• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Boundary Observability for a Kind of Second-Order Quasilinear Hyperbolic Systems?

    2016-06-05 03:10:14KeWANG
    關(guān)鍵詞:漢斯批評家樣子

    Ke WANG

    1 Introduction

    As a dual problem of controllability,the exact boundary observability for linear wave equations has been deeply studied(see[10–12,18]).Based on the theory of semi-global classical solutions to quasilinear hyperbolic systems(see[6,9]),by a constructive method,Li et al.[4,7–8]obtained the exact boundary observability for quasilinear hyperbolic systems.Later,Li[3,5]and Guo and Wang[1]discussed the exact boundary observability for autonomous and nonautonomous 1-D quasilinear wave equations,respectively,and showed the implicit dualities between the corresponding exact boundary controllability and the exact boundary observability.For the general 1-D quasilinear hyperbolic equation utt+a(u,ux,ut)utx+b(u,ux,ut)uxx=c(u,ux,ut),where u is the unknown function of(t,x)and(a2?4b)(0,0,0)>0,Shang and Zhuang[13]established the corresponding local exact boundary observability,including the 1-D quasilinear wave equation as its special case.

    For second-order quasilinear hyperbolic systems,there are few results on the exact boundary observability.Yu[16]considered the second-order quasilinear hyperbolic system utt+(A+B)(u,ux,ut)utx+AB(u,ux,ut)uxx=F(u,ux,ut),where u=(u1,···,un)Tis the unknown vector function of(t,x),matrices A and B have only n positive eigenvalues and n negative eigenvalues,respectively.By a constructive method,she obtained the local exact boundary observability.Later,for a quasilinear coupled hyperbolic system

    where λ(0)<0,μ(0)<0,ν(0)>0,she got the exact boundary observability by using similar constructive method and applied this result to a first-order quasilinear hyperbolic system of diagonal form and proved that the exact boundary observability is still valid even though the boundary conditions are not coupled(see[17]).

    Recently,for a kind of coupled system of 1-D quasilinear wave equations:

    where w=(w1,···,wn)Tand ai(0)>0(i=1,···,n),the authors of[2]discussed the local exact boundary observability with various types of boundary conditions and showed the implicit dualities between the exact boundary controllability and the exact boundary observability.

    In this paper,we continue to consider the kind of second-orderquasilinear hyperbolic systems proposed in[14].Based on the known result on the existence and uniqueness of semi-global C2solution to this kind of systems(see[14]),by using a constructive method,we discuss the exact boundary observability and show the implicit dualities between it and the corresponding exact boundary controllability given in[14].The conclusions in both[2]and[13]are of its special cases.

    Consider the following kind of second-order quasilinear hyperbolic systems:

    where u=(u1,···,un)Tis the unknown vector function of(t,x),A(u,v,w)=(aij(u,v,w))and B(u,v,w)=(bij(u,v,w))(i,j=1,···,n)are both n×n matrices with smooth entries,and have n real eigenvalues and a complete set of left eigenvectors on the domain under consideration,respectively.Suppose furthermore that

    Thus,there exists an invertible n×n matrix L(u,v,w)such that

    where λ1,···,λnand μ1,···,μnare the real eigenvalues of matrices A and B,respectively,and L=(lij)is just the matrix composed by the common left eigenvectors of A and B.Moreover,we assume that on the domain under consideration

    and

    In addition,C=C(u,v,w)=(c1(u,v,w),···,cn(u,v,w))Tis a smooth vector function with

    By[14],system(1.1)has 2n real eigenvalues

    This paper is organized as follows.In Section 2,we recall the existence and uniqueness of semi-global C2solution to the second-order quasilinear hyperbolic system(1.1)under different cases.Then the two-sided and one-sided exact boundary observability are discussed in Section 3,respectively.Finally,in Section 4,we present an implicit duality between the exact boundary controllability and the exact boundary observability.

    2 Existence and Uniqueness of Semi-global C2Solution

    In this section,we recall brie fly the result on the semi-global C2solution to the second-order quasilinear hyperbolic system(1.1)under different cases in[14].

    For system(1.1),we give the following initial condition:

    where ? =(?1,···,?n)Tis a given C2vector function,ψ =(ψ1,···,ψn)Tis a given C1vector function.

    Let

    By[14],according to different signs of(i=1,···,n)in a neighborhood of(u,v,w)=(0,0,0),we need only to discuss the following three typical cases.

    Case 1System(1.1)has n positive eigenvalues>0 and n negative eigenvalues<0(i=1,···,n).

    In this case,we prescribe the following nonlinear boundary conditions on the ends x=0 and x=L,respectively:

    where Gp,Hp,andare all C2functions with respect to their arguments,Gq,Hq,andare all C1functions with respect to their arguments,and,without loss of generality,we may assume

    In what follows,the following assumptions will be imposed totally or partially in different situations:

    For the convenience of statement,in Case 1 we denote that

    Case 2System(1.1)has d1+d2positive eigenvalues>0,>0 and 2n?(d1+d2)negative eigenvalues<0,<0(j=1,···,d1;k=d1+1,···,d2;h=d2+1,···,n),and,without loss of generality,we may assume

    當漢斯·P離開時,他擺出一副正人君子的樣子說:“你一定理解,我絕對不會讓個人的感情來干擾我作為批評家的天良?!保?014:431)

    namely,the number of positive eigenvalues is less than or equal to that of negative ones.

