• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Homogenization of Elliptic Problems with Quadratic Growth and Nonhomogenous Robin Conditions in Perforated Domains

    2016-06-05 03:10:22ImenCHOURABIPatriziaDONATO

    Imen CHOURABIPatrizia DONATO

    1 Introduction

    In this paper,we study the homogenization of a class of a nonlinear elliptic problems containing a nonlinear term depending on the solution uεand on its gradient?uεwith quadratic growth.The problem is posed in the perforated domain= ΩTεobtained by removing from an open bounded set Ω of RN(N ≥ 2)a closed set Tεrepresenting a set of ε-periodic holes of size ε.We prescribe a Dirichlet condition on the exterior boundaryand a nonhomogeneous nonlinear Robin condition on the boundaryof the holes.More precisely,we study the asymptotic behavior,as ε tends to zero,of the bounded solution uεof the following problem:

    where λ ≥ 0 and ν is the unit external normal vector with respect to

    The function f belongs to Lm(Ω)with m>and ρ(x)= ρ??,where ρ is a Y-periodic function that belongs to L∞(?T),Y and T being the reference cell and the reference hole,respectively.

    We assume thatis a bounded,uniformly elliptic,Y-periodic matrix field and that the function bε(x,t,ξ)is a Carathéodory function on Ω × R × RNwith quadratic growth with respect to the third variable.

    We also suppose that gεis defined by

    where g is a Y-periodic function in Lr(?T)with r>N ? 1 and M?T(g)denotes its mean over?T.

    Let us mention that this type of equations appears in calculus of variations and stochastic control and the nonlinear term b(y,t,ξ)appears in the Euler equation of certain functionals.

    The homogenization of this kind of equation with a linear matrix field Aε(x)involving a term bε(x,t,ξ)continuous in x variables and with quadratic growth with respect to ξ has been studied in[4–5]for a fixed domain and in[19]for perforated domains with Neumann boundary condition and f=0.In[20]the case where bε(x,t,ξ)is singular in t in a fixed domain has been studied.

    The homogenization result of problem(1.1)is stated in Theorem 2.1.The main feature of this result is that the expression of the limit nonlinearity b0depends on the average of the nonhomogeneous boundary function g.This is due to the fact that,as proved in[10],the corrector results for the associated linear problem are different in the two cases M?T(g)0 and M?T(g)=0.

    More precisely,according to these two cases,we derive two different limit problems for the L2-limit u0of the zero extension of uε:

    (1)If M?T(g)0 or g≡ 0,the function u0is a solution of the problem

    where θ=and A0(t)is the homogenized matrix introduced in[1](see also[2–3,8])for quasilinear problems with Neumann conditions in perforated domains and the constant cγis defined by

    The function b0is given by

    where{Cε(·,s)}is the usual corrector.

    (2)If M?T(g)=0(with g?0)and A is independent of t,i.e.,A(y,t)=A(y)in Y,the function u0is a solution of the problem

    where A0is the now classical constant homogenized matrix introduced in[18].The function b0is defined by

    where Cεis the usual corrector(independent of t)and the functionis the solution of the related problem posed in the reference cell with a nonhomogeneous Neumann data g.

    As in[4–5,19–20],the main tool in the homogenization process is a corrector result.To do that,we construct a suitable associated linear problem.The homogenization and the corrector results for this linear problem have been already proved in[10].We use here the result about correctorsproved therein and we show that the corrector for the linear problem is also a corrector for our nonlinear problem in both cases M?T(g)?0 and M?T(g)=0.

    Here,the main difficulty in particular,when passing to the limit in the nonlinear problem,is due to the presence of the holes,and the solutions converge neither strongly in L2(Ω)nor almost everywhere in Ω.To overcome this difficulty,we do not use the extension operators as done in[19]for the case of homogeneous Neumann condition.We apply here the periodic unfolding method introduced in[12](see[13]for more details)and extended to perforated domains in[16–17](see also[11]for more general situations).Using the fact that the unfolding operatorfor perforated domains transforms any function defined oninto a function defined on a fixed domain,we prove a new technical convergence result involving nonlinear functions,stated in Theorem 4.1,which provides suitable weak convergence results.This technical tool allows to pass to the limit and to prove the corrector result simplifying the proofs and the presentation,even in the case studied in[19].

    This paper is organized as follows:In Section 2 we present the problem and state the main results.In Section 3 we recall some preliminary results.Section 4 is devoted to the proof of the homogenization result.

    2 Position of the Problem and Statement of the Main Results

    In order to state the main results of this paper,we recall some general notations introduced in[11](see also[12]for the unfolding periodic method in perforated domains).

    We denote by

    Ω an open bounded set of RN(N ≥2)with?Ω being Lipschitz continuous;

    Y=]0,l1[× ···×]0,lN[the reference cell,where li>0 for all 1 ≤ i≤ N;

    T,the reference hole,a compact set contained in Y and Y?=YT the perforated reference cell,with?T Lipschitz-continuous with a finite number of connected components;

    Tε=the closed set of RNrepresenting the holes,where

    G=where b=(b1,···,bN)is a basis in RN;

    = ΩTεthe perforated domain;

    =interiorandthe corresponding perforated set;

    Λε=and=the corresponding perforated set.

    As in[8,17],we decompose(see Figure 1)the boundary of the perforated domainas follows:

    In the sequel,we also denote by

    Figure 1 The perforated domainand the reference cell Y

    χEthe characteristic function of a subset E of RN;

    |E|the Lebesgue measure of a Lebesgue-measurable subset E of RNand|?E|the(N ? 1)-Hausdor ffmeasure in RNof its boundary?E;

    MY?(v)=v(y)dy the average of any function v∈L1(Y?);

    M?T(v)=v(y)dσythe average of any function v ∈ L1(?T);

    or(v)~the extension by zero on Ω of any function defined on;

    ν the unit external normal vector with respect to YT or;

    M(α,β,Ω)the set of matrix fields A=(aij)1≤i,j≤N∈ (L∞(Ω))such that

    for x a.e in Ω,any λ ∈ RNand α,β ∈ R,with 0< α < β;

    θ=the proportion of material;

    c different strictly positive constants independent of ε.

