• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymptotic Behavior of the Incompressible Navier-Stokes Fluid with Degree of Freedom in Porous Medium?

    2016-06-05 03:10:27HongxingZHAOZhenganYAO

    Hongxing ZHAO Zhengan YAO

    1 Introduction

    Homogenization is a mathematical tool that allows changing the scale in problems containing several characteristic scales.Typical examples of its utilization are finding effective models for composite materials,in optimal shape design,etc.Another important example,which we are interested in,is the fluid mechanics of the flow through porous medium.

    In porous medium,there are at least two length scales:A microscopic scale and a macroscopic scale.Quite often,the partial differential equations describing a physical phenomenon are posed at the microscopic level whereas only macroscopic quantities are of interest for the engineers or the physicists.Therefore,effective or homogenized equations should be derived from the microscopic ones by an asymptotic analysis.To this end,it is convenient to assume that the porous medium has a periodic structure.

    A number of known laws from the dynamics of fluids in porous media were derived using homogenization.The most well-known example is Darcy law,being the homogenized equation for one-phase flow through a rigid porous medium.Its formal derivation by two-scale expansion goes back to the classical paper by Sanchez-Palencia[1],Keller[2]and the classical book Bensoussan[3].It was rigorously derived by using oscillating functions by Tartar[4].In other cases of periodic porous media,we refer the readers to the papers by Allaire[5–7]and Mikelic[8–9].Other works can be seen in[10–11]and the references therein.

    Besides the Darcy law,Brinkman[12]introduced a new set of equations,which is called the Brinkman law,an intermediate between the Darcy and Stokes equations.The so-called Brinkman law is obtained from the Stokes equations by adding to the momentum equation a term proportional to the velocity(see[6]).

    In this paper,we are interested in obtaining the homogenized result for the Navier-Stokes fluid with degree of freedom in porous medium.This model problem was proposed by Lions[13],where he proved the existence and the regularity of the solutions.

    Before stating the system,let us recall the domain we consider.A porous medium is defined as the periodic repetition of an elementary cell of size εin a bounded domain Ω of Rnwith n=2,3.The solid part of the porous medium is also taken of size ε.The domain Ωεis then defined as the intersection of Ω with the fluid part.We consider an incompressible fluid governed by the Navier-Stokes equations with degree of freedom.So,we have the following equations:

    where uε,pε,wεare the unknown quantities velocity,pressure and degree of freedom of the fluid,respectively,f∈L2(Ω×(0,T))is the external force.

    The system is supplemented with the boundary condition and initial conditions as follows:

    and

    whereare bounded in L2(Ωε).

    Our aim here is to investigate the asymptotic behavior of uε,pε,wεas ε→ 0+under the assumptions mentioned above.The main difficulty here is how to pass the limit in the momentum equations.To overcome this obstacle,we need to revise the estimates on the inertia and extend the pressure to the whole domain.It is resolved by using the general Poincaré’s equality in porous medium(see[11]).

    The paper is organized as follows.In Section 2,we list some useful results and state the main results in this paper.In Section 3,we give priori estimates of the unknowns and extend them to the whole domain.In Section 4,we prove the main result in this paper.

    2 Notations,Preliminaries and Main Results

    The structure of a porous medium is standard(see[4–5,8]).To give a good understanding for the readers,we write it detail again.Let Ω be an open bounded subset of Rnwith n=2 or 3 and define Y=[0,1]nto be the unit open cube of Rn.Let Ysbe a closed smooth subset of Y with a strictly positive measure.The fluid part is then defined by Yf=Y ?Ys.Let θ =|Yf|.The constant θ is called the porosity of the porous medium.We assume that 0< θ<1.

    Repeating the domain Yfby Y-periodicity,we get the whole fluid domain Df,and we can write it as

    Then the solid part is defined by Ds=Rn?Df.It is easy to see that Dfis a connected domain,while Dsis formed by separated smooth subsets.In the sequel,we denote for all k∈Zn,Yk=Y+k and then Ykf=Yf+k.For all ε,we define the domain Ωεas the intersection of Ω with the fluid domain scaled by ε,namely,Ωε= Ω ∩ εDf.To get a smooth connected domain,we will not remove the solid part of the cells which intersect with the boundary of Ω.Now,the fluid domain can be also defined by

    Throughout this paper,we denote by Lp(0,T;Lq(X))the time-space Lebesgue spaces,where X would be Ω or Ωε.Ws,p(X)will be the classical Sobolev space with all functions,whose all derivatives up to order s belong to Lpand Hs(X)=Ws,2(X).(X)is the subset of W1,p(X)with trace 0 on X.We also denote by W?s,p?(X)the dual space o(X),where p?is the conjugate exponent of p.C will be constants that may differ from one place to another.Throughout this paper,we will use?·?Xto denote the modules for all vectors or matrices if there is no confusion.

