4.2Let(C,α,SC)and(H,β,SH)be two Hom-Hopf algebras,and(C,ρ,α)be a left(H,β)-comodule Hom-coalgebra.Then the smash coproduct Hom-coalgebra(C?H,α ? β)endowed with the tensor product Hom-algebra structure becomes a Hom-bialgebra if and only if(C,ρ,α)is a left(H,β)-comodule Hom-algebra and the following condition holds:

    Moreover,the smash coproduct Hom-bialgebra(C?H,α ? β)is a Hom-Hopf algebra with the antipode

    ProofLet T(c?h)=c(?1)h?c(0),?c∈ C,h∈ H in Theorem 4.1.

    Next,we generalize the concept of compatibility Hopf algebra pairs(see[10])to the Homsetting.

    definition 4.1Let(C,α,SC)and(H,β,SH)be two Hom-Hopf algebras,and ? = ?1??2∈C ?H.A Hom-compatibility Hopf algebra triple is a triple(C,H,?)such that(? = ?)

    Remark 4.2(1)When α =idCand β =idH,we can get the compatibility Hopf algebra pairs.

    (2)If(H,β,R)is a quasitriangularHom-Hopf algebra,then(H,H,R)is a Hom-compatibility Hopf algebra triple.

    (3) ? is(convolution)invertible with ??1=SC(?1)? ?2.

    Proposition 4.2Let(C?TH,α?β)be a T-smash coproduct Hom-Hopf algebra.define

    for all c ∈ C and h ∈ H.Then ψ and ? are both Hom-bialgebra maps.

    ProofStraightforward.

    Let(C?TH,α?β)be a T-smash coproduct Hom-Hopf algebra,and R∈C?TH?C?TH.define

    The following two lemmas are obvious.

    Lemma 4.1Let(C?TH,α?β)be a T-smash coproduct Hom-Hopf algebra.If R satisfies(QT1),then

    Lemma 4.2Let(C?TH,α?β)be a T-smash coproduct Hom-Hopf algebra.If R satisfies(QT5)for α ? β,then

    Lemma 4.3Let(C?TH,α ? β,R)be a quasitriangular T-smash coproduct Hom-Hopf algebra.Then,we have

    ProofBy(QT2)and(QT3),we have

    Applying ψ???ψ?? to the above equation,we can get(QS).

    Lemma 4.4Let(C?TH,α ? β,R)be a quasitriangular T-smash coproduct Hom-Hopf algebra.Then,for all c∈C,and h∈H,we have

    ProofBy(QT2),we can obtain

    Applying ??ψ?ψ to(4.1),we have that(D1)holds by(QS)and(T).Similarly,applying ??ψ?? to(4.1),we can get(D2)by(QS)and(T).

    By(QT3),we have

    (D3)can be obtained by applying ????ψ to(4.2)and by(QS)and(T).Likewise,one gets(D4)by using ψ???ψ to(4.2)and by(QS)and(T).

    By(QT4),for all c∈C and h∈H,we have

    Apply ? ? ψ to(4.3),we get(D5).(D6)is derived by applying ψ ? ? to(4.3).

    Lemma 4.5Given a quasitriangular structure R on a T-smash coproduct Hom-Hopf algebra(C?TH,α?β),consider the induced elements P,Q,U and V.Then

    (1)(C,α,P)and(H,β,Q)are quasitriangular Hom-Hopf algebras,and

    (2)(C,H,U)and(H,C,V)are Hom-compatibility Hopf algebra triples.

    Proof(1)Applying ????? to(4.1)and(4.2),we can get(QT2)and(QT3)for P,respectively.(QT4)can be derived by applying ? ? ? to(4.3).Then by Lemmas 4.1–4.2,(C,α,P)is a quasitriangular Hom-Hopf algebra.Similarly,we can prove that(H,β,Q)is a quasitriangular Hom-Hopf algebra.

    (2)Apply ψ?ψ?? to(4.1),and ψ???? to(4.2).(CT2)and(CT3)can be obtained for U,respectively.Then(C,H,U)is a Hom-compatibility Hopf algebra triple by Lemmas 4.1–4.2.The rest of(4.2)can be similarly demonstrated.

