• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Boundary Observability for a Kind of Second-Order Quasilinear Hyperbolic Systems?

    2016-06-05 03:10:14KeWANG
    關(guān)鍵詞:漢斯批評家樣子

    Ke WANG

    1 Introduction

    As a dual problem of controllability,the exact boundary observability for linear wave equations has been deeply studied(see[10–12,18]).Based on the theory of semi-global classical solutions to quasilinear hyperbolic systems(see[6,9]),by a constructive method,Li et al.[4,7–8]obtained the exact boundary observability for quasilinear hyperbolic systems.Later,Li[3,5]and Guo and Wang[1]discussed the exact boundary observability for autonomous and nonautonomous 1-D quasilinear wave equations,respectively,and showed the implicit dualities between the corresponding exact boundary controllability and the exact boundary observability.For the general 1-D quasilinear hyperbolic equation utt+a(u,ux,ut)utx+b(u,ux,ut)uxx=c(u,ux,ut),where u is the unknown function of(t,x)and(a2?4b)(0,0,0)>0,Shang and Zhuang[13]established the corresponding local exact boundary observability,including the 1-D quasilinear wave equation as its special case.

    For second-order quasilinear hyperbolic systems,there are few results on the exact boundary observability.Yu[16]considered the second-order quasilinear hyperbolic system utt+(A+B)(u,ux,ut)utx+AB(u,ux,ut)uxx=F(u,ux,ut),where u=(u1,···,un)Tis the unknown vector function of(t,x),matrices A and B have only n positive eigenvalues and n negative eigenvalues,respectively.By a constructive method,she obtained the local exact boundary observability.Later,for a quasilinear coupled hyperbolic system

    where λ(0)<0,μ(0)<0,ν(0)>0,she got the exact boundary observability by using similar constructive method and applied this result to a first-order quasilinear hyperbolic system of diagonal form and proved that the exact boundary observability is still valid even though the boundary conditions are not coupled(see[17]).

    Recently,for a kind of coupled system of 1-D quasilinear wave equations:

    where w=(w1,···,wn)Tand ai(0)>0(i=1,···,n),the authors of[2]discussed the local exact boundary observability with various types of boundary conditions and showed the implicit dualities between the exact boundary controllability and the exact boundary observability.

    In this paper,we continue to consider the kind of second-orderquasilinear hyperbolic systems proposed in[14].Based on the known result on the existence and uniqueness of semi-global C2solution to this kind of systems(see[14]),by using a constructive method,we discuss the exact boundary observability and show the implicit dualities between it and the corresponding exact boundary controllability given in[14].The conclusions in both[2]and[13]are of its special cases.

    Consider the following kind of second-order quasilinear hyperbolic systems:

    where u=(u1,···,un)Tis the unknown vector function of(t,x),A(u,v,w)=(aij(u,v,w))and B(u,v,w)=(bij(u,v,w))(i,j=1,···,n)are both n×n matrices with smooth entries,and have n real eigenvalues and a complete set of left eigenvectors on the domain under consideration,respectively.Suppose furthermore that

    Thus,there exists an invertible n×n matrix L(u,v,w)such that

    where λ1,···,λnand μ1,···,μnare the real eigenvalues of matrices A and B,respectively,and L=(lij)is just the matrix composed by the common left eigenvectors of A and B.Moreover,we assume that on the domain under consideration

    and

    In addition,C=C(u,v,w)=(c1(u,v,w),···,cn(u,v,w))Tis a smooth vector function with

    By[14],system(1.1)has 2n real eigenvalues

    This paper is organized as follows.In Section 2,we recall the existence and uniqueness of semi-global C2solution to the second-order quasilinear hyperbolic system(1.1)under different cases.Then the two-sided and one-sided exact boundary observability are discussed in Section 3,respectively.Finally,in Section 4,we present an implicit duality between the exact boundary controllability and the exact boundary observability.

    2 Existence and Uniqueness of Semi-global C2Solution

    In this section,we recall brie fly the result on the semi-global C2solution to the second-order quasilinear hyperbolic system(1.1)under different cases in[14].

    For system(1.1),we give the following initial condition:

    where ? =(?1,···,?n)Tis a given C2vector function,ψ =(ψ1,···,ψn)Tis a given C1vector function.

    Let

    By[14],according to different signs of(i=1,···,n)in a neighborhood of(u,v,w)=(0,0,0),we need only to discuss the following three typical cases.

    Case 1System(1.1)has n positive eigenvalues>0 and n negative eigenvalues<0(i=1,···,n).