    Let us recall that

    as ε tends to zero.

    Our purpose is to study the asymptotic behavior,as ε tends to zero,of the following problem:

    where we suppose that

    (H1)λ≥0.

    (H2)0 ≤ f ∈ Lm(Ω)with m>,f?0.

    (H3)The real matrix field A:(y,t) ∈ Y ×R??→ A(y,t)={aij(y,t)}i,j=1,···,N∈ RN2satisfies the following conditions:

    (H4)The function h is an increasing and continuously differentiable function such that for some positive constant C and an exponent q,one has

    (H5)The function ρ is positive and Y-periodic,and it belongs to L∞(?T).

    (H6)The function g is Y-periodic and belongs to Ls(?T),where s>N ? 1.

    (H7)The function b:(y,t,ξ) ∈ Y × R × RN??→ b(y,t,ξ) ∈ R satisfies the following conditions:

    For almost every x in Ω,every t in R and every ξ in RN,we set

    and

    We introduce now the space

    equipped with the norm

    and the variational formulation of problem(2.2)

    The existence of a solution to problem(2.5),under the assumptions(H1)–(H7),has been proved in[9,Theorem 6.1]together with the boundedness of the solution and some uniform estimates for the sequence{uε}ε.More precisely,it was proved that there exists a constant c such that

    where c is independent of ε and depends only on α,m,s and the Sobolev embedding constant,with the numbers α,m and s being defined by(H2)–(H3)and(H6),respectively.

    We recall that(see[1–2,8,10])for every fixed t ∈ R,the homogenized matrix A0(t)is defined by

    where

    and for every t∈R and λ ∈RN,the function(·,t)is the solution to the problem

    We also define for any ε and every fixed t∈ R,the corrector matrix Cε(·,t)=given by(see[10])

    whereis the canonical basis of RN.

    We recall below its main properties.

    Proposition 2.1(see[10])Under the assumption(H3),let uεbe the solution of problem(2.2).Then,there exists a constant c1,independent of ε,such that for some r>2,

    Moreover,the functions Cε(·,uε)are equi-integrable and

    We can now state the main result of this paper.

    Theorem 2.1Under the assumptions(H1)–(H7),let uεbe the solution of problem(2.2).

    Then,there exists a subsequence{uε}(still denoted by ε),a function u0∈(Ω)∩ L∞(Ω)and a Carathéodory function b0:R × RN→ R such that

    where θ is defined by(2.1).

    The homogenized problems,depending on the mean of g,are the following ones:

    (1)If M?T(g)0 or g≡0,the function u0is a solution of the problem

    where the homogenized matrix A0(t)is given by(2.7)for every fixed t∈ R,and the constant cγis defined by

    The function b0is given by

    where the corrector matrix fields{Cε(·,s)}are defined by(2.10).Moreover,

    (2)If M?T(g)=0(with g?0)and A is independent of t,i.e.,A(y,t)=A(y)in Y,the function u0is a solution of the problem

    where the constant homogenized matrix A0is given by(2.7)(independent of t).

    The function b0is defined by

    where Cε(·)is defined by(2.10)(independent of t)and the functionis the solution of the following problem:

    Moreover,

    This result will be proved in Section 4.

    Remark 2.1Let us point out the main novelty in this result.It concerns the fact that the presence of gεin the nonhomogeneus boundary condition of problem(2.2)gives rise to two different limit nonlinearities b0in the problem,according to the case M?T(g)0 or M?T(g)=0.

    This is due to the fact that the corrector results for the associated linear problem are different in the two cases,as recalled in Theorem 3.2.

    We end this section by stating the following result,which shows that Cεis a corrector for the nonlinear problem(2.5).

    Corollary 2.1Under the assumptions of Theorem 2.1 and the notation therein,we have the following assertions:

    (1)If M?T(g)0 or g=0,then

    (2)If M?T(g)=0 and A is independent of t,i.e.,A(y,t)=A(t)in Y,then

    ProofThis corollary is a straightforward consequence of Theorem 3.4 and Theorem 4.1 proved in Sections 3 and 4,respectively.

    3 Some Preliminary Results

    In this section,we recall some homogenization and corrector results proved in[10].

    To do that,we introduce as in[10]a linear operator Lεfrom H?1(Ω)to(Vε)?verifying the following assumption:

    (H8)If{ψε}is a sequence such that

    then

    Remark 3.1Let us point out that there exist many operators Lεverifying the assumption(H8),which can be constructed in different ways.

    For instance,the assumption(H8)is satisfied for Lε=(see Remark 4.3 of[10]),whereis the adjoint of the linear extension operators Pεintroduced by Cioranescu D.and Saint Jean Paulin J.in[18].Let us recall that for any sequence{vε}εin Vε,we have that

    Another(different)operator can be defined by using the periodic unfolding method as done in[21]when studying the correctors for the wave equation in perforated domains via the above method.We refer to[10,Remark 2.3]for more details and comments.

    We recall first the following homogenization result.

    Theorem 3.1(see[10]) Under the assumptions(H1)–(H6)and(H8),let Z be given in H?1(Ω)and let vεbe the unique solution of problem

    where the sequence{zε}εbelongs to Vεand Aε,ρεand gεare given by(2.3)and(2.4).

    Suppose that the sequence{zε}εsatisfies(3.1),that is

    with z0∈(Ω)and θ given by(2.1).Then,as ε tends to 0,we have the following convergences:

    The function v0is the unique solution of the problem

    where the homogenized matrix A0(t)and the constant cγare defined by(2.7)and(2.15)respectively.