    In this case,we prescribe the following nonlinear boundary conditions on the ends x=0 and x=L,respectively:

    where Gp,Hp,andare all C2functions with respect to their arguments,Gq,Hq,andare all C1functions with respect to their arguments,and,without loss of generality,we may assume

    In what follows,the following assumptions will be imposed totally or partially in different situations:

    in which(L?1D?){1,d1}indicates the matrix composed of the first column to the d1th column of matrix(L?1D?),etc.

    In Case 2,we denote that

    Case 3System(1.1)has 2n positive eigenvalues>0(i=1,···,n).

    In this case,we need only 2n boundary conditions on the end x=0:

    First of all,in Case 1 we give the following lemma on the existence and uniqueness of semi-global C2solution to system(1.1)(see[14]).

    Lemma 2.1Suppose that(2.6)and(2.9)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively.Then,for any given and possibly quite large T >0,if the norms?(?,ψ)?C2[0,L]×C1[0,L],?(Hp,Hq)?C2[0,T]×C1[0,T]and(p=1,···,l;q=l+1,···,n;r=1,···,m;s=m+1,···,n)are small enough,the forward mixed initial-boundary value problem(1.1),(2.1)and(2.3)–(2.4)admits a unique semi-global C2solution u=u(t,x)on the domain R(T)={(t,x)|0≤t≤T,0≤x≤L}with small C2norm,and

    where C is a positive constant.

    Corollary 2.1If?(?,ψ)?C2[0,L]×C1[0,L]is suitably small,then the Cauchy problem(1.1)and(2.1)admits a unique global C2solution u=u(t,x)on its whole maximum determinate domain with small C2norm,and

    where C is a positive constant.

    Remark 2.1If we give the following final condition

    where Φ =(Φ1,···,Φn)Tis a given C2vector function,Ψ =(Ψ1,···,Ψn)Tis a given C1vector function.Suppose that(2.7)–(2.8)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(T,0)and(T,L),respectively.For any given and possibly quite large T>0,if the normsand(p=1,···,l;q=l+1,···,n;r=1,···,m;s=m+1,···,n)are small enough,the backward mixed initial-boundary value problem(1.1),(2.20)and(2.3)–(2.4)admits a unique semi-global C2solution on the domain R(T)with small C2norm,and

    where C is a positive constant.

    In Case 2 and Case 3,we have the corresponding existence and uniqueness of semi-global C2solution,see Lemma 2.2 and Lemma 2.3,respectively(see[14]).

    Lemma 2.2Suppose that(2.14)and(2.16)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively.Then,for any given and possibly quite large T>0,if the norms?(?,ψ)?C2[0,L]×C1[0,L],?(Hp,Hq)?C2[0,T]×C1[0,T]and(p=1,···,l;q=l+1,···,d1+d2;r=1,···,m;s=m+1,···,2n?(d1+d2))are small enough,the forward mixed initial-boundary value problem(1.1),(2.1)and(2.11)–(2.12)admits a unique semi-global C2solution u=u(t,x)on the domain R(T)with small C2norm,and

    where C is a positive constant.

    Lemma 2.3For any given and possibly quite large T>0,if the norms

    are small enough,and the conditions of C2compatibility are satisfied at the point(t,x)=(0,0),the forward mixed initial-boundary value problem(1.1),(2.1)and(2.17)admits a unique semiglobal C2solution u=u(t,x)on the domain R(T)with small C2norm,and

    where C is a positive constant.

    3 Local Exact Boundary Observability in Case 1

    Theorem 3.1(Two-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.6)and(2.9)hold.Suppose furthermore that

    and

    Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small norms?(?,ψ)?C2[0,L]×C1[0,L]andsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed values uq=(t),upx=(t)(p=1,···,l;q=l+1,···,n)at x=0 and us=(t),urx=(t)(r=1,···,m;s=m+1,···,n)at x=L on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values and(H(t),Moreover,we have the following observability inequality:

    where C is a positive constant.

    ProofSince?(?,ψ)?C2[0,L]×C1[0,L]andare small,by Lemma 2.1,the mixed initial-boundary value problem(1.1),(2.1)and(2.3)–(2.4)admits a unique C2solution on the domain R(T)with small C2norm.Thus,the corresponding C2norms or C1norms of the observed values(p=1,···,l;q=l+1,···,n)at x=0,and(r=1,···,m;s=m+1,···,n)at x=L are all small.