    Due to the presence of the holes,the domain Ωεdepends on ε and hence to study the convergence of{uε,ρε,pε},we have to extend the functions defined in Ωεto the whole domain.This can be done in two different possible ways.

    definition 2.1(see[10])For any fixed ? ∈ L1(Ωε),we define

    as the null extension and

    as the mean value extension.

    The relation between the weak limits of both types of extensions is given by the following lemma.

    Lemma 2.1(see[10]) For all ωε∈ Lp(Ωε), p ≥ 1,the following two assertions are equivalent:

    A very important property of the porous medium is a variant of the Poincaré’s inequality.Due to the presence of the holes in Ωε,the Poincaré’s inequality is given by the following lemma.

    Lemma 2.2(see[11])Let 1≤p,q<∞and u∈(Ωε),then

    where C depends only on Yfand p,q satisfies

    (1)1≤p

    (2)p≥n,p≤q<∞.

    Especially,if p=q,we have the standard inequality

    We introduce the restriction operator by the following lemma.

    Lemma 2.3(see[4])There exists an operator Rεwith the following properties:

    (1)Rεis a bounded linear operator on(Ω)ranging in(Ωε),p ≥ 2;

    (2)Rε[?]= ?|Ωεprovides ? =0 in Ω ? Ωε;

    (3)divx? =0 in Ω implies divxRε[?]=0 in Ωε;

    (4)?Rε[?]?Lp(Ωε)+ ε??Rε[?]?Lp(Ωε) ≤ C(???Lp(Ω)+ ε????Lp(Ω)).

    In addition,we can find the restriction operator Rεsatisfies a compatibility relation with the extension operator introduced in definition 2.1,namely,

    Finally,we define the permeability matrix A.For 1 ≤ i≤ n,let(ωi,πi)∈ H1(Yf)×L2(Yf)/R be the unique solution of the following system:

    where ωi,πiare Y-periodic,eiis the standard basis of Rn.SetThen we get the cell problem

    whereare εY-periodic.

    Lemma 2.4(see[4,10])Letbe the solution to the cell problem and be extended to zero outside Ωε.Then the following estimates hold:

    for any 1≤q≤+∞,C only depends on q and Yf.

    Let us define

    The periodic lemma(see[1])shows that()jconverges weakly(or weakly?for p=+∞)to its average on εYfin Lp(Ωε)for 1 ≤ p ≤ +∞.It is easy to see that A is a symmetric positive defined matrix.The form of the permeability matrix has different form if Yshas different form.For more information about A,we refer the interested readers to[6]for detail.

    Now we introduce the definition of weak solution to the system(1.1)–(1.3).

    definition 2.2We shall say that a trio{uε,pε,wε}is a weak solution of(1.1)–(1.3),supplemented with the boundary and initial conditions(1.4)and(1.5)if and only if

    (1)uε∈ L∞(0,T;L2(Ωε))∩L2(0,T;H(Ωε)),and

    holds for any ? ∈([0,T)×)with div? =0.H(X)={u|u ∈(X),divu=0}.

    (2)wε∈ L∞(0,T;L2(Ωε))∩L2(Ωε×(0,T)),and the integral identity

    holds for any ψ ∈([0,T)×Ωε).

    The existence of weak solutions with finite energy is the following.

    Theorem 2.1(see[13])Under the above conditions and assumptions,for any fixed ε>0,there exists a global solution(uε,pε,wε)of the system(1.1)–(1.3)in the sense of definition 2.2.

    In this paper,we always assume that

    With all the preparation above,we are now in the position to state our main result in this paper.

    Theorem 2.2Let{uε,pε,wε}ε>0be a family of weak solutions to the system(1.1)–(1.3).We also assume that H is satisfied.Then,there exist three functions u,p,w such that

    where{u,p,w}satisfies the following homogenized system:

    where A is the so-called permeability matrix,which is defined by(2.1).Moreover,u,w satisfy the following initial conditions:

    and u|?Ω=0 for any t∈ (0,T).

    Remark 2.1The relationship of u and?p is often called the linear Darcy law.If we assume thatm(x,t)=M(x),we find that the degree of freedom w is determined only by M and κ for t is large enough.

    3 Uniform Bounds

    In this section,we collect all available bounds on the family{uε,pε,wε}.Let us begin with the basic estimates.

    3.1 Priori estimates for uεand wε

    In this subsection,we will obtain some estimates for the solutions to the system(1.1)–(1.3)which are independent of ε.