    Let us recall now the results concerning the convergence of the energies and the corrector,proved in[10]where we distinguish the two cases given in(2.4).

    Theorem 3.2(see[10])Under the assumptions of Theorem 3.1,let A0be defined by(2.7)anddefined by(2.20).Let vεand v0be the solutions of problems(3.6)and(3.4),respectively.

    (1)If M?T(g)?0 or g≡0,then

    Moreover,if{Cε(·,zε)}is defined by(2.10),we have

    (2)If M?T(g)=0(with g0)and A is independent of t,i.e.,A(y,t)=A(y)in Y,then

    Moreover,if Cε(·)is defined by(2.10)(independent of t),we have

    The proof of the corrector result given in[10]is based on the proposition below,which will be needed in the sequel.

    Proposition 3.1(see[10])Under the assumptions of Theorem 3.1 and with the notations therein,we have the following assertions:

    (1)If M?T(g)0 or g≡0,then

    (2)If M?T(g)=0(with g0)and A is independent of t,i.e.,A(y,t)=A(t)in Y,then

    In both cases,c=C(α,β)is a constant independent of Φ.

    We also recall the following property.

    Lemma 3.1(see[5])Let{gε}εbe a sequence of functions which converges weakly in L1(Ω)to a function g0and let{tε}εbe a sequence of equibounded and measurable functions,which converges almost pointwise in Ω to a function t0.Then

    We end this section by stating the following result.

    Proposition 3.2Under assumption(H7),let{bε}εbe the sequence of the Carathéodory functions given by(2.3).Then,the function b0given by(2.16)or(2.19)satisfies(H7)and for any φ in((Ω))Nand ?0in L∞(Ω),one has the following assertions:

    (1)If M?T(g)=0 or g=0,then

    where{Cε(·,zε)}is defined by(2.10).

    (2)If M?T(g)=0 and A is independent of t,i.e.,A(y,t)=A(y)in Y,

    where Cε(·)is defined by(2.10)(independent of t)and the functionis the solution of problem(2.20).

    ProofThe convergence(3.7)is a simple consequence of Theorem 2.6 of[19](see also[5]for the case of a fixed domain)and the convergence(3.8)can be deduced by the same arguments as those used to prove(3.7).

    4 Proof of the Main Result

    4.1 A technical result

    In this section,we give a preliminary tool which will play an essential role in proving the corrector result stated in Theorem 4.2,and seems interesting by itself.

    To prove it,we use the periodic unfolding method,introduced in[12](see[13]for a general presentation and detailed proofs)and extended to perforated domains in[16–17](see[11]for more general situations and a comprehensive presentation).

    Theorem 4.1Let{ψε}be a sequence satisfying(3.1).

    (1)The following convergences hold:

    (2)Let p ∈ [1,+∞)and{hε}be a sequence in Lp(Ω)such that

    for some h0in Lp(Ω).Suppose further that F:R → R is a continuous function such that F(ψε)∈ Lq(Ω),with

    If

    for some positive constant c independent of ε,then

    Moreover,if

    then

    In particular,

    weakly in Lp?(Ω)if p>1 and weakly ? in L∞(Ω)if p=1.

    ProofConvergences(4.1)follow from Corollary 1.13,Corollary 1.19 and Theorem 2.13 of[11].

    In order to show(4.5),let us first recall(see[11])that for any Lebesgue-measurable function φ on,the unfolding operatoris defined as

    In view of Proposition 1.14 of[11],the assumption(4.2)implies that there exists some functionin Lp(Ω ×Y?)such that

    with

    Using again Theorem 2.13 of[11],we derive that

    Then,there exists a subsequence(still denoted by{ε})such that

    so that in view of the continuity of F,we get(for a subsequence)

    Moreover,using the properties of Tε(see[11,Proposition 1.12 and Corollary 1.13]),we deduce that

    On the other hand,if p>1,thanks to(4.11),the H¨older inequality provides the equintegrability ofThen,using(4.4)we can apply the Vitali’s theorem to obtain

    and this convergence holds for the whole sequence,since the limit is uniquely determined.

    Consequently,from(4.9),we have

    Since F(ψ0)is independent of y,in view of(4.10)this gives the result for p>1.

    Let p=1 now.Then,thanks to(4.3)–(4.4),(4.9)and(4.11),we can still pass to the limit in the right-hand side of(4.12)by applying Lemma 3.1 in Ω ×Y?,with gε=(hε)and tε=(ψε).We obtain again(4.13)and conclude as in the previous case.

    Finally,observe that if(4.6)holds,from Corollary 1.19 of[11],one has=h0which implies that

    since θ=.This gives(4.7)and in particular(4.8)(taking hε=h0),which concludes the proof.

    4.2 A corrector result for the nonlinear problem

    In this section we prove Theorem 2.1.To do that,we adapt some arguments introduced in[4–5]for the case of oscillating coefficients in a fixed domain,and extended for the linear case in the periodically perforated domains in[19].We make here an essential use of Theorem 4.1,proved in the previous section.

    The main idea is to define a suitable linear problem associated to a weak cluster point of the sequence of the solutions of problem(2.2)and then prove that the corrector for this linear problem is also a corrector for the original nonlinear problem.

    Observe first that from(2.6)there exists a subsequence{uε}(still denoted by ε),which will be fixed from now on,and a function u0∈(Ω)∩L∞(Ω)such that

    as ε tends to zero,where θ is defined by(2.1).

    Then,in the present situation,the suitable linear problem associated to problem(2.2)is the following one:

    where Lεis a linear operator satisfying(H8).

    Its variational formulation is

    In view of Theorem 3.1,written for zε=uεand

    using(4.14)we deduce that

    as ε tends to zero,where θ is defined by(2.1)and v0∈(Ω)is the unique solution of the equation

    Hence,v0=u0,so that

    We approximate now the function u0∈(Ω)∩L∞(Ω)by a sequence{un} ? D(Ω)such that

    for any n,where c is independent of n.

