• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 3D Non-isentropic Compressible Euler Equations with Damping in a Bounded Domain?

    2016-06-05 03:10:40YinghuiZHANGGuochunWU

    Yinghui ZHANG Guochun WU

    1 Introduction

    With damping,the three-dimensional compressible Euler equations for non-isentropic flows have the following form:

    Such a system occurs in the mathematical modeling of compressible flow through a porous medium.Here ρ,u=(u1,u2,u3)tand P represent the density,the velocity and the pressure respectively.The total energy E=+e,where e is the internal energy.The constant α>0 models friction.In this paper,we will consider only polytropic fluids,so that the equations of state for the fluid are given by

    where θ is the absolute temperature.The constants R>0 and γ >1 denote the gas constant and the adiabatic exponent,respectively.

    For the isentropic flow,namely S=const.,(1.1)takes the form

    The 1D version of(1.3)with various initial and initial-boundary conditions has been studied intensively during the past decades,both classical and weak solutions have been constructed,and the long time behaviors of different solutions have been investigated.There are extensive literatures for both the Cauchy problem and the initial-boundary value problem,and the readers are referred to[2,8–10,13,15-24,26–27,36,39,41–42]and references therein.For the multi-dimension problem to the isentropic system(1.3),Wang and Yang[34]proved the global existence and asymptotic behavior to the Cauchy problem for the isentropic system(1.3)by the Green function method.Sideris,Thomases and Wang[31]showed that the damping term prevented the development of singularities for small amplitude classical solutions in threedimensional space,using an equivalent reformulation of the Cauchy problem to obtain effective energy estimates.Pan and Zhao[29]investigated the global existence and asymptotic behavior to the initial boundary value problem for the isentropic system(1.3)by energy method.Fang and Xu[7]studied the existence and asymptotic behavior of C1solutions on the framework of Besov space.The optimal convergence rates were recently obtained by Tan and Wu[32].

    For the adiabatic flow,namely S?=const.,much less is known even for the one-dimensional case.The global existence of smooth solution to the Cauchy problem for 1D version of(1.1)has been proved in[14,40]for small initial data.The large time behavior of these solutions is known only for some particular initial data(see[11,25]).For the initial boundary value problem,the readers are referred for instance to[12,28]and references therein.

    From the physical point of view,the 3D model(1.1)describes more realistic phenomena.Also the 3D compressible non-isentropic Euler equations carry some unique features,such as the effect of vorticity,which are totally absent in the 1D case and make the problem more challenging in mathematics.The system(1.1)and the time-asymptotic behavior of the solution are of great importance and are much less understood than its 1D companion.Recently,the authors in[35,37]studied the global existence and asymptotic behavior of classic solutions to the Cauchy problem and the period boundary problem to the system(1.1)respectively.To our knowledge,there is no work on the global existence and asymptotic behavior of classical solution for the initial boundary value problem to the system(1.1).The main motivation of this article is to give a positive answer to this problem.

    To begin with,we note the fact that all thermodynamics variables ρ,θ,e,P as well as the entropy S can be represented by functions of any two of them.To overcome the difficulties arising from non-isentropic,we rewrite the system(1.1).We take the two variables to be P and S,then the equation of state is replaced by

    where a>0 is a constant.Under the aforementioned assumptions,we can rewrite the system(1.1)in terms of(P,u,S)as follows:

    where ρ = ρ(P,S)is given by(1.4).It should be mentioned that(1.5)is a hyperbolic system,while the dissipation property comes from the damping term.In this paper,we consider the initial boundary value problem for(1.5)with the following initial and boundary conditions:

    where Ω ? R3is a bounded domain with smooth boundary ?Ω,n is the unit outward normal vector on the boundary Ω and the last condition is imposed to avoid the trivial case,ρ ≡ 0.

    Before stating the main results,let us introduce some notations for the use throughout this paper.C denotes some positive constant.The norms in the Sobolev spaces Hm(Ω)and Wm,q(Ω)are denoted respectively by?·?mand?·?m,qfor m ≥ 0 and q≥ 1.In particular,for m=0 we will simply use?·?and?·?Lq.?(a,b,c)?mdenotes?a?m+?b?m+?c?m.The energy space under consideration is

    equipped with norm

    for any F ∈ Xk([0,T],Ω)and t∈ [0,T].Moreover,we use?·,·?to denote the inner product in L2(Ω).Finally,

    and for any integer l≥ 0,?lf denotes all derivatives of order l of the function f.And for multi-indices α and β

    we use

    andwhere β ≤ α.

    Now,we are ready to state the main results.

    Theorem 1.1Assume that the initial data satisfy the compatibility condition,i.e.,n|Ω=0,0 ≤ l≤ 3,where(0)·=0 is the l-th time derivative at t=0 of any solution of(1.5)–(1.6),as calculated from(1.5)to yield an expression in terms of P0,u0and S0,andis sufficiently small.Then the initial boundary value problem(1.5)–(1.6)admits a unique solution(P,u,S)globally in time with P>0,satisfying

    Moreover,there exist positive constants C0and η0,which are independent of t,such that for any t≥0,it holds

    Remark 1.1The methods of this paper can be applied to study the global existence and asymptotic behavior for the initial boundary value problem to the 3D compressible nonisentropic Navier-Stokes equations without heat conductivity(see[3])and the 3D viscous liquidgas two phase flow model(see[38]).

    Remark 1.2By applying the similar idea of[38],we can also prove that Theorem 1.1 still holds under only the smallness assumption on H2-norm of the initial data.