    Lemma 3.1Let{uε,wε}be the solution pair to(1.1)–(1.3).Under the conditions in Theorem 2.2,for ε∈ (0,1)small enough,the following estimates hold:

    where C does not depend on ε.

    Firstly,multiplying(1.2)by wεand integrating over Ωε×(0,t)for any t∈ [0,T],we have

    We have

    where C does not depend on ε.

    Secondly,multiplying the momentum equations by uεand integrating over Ωε× (0,t)for any t∈[0,T],we have

    By Lemma 2.2,the force term can be estimated by

    By Lemma 2.2 and(3.1),the last term can be estimated by

    for ε∈ (0,1)small enough.

    By the initial conditions,we immediately deduce

    where C does not depend on ε.By Lemma 2.2,we also have

    3.2 Extensions of uε,wε and pε

    Note that Ωεwill vary as ε tends to 0+.We need to extend the unknowns uε,wεand pεto the whole domain Ω.It is reasonable to take null extensions for uεand wεsince the velocity on the solid part is 0.That is,we can define

    We will still denote the extensions by uεand wεif there are no confusions.

    The extension of the pressure pεis different from uεand wε.The reason is that the pressure on the solid part will not disappear even if the velocity is 0 on it.To give the extension on pε,we define a function in the following way:

    forRεis defined by Lemma 2.3.

    Now,we give estimates on the right-hand side.We only consider the case n=3 because n=2 is much easier.

    By Lemma 2.2,Lemma 2.3 and estimations in(3.2),we have

    To the third term,we have

    By using Lemmas 2.2–2.3 and(3.2)again,we have

    The last term is estimated by

    If we choose the test function ? such that div? =0,we have

    Thus,F,being orthogonal to divergence free functions,is the gradient of some functions ?.A result from[14]shows that up to a constant,we have

    At this moment,we can say that we have extended pεto the whole domain.We denote the extension function by Pε.It remains to determine the expression of Pεon the solid part.Suppressing the t dependence,following the steps in[15],we choose a smooth test function ? in(3.5),with compact support in one of the solid parts Ys,and we have

    Next,we choose a smooth test function in(3.5),with compact support in the entire cell Yf.

    Integrating by parts,we have

    In fact,we have proved the following lemma.

    Lemma 3.2The extension of pε,denoted by,has the form

    Moreover,

    4 Proof of the Main Result

    In this section,we focus on the proof of Theorem 2.2.It contains three parts:

    (1)The convergence results in(2.3);

    (2)Recover the system(2.4);

    (3)Determine the initial and boundary conditions(2.5).

    Proof of Theorem 2.2Note that the velocity ε?2uεand the degree of freedom wεare both bounded in L2(Ω×(0,T)).By using the standard compactness theorem,we can extract subsequences,still denoted by itself,such that

    Due to(3.7),we can decomposeas following:

    wherei=1,2,···,6 is bounded uniformly in the corresponding space respectively.As above,we assume thatweakly in L2(Ω × (0,T))andweakly in the corresponding space respectively for i=2,3,···,6.LetWe have

    which implies

    Finally,by using the Ne?as’s inequality(see[16–17]),we obtain p ∈ L2(0,T;H1(Ω))and

    In the sequel,we derive the homogenized model of(1.1)–(1.3).Note that

    Let

    We have

    which implies divu=0 in Ω×(0,T).

    Let ? ∈(Ω ×(0,T)).Takingas a test function in the momentum equations,whereis defined in Lemma 2.4 and has been extended 0 on?Ω,we have

    Now we compute the limit of each term in above equality,

    By Lemma 2.2 and Lemma 2.4,we have

    To the last term,using Lemma 2.2 and Lemma 2.4,we have

    It is obvious that

    and

    as ε tends to zero.

    Finally,we consider the limit ofWe have

    Due to(3.2),we have

    as ε tends to zero.

    Integrating by parts in I1,we have

    Due to(3.3),we have

    By Lemma 2.4,we write I11in the following way:

    It is obvious

    and

    Combining(4.1)–(4.3),we obtain

    To pass the limit to(1.2),we take ? ∈(Ω×[0,T))as a test function and we have

    Note that

    Passing the limit,we obtain

    which implies that

    and w|t=0=w0(x).

    The expression of the degree of freedom in(4.6)can be written as

    where we assume that w vanishes on the boundary of Ω.

    At last,using the fact that ε?2uεis bounded in L2(Ω × (0,T))andis bounded in H?1(0,T;L2(Ω)),we conclude that ε?2uεis bounded in C([0,T];L2(Ω)).Then ε?2uεmake sense at t=0.Passing the limit,we have u|t=0=u0.For any t∈ (0,T),ε?1uεis bounded in(Ω).Then the trace of ε?2uεon ?Ω makes sense.Passing the limit,we obtain u|?Ω=0.