    Let us introduce,for any n ∈ N,the sequence{vn,ε}εwhere the function vn,εis the solution of the problem:

    whose variational formulation is

    Then,for any n,we apply again Theorem 3.1,written here for zε=uεand for

    The same argument used to prove(4.17)gives

    as ε tends to zero,where θ is defined by(2.1).Moreover,

    where c is independent of n and ε,and from the classical results of Stampacchia[24],for any fixed n,we have

    where cnis a constant independent of ε.

    The following theorem is the essential tool to prove the corrector result for the nonlinear problem.

    Theorem 4.2Under the assumptions(H1)–(H7),let uεbe a sequence of solution of problem(2.5)and vεbe a solution of problem(4.19).Then,up to a subsequence,we have

    ProofLet Φεbe the function defined by

    where μ is a suitable positive constant to be chosen later on,and

    Taking Φεas a test function in(2.5)and(4.19),after subtraction of two identities,we obtain

    Using(H1),(H3)and the property(2)of(H7),since ξ?μ≥0,we get

    Let us take μ=.For this choice,one gets(s)?2c0|ξμ(s)|≥for any s,so that using again(H3),we get

    From(2.6),(4.21)–(4.22),the function uε?vn,εsatisfies(3.1)and the sequence{ξμ(uε?vn,ε)}is bounded in L∞(Ω)(for fixed n).

    Hence,applying Theorem 4.1 to ψε=uε? vn,εand p=m, first with h=f and F= ξμ,and then with h=c0and F=|ξμ|,we obtain

    Observe now that in view of Theorem 3.2 we can apply Theorem 4.1 for p=1 to the functions

    We get

    On the other hand,from(2.6)and(4.22)–(4.23),using again Theorem 4.1,we deduce that zε= ξμ(uε? vn,ε)satisfies(3.1)with z0= ξμ(u0? vn).

    Then,the assumption(H8)given in Section 3 implies that

    Collecting(4.24)–(4.27),we get

    Hence,using(H2)–(H3),(4.18)and(4.23)we deduce that

    On the other hand,taking vn,ε? vεas test function in(4.16)and(4.19),subtracting the two identities and passing to the limit,one can easily deduce that

    where the right-hand side goes to zero as n→∞,by virtue of(4.18).

    This,together with(4.29),gives the result,since

    4.3 Proof of Theorem 2.1

    We distinguish here the two cases given by(2.4).

    Let us treat first the case where M?T(g)0 or g ≡ 0.Let{φn}n∈Nbe a sequence insuch that

    Then,for any ? ∈(Ω)∩ L∞(Ω),using(3)of(H7),(2.6)and(2.16),we get

    Let us pass to the limit as ε tends to zero in the right-hand side of this inequality.

    Concerning the first term,by a similar argument as in[5,19],using(2.6),(2.12),(4.30),and Proposition 3.1,we have

    This,together with(4.30),implies

    For the third term Jn(independent of ε),we have

    It remains to pass to the limit in the second term.To this aim,we write

    where we used the assumption(H7)and again(2.12)and(4.30).

    Consequently,by Proposition 3.2 and Theorem 4.1,

    Hence,by(4.31)–(4.34)for any ? ∈(Ω)∩ L∞(Ω),we have

    Moreover,from(2.1)and(4.14),we derive

    and

    On the other hand,using the unfolding periodic method and arguing as in[10](see also[8]),we get

    where cγis defined by(2.15)and

    Let us prove now(2.17).For any ψ ∈(Ω),from Theorem 4.2,the assumption(H3)and the H¨older inequality,we obtain

    where vεis the solution of problem(4.15).

    On the other hand,thanks to(3.5)(ii)and(4.17),we can apply Theorem 3.1(written for zε=uεand z0=v0=u0)to problem(4.15)and we have

    This together with(4.40)gives(2.17).

    Hence,using(2.17)and(4.35)–(4.39),we can pass to the limit in(2.5)for any ? in(Ω)∩L∞(Ω)and obtain

    where b0is given by(2.16),i.e.,the variational formulation of the homogenized problem(2.18).

    Let us consider now the case M?T(g)=0 and that A is independent of t.Using(3)of(H3),for ? ∈(Ω)∩ L∞(Ω),we write here

    Then,arguing as before and using here the results corresponding to this case,we have

    where b0is now given by(2.19).

    On the other hand,(4.36)–(4.38)still hold true and from Proposition 3.8 of[10],

    Finally,the convergence(2.21)follows as before by using(4.40).Hence,again we can pass to the limit in(2.5)for this case,to obtain

    with b0given by(2.19),which is the variational formulation of the homogenized problem(2.18).This ends the proof of Theorem 2.1.

    [1]Artola,M.and Duvaut,G.,Homogénéisation d’une classe de problèmes non linéaires,C.R.Acad.Paris Série A,288,1979,775–778.

    [2]Artola,M.and Duvaut,G.,Un résultat d’homogénéisation pour une classe de problèmes de diffusion non linéaires stationnaires,Ann.Faculte Sci.Toulouse,IV,1982,1–27.

    [3]Bendib,S.,Homogénéisation d’une classe de problèmes non linéaires avec des conditions de Fourier dans des ouverts perforés,Institut National Polytechnique de Lorraine,2004.

    [4]Bensoussan,A.,Boccardo,L.,Dall’Aglio,A.and Murat,F.,H-convergence for quasilinear elliptic equations under natural hypotheses on the correctors,Proceedings of the Conference Composite Media and Homogenization Theory,Trieste,1993.

    [5]Bensoussan,A.,Boccardo,L.and Murat,F.,H-convergence for quasi-linear elliptic equations with quadratic growth,Appl.Math.Optim.,26,1992,253–272.