    In this case,we prescribe the following nonlinear boundary conditions on the ends x=0 and x=L,respectively:

    where Gp,Hp,andare all C2functions with respect to their arguments,Gq,Hq,andare all C1functions with respect to their arguments,and,without loss of generality,we may assume

    In what follows,the following assumptions will be imposed totally or partially in different situations:

    For the convenience of statement,in Case 1 we denote that

    Case 2System(1.1)has d1+d2positive eigenvalues>0,>0 and 2n?(d1+d2)negative eigenvalues<0,<0(j=1,···,d1;k=d1+1,···,d2;h=d2+1,···,n),and,without loss of generality,we may assume

    當漢斯·P離開時,他擺出一副正人君子的樣子說:“你一定理解,我絕對不會讓個人的感情來干擾我作為批評家的天良?!保?014:431)

    namely,the number of positive eigenvalues is less than or equal to that of negative ones.

    In this case,we prescribe the following nonlinear boundary conditions on the ends x=0 and x=L,respectively:

    where Gp,Hp,andare all C2functions with respect to their arguments,Gq,Hq,andare all C1functions with respect to their arguments,and,without loss of generality,we may assume

    In what follows,the following assumptions will be imposed totally or partially in different situations:

    in which(L?1D?){1,d1}indicates the matrix composed of the first column to the d1th column of matrix(L?1D?),etc.

    In Case 2,we denote that

    Case 3System(1.1)has 2n positive eigenvalues>0(i=1,···,n).

    In this case,we need only 2n boundary conditions on the end x=0:

    First of all,in Case 1 we give the following lemma on the existence and uniqueness of semi-global C2solution to system(1.1)(see[14]).

    Lemma 2.1Suppose that(2.6)and(2.9)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively.Then,for any given and possibly quite large T >0,if the norms?(?,ψ)?C2[0,L]×C1[0,L],?(Hp,Hq)?C2[0,T]×C1[0,T]and(p=1,···,l;q=l+1,···,n;r=1,···,m;s=m+1,···,n)are small enough,the forward mixed initial-boundary value problem(1.1),(2.1)and(2.3)–(2.4)admits a unique semi-global C2solution u=u(t,x)on the domain R(T)={(t,x)|0≤t≤T,0≤x≤L}with small C2norm,and

    where C is a positive constant.

    Corollary 2.1If?(?,ψ)?C2[0,L]×C1[0,L]is suitably small,then the Cauchy problem(1.1)and(2.1)admits a unique global C2solution u=u(t,x)on its whole maximum determinate domain with small C2norm,and

    where C is a positive constant.

    Remark 2.1If we give the following final condition

    where Φ =(Φ1,···,Φn)Tis a given C2vector function,Ψ =(Ψ1,···,Ψn)Tis a given C1vector function.Suppose that(2.7)–(2.8)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(T,0)and(T,L),respectively.For any given and possibly quite large T>0,if the normsand(p=1,···,l;q=l+1,···,n;r=1,···,m;s=m+1,···,n)are small enough,the backward mixed initial-boundary value problem(1.1),(2.20)and(2.3)–(2.4)admits a unique semi-global C2solution on the domain R(T)with small C2norm,and

    where C is a positive constant.

    In Case 2 and Case 3,we have the corresponding existence and uniqueness of semi-global C2solution,see Lemma 2.2 and Lemma 2.3,respectively(see[14]).

    Lemma 2.2Suppose that(2.14)and(2.16)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively.Then,for any given and possibly quite large T>0,if the norms?(?,ψ)?C2[0,L]×C1[0,L],?(Hp,Hq)?C2[0,T]×C1[0,T]and(p=1,···,l;q=l+1,···,d1+d2;r=1,···,m;s=m+1,···,2n?(d1+d2))are small enough,the forward mixed initial-boundary value problem(1.1),(2.1)and(2.11)–(2.12)admits a unique semi-global C2solution u=u(t,x)on the domain R(T)with small C2norm,and

    where C is a positive constant.

    Lemma 2.3For any given and possibly quite large T>0,if the norms

    are small enough,and the conditions of C2compatibility are satisfied at the point(t,x)=(0,0),the forward mixed initial-boundary value problem(1.1),(2.1)and(2.17)admits a unique semiglobal C2solution u=u(t,x)on the domain R(T)with small C2norm,and

    where C is a positive constant.