    Collecting all the information above,Theorem 2.2 is then proved.

    AcknowledgementsWe show our appreciations to the anonymous reviewers for their evaluating on this work.The authors also express their thanks to the editors for their sel fless help.

    [1]Sanchez-Palencia,E.,Nonhomogeneous media and vibration theory,Lecture Notes in Physics,Vol.127,Springer-Verlag,North Holland,Amsterdam,1979.

    [2]Keller,J.B.,Darcy’s law for flow in porous media and the two-space method,Nonlinear Partial differential Equations in Engineering and Applied Science,Proc.Conf.,Univ.Rhode Island,Kingston.RI,1979,Lect.Notes Pure Appl.Math.,Vol.54,Dekker,New York,1980,429–443.

    [3]Bensoussan,A.,Lions,J.L.and Papanicolaou,G.,Asymptotic analysis for periodic structures,Studies in Mathematics and Its Applications,Vol.5,Co.,Amsterdam,New York,North-Holland,1978.

    [4]Tartar,L.,Incompressible fluid flow in a porous medium convergence of the homogenization process,Appendix to Lecture Notes in Physics,Vol.127,Springer-Velag,Berlin,1980.

    [5]Allaire,G.,Homogenization of the Stokes flow in a connected porous medium,Asymptot.Anal.,2,1989,203–222.

    [6]Allaire,G.,Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I-II,Arch.Rat.Mech.Anal.,113,1991,209–259,261–298.

    [7]Allaire,G.,Homogenization of the Navier-Stokes equations with a slip boundary condition,Comm.Pure.Appl.Math.,44,1991,605–641.

    [8]Mikelic,A.,Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary,Ann.Mat.Pura et.appl.,158(4),1991,167–179.

    [9]Mikelic,A.and Aganovic,I.,Homogenization of stationary of miscible fluids in a domain boundary,SIAM J.Math.Anal.,19,1988,287–294.

    [10]Masmoudi,N.,Homogenization of the compressible Navier-Stokes equations in a porous medium,ESIAM Control Optim.Calc.Var.,8,2002,885–906.

    [11]Zhao,H.and Zheng-An,Y.,Homogenization of the time discretized compressible Navier-Stokes system,Nonlinear Analysis,75,2012,2486–2498.

    [12]Brinkman,H.C.,A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles,Appl.Sci.Res.,A1,1947,27–34.

    [13]Lions,P.L.,Mathematical Topics in Fluid Mechanics,Vol.1,The Clarendon Press Oxford University Press,New York,1996.

    [14]Lipton,R.and Avellanda,M.,Darcy’s law for slow viscous flow past a stationary array of bubbles,Proc.Roy.Soc.Edinbergh Sect.A,114(1–2),1990,71–79.

    [15]Hornung,U.,Homogenization and porous media,Interdisciplinary Applied Mathematics Series,Springer-Verlag,New York,1997.

    [16]Temam,R.,Navier-Stokes Equations,North Holland,Amsterdam,1979.

    [17]Ne?as,J.,Sur les normes équivalentes dans(Ω)et sur la coercivité des formes formellement positives,Séminaire Equations aux Dérivées partielles,les presses de l’Université de Montréal,1966,102–128.