    By(3.1),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.3)at x=0 can be equivalently rewritten as

    where gp(p=1,···,l)are C2functions,gq(q=l+1,···,n)are C1functions,and by(2.5),we have

    Then,the values(t)of ui(i=1,···,n)at x=0 can be uniquely determined by the observed values uq=(t)(q=l+1,···,n)at x=0 as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=0 can be uniquely determined by the observed values upx=(t)(p=1,···,l)at x=0 as follows:

    and

    Similarly,by(3.2),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.4)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,(s=m+1,···,n)are C1functions,and by(2.5),we have

    Then,the valuesof ui(i=1,···,n)at x=L can be uniquely determined by the observed values us=(s=m+1,···,n)at x=L as follows:

    and

    On the other hand,the valuesof uix(i=1,···,n)at x=L can be uniquely determined by the observed values urx=(r=1,···,m)at x=L as follows:

    and

    Changing the role of t and x,we consider the rightward Cauchy problem for system(1.1)with the initial condition

    By Corollary 2.1 and noting(3.8)and(3.10),this Cauchy problem admits a unique C2solution u=(t,x)on its whole maximum determinate domain,and

    Similarly,the leftward Cauchy problem for system(1.1)with the final condition

    admits a unique C2solution u=(t,x)on its whole maximum determinate domain,and

    Obviously,both u=(t,x)and u=(t,x)are the restrictions of the solution u=u(t,x)to the original mixed problem on the corresponding domains,respectively.

    Noting(3.3),these two maximum determinate domains must intersect each other.Then,there exists T0(0

    We now consider the backward mixed initial-boundary value problem for system(1.1)with

    on the domain R(T0)={(t,x)|0≤t≤T0,0≤x≤L}.By Remark 2.1,this backward mixed problem admits a unique C2solution u=ub(t,x),which is the restriction of the original C2solution u=u(t,x)on the domain R(T0),thus we have

    By(2.1)and noting(3.8),(3.14)and(3.21),we get the desired observability inequality(3.4).

    Theorem 3.2(One-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.6),(2.8)–(2.9)and(3.1)hold.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normsandsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed values(p=1,···,l;q=l+1,···,n)at x=0 on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:

    where C is a positive constant.

    ProofChanging the role of t and x,we consider the rightward Cauchy problem for system(1.1)with the initial condition(3.17),which admits a unique C2solution u=(t,x)on its whole maximum determinate domain and(3.18)holds.Obviously,u=(t,x)is the restriction of the C2solution u=u(t,x)to the original mixed problem on the corresponding domain.

    Noting(3.26),this maximum determinate domain must intersect x=L.Then,there exists T0(0

    We consider the backward mixed initial-boundary value problem for system(1.1)with the final condition(3.22)and boundary conditions(3.23)and(2.4)on the domain R(T0).By Remark 2.1,this backward mixed problem admits a unique C2solution u=ub(t,x)on the domain R(T0),which is just the restriction of the original C2solution u=u(t,x)on the domain R(T0),thus we have

    By(2.1)and noting(3.8)and(3.28),we get the desired observability inequality(3.27).

    Remark 3.1In Case 1,if the boundary conditions are particularly given as

    it is easy to see that assumptions(3.1)–(3.2)are automatically satisfied.

    Remark 3.2In Case 1,since the number of positive eigenvalues for system(1.1)is equal to that of negative eigenvalues,similar result holds if we take observed values at x=L instead of at x=0,and hypotheses(2.6),(2.8)–(2.9)and(3.1)are replaced by(2.6)–(2.7),(2.9)and(3.2).

    4 Local Exact Boundary Observability in Case 2 and Case 3

    Let

    Assume that α≥0.

    Theorem 4.1(Two-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.10),(2.14)and(2.16)hold.Suppose furthermore that

    and

    Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normsandsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed valuesat x=0 andat x=L on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values and(H(t),Moreover,we have the following observability inequality:

    where C is a positive constant.

    ProofThe proof of Theorem 4.1 is similar to that of Theorem 3.1.By(4.2),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.11)at x=0 can be equivalently rewritten as

    where gp(p=1,···,l)are C2functions,gq(q=l+1,···,d1+d2)are C1functions,and by(2.13),we have

    Then,the values(t)of ui(i=1,···,n)at x=0 can be uniquely determined by the observed valuesat x=0 as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=0 can be uniquely determined by the observed valuesat x=0 as follows:

    and

    The observed values at x=L depend on the value of α,which is divided into two subcases.

    (a)α=0,namely,m=n?(d1+d2).

    By(4.3),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.12)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,gi(i=1,···,n)are C1functions,and by(2.13),we have

    Then,the values(t)of uiand the values(t)of uix(i=1,···,n)at x=L can be uniquely determined by the observed values u?s=(t)(=m+1,···,n)at x=L as follows:

    and

    (b)α>0,namely,m>n?(d1+d2).

    By(4.3),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.12)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,(β = α +1,···,n)are C1functions,and by(2.13),we have

    Then,the values(t)of ui(i=1,···,n)at x=L can be uniquely determined by the observed valuesat x=L as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=L can be uniquely determined by the observed valuesat x=L as follows:

    and

    The rest of the proof is similar to the proof of Theorem 3.1 and can be omitted.

    Similarly to Theorem 3.2,we have the following theorem.

    Theorem 4.2(One-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.10),(2.14)–(2.16)and(4.2)hold.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normssuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed valuesat x=0,then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:

    where C is a positive constant.