    3 Local Exact Boundary Observability in Case 1

    Theorem 3.1(Two-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.6)and(2.9)hold.Suppose furthermore that

    and

    Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small norms?(?,ψ)?C2[0,L]×C1[0,L]andsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed values uq=(t),upx=(t)(p=1,···,l;q=l+1,···,n)at x=0 and us=(t),urx=(t)(r=1,···,m;s=m+1,···,n)at x=L on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values and(H(t),Moreover,we have the following observability inequality:

    where C is a positive constant.

    ProofSince?(?,ψ)?C2[0,L]×C1[0,L]andare small,by Lemma 2.1,the mixed initial-boundary value problem(1.1),(2.1)and(2.3)–(2.4)admits a unique C2solution on the domain R(T)with small C2norm.Thus,the corresponding C2norms or C1norms of the observed values(p=1,···,l;q=l+1,···,n)at x=0,and(r=1,···,m;s=m+1,···,n)at x=L are all small.

    By(3.1),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.3)at x=0 can be equivalently rewritten as

    where gp(p=1,···,l)are C2functions,gq(q=l+1,···,n)are C1functions,and by(2.5),we have

    Then,the values(t)of ui(i=1,···,n)at x=0 can be uniquely determined by the observed values uq=(t)(q=l+1,···,n)at x=0 as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=0 can be uniquely determined by the observed values upx=(t)(p=1,···,l)at x=0 as follows:

    and

    Similarly,by(3.2),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.4)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,(s=m+1,···,n)are C1functions,and by(2.5),we have

    Then,the valuesof ui(i=1,···,n)at x=L can be uniquely determined by the observed values us=(s=m+1,···,n)at x=L as follows:

    and

    On the other hand,the valuesof uix(i=1,···,n)at x=L can be uniquely determined by the observed values urx=(r=1,···,m)at x=L as follows:

    and

    Changing the role of t and x,we consider the rightward Cauchy problem for system(1.1)with the initial condition

    By Corollary 2.1 and noting(3.8)and(3.10),this Cauchy problem admits a unique C2solution u=(t,x)on its whole maximum determinate domain,and

    Similarly,the leftward Cauchy problem for system(1.1)with the final condition

    admits a unique C2solution u=(t,x)on its whole maximum determinate domain,and

    Obviously,both u=(t,x)and u=(t,x)are the restrictions of the solution u=u(t,x)to the original mixed problem on the corresponding domains,respectively.

    Noting(3.3),these two maximum determinate domains must intersect each other.Then,there exists T0(0

    We now consider the backward mixed initial-boundary value problem for system(1.1)with

    on the domain R(T0)={(t,x)|0≤t≤T0,0≤x≤L}.By Remark 2.1,this backward mixed problem admits a unique C2solution u=ub(t,x),which is the restriction of the original C2solution u=u(t,x)on the domain R(T0),thus we have

    By(2.1)and noting(3.8),(3.14)and(3.21),we get the desired observability inequality(3.4).

    Theorem 3.2(One-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.6),(2.8)–(2.9)and(3.1)hold.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normsandsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed values(p=1,···,l;q=l+1,···,n)at x=0 on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:

    where C is a positive constant.

    ProofChanging the role of t and x,we consider the rightward Cauchy problem for system(1.1)with the initial condition(3.17),which admits a unique C2solution u=(t,x)on its whole maximum determinate domain and(3.18)holds.Obviously,u=(t,x)is the restriction of the C2solution u=u(t,x)to the original mixed problem on the corresponding domain.

    Noting(3.26),this maximum determinate domain must intersect x=L.Then,there exists T0(0

    We consider the backward mixed initial-boundary value problem for system(1.1)with the final condition(3.22)and boundary conditions(3.23)and(2.4)on the domain R(T0).By Remark 2.1,this backward mixed problem admits a unique C2solution u=ub(t,x)on the domain R(T0),which is just the restriction of the original C2solution u=u(t,x)on the domain R(T0),thus we have

    By(2.1)and noting(3.8)and(3.28),we get the desired observability inequality(3.27).

    Remark 3.1In Case 1,if the boundary conditions are particularly given as

    it is easy to see that assumptions(3.1)–(3.2)are automatically satisfied.

    Remark 3.2In Case 1,since the number of positive eigenvalues for system(1.1)is equal to that of negative eigenvalues,similar result holds if we take observed values at x=L instead of at x=0,and hypotheses(2.6),(2.8)–(2.9)and(3.1)are replaced by(2.6)–(2.7),(2.9)and(3.2).

    4 Local Exact Boundary Observability in Case 2 and Case 3

    Let

    Assume that α≥0.