    日本黄色视频三级网站网址| 欧美高清成人免费视频www| 亚洲在线自拍视频| 国产高清视频在线播放一区| 亚洲专区中文字幕在线| 99热6这里只有精品| 精品国产亚洲在线| 久久午夜福利片| 亚洲国产精品久久男人天堂| av天堂在线播放| www.色视频.com| 色视频www国产| 91字幕亚洲| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 亚洲人成电影免费在线| 国产免费一级a男人的天堂| 男女视频在线观看网站免费| 久久久久国产精品人妻aⅴ院| 成人特级av手机在线观看| 看免费av毛片| 欧美一区二区国产精品久久精品| 国产综合懂色| 国产91精品成人一区二区三区| 99久久成人亚洲精品观看| 91av网一区二区| 久久人妻av系列| 中文字幕人成人乱码亚洲影| 特大巨黑吊av在线直播| 人人妻人人澡欧美一区二区| 一本精品99久久精品77| 少妇的逼好多水| 国产乱人伦免费视频| 精品午夜福利视频在线观看一区| 男女下面进入的视频免费午夜| 久久国产精品人妻蜜桃| 深爱激情五月婷婷| 老司机深夜福利视频在线观看| 国产精品女同一区二区软件 | 亚洲,欧美精品.| 琪琪午夜伦伦电影理论片6080| 久久久久精品国产欧美久久久| 免费在线观看影片大全网站| xxxwww97欧美| 亚洲成人中文字幕在线播放| 99久久精品一区二区三区| 最近在线观看免费完整版| 国产一区二区激情短视频| 小蜜桃在线观看免费完整版高清| 国产欧美日韩一区二区精品| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av成人不卡在线观看播放网| 免费人成在线观看视频色| 国产精品久久视频播放| 久久99热这里只有精品18| 天天一区二区日本电影三级| 三级毛片av免费| 国产亚洲欧美在线一区二区| 国产精品一区二区性色av| 九色国产91popny在线| 少妇人妻精品综合一区二区 | 18禁黄网站禁片午夜丰满| 两个人的视频大全免费| 国产在线精品亚洲第一网站| 在线免费观看不下载黄p国产 | 好看av亚洲va欧美ⅴa在| 亚洲一区高清亚洲精品| 69av精品久久久久久| 久久久久久久久久黄片| 精品久久久久久久人妻蜜臀av| 国产av一区在线观看免费| 给我免费播放毛片高清在线观看| 欧美性猛交╳xxx乱大交人| 老司机深夜福利视频在线观看| 蜜桃亚洲精品一区二区三区| 久久久久久大精品| 精华霜和精华液先用哪个| 欧美最新免费一区二区三区 | 男女下面进入的视频免费午夜| 亚洲经典国产精华液单 | 国产国拍精品亚洲av在线观看| 亚洲美女黄片视频| 国内精品久久久久久久电影| 婷婷丁香在线五月| 十八禁人妻一区二区| 欧美性猛交╳xxx乱大交人| 国产精品亚洲一级av第二区| 亚洲欧美日韩高清在线视频| 婷婷丁香在线五月| 国产成人aa在线观看| 午夜福利免费观看在线| av中文乱码字幕在线| 白带黄色成豆腐渣| 日本一本二区三区精品| 欧美中文日本在线观看视频| 成熟少妇高潮喷水视频| 亚洲av二区三区四区| 婷婷亚洲欧美| 国产精品爽爽va在线观看网站| 真实男女啪啪啪动态图| 夜夜爽天天搞| 又粗又爽又猛毛片免费看| 日日摸夜夜添夜夜添av毛片 | 天堂av国产一区二区熟女人妻| 简卡轻食公司| 超碰av人人做人人爽久久| 中文字幕人成人乱码亚洲影| 动漫黄色视频在线观看| 国产精品国产高清国产av| 中文资源天堂在线| 国产在视频线在精品| 搡老妇女老女人老熟妇| 女生性感内裤真人,穿戴方法视频| 午夜福利欧美成人| 成年女人看的毛片在线观看| 欧美高清成人免费视频www| 精品国内亚洲2022精品成人| 国产熟女xx| 欧美日韩福利视频一区二区| 非洲黑人性xxxx精品又粗又长| 免费看日本二区| 九色国产91popny在线| 人人妻人人看人人澡| 在线观看免费视频日本深夜| 999久久久精品免费观看国产| 免费看a级黄色片| 久久亚洲精品不卡| 精品乱码久久久久久99久播| 岛国在线免费视频观看| 美女xxoo啪啪120秒动态图 | 99热这里只有精品一区| 成人一区二区视频在线观看| 欧美乱色亚洲激情| 亚洲电影在线观看av| 国产精品久久久久久亚洲av鲁大| 五月伊人婷婷丁香| 十八禁网站免费在线| 哪里可以看免费的av片| 99国产综合亚洲精品| 国产伦人伦偷精品视频| 久久性视频一级片| 成人性生交大片免费视频hd| 首页视频小说图片口味搜索| 观看免费一级毛片| 看片在线看免费视频| 国产精品乱码一区二三区的特点| 欧美精品啪啪一区二区三区| 久久久久久九九精品二区国产| 久久这里只有精品中国| 国产精品爽爽va在线观看网站| 亚洲国产色片| 最新在线观看一区二区三区| 亚洲男人的天堂狠狠| 丁香六月欧美| 免费av不卡在线播放| 2021天堂中文幕一二区在线观| 高清日韩中文字幕在线| 免费大片18禁| 久久性视频一级片| 亚洲av电影不卡..