    [6]Bensoussan,A.,Lions,J.L.and Papanicolaou,G.,Asymptotic Analysis for Periodic Structures,AMS Chelsea Publishing,Amsterdam,1978.

    [7]Boccardo,L.and Murat,F.,Homogénéisation de Problèmes Quasi linéaires,Atti del convergno,Studio di Problemi-Limite dell’Analisi Funzionale(Bressanone 7–9 sett.1981),Pitagora Editrice,Bologna,1982,13–51.

    [8]Cabarrubias,B.and Donato,P.,Homogenization of a quasilinear elliptic problem with nonlinear Robin boundary conditions,Applicable Analysis,91(6),2012,1111–1127.

    [9]Chourabi,I.and Donato,P.,Bounded solutions for a quasilinear singular problem with nonlinear Robin boundary conditions,differential and Integral Equations,26(9–10),2013,975–1008.

    [10]Chourabi,I.and Donato,P.,Homogenization and correctors of a class of elliptic problems in perforated domains,Asymptotic Analysis,92(1),2015,1–43,DOI:10.3233/ASY-151288.

    [11]Cioranescu,D.,Damlamian,A.,Donato,P.,et al.,The periodic unfolding method in domains with holes,SIAM J.Math.Anal.,44(2),718–760.

    [12]Cioranescu,D.,Damlamian,A.and Griso,G.,Periodic unfolding and homogenization,C.R.Acad.Sci.Paris,Ser.I,335,2002,99–104.

    [13]Cioranescu,D.,Damlamian,A.and Griso,G.,The periodic unfolding and homogenization,SIAM J.Math.Anal.,40(4),2008,1585–1620.

    [14]Cioranescu,D.,Donato,P.and Zaki,R.,The periodic unfolding and Robin problems in perforated domains,C.R.Acad.Sci.Paris,Ser.I,342,2006,467–474.

    [15]Cioranescu,D.and Donato,P.,Homogénéisation du probléme de Neumann non homogène dans des ouverts perforés,Asymptot.Anal.,1,1988,115–138.

    [16]Cioranescu,D.,Donato,P.and Zaki,R.,The periodic unfolding method in perforated domains,Portugal Math.,63(4),2006,476–496.

    [17]Cioranescu,D.,Donato,P.and Zaki,R.,Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions,Asymptot.Anal.,53,2007,209–235.

    [18]Cioranescu,D.and Saint Jean Paulin,J.,Homogenization in open sets with holes,J.Math.Anal.Appl.,71,1979,590–607.

    [19]Donato,P.,Gaudiello,A.and Sgambati,L.,Homogenization of bounded solutions of elliptic equations with quadratic growth in periodically perforated domains,Asymptotic Anal.,16(3–4),1998,223–243.

    [20]Donato,P.and Giachetti,D.,Homogenization of some singular nonlinear elliptic problems,International Journal of Pure and Applied Mathematics,73(3),2011,349–378.

    [21]Donato,P.and Yang,Z.Y.,The period unfolding method for the wave equations in domains with holes,Advances in Mathematical Sciences and Applications,22(2),2012,521–551.

    [22]Meyers,N.G.,An Lp-estimate for the gradient of solution of second order elliptic divergence equations,Ann.Sc.Norm.Sup.,17,1963,189–206.

    [23]Murat,F.,H-convergence,Séminaire d’analyse fonctionnelle et numérique,Université d’Alger,1978.

    [24]Stampacchia,G.,Le problème de Dirichlet pour leséquations elliptiques du second ordre à coefficients discontinus,Ann.Inst.Fourier,15(1),1965,189–258.