    Remark 4.1In Case 2,suppose that the boundary conditions are particularly given as

    By Laplace theorem of determinant(see[15]),for the invertible matrix L(0),there exists a nonsingular subdeterminant composed of the elements of the intersections of,for instance,the first row to the d2th row with the first column to the d2th column,and we denote this d2-subdeterminant of L(0)asMeanwhile,the(n?d2)-algebraic cofactor of this d2-subdeterminant satisfiesThus it is easy to see that the assumption(4.2)is automatically satisfied.Similarly,we can also get(4.3).

    In Case 3,we need only to consider the local one-sided exact boundary observability at x=L.

    Theorem 4.3(One-Sided Exact Boundary Observability at x=L) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normssuch that the conditions of C2compatibility are satisfied at the point(t,x)=(0,0),if we have the observed valuesat x=L,then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:where C is a positive constant.

    5 Implicit Duality Between Controllability and Observability

    Comparing the observability discussed above with the controllability obtained in[14],we may find an implicit duality between the exact boundary controllability and the exact boundary observability for this kind of second-order quasilinear hyperbolic systems.

    For the two-sided control,we have

    (i)The controllability time is equal to the observability time,and both of them are sharp.The restriction on the controllability time essentially means that the two maximum determinate domains for the forward and backward Cauchy problems do not intersect each other,while,the restriction on the observability time essentially means that the two maximum determinate domains for the leftward and rightward Cauchy problems must intersect each other.

    (ii)Both the number of boundary controls and the number of boundary observed values are equal to 2n,which is the number of all positive eigenvalues and negative eigenvalues.

    For the one-sided control,we have

    (i)The controllability time is still equal to the observability time,and both of them are sharp.The restriction on the controllability time essentially means that the two maximum determinate domains for the forward and backward one-sided mixed problems do not intersect each other,while,the restriction on the observability time essentially means that the maximum determinate domain for the rightward Cauchy problems must intersect x=L.

    (ii)Both the number of boundary controls and the number of boundary observed values are equal to the maximum value between the number of positive eigenvalues and that of negative eigenvalues.

    [1]Guo,L.N.and Wang,Z.Q.,Exact boundary observability for nonautonomous quasilinear wave equations,J.Math.Anal.Appl.,364,2010,41–50.

    [2]Hu,L.,Ji,F.Q.and Wang,K.,Exact boundary controllability and observability for a coupled system of quasilinear wave equations,Chin.Ann.Math.,Ser.B,34(4),2013,479–490.

    [3]Li,T.T.,Exact boundary observability for 1-D quasilinear wave equations,Math.Meth.Appl.Sci.,29,2006,1543–1553.

    [4]Li,T.T.,Exact boundary observability for quasilinear hyperbolic systems,ESIAM:Control,Optimisation and Calculus Variations,14,2008,759–766.

    [5]Li,T.T.,Controllability and Observability for Quasilinear Hyperbolic Systems,AIMS Series on Applied Mathematics,Vol.3,American Institute of Mathematical Sciences&Higher Education Press,Spring field&Beijing,2010.

    [6]Li,T.T.and Jin,Y.,Semi-global C1solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,22(3),2001,325–336.

    [7]Li,T.T.and Rao,B.P.,Strong(weak)exact controllability and strong(weak)exact observability for quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,31(5),2010,723–742.

    [8]Li,T.T.,Rao,B.P.and Wang,Z.Q.,A note on the one-side exact boundary observability for quasilinear hyperbolic systems,Georgian Math.J.,15,2008,571–580.

    [9]Li,T.T.and Yu,W.C.,Boundary Value Problems for Quasilinear Hyperbolic Systems,Duke Univ.Math.Ser.V,Duke Univ.Press,Durham,1985.

    [10]Lions,J.-L.,Exact controllability,stabilization and perturbations for distributed systems,SIAM Rev.,30,1988,1–68.

    [11]Lions,J.-L.,Exact Controllability,Stabilization and Perturbations for Distributed Systems(in Chinese),Vol.1,translated by Jinhai Yan and Ying Huang,Higher Education Press,Beijing,2012.

    [12]Russell,D.L.,Controllability and stabilization for linear partial differential equations,recent progress and open questions,SIAM Rev.,20,1978,639–739.

    [13]Shang,P.P.and Zhuang,K.L.,Exact observability for second order quasilinear hyperbolic equations(in Chinese),Chin.J.Engin.Math.,26,2009,618–636.

    [14]Wang,K.,Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,32(6),2011,803–822.

    [15]Yao,M.S.,Advanced Algebra(in Chinese),Fudan University Press,Shanghai,2005.

    [16]Yu,L.X.,Exact boundary observability for a kind of second order quasilinear hyperbolic systems and its applications,Nonlinear Analysis,72,2010,4452–4465.

    [17]Yu,L.X.,Exact boundary observability for a kind of second-order quasilinear hyperbolic system,Nonlinear Analysis,74,2011,1073–1087.

    [18]Zuazua,E.,Boundary observability for the space-discretization of the 1-D wave equation,C.R.Acad.Sci.Paris,Sér.I,326,1998,713–718.