    Now,we sketch the main idea of the proof and explain some of the main difficulties and techniques involved in the process.First,due to non-isentropic,we can not use the methods of[29,30–32,34]where the isentropic system(1.2)has been studied.To overcome the difficulties for the appearance of the non-isentropic term,as in[3,38],we first rewrite the system(1.1)into(1.5).However,we can not work directly on the system of the variables(P,u,S)as in[3,38].Indeed,on one hand,the integralis in general not zero since the variable P is not conservative.On the other hand,by noting the dissipation structure of(1.5),it is clear that there is no dissipation estimate for L2-norm of the variable P.Therefore,it seems impossible to get the exponential decay estimate on?P?by the Poincaré inequality and the Gronwall’s inequality as in[29].The key idea here is that instead of the variables(P,u,S),we study the system of the variables(ω,u,S)with(see(2.2)–(2.3)for details).One of main observations in this article is that the dissipative variables ω and u satisfy the first and second equations of(2.2)whose linear parts possess the same structure as that of the compressible isentropic Euler equations with damping(1.2),while the non-dissipative variable S satisfies the homogeneous transport equation the third equation of(2.2).Then,in order to obtain a priori estimates of solutions to(2.2)–(2.3),we can apply the similar energy method as in[3–5,29,33,37–38]to the first two equations of(2.2)to obtain the uniform bound of(ω,u)under the assumption that?(ω,u,S)?3is sufficiently small,see Lemmas 3.1–3.2 in Section 3.With these in hand,the variables(w,u)can be shown to converge exponentially to zero from the Poincaré inequality and Gronwall’s inequality.It is worth mentioning that the crucial part of the proof is to obtain a Lyapunov-type energy inequality(see(3.37)).Then,the bound of S will be derived by the exponential decay estimates on(w,u)and the Gronwall’s inequality.Second,due to the slip boundary condition,the classical energy estimates can not be applied directly to spatial derivatives.As in[29],the main idea is to get the key estimates of?u by?×u and?·u,see Lemma 3.2 below.Using the special structure of(2.2)together with an induction on the number of spatial derivatives,the estimate of total energy is reduced to those for the vorticity and temporal derivatives.And the proof is completed by showing that(1.7)is true for the vorticity and temporal derivatives.

    The plan of the rest of this paper is as follows.In Section 2,we reformulate the original system to get a quasi-linear symmetric hyperbolic system and give some basic facts that will be used in this paper together with the local existence result.In Section 3,we prove Theorem 1.1 by delicate energy estimates.

    2 Reformulation and Local Existence

    In this section,we are going to reformulate the initial-boundary value problem(1.5)–(1.6).First we reformulate(1.5)to get a symmetric hyperbolic system.Introducing the nonlinear transformationwe get from the original system(1.5)that

    Denotingwithwe get the desired symmetric system for the perturbation(w,u,s)

    The initial and boundary conditions become

    with

    Before giving the proof of Theorem 1.1,we state the local existence result for the system(2.2)–(2.3),which can be established using the arguments in[3,26–27].

    Proposition 2.1(Local Existence)Letbe fixed and suppose thatare such thatand satisfy the compatibility condition,i.e.,·n|Ω=0,0 ≤ l ≤ 3.Then there exists a positive constant ε0such that ifthen there exists a positive constant T0depending on ε0such that the initial-boundary value problem(2.2)–(2.3)admits a unique solution(ω,u,s ? u) ∈which satisfies

    and

    To prove global existence of a smooth solution with small initial data,it suffices to establish global a priori estimate of the solution.

    Proposition 2.2(A Priori Estimate) Let∈ H3(Ω)and suppose that the initial-boundary value problem(2.2)–(2.3)has a solutionX3([0,T],Ω)for given T>0.Then there exist a small positive constant ε1(≤ ε0)and two positive constants C1and η1,which are independent of T,such that if then for any t∈[0,T],it holds that

    Proof of Theorem 1.1Choose ε2,C1and η1such thatC1=C0and η1= η0.Then the local solution of(2.2)–(2.3)can be continued globally in time,provided that the smallness conditionis satisfied.In fact,we haveTherefore,by Proposition 2.1,there is a positive constant T1=T1(ε1)such that a solution exists on[0,T1]and satisfiesfor t∈ [0,T1].Hence we can apply Proposition 2.2 with T=T1to get?(ω,u,s?Therefore,we can apply Proposition 2.1 by taking t=T1as the new initial time.Then we have a solution on[T1,2T1]with the estimate?(ω,u,s?for t ∈ [T1,2T1].Thereforeholds on[0,2T1].Hence Proposition 2.2 again gives the estimates(2.5)–(2.7)for t∈ [0,2T1].In the same way we can extend the solution to the interval[0,nT1]successively,n=1,2,···,and get a global solution.The estimates(1.7)–(1.9)is a consequence of(2.5)–(2.7).This completes the proof of Theorem 1.1.

    The proof of Proposition 2.2 is based on several steps of careful energy estimates which are stated as a sequence of lemmas in Section 3.

    3 Global Existence and Large Time Behavior

    In this section,we devote ourselves to prove Proposition 2.2.For convenience,we let

    Throughout this section,we suppose that the initial-boundary value problem(2.2)–(2.3)has a solution(ω,u,s?)in the spacewith some T ∈ (0,+∞],and the inequality(2.4)holds.We also omit the variable t of all functions in the proof of different lemmas in this section for simplicity.

    In what follows,a series of lemmas on the energy estimates are given.First we recall some inequalities of Sobolev type(see[6]).

    Lemma 3.1Let Ω be any bounded domain in R3with smooth boundary.Then it holds:

    (i)?f?L∞(Ω)≤ C?f?H2(Ω),

    (ii)?f?Lq(Ω)≤ C?f?H1(Ω),2 ≤ q ≤ 6

    for some constant C>0 depending only on Ω.

    As in[29],the following lemma(see[1])plays an important role in our proofs,which gives the estimate of?u by?·u and?×u.