    黄色欧美视频在线观看| 蜜臀久久99精品久久宅男| 日韩中字成人| 久久久久久久午夜电影| 国产片特级美女逼逼视频| 亚洲av电影不卡..在线观看| 日韩在线高清观看一区二区三区| 波多野结衣高清无吗| 国产亚洲91精品色在线| 男人和女人高潮做爰伦理| 亚洲人成网站在线播| 国产精品电影一区二区三区| av.在线天堂| 日韩制服骚丝袜av| 亚洲av熟女| 韩国av在线不卡| 欧美最黄视频在线播放免费| 国产女主播在线喷水免费视频网站 | 成人鲁丝片一二三区免费| 国产色婷婷99| 国产女主播在线喷水免费视频网站 | 国产白丝娇喘喷水9色精品| 2022亚洲国产成人精品| 91久久精品国产一区二区三区| 国内精品宾馆在线| 联通29元200g的流量卡| 22中文网久久字幕| 国产一区二区三区在线臀色熟女| 夜夜夜夜夜久久久久| 中文字幕av在线有码专区| 悠悠久久av| 爱豆传媒免费全集在线观看| 久久久国产成人免费| 国产精品麻豆人妻色哟哟久久 | 91久久精品国产一区二区成人| 精品欧美国产一区二区三| 国内久久婷婷六月综合欲色啪| 成人高潮视频无遮挡免费网站| 久久99蜜桃精品久久| 久久精品综合一区二区三区| 能在线免费观看的黄片| 国产欧美日韩精品一区二区| 国产精品久久久久久亚洲av鲁大| 青青草视频在线视频观看| 一级黄片播放器| 免费黄网站久久成人精品| 麻豆成人午夜福利视频| 天堂av国产一区二区熟女人妻| 色哟哟哟哟哟哟| 黑人高潮一二区| 18禁裸乳无遮挡免费网站照片| 九九爱精品视频在线观看| 少妇熟女aⅴ在线视频| 91aial.com中文字幕在线观看| 欧美一区二区国产精品久久精品| 国产视频内射| 国产午夜精品久久久久久一区二区三区| 久久久久性生活片| 日韩大尺度精品在线看网址| av在线蜜桃| 亚洲18禁久久av| 日韩高清综合在线| 成人美女网站在线观看视频| 亚洲成人久久性| 久久午夜亚洲精品久久| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 成年女人永久免费观看视频| 欧美潮喷喷水| 一区二区三区高清视频在线| 91久久精品国产一区二区三区| 人妻系列 视频| 亚洲精华国产精华液的使用体验 | 六月丁香七月| 国产成人a区在线观看| 国产精品1区2区在线观看.| 一区福利在线观看| 最后的刺客免费高清国语| 国内久久婷婷六月综合欲色啪| 国产高清不卡午夜福利| 国产精品一区二区三区四区久久| 最近的中文字幕免费完整| 亚洲av中文字字幕乱码综合| 欧美+亚洲+日韩+国产| 一级毛片电影观看 | 99热6这里只有精品| 国产亚洲av片在线观看秒播厂 | 韩国av在线不卡| 91狼人影院| 国产精品福利在线免费观看| 免费人成视频x8x8入口观看| 亚洲人成网站在线播| 色综合色国产| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 可以在线观看毛片的网站| 悠悠久久av| 91久久精品国产一区二区三区| 成年免费大片在线观看| 国产精品.久久久| 久久亚洲精品不卡| 麻豆成人午夜福利视频| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| av在线播放精品| 日本在线视频免费播放| 在线a可以看的网站| 亚洲综合色惰| 欧美成人一区二区免费高清观看| 欧美一级a爱片免费观看看| 不卡一级毛片| av在线天堂中文字幕| 干丝袜人妻中文字幕| 亚洲最大成人中文| 搡女人真爽免费视频火全软件| a级毛片a级免费在线| 日韩一区二区三区影片| 亚洲av中文字字幕乱码综合| 午夜a级毛片| 男插女下体视频免费在线播放| 国产日韩欧美在线精品| 国产乱人视频| 欧美激情在线99| 高清在线视频一区二区三区 | 成人三级黄色视频| 国产成人影院久久av| 啦啦啦韩国在线观看视频| 亚洲精品亚洲一区二区| 久久久久久久午夜电影| 午夜精品国产一区二区电影 | 欧美日韩国产亚洲二区| 欧美日韩在线观看h| 草草在线视频免费看| 夜夜看夜夜爽夜夜摸| 精品久久久噜噜| 乱码一卡2卡4卡精品| 精品日产1卡2卡| 99热这里只有精品一区| 青春草国产在线视频 | 高清毛片免费看| 51国产日韩欧美| 欧美zozozo另类| 看非洲黑人一级黄片| 亚洲精华国产精华液的使用体验 | 少妇人妻一区二区三区视频| 黄色日韩在线| .国产精品久久| 桃色一区二区三区在线观看| 69av精品久久久久久| 色播亚洲综合网| 草草在线视频免费看| 人人妻人人澡欧美一区二区| 日本免费一区二区三区高清不卡| 国产高清不卡午夜福利| 成人亚洲欧美一区二区av| 国内精品一区二区在线观看| 国产精品99久久久久久久久| 丝袜喷水一区| 国产亚洲av片在线观看秒播厂 | 婷婷精品国产亚洲av| 97人妻精品一区二区三区麻豆| 少妇裸体淫交视频免费看高清| 干丝袜人妻中文字幕| 亚洲性久久影院| 国产一区二区在线观看日韩| 精品久久久久久久末码| 99精品在免费线老司机午夜| 精华霜和精华液先用哪个| 夜夜爽天天搞| 联通29元200g的流量卡| 亚洲国产精品sss在线观看| 丝袜美腿在线中文| 欧美最黄视频在线播放免费| 哪个播放器可以免费观看大片| 亚洲av熟女| 在线播放国产精品三级| 久久精品91蜜桃| 又粗又硬又长又爽又黄的视频 | 成人亚洲欧美一区二区av| 长腿黑丝高跟| 干丝袜人妻中文字幕| 成年版毛片免费区| 国产精品三级大全| 一卡2卡三卡四卡精品乱码亚洲| 欧美最新免费一区二区三区| 亚洲最大成人av| 成人亚洲精品av一区二区| 日本成人三级电影网站| 精品久久国产蜜桃| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 99在线人妻在线中文字幕| 精品无人区乱码1区二区| 国产成人freesex在线| 少妇丰满av| 男插女下体视频免费在线播放| 成人一区二区视频在线观看| 看非洲黑人一级黄片| 亚洲av免费高清在线观看| 久久亚洲国产成人精品v| 成人国产麻豆网| 一本一本综合久久| 中出人妻视频一区二区| 超碰av人人做人人爽久久| 亚洲av中文字字幕乱码综合| 国产精品久久久久久久久免| 十八禁国产超污无遮挡网站| 