在线观看| 成人一区二区视频在线观看| 成人特级黄色片久久久久久久| 91av网一区二区| a级毛片a级免费在线| 真人一进一出gif抽搐免费| 中文字幕久久专区| 午夜影院日韩av| 久久天躁狠狠躁夜夜2o2o| 淫妇啪啪啪对白视频| 又粗又爽又猛毛片免费看| a级毛片a级免费在线| 免费黄网站久久成人精品 | 三级毛片av免费| 少妇熟女aⅴ在线视频| 他把我摸到了高潮在线观看| 99久久精品国产亚洲精品| 少妇高潮的动态图| 成年女人永久免费观看视频| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 在线观看av片永久免费下载| 欧美成人a在线观看| 欧美最黄视频在线播放免费| 久久婷婷人人爽人人干人人爱| 欧美日韩福利视频一区二区| 又紧又爽又黄一区二区| 免费观看人在逋| 最近最新中文字幕大全电影3| 91字幕亚洲| 久久亚洲真实| 亚洲午夜理论影院| 亚洲av美国av| 免费黄网站久久成人精品 | 亚洲第一欧美日韩一区二区三区| 91久久精品电影网| 国产高清有码在线观看视频| 亚洲中文日韩欧美视频| 亚洲自偷自拍三级| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 国产黄色小视频在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久午夜福利片| a级一级毛片免费在线观看| 在线观看一区二区三区| x7x7x7水蜜桃| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 色综合欧美亚洲国产小说| 我的老师免费观看完整版| 免费观看人在逋| 成人美女网站在线观看视频| 搡老岳熟女国产| 国产亚洲精品久久久com| 国产探花极品一区二区| 天堂√8在线中文| 午夜福利成人在线免费观看| 午夜免费成人在线视频| 国产真实乱freesex| 伦理电影大哥的女人| 亚洲国产欧美人成| 高清在线国产一区| 精品久久久久久,| 午夜精品在线福利| 精品福利观看| 美女xxoo啪啪120秒动态图 | 欧美激情在线99| 国产欧美日韩精品一区二区| 草草在线视频免费看| 99热6这里只有精品| 在线观看免费视频日本深夜| 51午夜福利影视在线观看| 国产成人a区在线观看| 亚洲精品一区av在线观看| 国产亚洲av嫩草精品影院| 国产精品亚洲美女久久久| 99热只有精品国产| 高清在线国产一区| 色噜噜av男人的天堂激情| 欧美xxxx性猛交bbbb| 国产精品98久久久久久宅男小说| 欧美性猛交黑人性爽| 直男gayav资源| 神马国产精品三级电影在线观看| 男人和女人高潮做爰伦理| 一个人看视频在线观看www免费| 久久人人爽人人爽人人片va | 国产野战对白在线观看| 久99久视频精品免费| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 人妻久久中文字幕网| 日韩欧美国产一区二区入口| 国产人妻一区二区三区在| 国产乱人伦免费视频| 久久久精品欧美日韩精品| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 国产视频内射| ponron亚洲| 午夜老司机福利剧场| 91九色精品人成在线观看| 亚洲熟妇中文字幕五十中出| 国产色爽女视频免费观看| 精品人妻视频免费看| 精品一区二区三区视频在线| 国产乱人伦免费视频| 偷拍熟女少妇极品色| 久久久久久久亚洲中文字幕 | 国产精品亚洲av一区麻豆| 成人av一区二区三区在线看| 久久九九热精品免费| 伦理电影大哥的女人| 极品教师在线免费播放| 99久久99久久久精品蜜桃| 久久久久久久久久黄片| 中文在线观看免费www的网站| 日韩成人在线观看一区二区三区| 精品无人区乱码1区二区| 国产一区二区三区视频了| 欧美成人a在线观看| 亚洲一区二区三区不卡视频| 乱人视频在线观看| 欧美高清成人免费视频www| 国产精品一区二区三区四区久久| 国产在视频线在精品| 3wmmmm亚洲av在线观看| 首页视频小说图片口味搜索| 日本免费一区二区三区高清不卡| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 欧美成人一区二区免费高清观看| 国产精品一区二区三区四区免费观看 | 日日夜夜操网爽| 国产精品,欧美在线| 色综合欧美亚洲国产小说| www.