    猜你喜歡
    漢斯批評家樣子
    魔鬼與天使
    你是我的天使
    你是我的天使
    新銳批評家
    文藝論壇(2020年3期)2020-12-24 09:53:50
    今日批評家
    詩林(2019年6期)2019-11-08 01:51:34
    你們怎么可以這樣子呢!
    桃之夭夭B(2016年12期)2016-12-22 20:04:02
    最想要的樣子
    好孩子畫報(2016年7期)2016-12-12 11:54:37
    就喜歡你看不慣我又干不掉我的樣子
    就喜歡你看不慣我又干不掉我的樣子之《少年,來玩我吧!》
    你是我的天使
    小品文選刊(2016年1期)2016-02-12 03:56:50
    人人妻人人添人人爽欧美一区卜| 日韩av在线免费看完整版不卡| 国产日韩欧美亚洲二区| 亚洲精品456在线播放app| 久久精品夜色国产| 亚洲婷婷狠狠爱综合网| 久久久久视频综合| 欧美日韩精品成人综合77777| 成年美女黄网站色视频大全免费 | 亚洲高清免费不卡视频| 国产熟女午夜一区二区三区 | 欧美日韩av久久| 在线观看美女被高潮喷水网站| 亚洲av男天堂| 亚洲精品久久久久久婷婷小说| 久久久久久久久久成人| 精品亚洲成a人片在线观看| 精品人妻熟女av久视频| 国产免费视频播放在线视频| 久久久久久久久大av| 婷婷色麻豆天堂久久| 亚洲精品aⅴ在线观看| 国产黄片美女视频| 91精品一卡2卡3卡4卡| 亚洲精品一区蜜桃| 亚洲欧美一区二区三区国产| 亚洲精品日本国产第一区| 午夜老司机福利剧场| 777米奇影视久久| 久久国产乱子免费精品| 亚洲激情五月婷婷啪啪| 三级国产精品欧美在线观看| 精品人妻一区二区三区麻豆| 国产精品嫩草影院av在线观看| 国产亚洲午夜精品一区二区久久| 国产精品福利在线免费观看| 高清午夜精品一区二区三区| 国产精品不卡视频一区二区| 嘟嘟电影网在线观看| 18+在线观看网站| 又爽又黄a免费视频| 丝瓜视频免费看黄片| 热re99久久精品国产66热6| 国产精品熟女久久久久浪| av国产精品久久久久影院| 久久ye,这里只有精品| 国产成人免费观看mmmm| 69精品国产乱码久久久| 成人毛片a级毛片在线播放| 伦理电影大哥的女人| 日韩熟女老妇一区二区性免费视频| 91精品一卡2卡3卡4卡| 精品亚洲乱码少妇综合久久| 亚洲人与动物交配视频| 久久6这里有精品| 丰满乱子伦码专区| 九九久久精品国产亚洲av麻豆| 国产精品偷伦视频观看了| 高清黄色对白视频在线免费看 | 久久久欧美国产精品| 欧美精品亚洲一区二区| 亚洲精品国产av成人精品| 性色avwww在线观看| 美女内射精品一级片tv| 午夜福利视频精品| 午夜久久久在线观看| 九九久久精品国产亚洲av麻豆| 少妇人妻一区二区三区视频| 国内揄拍国产精品人妻在线| 精品国产乱码久久久久久小说| 最新的欧美精品一区二区| 亚洲精品aⅴ在线观看| 日本黄大片高清| 亚洲av中文av极速乱| 一区在线观看完整版| 欧美日韩视频精品一区| av免费观看日本| 久久久久精品久久久久真实原创| 大陆偷拍与自拍| 一个人免费看片子| 黄色视频在线播放观看不卡| 好男人视频免费观看在线| 免费av中文字幕在线| 大片电影免费在线观看免费| 精品人妻偷拍中文字幕| 久久久欧美国产精品| 成年女人在线观看亚洲视频| h视频一区二区三区| 午夜福利,免费看| 欧美老熟妇乱子伦牲交| 日韩欧美一区视频在线观看 | 人体艺术视频欧美日本| 成人亚洲精品一区在线观看| 国产欧美亚洲国产| 97在线人人人人妻| 国产精品一二三区在线看| 日日摸夜夜添夜夜爱| 高清黄色对白视频在线免费看 | 久久热精品热| 日韩欧美一区视频在线观看 | 中国美白少妇内射xxxbb| 亚洲av免费高清在线观看| 又粗又硬又长又爽又黄的视频| av网站免费在线观看视频| 国产一区二区三区综合在线观看 | 女人久久www免费人成看片| 久热久热在线精品观看| 欧美日韩av久久| 色视频在线一区二区三区| 26uuu在线亚洲综合色| 伦理电影大哥的女人| 热re99久久精品国产66热6| 丰满迷人的少妇在线观看| 国产精品久久久久久精品古装| 国产精品福利在线免费观看| 日本黄大片高清| 女性生殖器流出的白浆| 乱码一卡2卡4卡精品| 亚洲国产精品成人久久小说| 久久午夜综合久久蜜桃| 精品国产一区二区久久| 欧美激情国产日韩精品一区| 亚洲欧美中文字幕日韩二区| 亚州av有码| 不卡视频在线观看欧美| 免费看日本二区| 美女福利国产在线| 极品人妻少妇av视频| 亚洲精品自拍成人| 国产av码专区亚洲av| 人妻制服诱惑在线中文字幕| 中文字幕久久专区| 亚洲成人一二三区av| 卡戴珊不雅视频在线播放| 中文精品一卡2卡3卡4更新| 美女大奶头黄色视频| 