    Lemma 3.2Let u ∈ Hk(Ω)be a vector-valued function satisfying u ·n|Ω=0,where n is the unit outer normal of?Ω.Then

    for k ≥ 1,where constant C depends only on k and Ω.

    The next lemma is an application of Lemma 3.2,which is crucial to complete the proof of Proposition 2.2.Indeed,the lemma states that the bounds of spatial derivatives can be controlled by those of the temporal derivatives and the vorticity.Let υ =? ×u and define

    Lemma 3.3Under the assumptions of Proposition 2.2,there exists a constant C2>0 which is independent of ε such that

    ProofFrom the equation(2.2)2,we have

    Using the smallness of W2(t),Lemma 3.1 and Cauchy-Schwarz inequality,we easily get

    and

    Taking time derivatives of(3.6)twice,after a tedious but direct computation,we also have

    By using the first equation of(2.2),we have

    So,we can easily get

    Using Lemma 3.2 with k=1 and(3.11),we obtain

    Next,we take time derivatives of(3.10).It is easy to see that every time derivative up to order two of?·u can be bounded by U(t)+W1(t)W2(t).Furthermore,together with an induction on the number of spatial derivatives,the same is true for any derivative up to order two of?·ω and?·u.By applying Lemma 3.2 with k=1,2,3 respectively,we can deduce that

    Since W2(t)is small,we prove(3.5).Therefore,the proof of Lemma 3.3 is completed.

    Lemma 3.3 reduces the estimate of W(t)to those for U(t)and V(t).In the following,we will devote ourselves to deduce the estimates of U(t)and V(t).

    Lemma 3.4Under the assumptions of Proposition 2.2,there exists a constant C3>0 which is independent of ε such that

    ProofIn the following,we will prove Lemma 3.4 by five steps.

    Step 1Zero order estimate Multiplying the first and second equations of(2.2)by ω,u respectively and then integrating them over Ω,using the boundary condition u ·n|?Ω=0,we have

    From Lemma 3.1,H¨older’s inequality and Cauchy-Schwarz inequality,we have

    Step 2First order estimate differentiating the first and second equations of(2.2)with respect to t once,multiplying the resultant equations by ωt,utrespectively,integrating over Ω and using the boundary conditionswith l=0,1,we have

    for some constant C>0.From Lemma 3.1,H¨older inequality and Cauchy-Schwarz inequality,we deduce that

    Step 3Second order estimate Repeating the above procedure again for 2nd order time derivatives,we can get

    for some constant C>0.By virtue of Lemma 3.1,H¨older inequality and Cauchy-Schwarz inequality,we have

    Step 4Third order estimate Repeating the above procedure again for 3rd order time derivatives,we get the following

    By virtue of Lemma 3.1,H¨older’s inequality and Cauchy-Schwarz inequality,we have

    Bounds for the other terms are obtained in a similar way,we finally deduce

    Since W2(t)is small,substituting the above two inequalities into(3.21),we finally obtain

    Step 5Proof of Lemma 3.4 Putting(3.16),(3.18),(3.20)and(3.22)together gives(3.14).This completes the proof of Lemma 3.4.

    Lemma 3.4 contains only the dissipation in velocity.In the next lemma,we will deduce the dissipation in pressure due to nonlinearity.

    Lemma 3.5Under the assumptions of Proposition 2.2,there exist two positive constants C4,C5which are independent of ε such that

    ProofFirst of all,we? n otice thatsatisfies the continuity equation,i.e.,which yieldsThis together with Poincaré’s inequality implies thatSince W2(t)is small,we can deduce thatis equivalent toandis equivalent tothus we haveBy using(3.7),we have

    differentiating the first equation of(2.2)with respect to t,we get

    Multiplying(3.25)by ω and integrating the resultant equation over Ω,we obtain

    From the second equation of(2.2),we have

    Substituting(3.27)into(3.26),using the boundary conditionswith l=0,1 and integrating by part,we have

    Using the same idea in proof of Lemma 3.4,we have

    Repeating the above procedure again for 2nd and 3rd order time derivatives of(3.25),we have

    which together with(3.24)and(3.29)implies(3.23).This completes the proof of Lemma 3.5.

    Now,we are ready to combine Lemma 3.4 and Lemma 3.5 to deduce the total dissipation.To do this,we let D1>0 be a suitably large positive constant,and define

    Since D1>0 is large enough andis sufficiently small,the function H(t)is equivalent to U(t).

    Lemma 3.6Under the assumptions of Proposition 2.2,there exist two positive constants C6,C7which are independent of ε such that

    ProofD1×(3.14)+(3.23)yields

    Since D1>0 is large andis small,we deduce(3.31)directly from(3.32).This completes the proof of lemma.

    The last lemma is concerned with the dissipation in V(t)defined in(3.4).

    Lemma 3.7Under the assumptions of Proposition 2.2,there exists a positive constant C8which is independent of ε such that

    ProofTaking the curl of the second equation of(2.2),we get

    Taking any mixed derivative of the above equation,we obtain

    where α1,α2satisfyNoticing thatmultiplying the above equation byand integrating the resulting equation by using the boundary condition,together with the standard energy estimate used in deriving Lemmas 3.4–3.5,we deduce(3.33).This completes the proof of lemma.

    Now we are in a position to prove Proposition 2.2.