熟女人妻精品国产| 五月伊人婷婷丁香| 中出人妻视频一区二区| 成人三级黄色视频| 国产视频内射| av在线观看视频网站免费| 亚洲欧美日韩高清专用| 在线观看66精品国产| 免费观看人在逋| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 乱码一卡2卡4卡精品| 18禁黄网站禁片免费观看直播| 亚洲人与动物交配视频| 中文字幕av成人在线电影| 亚洲最大成人手机在线| 日韩中文字幕欧美一区二区| 一个人观看的视频www高清免费观看| 亚洲,欧美,日韩| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添小说| 国产精品,欧美在线| 别揉我奶头 嗯啊视频| 3wmmmm亚洲av在线观看| 中文字幕免费在线视频6| 久久国产乱子免费精品| 国产精品久久久久久久久免 | 午夜福利在线观看吧| 少妇熟女aⅴ在线视频| 欧美一区二区亚洲| 韩国av一区二区三区四区| 90打野战视频偷拍视频| 9191精品国产免费久久| 中文字幕熟女人妻在线| 成人欧美大片| 色综合站精品国产| a级一级毛片免费在线观看| АⅤ资源中文在线天堂| 丁香六月欧美| 综合色av麻豆| 人人妻人人看人人澡| 色哟哟·www| 淫妇啪啪啪对白视频| 黄片小视频在线播放| 日韩欧美国产在线观看| 99热只有精品国产| 人妻丰满熟妇av一区二区三区| 91麻豆精品激情在线观看国产| 亚洲精品乱码久久久v下载方式| 搡老岳熟女国产| 又爽又黄无遮挡网站| av天堂在线播放| 精品无人区乱码1区二区| 久久热精品热| 欧美xxxx性猛交bbbb| 日本免费一区二区三区高清不卡| 国产人妻一区二区三区在| 免费在线观看影片大全网站| 精品人妻熟女av久视频| 精品人妻偷拍中文字幕| 很黄的视频免费| 神马国产精品三级电影在线观看| 美女高潮的动态| 国产野战对白在线观看| 麻豆av噜噜一区二区三区| 人人妻人人澡欧美一区二区| 免费看日本二区| 丁香欧美五月| 国产成人啪精品午夜网站| av欧美777| 老司机福利观看| 欧美bdsm另类| 蜜桃久久精品国产亚洲av| eeuss影院久久| 欧美另类亚洲清纯唯美| 少妇丰满av| 一级av片app| 18禁黄网站禁片免费观看直播| 如何舔出高潮| 国产蜜桃级精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久精品电影| 亚洲国产精品久久男人天堂| 免费av毛片视频| 天堂影院成人在线观看| 精品午夜福利在线看| 99热这里只有是精品50| 天堂√8在线中文| 国产在线精品亚洲第一网站| 亚洲av.av天堂| 级片在线观看| 深夜精品福利| 精品久久久久久久久久免费视频| 少妇被粗大猛烈的视频| aaaaa片日本免费| 亚洲成人久久性| 51午夜福利影视在线观看| 久久久精品大字幕| 国产黄a三级三级三级人| 国产色爽女视频免费观看| 日韩欧美三级三区| 99久久精品一区二区三区| 欧美性猛交黑人性爽| 亚洲国产日韩欧美精品在线观看| 日日干狠狠操夜夜爽| 看十八女毛片水多多多| 午夜福利视频1000在线观看| 人妻夜夜爽99麻豆av| 国产麻豆成人av免费视频| 国产精品久久久久久亚洲av鲁大| 老司机午夜福利在线观看视频| 国产一区二区在线观看日韩| 亚洲天堂国产精品一区在线| 变态另类丝袜制服| 国产精品人妻久久久久久| 国产精品自产拍在线观看55亚洲| 黄色配什么色好看| 18美女黄网站色大片免费观看| 在线观看免费视频日本深夜| 国产真实乱freesex| 嫩草影视91久久| 亚洲欧美激情综合另类| 日韩中字成人| 久久久久精品国产欧美久久久| 88av欧美| 18+在线观看网站| 俄罗斯特黄特色一大片| 精品福利观看| 男人和女人高潮做爰伦理| 中文字幕av成人在线电影| 国产亚洲欧美98| 久久精品国产自在天天线| 在线播放国产精品三级| 美女高潮喷水抽搐中文字幕| 久久久久久久久中文| 日本免费a在线| 人妻制服诱惑在线中文字幕| 色精品久久人妻99蜜桃| 免费在线观看影片大全网站| 国产亚洲欧美98| 少妇丰满av| 夜夜看夜夜爽夜夜摸| 性插视频无遮挡在线免费观看| 九九在线视频观看精品| 欧美乱妇无乱码| 三级国产精品欧美在线观看| 亚洲成a人片在线一区二区| 婷婷色综合大香蕉| 亚洲国产精品久久男人天堂| 一二三四社区在线视频社区8| 中文字幕高清在线视频| 国产精品自产拍在线观看55亚洲| 成年版毛片免费区| 青草久久国产| 午夜免费成人在线视频| 欧美极品一区二区三区四区| 国产精品一及| 人人妻人人看人人澡| 精品免费久久久久久久清纯| 