两个人免费观看高清视频 | 美女中出高潮动态图| 免费看av在线观看网站| 女性被躁到高潮视频| 国产精品免费大片| 亚洲美女黄色视频免费看| 久久久a久久爽久久v久久| 在线亚洲精品国产二区图片欧美 | 91久久精品国产一区二区三区| 少妇人妻一区二区三区视频| 国产成人精品久久久久久| 免费看光身美女| 成人综合一区亚洲| 国产91av在线免费观看| 大香蕉97超碰在线| 日本猛色少妇xxxxx猛交久久| 亚洲精品亚洲一区二区| 国产在线视频一区二区| 亚洲国产精品国产精品| 亚洲人与动物交配视频| 99久国产av精品国产电影| 五月玫瑰六月丁香| 亚洲av男天堂| 亚洲美女黄色视频免费看| 汤姆久久久久久久影院中文字幕| 一级毛片黄色毛片免费观看视频| 国产精品不卡视频一区二区| 成人午夜精彩视频在线观看| 麻豆乱淫一区二区| 亚洲伊人久久精品综合| 日韩一区二区视频免费看| 三上悠亚av全集在线观看 | 国产精品久久久久久精品古装| 国产淫片久久久久久久久| 久久 成人 亚洲| 欧美性感艳星| 午夜久久久在线观看| 男女国产视频网站| 狂野欧美激情性xxxx在线观看| 国产综合精华液| 黄色怎么调成土黄色| 国产av国产精品国产| 日本av手机在线免费观看| 亚洲av福利一区| 大码成人一级视频| 大码成人一级视频| 搡女人真爽免费视频火全软件| 日本午夜av视频| 最新中文字幕久久久久| 日本午夜av视频| 少妇人妻久久综合中文| 亚洲精品国产色婷婷电影| 午夜91福利影院| 精品人妻熟女av久视频| 午夜精品国产一区二区电影| 精品一区二区三卡| 不卡视频在线观看欧美| 在线看a的网站| 国产伦精品一区二区三区视频9| 丰满迷人的少妇在线观看| 国模一区二区三区四区视频| 最近的中文字幕免费完整| 日本黄色片子视频| 久久精品国产亚洲av天美| 成人美女网站在线观看视频| 日韩欧美一区视频在线观看 | 国产熟女欧美一区二区| 中文欧美无线码| 成人特级av手机在线观看| 午夜91福利影院| 亚洲精品第二区| 欧美成人午夜免费资源| 成年女人在线观看亚洲视频| 久久久久久久久久久免费av| 国产免费一级a男人的天堂| 哪个播放器可以免费观看大片| 亚洲综合色惰| 好男人视频免费观看在线| 国产精品熟女久久久久浪| 三上悠亚av全集在线观看 | 十分钟在线观看高清视频www | 国产精品久久久久久精品电影小说| 女的被弄到高潮叫床怎么办| 中文资源天堂在线| 亚洲av欧美aⅴ国产| 婷婷色综合大香蕉| 亚洲精品成人av观看孕妇| 最近2019中文字幕mv第一页| 免费看av在线观看网站| 高清在线视频一区二区三区| 免费少妇av软件| 亚洲精品一二三| 女人久久www免费人成看片| 成年美女黄网站色视频大全免费 | 国产白丝娇喘喷水9色精品| 欧美三级亚洲精品| 男的添女的下面高潮视频| 久久婷婷青草| 我要看日韩黄色一级片| 国产精品久久久久久精品电影小说| 最黄视频免费看| 日日啪夜夜爽| 三上悠亚av全集在线观看 | 亚洲av电影在线观看一区二区三区| 成人毛片60女人毛片免费| 国产高清国产精品国产三级| 人人妻人人爽人人添夜夜欢视频 | 校园人妻丝袜中文字幕| 夫妻午夜视频| 亚洲怡红院男人天堂| 乱码一卡2卡4卡精品| 国产成人91sexporn| 新久久久久国产一级毛片| 国产成人91sexporn| a级毛色黄片| 99久久精品热视频| 久热这里只有精品99| 嫩草影院新地址| 看十八女毛片水多多多| 亚洲色图综合在线观看| www.av在线官网国产| 久久国产亚洲av麻豆专区| 一级毛片黄色毛片免费观看视频| 在线观看免费视频网站a站| 久久综合国产亚洲精品| 人人妻人人看人人澡| 国产精品一区二区在线不卡| 岛国毛片在线播放| 欧美日韩av久久| 伊人亚洲综合成人网| 麻豆乱淫一区二区| 最近最新中文字幕免费大全7| 久久久a久久爽久久v久久| 久久久精品94久久精品| 麻豆成人av视频| 春色校园在线视频观看| 天天操日日干夜夜撸| 国产视频内射| 亚洲国产欧美在线一区| 不卡视频在线观看欧美| 最近2019中文字幕mv第一页| 国内揄拍国产精品人妻在线| 国产在线男女| 丰满少妇做爰视频| 最近中文字幕2019免费版| 在现免费观看毛片| 自拍偷自拍亚洲精品老妇| 伊人久久国产一区二区| 国产视频首页在线观看| 亚洲在久久综合| 亚洲精品日本国产第一区| 搡女人真爽免费视频火全软件| 免费少妇av软件| 精品少妇久久久久久888优播| 国产毛片在线视频| 亚洲成色77777| 99国产精品免费福利视频| freevideosex欧美| 一级毛片电影观看| 一本一本综合久久| 精品久久久噜噜| 人妻夜夜爽99麻豆av| 久久久久精品久久久久真实原创| 亚洲,一卡二卡三卡| 欧美3d第一页| 性高湖久久久久久久久免费观看| 一区二区三区免费毛片| 一本大道久久a久久精品| 亚洲图色成人| av有码第一页| 