又爽又黄a免费视频| 国产视频内射| 97超视频在线观看视频| 成人亚洲欧美一区二区av| 悠悠久久av| 12—13女人毛片做爰片一| 你懂的网址亚洲精品在线观看 | 国产视频首页在线观看| 黄片无遮挡物在线观看| 免费看a级黄色片| 美女黄网站色视频| 欧美日韩精品成人综合77777| 国产一区二区激情短视频| 久久精品综合一区二区三区| 天堂√8在线中文| 日本免费a在线| 少妇裸体淫交视频免费看高清| 综合色av麻豆| 国产视频首页在线观看| 亚洲欧美清纯卡通| 99riav亚洲国产免费| 两个人视频免费观看高清| 亚洲婷婷狠狠爱综合网| 天堂av国产一区二区熟女人妻| 成人三级黄色视频| 久99久视频精品免费| 亚洲国产日韩欧美精品在线观看| 国产精品,欧美在线| 国产中年淑女户外野战色| 网址你懂的国产日韩在线| 国产国拍精品亚洲av在线观看| 国产69精品久久久久777片| 看十八女毛片水多多多| 我要看日韩黄色一级片| 啦啦啦观看免费观看视频高清| 中文欧美无线码| 最后的刺客免费高清国语| 赤兔流量卡办理| 欧美bdsm另类| 日韩 亚洲 欧美在线| www.av在线官网国产| 深夜精品福利| 别揉我奶头 嗯啊视频| 日韩人妻高清精品专区| 中国美女看黄片| 国产午夜精品一二区理论片| 在线免费观看的www视频| 色视频www国产| 欧美日韩综合久久久久久| 国产精品日韩av在线免费观看| 99热全是精品| 亚洲在久久综合| 长腿黑丝高跟| 老女人水多毛片| 亚洲欧美精品专区久久| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 欧美一区二区亚洲| 久久久久久久久中文| 久久精品国产清高在天天线| 久久精品久久久久久噜噜老黄 | 级片在线观看| 91aial.com中文字幕在线观看| 美女cb高潮喷水在线观看| 亚洲在线观看片| eeuss影院久久| 乱系列少妇在线播放| 欧美日韩综合久久久久久| 国产精品女同一区二区软件| av专区在线播放| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 久久热精品热| 精品一区二区三区视频在线| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 亚洲av熟女| 我要搜黄色片| 国产成人影院久久av| 最近中文字幕高清免费大全6| 日本爱情动作片www.在线观看| 亚洲精品久久国产高清桃花| 最近2019中文字幕mv第一页| 精品久久久久久久人妻蜜臀av| 久久99蜜桃精品久久| 免费人成视频x8x8入口观看| 观看免费一级毛片| ponron亚洲| 免费大片18禁| 亚洲不卡免费看| 亚洲国产高清在线一区二区三| 狂野欧美激情性xxxx在线观看| 人妻久久中文字幕网| 久久精品91蜜桃| 中文字幕熟女人妻在线| 欧美成人精品欧美一级黄| 人体艺术视频欧美日本| 一个人免费在线观看电影| 日本在线视频免费播放| 99久久人妻综合| 免费av毛片视频| 91久久精品国产一区二区成人| 免费在线观看成人毛片| 免费av观看视频| 色综合亚洲欧美另类图片| 美女cb高潮喷水在线观看| 国产亚洲精品av在线| 国产高清激情床上av| 国产精品嫩草影院av在线观看| 在线播放无遮挡| 久久这里只有精品中国| 亚洲国产精品成人久久小说 | 久久久久久伊人网av| 亚洲人与动物交配视频| 亚洲最大成人中文| 免费观看a级毛片全部| 一区二区三区四区激情视频 | 精品人妻视频免费看| 美女xxoo啪啪120秒动态图| 少妇人妻精品综合一区二区 | 男女啪啪激烈高潮av片| 成人特级av手机在线观看| 日韩制服骚丝袜av| 精品久久久久久久末码| 一本精品99久久精品77| 国产熟女欧美一区二区| av又黄又爽大尺度在线免费看 | 狠狠狠狠99中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区性色av| 中文字幕熟女人妻在线| 国产乱人偷精品视频| 国产成人精品久久久久久| or卡值多少钱| 九九爱精品视频在线观看| 天堂中文最新版在线下载 | 欧美性猛交黑人性爽| 女人被狂操c到高潮| 你懂的网址亚洲精品在线观看 | 一边摸一边抽搐一进一小说| 欧美+日韩+精品| 久久精品综合一区二区三区| 欧美高清成人免费视频www| 丰满乱子伦码专区| 欧美最黄视频在线播放免费| 99在线人妻在线中文字幕| 国产色婷婷99| 久久精品影院6| 成人综合一区亚洲| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 联通29元200g的流量卡| 99在线人妻在线中文字幕| 国产色婷婷99| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 国产av不卡久久| 亚洲人成网站高清观看| 九色成人免费人妻av| 黄色欧美视频在线观看| 国产av不卡久久| 一级毛片aaaaaa免费看小| 中文精品一卡2卡3卡4更新| 国产色爽女视频免费观看| www.色视频.com| 精品人妻一区二区三区麻豆| 亚洲精品色激情综合| 日韩欧美国产在线观看| 亚洲国产欧洲综合997久久,| 日韩一区二区视频免费看| 天堂√8在线中文| 亚洲丝袜综合中文字幕| 久久久久久大精品| 特级一级黄色大片| 69人妻影院| 一个人看视频在线观看www免费| 一级二级三级毛片免费看| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 九草在线视频观看| 性插视频无遮挡在线免费观看| 国产精品一区二区三区四区免费观看| 亚洲五月天丁香| 在线观看免费视频日本深夜| 好男人在线观看高清免费视频| 国产一级毛片七仙女欲春2| 好男人在线观看高清免费视频| 成人毛片a级毛片在线播放| 久久九九热精品免费| 我的老师免费观看完整版| 给我免费播放毛片高清在线观看| 永久网站在线| 午夜激情欧美在线| 黄片无遮挡物在线观看| 校园春色视频在线观看| 国产精品,欧美在线| 亚洲在线观看片| 色哟哟·www| 少妇的逼水好多| 九九热线精品视视频播放| 国产成人午夜福利电影在线观看| 国产一区二区三区在线臀色熟女| 欧美人与善性xxx| 久久6这里有精品| 欧美最新免费一区二区三区| 午夜精品在线福利| 22中文网久久字幕| 麻豆乱淫一区二区| 亚洲精品日韩av片在线观看| 高清毛片免费看| 久久中文看片网| 大又大粗又爽又黄少妇毛片口| 九色成人免费人妻av| 在线国产一区二区在线| 两个人视频免费观看高清| 国产精品一区二区在线观看99 | 国产在线精品亚洲第一网站| 少妇的逼好多水| 国产精品野战在线观看| 综合色丁香网| av福利片在线观看| 我要看日韩黄色一级片| 男女那种视频在线观看| 国产伦在线观看视频一区| 亚洲最大成人中文| 26uuu在线亚洲综合色| 国产精品美女特级片免费视频播放器| 午夜免费男女啪啪视频观看| 亚洲综合色惰| 国产日本99.