    Lemma 4.6Let(C?TH,α?β)be a T-smash coproduct Hom-Hopf algebra.If there exist elements P∈C?C,Q∈H?H,U∈C?H and V∈H?C such that

    (1)(C,α,P)and(H,β,Q)are quasitriangular Hom-Hopf algebras,

    (2)(C,H,U)and(H,C,V)are Hom-compatibility Hopf algebra triples,and

    (3)the conditions(D1)–(D6)in Lemma 4.4 hold,

    then(C?TH,α?β,R)is a quasitriangular Hom-Hopf algebra with the quasitriangular structure given by

    ProofIt is obvious that R satisfies(QT1)and(QT5).

    Next,we show that(QT3)holds for R:

    (QT2)for R can be proved by the similar method.And we check(QT4)as follows:

    Therefore,(C?TH,α?β,R)is a quasitriangular Hom-Hopf algebra.

    Thus it follows from Lemmas 4.1–4.6 that we have the following theorems.

    Theorem 4.3The T-smash coproduct Hom-Hopf algebra(C?TH,α?β)is quasitriangular if and only if there exist elements P∈C?C,Q∈H?H,U∈C?H and V∈H?C such that(C,α,P)and(H,β,Q)are quasitriangular Hom-Hopf algebras,(C,H,U)and(H,C,V)are Hom-compatibility Hopf algebra triples,and the conditions(D1)–(D6)in Lemma 4.4 hold.Moreover,the quasitriangular structure R on(CTH,α?β)has a decomposition

    Theorem 4.4The smash coproduct Hom-Hopf algebra(C?H,α ? β)is quasitriangular if and only if there exist elements P∈C?C,Q∈H?H,U∈C?H and V∈H?C such that(C,α,P)and(H,β,Q)are quasitriangular Hom-Hopf algebras,(C,H,U)and(H,C,V)are Hom-compatibility Hopf algebra triples,and the conditions(E1)–(E6)below hold:

    Moreover,the quasitriangular structure R on(CH,α?β)has a decomposition

    ProofLet T(c?h)=c(?1)h?c(0),?a∈A,h∈H in Theorem 4.3.

    5 Applications

    In this section,we extend the applications of the main results in Section 4 to a concrete example.

    The following result is clear.

    Lemma 5.1Let KZ2=K{1,a}be a Hopf group algebra(see[19]).Then(KZ2,idKZ2,Q)is a quasitriangular Hom-Hopf algebra,where Q=(1?1+a?1+1?a?a?a).

    Let T2,?1=K{1,g,x,gx|g2=1,x2=0,xg= ?gx}be Taft’s Hopf algebra(see[20]),and its coalgebra structure and antipode are given by

    and

    define a linear map α:T2,?1?→ T2,?1by

    where 0k ∈ K.Then α is an automorphism of Hopf algebras.

    So we can get a Hom-Hopf algebra(see[15]).

    Lemma 5.2Let Hαbe the Hom-Hopf algebra defined as above.Then(Hα,α,P)is a quasitriangular Hom-Hopf algebra,where P=1?1+g?1+1?g?g?g).

    ProofIt is straightforward by a tedious computation.

    Theorem 5.1Let KZ2be the Hopf group algebra and Hαbe the Hom-Hopf algebra defined as above.define the comodule action ρ:Hα?→ KZ2?Hαby

    Then by a routine computation we can get that(Hα,ρ,α)is a left KZ2-comodule Hom-coalgebra.Therefore,(,α?idKZ2)is a smash coproduct Hom-coalgebra.

    Furthermore,(,α ?idKZ2)with the tensor product Hom-algebra becomes a Hom-Hopf algebra,where the antipodeis given by

    Lemma 5.3Let KZ2be the Hopf group algebra and Hαbe the Hom-Hopf algebra defined as above.define

    Then(Hα,KZ2,U)and(KZ2,Hα,V)are two Hom-compatibility Hopf algebra triples.