    Proof of Proposition 2.2If we define

    then from Lemmas 3.6–3.7,there exist two positive constants C9,C10which are independent of ε such that

    Moreover,since H1(t)is equivalent to U(t)+V(t),we have from Lemma 3.3 that

    Since ε>0 is small,combining(3.37)and(3.38),we have that there exists a constant C11>0 such that

    which yields the exponential decaying of H1(t).Since H1(t)is equivalent to U(t)+V(t),(2.5)follows from Lemma 3.3 immediately.Next,we prove(2.6).To do this,by multiplying the third equation of(2.2)by s ?and integrating over Ω,using the boundary condition u ·n|?Ω=0,we have

    which yields(2.6).Finally,by symmetry,boundary conditions and some tedious but straightforward calculation,we have the energy estimates on the entropy:

    thus we haveTaking the derivatives of the third equation of(2.2),we have

    where|α1|+|α2|≤ 2.In fact,we first take|α1|=0,then we can easily prove that(3.40)is right.Taking an induction on α,we finally deduce(3.40)which gives(2.7).This completes the proof of Proposition 2.2.

    AcknowledgementThe authors would like to thank the anonymous referees for their valuable suggestions and comments which have helped to improve the manuscript.

    [1]Bourguignon,J.P.and Brezis,H.,Remarks on the Euler equation,J.Funct.Anal.,15,1975,341–363.

    [2]Dafermos,C.M.,Can dissipation prevent the breaking of waves? Transactions of the Twenty-Sixth Conference of Army Mathematicians,187–198,ARO Rep.81,1,U.S.Army Res.Office,Research Triangle Park,N.C.,1981.

    [3]Duan,R.J.and Ma,H.F.,Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity,Indiana Univ.Math.J.,57(5),2008,2299–2319.

    [4]Duan,R.J.,Liu,H.X.,Ukai,S.and Yang,T.,Optimal Lp?Lqconvergence rates for the compressible Navier-Stokes equations with potential force,J.differ.Equations,238,2007,220–233.

    [5]Duan,R.J.,Ukai,S.,Yang,T.and Zhao,H.J.,Optimal convergence rate for compressible Navier-Stokes equations with potential force,Math.Models Methods Appl.Sci.,17,2007,737–758.

    [6]Evans,L.C.,Partial differential Equations,Amer.Math.Soc.,Providence,1998.

    [7]Fang,D.Y.and Xu,J.,Existence and asymptotic behavior of C1solutions to the multi-dimensional compressible Euler equations with damping,Nonlinear Anal.,70,2009,244–261.

    [8]Hsiao,L.,Quasilinear Hyperbolic Systems and Dissipative Mechanisms,Singapore,World Scientific,1998.

    [9]Hsiao,L.and Liu,T.P.,Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,Comm.Math.Phys.,143,1992,599–605.

    [10]Hsiao,L.and Liu,T.P.,Nonlinear diffusive phenomena of nonlinear hyperbolic systems,Chin.Ann.Math.Ser.B,14(1),1993,1–16.

    [11]Hsiao,L.and Luo,T.,Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media,J.differ.Equations,125,1996,329–365.

    [12]Hsiao,L.and Pan,R.H.,Initial-boundary value problem for the system of compressible adiabatic flow through porous media,J.differ.Equations,159,1999,280–305.

    [13]Hsiao,L.and Pan,R.H.,The damped p-system with boundary effects,Contemporary Mathematics,255,2000,109–123.

    [14]Hsiao,L.and Serre,D.,Global existence of solutions for the system of compressible adiabatic flow through porous media,SIAM J.Math.Anal.,27,1996,70–77.

    [15]Huang,F.M.,Marcati,P.and Pan,R.H.,Convergence to Barenblatt solution for the compressible Euler equations with damping and vacuum,Arch.Ration.Mech.Anal.,176,2005,1–24.

    [16]Huang,F.M.and Pan,R.H.,Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum,J.differ.Equations,220,2006,207–233.

    [17]Huang,F.M.and Pan,R.H.,Convergence rate for compressible Euler equations with damping and vacuum,Arch.Ration.Mech.Anal.,166,2003,359–376.

    [18]Jiang,M.N.,Ruan,L.Z.and Zhang,J.,Existence of global smooth solution to the initial boundary value problem for p-system with damping,Nonlinear Anal.,70(6),2009,2471–2479.

    [19]Jiang,M.N.and Zhang,Y.H.,Existence and asymptotic behavior of global smooth solution for p-system with nonlinear damping and fixed boundary effect,Math.Meth.Appl.Sci.,37,2014,2585–2596.

    [20]Jiang,M.N.and Zhu,C.J.,Convergence rates to nonlinear diffusion waves for p-system with nonlinear damping on quadrant,Discrete Contin.Dyn.Syst.,23(3),2009,887–918.

    [21]Jiang,M.N.and Zhu,C.J.,Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant,J.differ.Equations,246(1),2009,50–77.

    [22]Liu,T.P.,Compressible flow with damping and vacuum,Japan J.Appl.Math.,13,1996,25–32.

    [23]Marcati,P.and Milani,A.,The one-dimensional Darcy’s law as the limit of a compressible Euler flow,J.differ.Equations,84(1),1990,129–147.

    [24]Marcati,P.and Rubino,B.,Hyperbolic to parabolic relaxation theory for quasilinear first order systems,J.differ.Equations,162(2),2000,359–399.

    [25]Marcati,P.and Pan,R.H.,On the diffusive pro files for the system of compressible adiabatic flow through porous media,SIAM J.Math.Anal.,33,2001,790–826.

    [26]Nishida,T.,Global solutions for an initial-boundary value problem of a quasilinear hyperbolic systems,Proc.Japan Acad.,44,1968,642–646.

    [27]Nishida,T.,Nonlinear Hyperbolic Equations and Relates Topics in Fluid Dynamics,Publ.Math.D’Orsay,1978.

    [28]Pan,R.H.,Boundary effects and large time behavior for the system of compressible adiabatic flow through porous media,Michigan Math.J.,49,2001,519–539.

    [29]Pan,R.H.and Zhao,K.,The 3D compressible Euler equations with damping in a bounded domain,J.differ.Equations,246,2009,581–596.