久久香蕉精品热| 能在线免费观看的黄片| 亚洲欧美日韩无卡精品| 欧洲精品卡2卡3卡4卡5卡区| 哪里可以看免费的av片| 色综合婷婷激情| 国产黄色小视频在线观看| 免费av不卡在线播放| 亚洲欧美日韩高清专用| 国产av在哪里看| 亚洲欧美精品综合久久99| 久久久久久久久大av| 窝窝影院91人妻| 99国产综合亚洲精品| 免费无遮挡裸体视频| 男插女下体视频免费在线播放| 好男人电影高清在线观看| 蜜桃亚洲精品一区二区三区| 久久久久久久久久黄片| 免费av观看视频| 丝袜美腿在线中文| 亚洲一区二区三区色噜噜| 欧美色欧美亚洲另类二区| av欧美777| 国产色婷婷99| 国产黄色小视频在线观看| 女同久久另类99精品国产91| 午夜激情福利司机影院| 一级a爱片免费观看的视频| www.熟女人妻精品国产| 成年女人永久免费观看视频| 日韩精品中文字幕看吧| 亚洲五月婷婷丁香| 欧美+亚洲+日韩+国产| 欧美极品一区二区三区四区| 亚洲av成人av| 97热精品久久久久久| 国产精品一区二区性色av| 桃色一区二区三区在线观看| 香蕉av资源在线| 看黄色毛片网站| 亚洲国产精品成人综合色| 三级国产精品欧美在线观看| 免费看日本二区| 精品乱码久久久久久99久播| 日日摸夜夜添夜夜添av毛片 | 中文字幕免费在线视频6| 天堂动漫精品| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看的影片在线观看| 亚洲精品一区av在线观看| 一级av片app| 国产精品免费一区二区三区在线| 少妇的逼水好多| 亚洲av熟女| 人妻夜夜爽99麻豆av| 男人狂女人下面高潮的视频| 美女高潮喷水抽搐中文字幕| 久久久久久久久久成人| 久久性视频一级片| 精品久久久久久,| 久久人妻av系列| 俄罗斯特黄特色一大片| 午夜两性在线视频| 桃色一区二区三区在线观看| 亚洲,欧美精品.| 91狼人影院| 桃红色精品国产亚洲av| 神马国产精品三级电影在线观看| 国产av一区在线观看免费| 十八禁网站免费在线| 伊人久久精品亚洲午夜| 日本一二三区视频观看| 精品人妻1区二区| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院精品99| 亚洲精品一卡2卡三卡4卡5卡| 精品熟女少妇八av免费久了| 亚洲片人在线观看| 小蜜桃在线观看免费完整版高清| 久久天躁狠狠躁夜夜2o2o| 日韩欧美国产一区二区入口| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院精品99| 熟女电影av网| 欧美黄色淫秽网站| 99热只有精品国产| 天天一区二区日本电影三级| av女优亚洲男人天堂| 在线观看一区二区三区| 波多野结衣巨乳人妻| 一区二区三区免费毛片| 人人妻人人澡欧美一区二区| 国产精品一区二区免费欧美| 我要搜黄色片| 国产免费一级a男人的天堂| 人妻久久中文字幕网| 国产精品三级大全| 成年版毛片免费区| x7x7x7水蜜桃| 97超视频在线观看视频| 国产成+人综合+亚洲专区| 嫁个100分男人电影在线观看| 国产av在哪里看| 国产 一区 欧美 日韩| 极品教师在线免费播放| 欧美日韩黄片免| 成年女人毛片免费观看观看9| 深夜精品福利| 国产毛片a区久久久久| 国产麻豆成人av免费视频| 他把我摸到了高潮在线观看| 欧美日韩国产亚洲二区| 日韩亚洲欧美综合| 精品国产三级普通话版| netflix在线观看网站| 国产精华一区二区三区| 成人三级黄色视频| 国产欧美日韩精品一区二区| 久久午夜福利片| 午夜福利18| 免费在线观看日本一区| 91久久精品国产一区二区成人| 97碰自拍视频| av在线老鸭窝| 69av精品久久久久久| 国产乱人视频| 黄色丝袜av网址大全| 在线观看美女被高潮喷水网站 | 精品久久久久久久末码| 国产三级在线视频| 看免费av毛片| 久久天躁狠狠躁夜夜2o2o| 午夜影院日韩av| 看免费av毛片| 欧美xxxx黑人xx丫x性爽| av在线观看视频网站免费| 午夜精品一区二区三区免费看| 免费人成视频x8x8入口观看| 婷婷精品国产亚洲av在线| 成人美女网站在线观看视频| 99久久无色码亚洲精品果冻| 欧美+亚洲+日韩+国产| 国产色爽女视频免费观看| 欧美zozozo另类| 99国产极品粉嫩在线观看| 久久久精品大字幕| 日本 欧美在线| 精品久久久久久,| 99久久精品一区二区三区| 十八禁人妻一区二区| 3wmmmm亚洲av在线观看| 国产精品人妻久久久久久| 在现免费观看毛片| 亚洲片人在线观看| 国产伦一二天堂av在线观看| 好男人在线观看高清免费视频| 午夜福利欧美成人|