国产精品国产三级专区第一集| √禁漫天堂资源中文www| 亚洲欧美清纯卡通| 乱人伦中国视频| 最近中文字幕2019免费版| 少妇被粗大猛烈的视频| 青青草视频在线视频观看| 国产美女午夜福利| 精品久久久噜噜| 交换朋友夫妻互换小说| 久久人人爽人人爽人人片va| 曰老女人黄片| 欧美精品高潮呻吟av久久| 久久精品国产亚洲av涩爱| 日韩av在线免费看完整版不卡| 国产男女内射视频| 大片免费播放器 马上看| 亚洲精品456在线播放app| 尾随美女入室| 中国美白少妇内射xxxbb| 黑丝袜美女国产一区| 久久精品久久久久久噜噜老黄| 成人特级av手机在线观看| 高清欧美精品videossex| 高清在线视频一区二区三区| 十八禁网站网址无遮挡 | 女人精品久久久久毛片| 热re99久久国产66热| 91精品国产九色| 在线播放无遮挡| 纵有疾风起免费观看全集完整版| av免费在线看不卡| 亚洲国产最新在线播放| 亚洲国产毛片av蜜桃av| 欧美最新免费一区二区三区| 91aial.com中文字幕在线观看| 91在线精品国自产拍蜜月| 日本黄色片子视频| 人妻 亚洲 视频| 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 插阴视频在线观看视频| 丁香六月天网| .国产精品久久| 精品国产乱码久久久久久小说| 一级毛片久久久久久久久女| 国产乱来视频区| 久久婷婷青草| 日韩人妻高清精品专区| 91精品伊人久久大香线蕉| 精品久久久噜噜| 这个男人来自地球电影免费观看 | 丁香六月天网| 亚洲国产精品一区二区三区在线| 九色成人免费人妻av| 欧美 日韩 精品 国产| 黑丝袜美女国产一区| 在线观看国产h片| 欧美成人午夜免费资源| 肉色欧美久久久久久久蜜桃| 免费久久久久久久精品成人欧美视频 | 边亲边吃奶的免费视频| 久久人人爽人人爽人人片va| 日韩一区二区三区影片| 精品酒店卫生间| 少妇人妻 视频| 99久久综合免费| 久久久欧美国产精品| 少妇人妻 视频| 国产精品嫩草影院av在线观看| 久久久欧美国产精品| 日韩中字成人| 男人爽女人下面视频在线观看| 18+在线观看网站| 亚洲精品久久久久久婷婷小说| 五月玫瑰六月丁香| 国产片特级美女逼逼视频| 日韩一区二区视频免费看| 在线观看av片永久免费下载| 久久久久人妻精品一区果冻| 99热这里只有精品一区| 国产免费一级a男人的天堂| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影| 日韩,欧美,国产一区二区三区| 亚洲熟女精品中文字幕| 国产成人免费无遮挡视频| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 亚洲国产av新网站| 六月丁香七月| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱| av福利片在线| 久久韩国三级中文字幕| 亚洲国产精品国产精品| 国产男女超爽视频在线观看| 日本wwww免费看| 国产成人a∨麻豆精品| 久热久热在线精品观看| 欧美激情国产日韩精品一区| 久久99精品国语久久久| 狂野欧美激情性xxxx在线观看| 水蜜桃什么品种好| 蜜桃在线观看..| 亚洲精品久久久久久婷婷小说| 亚洲欧洲精品一区二区精品久久久 | 久久午夜福利片| 黄色欧美视频在线观看| 国产 一区精品| 热99国产精品久久久久久7| 亚洲欧美成人精品一区二区| 国产欧美日韩综合在线一区二区 | 亚洲精品乱码久久久v下载方式| 午夜日本视频在线| 亚洲,一卡二卡三卡| 亚洲av成人精品一区久久| 美女大奶头黄色视频| 久久97久久精品| 亚洲av成人精品一区久久| 26uuu在线亚洲综合色| 久久久久网色| 中文资源天堂在线| 爱豆传媒免费全集在线观看| 久热久热在线精品观看| 久久人妻熟女aⅴ| 久久影院123| 熟妇人妻不卡中文字幕| 免费观看在线日韩| 丰满迷人的少妇在线观看| 国产日韩欧美亚洲二区| 亚洲一区二区三区欧美精品| 成人无遮挡网站| 人人妻人人看人人澡| 亚洲怡红院男人天堂| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 在线观看美女被高潮喷水网站| 91成人精品电影| 久久久午夜欧美精品| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 看非洲黑人一级黄片| 国产精品99久久99久久久不卡 | 亚洲伊人久久精品综合| 成人毛片60女人毛片免费| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的| 岛国毛片在线播放| 人人妻人人澡人人看| 久久久久网色| 高清视频免费观看一区二区| 日本wwww免费看| 国产 精品1| 