    [30]Schochet,S.,The compressible Euler equations in a bounded domain:Existence of solutions and the incompressible limit,Comm.Math.Phys.,104,1986,49–75.

    [31]Sideris,T.C.,Thomases,B.and Wang,D.H.,Long time behavior of solutions to the 3D compressible Euler equations with damping,Comm.Partial differential Equations,28,2003,795–816.

    [32]Tan,Z.and Wu,G.C.,Large time behavior of solutions for compressible Euler equations with damping in R3,J.differ.Equations,252(2),2012,1546–1561.

    [33]Tan,Z.and Wang,H.Q.,Global existence and optimal decay rate for the strong solutions in H2to the 3-D compressible Navier-Stokes equations without heat conductivity,J.Math.Anal.Appl.,394(2),2012,571–580.

    [34]Wang,W.and Yang,T.,The pointwise estimates of solutions for Euler equations with damping in multidimensions,J.differ.Equations,173,2001,410–450.

    [35]Wu,G.C.,Tan,Z.and Huang,J.,Global existence and large time behavior for the system of compressible adiabatic flow through porous media in R3,J.differ.Equations,2553,2013,865–880.

    [36]Zhang,Y.H.and Tan,Z.,Existence and asymptotic behavior of global smooth solution for p-system with damping and boundary effect,Nonlinear Anal.,72(5),2010,2499–2513.

    [37]Zhang,Y.H.and Wu,G.C.,Global existence and asymptotic behavior for the 3d compressible nonisentropic Euler equations with damping,Acta Mathematica Sci.Ser.B,34(5),2014,424–434.

    [38]Zhang,Y.H.and Zhu,C.J.,Global existence and optimal convergence rates for the strong solutions in H2to the 3D viscous liquid-gas two-phase flow model,J.differ.Equations,258(7),2015,2315–2338.

    [39]Zhao,H.J.,Convergence to strong nonlinear diffusion waves for solutions of p-system with damping,J.differ.Equations,174,2001,200–236.

    [40]Zheng,Y.,Global smooth solutions to the adiabatic gas dynamics system with dissipation terms,Chin.Ann.Math.Ser.A,17,1996,155–162(in Chinese).

    [41]Zhu,C.J.,Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping,Sci.China,Ser.A,46(4),2003,562–575.

    [42]Zhu,C.J.and Jiang,M.N.,Lp-decay rates to nonlinear diffusion waves for p-system with nonlinear damping,Sci.China,Ser.A,49(6),2006,721–739.