    ProofStraightforward.

    Theorem 5.2With the notations as above,the smash coproduct Hom-Hopf algebra

    is a quasitriangular Hom-Hopf algebra,where

    ProofIt is easy to prove that the conditions(E1)–(E6)hold.And by Lemmas 5.1–5.3 and Theorem 4.4,we can finish the proof.

    AcknowledgementThe authors are deeply indebted to the reviewers for their very useful suggestions and some improvements on the original manuscript.

    [1]Andruskiewitsch,N.and Schneider,H.-J.,On the classification of finite-dimensional pointed Hopf algebras,Ann.Math.,171(1),2010,375-417.

    [2]Caenepeel,S.and Goyvaerts,I.,Monoidal Hom-Hopf algebras,Comm.Algebra,39(6),2011,2216–2240.

    [3]Caenepeel,S.,Ion,B.,Militaru,G.and Zhu,S.L.,The factorization problem and the smash biproduct of algebras and coalgebras,Algebra Represent.Theory,3,2000,19–42.

    [4]Hu,N.,q-Witt algebras,q-Lie algebras,q-holomorph structure and representations,Algebra Colloq.,6(1),1999,51–70.

    [5]Kassel,C.,Quantum Groups,Graduate Texts in Mathematics,155,Springer-Verlag,Berlin,1995.

    [6]Li,H.Y.and Ma,T.S.,A construction of Hom-Yetter-Drinfeld category,Colloq.Math.,137(1),2014,43–65.

    [7]Ma,T.S.,Jiao,Z.M.and Song,Y.N.,On crossed double biproduct,J.Algebra Appl.,12(5),2013,1250211,17 pages.

    [8]Ma,T.S.and Li,H.Y.,On Radford biproduct,Comm.Algebra,43(9),2015,3946–3966.

    [9]Ma,T.S.,Li,H.Y.and Yang,T.,Cobraided smash product Hom-Hopf algebras,Colloq.Math.,134(1),2014,75–92.

    [10]Ma,T.S.and Wang,S.H.,Bitwistor and quasitriangular structures of bialgebras,Comm.Algebra,38(9),2010,3206–3242.

    [11]Majid,S.,Double-bosonization of braided groups and the construction of Uq(g),Math.Proc.Cambridge Philos.Soc.,125(1),1999,151–192.

    [12]Makhlouf,A.and Panaite,F.,Yetter-Drinfeld modules for Hom-bialgebras,J.Math.Phys.,55,2014,013501.

    [13]Makhlouf,A.and Panaite,F.,Twisting operators,twisted tensor products and smash products for Homassociative algebras,Glasgow Math.J.,58,2016,513–538.

    [14]Makhlouf,A.and Silvestrov,S.D.,Hom-algebra stuctures,J.Gen.Lie Theory Appl.,2,2008,51–64.

    [15]Makhlouf,A.and Silvestrov,S.D.,Hom-algebras and hom-coalgebras,J.Algebra Appl.,9,2010,553–589.

    [16]Molnar,R.K.,Semi-direct products of Hopf algebras,J.Algebra,47,1977,29–51.

    [17]Radford,D.E.,The structure of Hopf algebra with a projection,J.Algebra,92,1985,322–347.

    [18]Radford,D.E.,Biproducts and Kashina’s examples,Comm.Algebra,44(1),2014,174–204.

    [19]Sweedler,M.E.,Hopf Algebras,Benjamin,New York,1969.

    [20]Taft,E.J.,The order of the antipode of finite dimensional Hopf algebra,Proc.Nat.Acad.Sci.USA,68,1971,2631–2633.

    [21]Yau,D.,Module Hom-algebras.arXiv:0812.4695v1

    [22]Yau,D.,Hom-bialgebras and comodule Hom-algebras,Int.Electron.J.Algebra,8,2010,45–64.

    [23]Yau,D.,Hom-quantum groups I,quasitriangular Hom-bialgebras,J.Phys.A,45(6),2012,065203,23 pages.