    Theorem 4.1(Two-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.10),(2.14)and(2.16)hold.Suppose furthermore that

    and

    Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normsandsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed valuesat x=0 andat x=L on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values and(H(t),Moreover,we have the following observability inequality:

    where C is a positive constant.

    ProofThe proof of Theorem 4.1 is similar to that of Theorem 3.1.By(4.2),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.11)at x=0 can be equivalently rewritten as

    where gp(p=1,···,l)are C2functions,gq(q=l+1,···,d1+d2)are C1functions,and by(2.13),we have

    Then,the values(t)of ui(i=1,···,n)at x=0 can be uniquely determined by the observed valuesat x=0 as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=0 can be uniquely determined by the observed valuesat x=0 as follows:

    and

    The observed values at x=L depend on the value of α,which is divided into two subcases.

    (a)α=0,namely,m=n?(d1+d2).

    By(4.3),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.12)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,gi(i=1,···,n)are C1functions,and by(2.13),we have

    Then,the values(t)of uiand the values(t)of uix(i=1,···,n)at x=L can be uniquely determined by the observed values u?s=(t)(=m+1,···,n)at x=L as follows:

    and

    (b)α>0,namely,m>n?(d1+d2).

    By(4.3),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.12)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,(β = α +1,···,n)are C1functions,and by(2.13),we have

    Then,the values(t)of ui(i=1,···,n)at x=L can be uniquely determined by the observed valuesat x=L as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=L can be uniquely determined by the observed valuesat x=L as follows:

    and

    The rest of the proof is similar to the proof of Theorem 3.1 and can be omitted.

    Similarly to Theorem 3.2,we have the following theorem.

    Theorem 4.2(One-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.10),(2.14)–(2.16)and(4.2)hold.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normssuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed valuesat x=0,then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:

    where C is a positive constant.

    Remark 4.1In Case 2,suppose that the boundary conditions are particularly given as

    By Laplace theorem of determinant(see[15]),for the invertible matrix L(0),there exists a nonsingular subdeterminant composed of the elements of the intersections of,for instance,the first row to the d2th row with the first column to the d2th column,and we denote this d2-subdeterminant of L(0)asMeanwhile,the(n?d2)-algebraic cofactor of this d2-subdeterminant satisfiesThus it is easy to see that the assumption(4.2)is automatically satisfied.Similarly,we can also get(4.3).

    In Case 3,we need only to consider the local one-sided exact boundary observability at x=L.

    Theorem 4.3(One-Sided Exact Boundary Observability at x=L) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normssuch that the conditions of C2compatibility are satisfied at the point(t,x)=(0,0),if we have the observed valuesat x=L,then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:where C is a positive constant.

    5 Implicit Duality Between Controllability and Observability

    Comparing the observability discussed above with the controllability obtained in[14],we may find an implicit duality between the exact boundary controllability and the exact boundary observability for this kind of second-order quasilinear hyperbolic systems.

    For the two-sided control,we have

    (i)The controllability time is equal to the observability time,and both of them are sharp.The restriction on the controllability time essentially means that the two maximum determinate domains for the forward and backward Cauchy problems do not intersect each other,while,the restriction on the observability time essentially means that the two maximum determinate domains for the leftward and rightward Cauchy problems must intersect each other.

    (ii)Both the number of boundary controls and the number of boundary observed values are equal to 2n,which is the number of all positive eigenvalues and negative eigenvalues.

    For the one-sided control,we have

    (i)The controllability time is still equal to the observability time,and both of them are sharp.The restriction on the controllability time essentially means that the two maximum determinate domains for the forward and backward one-sided mixed problems do not intersect each other,while,the restriction on the observability time essentially means that the maximum determinate domain for the rightward Cauchy problems must intersect x=L.

    (ii)Both the number of boundary controls and the number of boundary observed values are equal to the maximum value between the number of positive eigenvalues and that of negative eigenvalues.

    [1]Guo,L.N.and Wang,Z.Q.,Exact boundary observability for nonautonomous quasilinear wave equations,J.Math.Anal.Appl.,364,2010,41–50.

    [2]Hu,L.,Ji,F.Q.and Wang,K.,Exact boundary controllability and observability for a coupled system of quasilinear wave equations,Chin.Ann.Math.,Ser.B,34(4),2013,479–490.

    [3]Li,T.T.,Exact boundary observability for 1-D quasilinear wave equations,Math.Meth.Appl.Sci.,29,2006,1543–1553.