    欧美亚洲日本最大视频资源| 国产男女内射视频| 每晚都被弄得嗷嗷叫到高潮| 欧美乱码精品一区二区三区| 桃花免费在线播放| 热re99久久国产66热| 1024香蕉在线观看| 免费一级毛片在线播放高清视频 | 午夜精品国产一区二区电影| 国产精品三级大全| 日本黄色日本黄色录像| 国产精品久久久久成人av| 国产成人精品在线电影| 亚洲欧美中文字幕日韩二区| 国产亚洲精品久久久久5区| 一本久久精品| 欧美日韩亚洲综合一区二区三区_| 久久久久国产一级毛片高清牌| 日本欧美视频一区| 国产免费视频播放在线视频| 久久性视频一级片| 亚洲国产毛片av蜜桃av| 亚洲精品av麻豆狂野| 母亲3免费完整高清在线观看| 亚洲图色成人| 久久精品久久精品一区二区三区| 午夜福利免费观看在线| 建设人人有责人人尽责人人享有的| 日本wwww免费看| 在线亚洲精品国产二区图片欧美| 伦理电影免费视频| 一级毛片黄色毛片免费观看视频| 性色av一级| 日韩制服骚丝袜av| 日韩 欧美 亚洲 中文字幕| 亚洲精品av麻豆狂野| 婷婷色麻豆天堂久久| 日本五十路高清| 乱人伦中国视频| 久久影院123| 人人妻人人澡人人看| 1024香蕉在线观看| 看免费av毛片| 久久女婷五月综合色啪小说| 大片免费播放器 马上看| 精品福利永久在线观看| 亚洲精品日本国产第一区| 亚洲人成电影观看| 亚洲五月色婷婷综合| 国产精品偷伦视频观看了| 一本大道久久a久久精品| 99久久人妻综合| av欧美777| 亚洲人成77777在线视频| 国产无遮挡羞羞视频在线观看| 99国产精品一区二区三区| 久久国产精品人妻蜜桃| 亚洲国产欧美一区二区综合| 亚洲 国产 在线| 99热网站在线观看| 我的亚洲天堂| 菩萨蛮人人尽说江南好唐韦庄| 成人午夜精彩视频在线观看| 国产高清videossex| 国产精品av久久久久免费| 国产亚洲欧美精品永久| 国产一区二区激情短视频 | 久久亚洲精品不卡| 男女国产视频网站| 中文字幕另类日韩欧美亚洲嫩草| 午夜激情av网站| 又大又黄又爽视频免费| 熟女av电影| 国产日韩一区二区三区精品不卡| 欧美精品人与动牲交sv欧美| tube8黄色片| 我的亚洲天堂| 国产有黄有色有爽视频| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 老司机在亚洲福利影院| 国产成人一区二区三区免费视频网站 | 99久久精品国产亚洲精品| 国产亚洲欧美在线一区二区| 国产亚洲av高清不卡| 免费av中文字幕在线| 国产成人精品久久二区二区91| 午夜影院在线不卡| 老司机亚洲免费影院| 成人国产av品久久久| 各种免费的搞黄视频| 男人爽女人下面视频在线观看| 亚洲国产精品一区三区| 桃花免费在线播放| 美女脱内裤让男人舔精品视频| 一边摸一边做爽爽视频免费| 99国产精品一区二区蜜桃av | 国产精品香港三级国产av潘金莲 | 久久久久国产一级毛片高清牌| 在线精品无人区一区二区三| 超色免费av| 国产野战对白在线观看| 91字幕亚洲| 2018国产大陆天天弄谢| 国产成人精品久久久久久| 国产99久久九九免费精品| 国产精品亚洲av一区麻豆| av福利片在线| 欧美在线一区亚洲| 精品国产一区二区三区久久久樱花| 欧美黑人欧美精品刺激| 国产免费又黄又爽又色| 中文字幕制服av| 久久久精品区二区三区| av不卡在线播放| 午夜福利视频精品| 国产精品三级大全| 中文字幕色久视频| 又大又黄又爽视频免费| 日本av免费视频播放| 母亲3免费完整高清在线观看| 99精国产麻豆久久婷婷| 欧美激情极品国产一区二区三区| 久久毛片免费看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人欧美| 丝袜美足系列| 成人三级做爰电影| 亚洲一区二区三区欧美精品| 国产男女超爽视频在线观看| 国产一卡二卡三卡精品| 999久久久国产精品视频| 国产无遮挡羞羞视频在线观看| 午夜日韩欧美国产| √禁漫天堂资源中文www| 香蕉国产在线看| 日韩熟女老妇一区二区性免费视频| 日本五十路高清| 亚洲精品国产av蜜桃| 国产日韩欧美亚洲二区| 搡老乐熟女国产| 中文字幕人妻熟女乱码| 在线精品无人区一区二区三| 天天影视国产精品| 又紧又爽又黄一区二区| a级毛片在线看网站| 欧美日韩综合久久久久久| 国产精品久久久人人做人人爽| 一级黄色大片毛片| 麻豆乱淫一区二区| 少妇 在线观看| e午夜精品久久久久久久| 中文字幕色久视频| 中国美女看黄片| 九草在线视频观看| 国产亚洲av片在线观看秒播厂| 在线观看免费高清a一片| 激情五月婷婷亚洲| 免费人妻精品一区二区三区视频| 免费看不卡的av| av线在线观看网站| 不卡av一区二区三区| 黄色a级毛片大全视频| 婷婷色综合大香蕉| 日韩人妻精品一区2区三区| 国产一区有黄有色的免费视频| 九色亚洲精品在线播放| netflix在线观看网站| 国产精品 欧美亚洲| www.av在线官网国产| 国产在线观看jvid| 亚洲精品成人av观看孕妇| 咕卡用的链子| 欧美中文综合在线视频| 日本色播在线视频| 国产欧美亚洲国产| 少妇被粗大的猛进出69影院| 丁香六月天网| 高清欧美精品videossex| 久久久久久久精品精品| 国产精品 欧美亚洲| 在线av久久热| 美女主播在线视频| 国产精品 国内视频| 国产免费视频播放在线视频| 黑人欧美特级aaaaaa片| 777米奇影视久久| 日本wwww免费看| 亚洲美女黄色视频免费看| 国产精品久久久久久人妻精品电影 | 久久久精品94久久精品| 久久这里只有精品19| 在线观看免费日韩欧美大片| 香蕉丝袜av| 国产在线视频一区二区| 日本欧美视频一区| 老司机靠b影院| 久热爱精品视频在线9| 无限看片的www在线观看| 亚洲欧美日韩高清在线视频 | 少妇 在线观看| 亚洲精品成人av观看孕妇| 热99国产精品久久久久久7| 日日夜夜操网爽| 亚洲综合色网址| 老鸭窝网址在线观看| 少妇裸体淫交视频免费看高清 | 午夜激情av网站| 一级片'在线观看视频| 色婷婷av一区二区三区视频| 视频在线观看一区二区三区| 天堂中文最新版在线下载| 波野结衣二区三区在线| 午夜福利,免费看| 亚洲av日韩精品久久久久久密 | 国产精品 国内视频| 男人操女人黄网站| 亚洲av国产av综合av卡| 免费久久久久久久精品成人欧美视频| 操出白浆在线播放| 超色免费av| 欧美精品一区二区大全| 99国产精品免费福利视频| 久久精品熟女亚洲av麻豆精品| 精品亚洲乱码少妇综合久久| 中文字幕精品免费在线观看视频| 国精品久久久久久国模美| 菩萨蛮人人尽说江南好唐韦庄| 男的添女的下面高潮视频| 亚洲国产精品999| 亚洲国产毛片av蜜桃av| 乱人伦中国视频| 国产精品熟女久久久久浪| 亚洲国产最新在线播放| 国产麻豆69| 亚洲国产日韩一区二区| 国产欧美日韩一区二区三 | 亚洲国产看品久久| 91成人精品电影| 丰满饥渴人妻一区二区三| 亚洲欧美精品综合一区二区三区| 免费在线观看日本一区| 我的亚洲天堂| 久久ye,这里只有精品| 中文字幕色久视频| 后天国语完整版免费观看| 国产精品av久久久久免费| 午夜福利,免费看| 国产不卡av网站在线观看| 欧美日韩精品网址| 老司机深夜福利视频在线观看 | 男女免费视频国产| 亚洲av日韩精品久久久久久密 | 亚洲国产精品成人久久小说| 女性被躁到高潮视频| 啦啦啦啦在线视频资源| 午夜视频精品福利| 亚洲国产成人一精品久久久| 国产一级毛片在线| 午夜福利视频在线观看免费| kizo精华| 岛国毛片在线播放| 九草在线视频观看| 成人亚洲欧美一区二区av| 国产欧美日韩一区二区三 | 极品人妻少妇av视频| 伦理电影免费视频| 天堂8中文在线网| 一级毛片电影观看| 日韩av免费高清视频| 午夜激情久久久久久久| 免费不卡黄色视频| 日本wwww免费看| 久9热在线精品视频| 少妇人妻久久综合中文| 国产精品秋霞免费鲁丝片| 又大又爽又粗| 男女之事视频高清在线观看 | 伊人久久大香线蕉亚洲五| 97精品久久久久久久久久精品| 国产亚洲av高清不卡| 国产日韩欧美视频二区| 又紧又爽又黄一区二区| 国产精品久久久久成人av| 国产成人精品久久二区二区免费| 丁香六月欧美| 国产高清视频在线播放一区 | 久久久亚洲精品成人影院| 国产成人精品久久二区二区91| 麻豆av在线久日| 十八禁人妻一区二区| 久久国产精品大桥未久av| 丝袜美腿诱惑在线| 亚洲欧美精品自产自拍| 国产精品久久久久久人妻精品电影 | 99re6热这里在线精品视频| 国产在线免费精品| 90打野战视频偷拍视频| 另类亚洲欧美激情| 国产精品国产av在线观看| 一本一本久久a久久精品综合妖精| 赤兔流量卡办理| 精品人妻熟女毛片av久久网站| 90打野战视频偷拍视频| 欧美激情高清一区二区三区| 男女免费视频国产| 日韩一本色道免费dvd| 免费人妻精品一区二区三区视频| 亚洲精品日韩在线中文字幕| 男人操女人黄网站| 精品国产一区二区久久| 青草久久国产| 久久久精品国产亚洲av高清涩受| 制服诱惑二区| 99精品久久久久人妻精品| 久久久久久久久久久久大奶| 欧美精品一区二区免费开放| 精品国产乱码久久久久久小说| 亚洲国产av新网站| 十分钟在线观看高清视频www| 人人妻人人澡人人看| 一级毛片 在线播放| 美女扒开内裤让男人捅视频| 欧美另类一区| 久久99热这里只频精品6学生| 女人爽到高潮嗷嗷叫在线视频| 老司机亚洲免费影院| 亚洲精品第二区| 国产精品一区二区精品视频观看| 97人妻天天添夜夜摸| 男男h啪啪无遮挡| 欧美日韩国产mv在线观看视频| 丰满少妇做爰视频| 看免费av毛片| 日日夜夜操网爽| 中文字幕精品免费在线观看视频| 9热在线视频观看99| 亚洲欧美一区二区三区国产| 国产精品久久久久久精品古装| 亚洲精品国产区一区二| 狂野欧美激情性xxxx| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕高清在线视频| 欧美日韩国产mv在线观看视频| 国产老妇伦熟女老妇高清| 老司机影院成人| 男人爽女人下面视频在线观看| 少妇 在线观看| 亚洲欧美精品综合一区二区三区| 日韩一区二区三区影片| 丝瓜视频免费看黄片| 搡老岳熟女国产| av欧美777| 99九九在线精品视频| 校园人妻丝袜中文字幕| 午夜日韩欧美国产| 天天躁日日躁夜夜躁夜夜| 精品卡一卡二卡四卡免费| 亚洲欧美精品综合一区二区三区| 久久国产精品男人的天堂亚洲| 日韩av在线免费看完整版不卡| 只有这里有精品99| 亚洲美女黄色视频免费看| 国产一区亚洲一区在线观看| 欧美大码av| 精品久久久精品久久久| 亚洲欧美激情在线| 久久精品国产a三级三级三级| 一区二区日韩欧美中文字幕| 女人久久www免费人成看片| 99国产精品一区二区蜜桃av | 91字幕亚洲| 日韩电影二区| 一二三四社区在线视频社区8| 90打野战视频偷拍视频| 深夜精品福利| 免费在线观看完整版高清| 视频区欧美日本亚洲| 18禁观看日本| 丁香六月天网| 精品一品国产午夜福利视频| 19禁男女啪啪无遮挡网站| 满18在线观看网站| 色精品久久人妻99蜜桃| 又大又爽又粗| 日韩中文字幕视频在线看片| 亚洲av电影在线观看一区二区三区| 丁香六月欧美| 亚洲欧美精品综合一区二区三区| 欧美 日韩 精品 国产| 丁香六月天网| 国产一区二区三区综合在线观看| 丝袜美腿诱惑在线| 中文欧美无线码| svipshipincom国产片| 久久国产亚洲av麻豆专区| 9热在线视频观看99| 91字幕亚洲| 国产精品99久久99久久久不卡| 久久久精品区二区三区| 男女无遮挡免费网站观看| 亚洲精品一二三| 久久亚洲国产成人精品v| 男人添女人高潮全过程视频| 亚洲,欧美,日韩| 99国产精品一区二区蜜桃av | 亚洲中文日韩欧美视频| 侵犯人妻中文字幕一二三四区| 极品少妇高潮喷水抽搐| 亚洲国产精品999| 永久免费av网站大全| 丝袜人妻中文字幕| 视频区图区小说| √禁漫天堂资源中文www| 