    [24]Yau,D.,Hom-quantum groups II,cobraided Hom-bialgebras and Hom-quantum geometry.arXiv:0907.1880

    [25]Yau,D.,Hom-quantum groups III,representations and module Hom-algebras.arXiv:0911.5402

    [26]Yau,D.,The Hom-Yang-Baxter equation and Hom-Lie algebras,J.Math.Phys.,52,2011,053502.

    [27]Zhang,T.and Li,J.,Comodule Hom-coalgebras,Int.J.Algebra and Statistics,2(1),2013,57–63.

    黄色毛片三级朝国网站| 99热网站在线观看| 午夜日本视频在线| 亚洲欧美精品自产自拍| 久久国产精品大桥未久av| 精品国产一区二区三区久久久樱花| videosex国产| 免费高清在线观看日韩| 成人亚洲精品一区在线观看| 精品国产乱码久久久久久男人| av福利片在线| 在线观看美女被高潮喷水网站| 国产精品久久久久久精品电影小说| 精品亚洲成a人片在线观看| 岛国毛片在线播放| 日本wwww免费看| 观看美女的网站| 三级国产精品片| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 97在线视频观看| 男人爽女人下面视频在线观看| 久久久a久久爽久久v久久| 国产男女超爽视频在线观看| 精品一区二区三区四区五区乱码 | 久久久国产精品麻豆| 制服诱惑二区| 精品第一国产精品| 国产精品久久久久久久久免| 日韩,欧美,国产一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产精品欧美亚洲77777| 久久久久网色| 亚洲人成网站在线观看播放| 美女大奶头黄色视频| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 男女无遮挡免费网站观看| 亚洲第一区二区三区不卡| 亚洲伊人久久精品综合| 国产在视频线精品| 美女午夜性视频免费| 制服丝袜香蕉在线| 国产精品三级大全| 青春草国产在线视频| 国产成人午夜福利电影在线观看| 日本色播在线视频| 看免费av毛片| 久久精品国产亚洲av天美| 亚洲人成网站在线观看播放| 人妻一区二区av| 国产av国产精品国产| 亚洲av电影在线观看一区二区三区| 中文字幕色久视频| 丝袜美足系列| 亚洲av免费高清在线观看| 麻豆精品久久久久久蜜桃| 亚洲欧美色中文字幕在线| 国产午夜精品一二区理论片| 99re6热这里在线精品视频| 国产在线免费精品| 亚洲av日韩在线播放| 只有这里有精品99| 精品国产一区二区久久| av天堂久久9| 午夜老司机福利剧场| 亚洲精品成人av观看孕妇| 十八禁高潮呻吟视频| 亚洲,欧美精品.| 美女脱内裤让男人舔精品视频| 亚洲av电影在线进入| av.在线天堂| 亚洲av中文av极速乱| 国产精品偷伦视频观看了| 亚洲美女搞黄在线观看| 在线亚洲精品国产二区图片欧美| 国产不卡av网站在线观看| 精品国产露脸久久av麻豆| 边亲边吃奶的免费视频| 在线观看www视频免费| 丝瓜视频免费看黄片| 成人午夜精彩视频在线观看| 国产在线免费精品| 黄频高清免费视频| 成人手机av| 国产精品人妻久久久影院| 久久青草综合色| 亚洲av免费高清在线观看| 啦啦啦啦在线视频资源| 在线观看一区二区三区激情| 高清黄色对白视频在线免费看| 熟女少妇亚洲综合色aaa.