免费观看| 久久鲁丝午夜福利片| 国产精品一及| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 国产老妇伦熟女老妇高清| 成年版毛片免费区| 一个人免费在线观看电影| 看黄色毛片网站| 丰满人妻一区二区三区视频av| 国产黄色视频一区二区在线观看 | 少妇人妻精品综合一区二区 | av国产免费在线观看| 亚洲人与动物交配视频| av在线蜜桃| 春色校园在线视频观看| 欧美最新免费一区二区三区| 女人十人毛片免费观看3o分钟| 在线播放无遮挡| 国国产精品蜜臀av免费| 真实男女啪啪啪动态图| 亚洲欧洲国产日韩| 99久国产av精品| 国产一区二区三区av在线 | 只有这里有精品99| 国产麻豆成人av免费视频| 高清午夜精品一区二区三区 | 大型黄色视频在线免费观看| 干丝袜人妻中文字幕| 欧美日韩在线观看h| 亚洲国产精品国产精品| АⅤ资源中文在线天堂| 联通29元200g的流量卡| 精品久久久久久久久av| 在线播放国产精品三级| 国产精品无大码| 91精品国产九色| 少妇人妻一区二区三区视频| 国产69精品久久久久777片| 91aial.com中文字幕在线观看| 欧美色欧美亚洲另类二区| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 日韩欧美 国产精品| 亚洲七黄色美女视频| 少妇熟女aⅴ在线视频| 久久综合国产亚洲精品| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 黄色一级大片看看| 久久久久久国产a免费观看| 波多野结衣巨乳人妻| 九九热线精品视视频播放| 欧美变态另类bdsm刘玥| 久久精品综合一区二区三区| 中文字幕久久专区| 国产私拍福利视频在线观看| 如何舔出高潮| 亚洲自拍偷在线| 99热全是精品| 亚洲av中文av极速乱| 亚洲婷婷狠狠爱综合网| 日日摸夜夜添夜夜添av毛片| 国产一区二区在线av高清观看| 联通29元200g的流量卡| 亚洲国产欧洲综合997久久,| 丝袜喷水一区| 一边亲一边摸免费视频| 国产精品野战在线观看| 久久久久久久午夜电影| 97超碰精品成人国产| 淫秽高清视频在线观看| 国产激情偷乱视频一区二区| АⅤ资源中文在线天堂| 国产欧美日韩精品一区二区| 九九热线精品视视频播放| 日韩在线高清观看一区二区三区| 激情 狠狠 欧美| 美女被艹到高潮喷水动态| 久久久久久久午夜电影| 免费一级毛片在线播放高清视频| 黑人高潮一二区| 亚洲在线观看片| 黑人高潮一二区| 日本一本二区三区精品| 长腿黑丝高跟| 99精品在免费线老司机午夜| 国产国拍精品亚洲av在线观看| 免费人成在线观看视频色| 欧美一区二区国产精品久久精品| 可以在线观看毛片的网站| 一区二区三区四区激情视频 | 久久综合国产亚洲精品| 色播亚洲综合网| 欧美一级a爱片免费观看看| 免费不卡的大黄色大毛片视频在线观看 | 最近视频中文字幕2019在线8| 99久久成人亚洲精品观看| 国产三级在线视频| 日韩亚洲欧美综合| 永久网站在线| 99久久无色码亚洲精品果冻| 亚洲在久久综合| 亚洲五月天丁香| 成年女人看的毛片在线观看| 亚洲四区av| 国产一级毛片七仙女欲春2| 日韩 亚洲 欧美在线| 久久人人精品亚洲av| 91精品国产九色| 国产蜜桃级精品一区二区三区| 国产综合懂色| 精品久久国产蜜桃| 91精品一卡2卡3卡4卡| 日韩强制内射视频| a级一级毛片免费在线观看| 成年女人永久免费观看视频| 91精品一卡2卡3卡4卡| 听说在线观看完整版免费高清| 免费看光身美女| av在线天堂中文字幕| 波多野结衣巨乳人妻| 99热网站在线观看| 中文字幕制服av| 成人三级黄色视频| 欧美高清性xxxxhd video| 国内揄拍国产精品人妻在线| 99久久成人亚洲精品观看| 欧美精品国产亚洲| 在线国产一区二区在线| 99国产精品一区二区蜜桃av| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 精品久久久久久久久亚洲| 亚洲美女搞黄在线观看| 久久久久久久久大av| 啦啦啦韩国在线观看视频| 嫩草影院精品99| 国产精品一区二区三区四区免费观看| 在线观看午夜福利视频| 天堂中文最新版在线下载 | 可以在线观看的亚洲视频| 91午夜精品亚洲一区二区三区| 午夜精品在线福利| 午夜福利成人在线免费观看| 久久精品国产自在天天线| 国产精品久久电影中文字幕| 免费观看a级毛片全部| 欧美高清性xxxxhd video| 97超视频在线观看视频| 成人综合一区亚洲| 成人漫画全彩无遮挡| 国产免费男女视频| 天天躁日日操中文字幕| 国产极品精品免费视频能看的| 麻豆国产av国片精品| 中文字幕av成人在线电影| 一卡2卡三卡四卡精品乱码亚洲| 亚洲自偷自拍三级| 色5月婷婷丁香| 亚洲精品久久国产高清桃花| 中文字幕av成人在线电影| 欧美极品一区二区三区四区| 中文精品一卡2卡3卡4更新| 伦精品一区二区三区| 久久久久九九精品影院| 欧美又色又爽又黄视频| 亚洲av电影不卡..在线观看| 国产精品国产三级国产av玫瑰| 97超碰精品成人国产| 午夜福利在线观看吧| 亚洲精品亚洲一区二区| 亚洲美女搞黄在线观看| 久久人人爽人人爽人人片va| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人|