成年人免费黄色播放视频 | 天堂8中文在线网| 精品亚洲成a人片在线观看| 纵有疾风起免费观看全集完整版| 18禁在线播放成人免费| 黑人巨大精品欧美一区二区蜜桃 | 一区二区三区乱码不卡18| 国产精品国产av在线观看| 国产一区二区在线观看av| a 毛片基地| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 老女人水多毛片| 91午夜精品亚洲一区二区三区| 精品少妇久久久久久888优播| 久久久国产欧美日韩av| av在线观看视频网站免费| 国模一区二区三区四区视频| 国产欧美日韩精品一区二区| 美女主播在线视频| 五月天丁香电影| 国产一区二区三区综合在线观看 | 久久精品熟女亚洲av麻豆精品| 国产 一区精品| 欧美日韩av久久| av天堂中文字幕网| 噜噜噜噜噜久久久久久91| 伊人久久国产一区二区| 日产精品乱码卡一卡2卡三| 一本一本综合久久| 人人妻人人澡人人爽人人夜夜| 成人影院久久| 免费少妇av软件| 视频区图区小说| 在线观看www视频免费| 你懂的网址亚洲精品在线观看| 校园人妻丝袜中文字幕| h视频一区二区三区| 七月丁香在线播放| 亚洲av不卡在线观看| 亚洲激情五月婷婷啪啪| 大香蕉97超碰在线| 成人亚洲精品一区在线观看| 久久青草综合色| 色5月婷婷丁香| a级毛片免费高清观看在线播放| 欧美97在线视频| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久久久免| 日日啪夜夜撸| 一本一本综合久久| av天堂中文字幕网| 一二三四中文在线观看免费高清| 两个人免费观看高清视频 | 亚洲美女搞黄在线观看| 国产精品成人在线| 水蜜桃什么品种好| 久久99一区二区三区| 一级毛片我不卡| 亚洲国产日韩一区二区| 亚洲内射少妇av| 高清在线视频一区二区三区| 少妇丰满av| 午夜激情福利司机影院| 亚洲国产精品999| 七月丁香在线播放| 另类精品久久| 全区人妻精品视频| 久久久久人妻精品一区果冻| 大又大粗又爽又黄少妇毛片口| av免费在线看不卡| 自线自在国产av| 国产熟女午夜一区二区三区 | 亚洲国产精品成人久久小说| 久久99一区二区三区| 亚洲精品日本国产第一区| 你懂的网址亚洲精品在线观看| 夜夜骑夜夜射夜夜干| 亚洲成人av在线免费| 久久 成人 亚洲| 麻豆成人av视频| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 嫩草影院新地址| 国产成人精品福利久久| av卡一久久| 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲av免费高清在线观看| a级一级毛片免费在线观看| 国产精品免费大片| 亚洲国产毛片av蜜桃av| 中国三级夫妇交换| 国产日韩欧美亚洲二区| 国产伦精品一区二区三区视频9| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看| 青春草国产在线视频| 汤姆久久久久久久影院中文字幕| 狂野欧美白嫩少妇大欣赏| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 九九在线视频观看精品| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 多毛熟女@视频| av专区在线播放| 高清av免费在线| 久久狼人影院| 色哟哟·www| 午夜视频国产福利| 99九九线精品视频在线观看视频| 赤兔流量卡办理| 18禁在线播放成人免费| 麻豆成人av视频| 午夜91福利影院| 国产永久视频网站| 亚洲欧美一区二区三区国产| 亚洲真实伦在线观看| 麻豆精品久久久久久蜜桃| 男女边摸边吃奶| 欧美 亚洲 国产 日韩一| 国产av码专区亚洲av| 一区二区三区四区激情视频| 一个人看视频在线观看www免费| 精品少妇久久久久久888优播| 内射极品少妇av片p| 综合色丁香网| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 熟女av电影| 偷拍熟女少妇极品色| 不卡视频在线观看欧美| 美女福利国产在线| 国产高清不卡午夜福利| 2021少妇久久久久久久久久久| 亚洲精品视频女| 狠狠精品人妻久久久久久综合| 亚洲精品乱久久久久久| 在线观看免费视频网站a站| 黑人猛操日本美女一级片| 亚洲人成网站在线观看播放| 91久久精品国产一区二区三区| 在线观看免费视频网站a站| 国产精品免费大片| 99久久精品一区二区三区| 多毛熟女@视频| 18+在线观看网站| 偷拍熟女少妇极品色| 欧美激情国产日韩精品一区| 嫩草影院新地址| 国产精品一区二区三区四区免费观看| 黄色怎么调成土黄色| 亚洲在久久综合| 日日爽夜夜爽网站|