| 亚洲四区av| 成年女人在线观看亚洲视频| 欧美精品一区二区免费开放| av在线播放精品| 国产亚洲一区二区精品| 国产乱人偷精品视频| 777米奇影视久久| 国产av国产精品国产| 亚洲国产精品成人久久小说| 亚洲美女搞黄在线观看| 午夜影院在线不卡| 国产精品99久久99久久久不卡 | 在线观看免费高清a一片| 26uuu在线亚洲综合色| 男女边摸边吃奶| 免费高清在线观看视频在线观看| 欧美精品一区二区大全| 国产成人精品久久二区二区91 | 亚洲,欧美,日韩| 久久精品人人爽人人爽视色| 欧美激情高清一区二区三区 | 日韩人妻精品一区2区三区| 国产极品天堂在线| 国产 一区精品| 亚洲国产av新网站| 日韩中文字幕视频在线看片| 亚洲欧洲精品一区二区精品久久久 | av在线app专区| 亚洲第一av免费看| 久久亚洲国产成人精品v| 91精品三级在线观看| 欧美黄色片欧美黄色片| 久久久久久久久久久免费av| 大陆偷拍与自拍| 亚洲欧美一区二区三区黑人 | 下体分泌物呈黄色| 亚洲精品第二区| 久久久久久久国产电影| 久久久久久久亚洲中文字幕| 18+在线观看网站| 欧美激情极品国产一区二区三区| 一级毛片黄色毛片免费观看视频| av网站免费在线观看视频| av免费观看日本| 中文字幕色久视频| 国产亚洲最大av| xxx大片免费视频| 国产精品女同一区二区软件| 精品少妇内射三级| 久久国内精品自在自线图片| 在线 av 中文字幕| 亚洲精品中文字幕在线视频| 精品亚洲乱码少妇综合久久| 久久狼人影院| 日本黄色日本黄色录像| 中文字幕另类日韩欧美亚洲嫩草| 久久99一区二区三区| 哪个播放器可以免费观看大片| 亚洲国产av影院在线观看| 国产精品欧美亚洲77777| 在线观看美女被高潮喷水网站| 免费在线观看视频国产中文字幕亚洲 | 99久国产av精品国产电影| 999精品在线视频| 久久久久久久亚洲中文字幕| 国产一区二区激情短视频 | 久久精品久久久久久噜噜老黄| 午夜久久久在线观看| 一区二区三区四区激情视频| 不卡av一区二区三区| 国产精品久久久久久精品古装| 涩涩av久久男人的天堂| 国产成人一区二区在线| 日本免费在线观看一区| av免费观看日本| 欧美中文综合在线视频| 午夜福利视频精品| 免费黄色在线免费观看| 十八禁高潮呻吟视频| 久久久欧美国产精品| 看十八女毛片水多多多| 亚洲精品视频女| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲最大av| 在现免费观看毛片| 在线亚洲精品国产二区图片欧美| av视频免费观看在线观看| 90打野战视频偷拍视频| 久久精品亚洲av国产电影网| 日本vs欧美在线观看视频| 国产亚洲午夜精品一区二区久久| 亚洲国产欧美网| 麻豆精品久久久久久蜜桃| 波多野结衣av一区二区av| 免费在线观看完整版高清| 男的添女的下面高潮视频| 免费在线观看黄色视频的| √禁漫天堂资源中文www| 亚洲综合精品二区| 久久久久久久国产电影| 赤兔流量卡办理| 国产成人精品久久久久久| 欧美bdsm另类| 国产精品一区二区在线不卡| 老司机亚洲免费影院| 九九爱精品视频在线观看| 久久毛片免费看一区二区三区| 在线看a的网站| 日日撸夜夜添| 日日爽夜夜爽网站| 日韩中文字幕欧美一区二区 | 久久 成人 亚洲| 韩国av在线不卡| 日韩视频在线欧美| 亚洲人成77777在线视频| 日本色播在线视频| 国产视频首页在线观看| www日本在线高清视频| 亚洲美女搞黄在线观看| 亚洲久久久国产精品| 男女边摸边吃奶| 高清av免费在线| 亚洲国产欧美网| 久久久久久久国产电影| 亚洲久久久国产精品| 这个男人来自地球电影免费观看 | 日韩成人av中文字幕在线观看| 午夜激情av网站| 日本欧美视频一区| 丝袜美腿诱惑在线| 人人妻人人澡人人看| 午夜免费鲁丝| 日韩一区二区三区影片| 久久精品熟女亚洲av麻豆精品| 国产免费福利视频在线观看| 日本vs欧美在线观看视频| 国产1区2区3区精品| 亚洲精品在线美女| 