国语对白做爰xxxⅹ性视频网站| 免费看av在线观看网站| av线在线观看网站| 欧美人与善性xxx| 男女边摸边吃奶| 日韩中文字幕视频在线看片| 高清不卡的av网站| 国产精品熟女久久久久浪| 精品人妻1区二区| 黄色一级大片看看| 十八禁人妻一区二区| 亚洲国产中文字幕在线视频| 久久久久久久久免费视频了| 欧美 日韩 精品 国产| 久久国产精品大桥未久av| 91麻豆av在线| 国产精品国产三级国产专区5o| 亚洲精品美女久久av网站| 日韩一卡2卡3卡4卡2021年| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 午夜av观看不卡| av国产久精品久网站免费入址| 日韩视频在线欧美| 免费人妻精品一区二区三区视频| 国产av国产精品国产| 嫩草影视91久久| 亚洲欧美精品自产自拍| 成人影院久久| 亚洲 国产 在线| 国产精品久久久久久人妻精品电影 | 在线观看人妻少妇| 日本wwww免费看| av线在线观看网站| 一区二区av电影网| 黄网站色视频无遮挡免费观看| 黄色视频不卡| 国产精品亚洲av一区麻豆| 9热在线视频观看99| 亚洲精品国产av蜜桃| 日韩视频在线欧美| cao死你这个sao货| 国产精品亚洲av一区麻豆| 大片免费播放器 马上看| 午夜日韩欧美国产| 国产高清视频在线播放一区 | 99久久精品国产亚洲精品| a级毛片在线看网站| 可以免费在线观看a视频的电影网站| 日日摸夜夜添夜夜爱| 在现免费观看毛片| 久久久国产欧美日韩av| 成在线人永久免费视频| 黄色片一级片一级黄色片| 亚洲欧洲日产国产| 天天躁日日躁夜夜躁夜夜| 亚洲av在线观看美女高潮| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 精品少妇久久久久久888优播| 黄网站色视频无遮挡免费观看| 亚洲,欧美,日韩| 成年人黄色毛片网站| 高潮久久久久久久久久久不卡| 欧美精品啪啪一区二区三区 | 人体艺术视频欧美日本| 黄色片一级片一级黄色片| 亚洲成人手机| 精品亚洲成a人片在线观看| 国产又色又爽无遮挡免| 亚洲精品自拍成人| 中国国产av一级| 另类精品久久| 日韩,欧美,国产一区二区三区| 久久九九热精品免费| 亚洲情色 制服丝袜| 亚洲国产欧美日韩在线播放| 黄色一级大片看看| 日韩伦理黄色片| 制服人妻中文乱码| 久久人人爽人人片av| 久热这里只有精品99| 亚洲视频免费观看视频| 男的添女的下面高潮视频| 成在线人永久免费视频| 各种免费的搞黄视频| 最近手机中文字幕大全| 99久久人妻综合| 久久99一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人添人人爽欧美一区卜| 婷婷成人精品国产| 久久久国产精品麻豆| 操美女的视频在线观看| 91九色精品人成在线观看| 国产xxxxx性猛交| 国产女主播在线喷水免费视频网站| 国产成人啪精品午夜网站| 秋霞在线观看毛片| 成年人免费黄色播放视频| 视频区图区小说| 亚洲,一卡二卡三卡| 黑人巨大精品欧美一区二区蜜桃| 成人亚洲欧美一区二区av| 成人三级做爰电影| 黄网站色视频无遮挡免费观看| 九草在线视频观看| 日韩大片免费观看网站| 久久久久网色| 久久av网站| 国产国语露脸激情在线看| 国产精品久久久久成人av| 考比视频在线观看| 色婷婷av一区二区三区视频| 国产精品国产三级国产专区5o| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 高清不卡的av网站| 亚洲少妇的诱惑av| 亚洲国产欧美一区二区综合| 欧美久久黑人一区二区| 婷婷成人精品国产| 免费观看人在逋| 99热国产这里只有精品6| 精品国产国语对白av| 国产主播在线观看一区二区 | 男女边吃奶边做爰视频| 建设人人有责人人尽责人人享有的| 久久久国产精品麻豆| 夫妻午夜视频| 中文字幕制服av| 免费高清在线观看日韩| 亚洲欧洲日产国产| 亚洲av综合色区一区| 精品人妻一区二区三区麻豆| 久久免费观看电影| 亚洲,一卡二卡三卡| www.自偷自拍.com| 日韩人妻精品一区2区三区| 我的亚洲天堂| 女人被躁到高潮嗷嗷叫费观| 久久人妻熟女aⅴ| 婷婷丁香在线五月| 下体分泌物呈黄色| 亚洲久久久国产精品| 一本色道久久久久久精品综合| 欧美日韩精品网址| 国产一区二区激情短视频 | 久久久国产精品麻豆| 午夜激情久久久久久久| 老汉色∧v一级毛片| 久久精品aⅴ一区二区三区四区| 国产成人影院久久av| 性少妇av在线| 中文字幕精品免费在线观看视频| 三上悠亚av全集在线观看| 国产在线视频一区二区| 久久99精品国语久久久| 国产亚洲午夜精品一区二区久久| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 国产真人三级小视频在线观看| 男女边摸边吃奶| 亚洲精品久久午夜乱码| 丁香六月天网| 欧美激情高清一区二区三区| 两个人看的免费小视频| 丝瓜视频免费看黄片| 亚洲激情五月婷婷啪啪| 亚洲av片天天在线观看| 两个人免费观看高清视频| 午夜老司机福利片| 亚洲精品成人av观看孕妇| 性高湖久久久久久久久免费观看| 欧美精品av麻豆av| 成人午夜精彩视频在线观看| 国产精品免费大片| 天天影视国产精品| 亚洲国产欧美在线一区| 日韩大片免费观看网站| 日韩中文字幕视频在线看片| 国产不卡av网站在线观看| 91精品国产国语对白视频| 亚洲欧美一区二区三区黑人| 成人影院久久| 亚洲第一青青草原| 黑人欧美特级aaaaaa片| 久久av网站| 午夜免费鲁丝| 在线天堂中文资源库| 日日爽夜夜爽网站| 美女高潮到喷水免费观看| 99国产精品99久久久久| 久久女婷五月综合色啪小说| 王馨瑶露胸无遮挡在线观看| 最近中文字幕2019免费版| 人妻人人澡人人爽人人| 中文字幕人妻丝袜制服| 一本久久精品| 男女免费视频国产| 手机成人av网站|