亚洲欧美成人精品一区二区| 美女大奶头黄色视频| 桃花免费在线播放| 亚洲国产欧美网| av线在线观看网站| 国产成人精品福利久久| 亚洲av欧美aⅴ国产| 1024视频免费在线观看| 最新的欧美精品一区二区| 久久99蜜桃精品久久| 欧美日韩精品成人综合77777| 少妇被粗大猛烈的视频| 搡女人真爽免费视频火全软件| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久伊人网av| 中文字幕色久视频| 亚洲精品国产一区二区精华液| 国产激情久久老熟女| 精品久久蜜臀av无| 精品久久蜜臀av无| 亚洲av福利一区| 中文字幕色久视频| 欧美精品国产亚洲| 大片电影免费在线观看免费| 亚洲综合色网址| 有码 亚洲区| 97在线视频观看| 国产一区二区 视频在线| 国产精品免费大片| 一级毛片电影观看| 国产精品一区二区在线不卡| 天堂8中文在线网| 夜夜骑夜夜射夜夜干| 国产在线一区二区三区精| 人体艺术视频欧美日本| av网站在线播放免费| 少妇 在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产亚洲午夜精品一区二区久久| 国产精品免费视频内射| 熟女av电影| 亚洲美女黄色视频免费看| 免费观看性生交大片5| 欧美成人午夜免费资源| 国产高清不卡午夜福利| 日本色播在线视频| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频| 久久久久久久久久久久大奶| 丰满乱子伦码专区| 亚洲欧美日韩另类电影网站| 午夜免费观看性视频| 2022亚洲国产成人精品| 黄色怎么调成土黄色| 丝瓜视频免费看黄片| 欧美激情极品国产一区二区三区| 色婷婷av一区二区三区视频| 超碰成人久久| 免费看不卡的av| 一区在线观看完整版| 成人漫画全彩无遮挡| 蜜桃国产av成人99| 黄色配什么色好看| 桃花免费在线播放| 午夜激情av网站| 精品人妻熟女毛片av久久网站| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 国产xxxxx性猛交| 亚洲av国产av综合av卡| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 大话2 男鬼变身卡| 国产人伦9x9x在线观看 | 如日韩欧美国产精品一区二区三区| 高清不卡的av网站| 国产在线一区二区三区精| 午夜91福利影院| 老女人水多毛片| 成人亚洲欧美一区二区av| 汤姆久久久久久久影院中文字幕| 欧美日韩精品成人综合77777| 久久久精品94久久精品| 一本久久精品| 国产无遮挡羞羞视频在线观看| 国产又爽黄色视频| 伦理电影大哥的女人| 男女啪啪激烈高潮av片| 中国三级夫妇交换| 在线观看国产h片| 亚洲精品日本国产第一区| 亚洲伊人色综图| 久久久久国产网址| freevideosex欧美| av又黄又爽大尺度在线免费看| 亚洲成人手机| 丰满饥渴人妻一区二区三| tube8黄色片| 在线天堂中文资源库| 最新的欧美精品一区二区| 伦理电影免费视频| 自线自在国产av| 男女下面插进去视频免费观看| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 麻豆av在线久日| 久久久久久久精品精品| av在线app专区| 汤姆久久久久久久影院中文字幕| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 2022亚洲国产成人精品| a级毛片黄视频| 大香蕉久久网| 久久久久人妻精品一区果冻| 日韩制服丝袜自拍偷拍| 18在线观看网站| 男人爽女人下面视频在线观看| 九草在线视频观看| 免费av中文字幕在线| 久久久久久久精品精品| 久久人人爽人人片av| 国产av一区二区精品久久| 色吧在线观看| 欧美成人午夜精品| 国产男女超爽视频在线观看| 久久午夜综合久久蜜桃| 亚洲第一av免费看| 亚洲人成77777在线视频| 七月丁香在线播放| 少妇熟女欧美另类| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 人妻系列 视频| 美女脱内裤让男人舔精品视频| 两个人看的免费小视频| av在线app专区| 欧美人与性动交α欧美精品济南到 | 亚洲精品久久午夜乱码| 亚洲国产看品久久| 免费观看a级毛片全部| 成年人午夜在线观看视频| 亚洲在久久综合| 亚洲美女视频黄频| 亚洲欧美日韩另类电影网站| 熟女电影av网| 免费观看性生交大片5| 人妻 亚洲 视频| 亚洲av成人精品一二三区| 欧美成人午夜精品| 亚洲第一区二区三区不卡| 综合色丁香网| 国产淫语在线视频| 久久久久精品久久久久真实原创| 水蜜桃什么品种好| 国产成人精品在线电影| 成人影院久久| 97在线人人人人妻| 妹子高潮喷水视频| 老鸭窝网址在线观看| 一本久久精品| 久久久国产精品麻豆| 久久鲁丝午夜福利片| 亚洲精品一二三| 久久99一区二区三区| 中文字幕色久视频| 777米奇影视久久| 国产精品人妻久久久影院| 国产有黄有色有爽视频| 亚洲男人天堂网一区| 亚洲综合色网址| 国产乱人偷精品视频| 街头女战士在线观看网站| 欧美国产精品va在线观看不卡| 久久久久国产网址| 国产精品一区二区在线不卡| 国产免费又黄又爽又色| 69精品国产乱码久久久| 秋霞在线观看毛片| 久久99一区二区三区| videossex国产| 国产在线视频一区二区| 伦理电影免费视频| 国产xxxxx性猛交| 少妇人妻久久综合中文| 国产成人欧美| 男女边摸边吃奶| 亚洲一区中文字幕在线| 熟女电影av网| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| 亚洲内射少妇av| 亚洲国产成人一精品久久久| 亚洲精品美女久久久久99蜜臀 | 男女无遮挡免费网站观看| 肉色欧美久久久久久久蜜桃| 99香蕉大伊视频| 咕卡用的链子| 日韩,欧美,国产一区二区三区| www.av在线官网国产| av免费在线看不卡| 亚洲国产成人一精品久久久| 老司机影院毛片| 久久热在线av| 国产深夜福利视频在线观看| 九草在线视频观看| 日本av手机在线免费观看| 午夜激情av网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲中文av在线| 国产一区二区 视频在线| 午夜福利一区二区在线看| av网站在线播放免费| 欧美av亚洲av综合av国产av | 一级a爱视频在线免费观看| 飞空精品影院首页| 热99久久久久精品小说推荐| 高清av免费在线| 亚洲伊人色综图| 免费看不卡的av| 多毛熟女@视频| 成年女人在线观看亚洲视频| 99热网站在线观看| 美女国产视频在线观看| 久久久久久久国产电影| 日韩人妻精品一区2区三区| 女性被躁到高潮视频| 99九九在线精品视频| 美女高潮到喷水免费观看| 我的亚洲天堂| 国产精品99久久99久久久不卡 | 青草久久国产| 亚洲色图综合在线观看| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| 国产深夜福利视频在线观看| 亚洲精品自拍成人| av女优亚洲男人天堂| 国产免费福利视频在线观看| 边亲边吃奶的免费视频| 街头女战士在线观看网站| 日韩一区二区三区影片| freevideosex欧美| 亚洲精品成人av观看孕妇| a级毛片在线看网站| 午夜激情av网站| 人成视频在线观看免费观看| 性少妇av在线| 亚洲国产精品国产精品| 哪个播放器可以免费观看大片| 一区二区三区乱码不卡18| 国产精品一区二区在线观看99| 国产成人免费无遮挡视频| 久久久精品区二区三区| 高清不卡的av网站| 精品国产国语对白av| 欧美精品一区二区免费开放| 侵犯人妻中文字幕一二三四区| 高清黄色对白视频在线免费看| 国产精品久久久久成人av| 亚洲成人av在线免费| 亚洲欧美一区二区三区久久| 国产精品.久久久| 热re99久久国产66热| 久久精品人人爽人人爽视色| 男男h啪啪无遮挡| 五月开心婷婷网| 亚洲成人手机| 大陆偷拍与自拍| 日韩免费高清中文字幕av| 狠狠婷婷综合久久久久久88av| 国产精品久久久久成人av| 大话2 男鬼变身卡| 女性被躁到高潮视频| 国产成人精品无人区| 9热在线视频观看99| 成人毛片a级毛片在线播放| 在线 av 中文字幕| 欧美精品人与动牲交sv欧美| 九色亚洲精品在线播放| 亚洲一区二区三区欧美精品| 在线免费观看不下载黄p国产| 成人毛片60女人毛片免费| 国产黄色视频一区二区在线观看| 日韩一本色道免费dvd| 啦啦啦在线免费观看视频4| 岛国毛片在线播放| 一区二区三区四区激情视频| 国产白丝娇喘喷水9色精品| 天堂8中文在线网| videos熟女内射| 日本av免费视频播放| 欧美精品亚洲一区二区| 亚洲av电影在线进入| 国产在视频线精品| 少妇精品久久久久久久| 日韩中文字幕视频在线看片| 老女人水多毛片| 欧美xxⅹ黑人| 少妇 在线观看| 久久国产精品大桥未久av| √禁漫天堂资源中文www| 日韩一区二区视频免费看| 91久久精品国产一区二区三区| 午夜免费观看性视频| 伦理电影免费视频| 99re6热这里在线精品视频| 国产97色在线日韩免费| 另类精品久久| 久久99蜜桃精品久久| 久热久热在线精品观看| 美女大奶头黄色视频| 国产精品熟女久久久久浪| 国产成人一区二区在线| 啦啦啦在线免费观看视频4| 久久久久久久国产电影| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 婷婷色综合大香蕉| 97精品久久久久久久久久精品| 亚洲美女黄色视频免费看| 少妇人妻精品综合一区二区| 两性夫妻黄色片| 丝袜脚勾引网站| 免费高清在线观看视频在线观看| 晚上一个人看的免费电影| 亚洲av欧美aⅴ国产| 性色av一级| 日韩精品有码人妻一区| 成年av动漫网址| 日韩大片免费观看网站| 久久午夜福利片| 亚洲国产精品一区二区三区在线| 一级a爱视频在线免费观看| 中文天堂在线官网| 一级毛片黄色毛片免费观看视频| 曰老女人黄片| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区三区| 国产在线视频一区二区| 两个人看的免费小视频| 国产精品.久久久| 久久久久久久久久久久大奶| 亚洲精品中文字幕在线视频| 精品一区二区免费观看| 亚洲精品一区蜜桃| 2018国产大陆天天弄谢| 一级a爱视频在线免费观看| 哪个播放器可以免费观看大片| 国产在线一区二区三区精| 国产亚洲欧美精品永久| 亚洲国产欧美日韩在线播放| 日日撸夜夜添| 99久久人妻综合| 大片电影免费在线观看免费| 毛片一级片免费看久久久久| 免费女性裸体啪啪无遮挡网站| 97精品久久久久久久久久精品| 国产精品成人在线| 亚洲精品一区蜜桃| 亚洲成人av在线免费| 国产 精品1| 最黄视频免费看| 在线 av 中文字幕| 亚洲精品视频女| 999久久久国产精品视频| 精品久久蜜臀av无| 久久av网站| av一本久久久久| 高清视频免费观看一区二区| av国产久精品久网站免费入址| 丝瓜视频免费看黄片| 欧美日韩精品成人综合77777| 18禁动态无遮挡网站| 免费播放大片免费观看视频在线观看| 欧美精品高潮呻吟av久久| 成人18禁高潮啪啪吃奶动态图| 啦啦啦啦在线视频资源| 国产成人91sexporn| 午夜福利一区二区在线看| 男女高潮啪啪啪动态图| 久久久久久久久久久免费av| 国产成人精品婷婷| 国产在线视频一区二区| 欧美人与性动交α欧美软件|