    [4]Li,T.T.,Exact boundary observability for quasilinear hyperbolic systems,ESIAM:Control,Optimisation and Calculus Variations,14,2008,759–766.

    [5]Li,T.T.,Controllability and Observability for Quasilinear Hyperbolic Systems,AIMS Series on Applied Mathematics,Vol.3,American Institute of Mathematical Sciences&Higher Education Press,Spring field&Beijing,2010.

    [6]Li,T.T.and Jin,Y.,Semi-global C1solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,22(3),2001,325–336.

    [7]Li,T.T.and Rao,B.P.,Strong(weak)exact controllability and strong(weak)exact observability for quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,31(5),2010,723–742.

    [8]Li,T.T.,Rao,B.P.and Wang,Z.Q.,A note on the one-side exact boundary observability for quasilinear hyperbolic systems,Georgian Math.J.,15,2008,571–580.

    [9]Li,T.T.and Yu,W.C.,Boundary Value Problems for Quasilinear Hyperbolic Systems,Duke Univ.Math.Ser.V,Duke Univ.Press,Durham,1985.

    [10]Lions,J.-L.,Exact controllability,stabilization and perturbations for distributed systems,SIAM Rev.,30,1988,1–68.

    [11]Lions,J.-L.,Exact Controllability,Stabilization and Perturbations for Distributed Systems(in Chinese),Vol.1,translated by Jinhai Yan and Ying Huang,Higher Education Press,Beijing,2012.

    [12]Russell,D.L.,Controllability and stabilization for linear partial differential equations,recent progress and open questions,SIAM Rev.,20,1978,639–739.

    [13]Shang,P.P.and Zhuang,K.L.,Exact observability for second order quasilinear hyperbolic equations(in Chinese),Chin.J.Engin.Math.,26,2009,618–636.

    [14]Wang,K.,Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,32(6),2011,803–822.

    [15]Yao,M.S.,Advanced Algebra(in Chinese),Fudan University Press,Shanghai,2005.

    [16]Yu,L.X.,Exact boundary observability for a kind of second order quasilinear hyperbolic systems and its applications,Nonlinear Analysis,72,2010,4452–4465.

    [17]Yu,L.X.,Exact boundary observability for a kind of second-order quasilinear hyperbolic system,Nonlinear Analysis,74,2011,1073–1087.

    [18]Zuazua,E.,Boundary observability for the space-discretization of the 1-D wave equation,C.R.Acad.Sci.Paris,Sér.I,326,1998,713–718.

    猜你喜歡
    漢斯批評家樣子
    魔鬼與天使
    你是我的天使
    你是我的天使
    新銳批評家
    文藝論壇(2020年3期)2020-12-24 09:53:50
    今日批評家
    詩林(2019年6期)2019-11-08 01:51:34
    你們怎么可以這樣子呢!
    桃之夭夭B(2016年12期)2016-12-22 20:04:02
    最想要的樣子
    好孩子畫報(2016年7期)2016-12-12 11:54:37
    就喜歡你看不慣我又干不掉我的樣子
    就喜歡你看不慣我又干不掉我的樣子之《少年,來玩我吧!》
    你是我的天使
    小品文選刊(2016年1期)2016-02-12 03:56:50
    一级作爱视频免费观看| 身体一侧抽搐| 少妇人妻一区二区三区视频| 国产一区二区激情短视频| 青草久久国产| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱色亚洲激情| 老司机靠b影院| 在线免费观看的www视频| 人成视频在线观看免费观看| 国产单亲对白刺激| 女人爽到高潮嗷嗷叫在线视频| 亚洲 国产 在线| 亚洲国产欧洲综合997久久,| 一个人观看的视频www高清免费观看 | 国产精品一及| 夜夜爽天天搞| 热99re8久久精品国产| 正在播放国产对白刺激| 中文字幕av在线有码专区| 三级国产精品欧美在线观看 | 在线观看午夜福利视频| 国产精品亚洲av一区麻豆| 亚洲午夜理论影院| 精品电影一区二区在线| 亚洲av成人av| 给我免费播放毛片高清在线观看| 正在播放国产对白刺激| 亚洲专区国产一区二区| 欧美黑人精品巨大| 亚洲aⅴ乱码一区二区在线播放 | 欧美黄色片欧美黄色片| 这个男人来自地球电影免费观看| √禁漫天堂资源中文www| 成人国产综合亚洲| 一级a爱片免费观看的视频| 极品教师在线免费播放| 免费在线观看成人毛片| 一区二区三区国产精品乱码| 国产爱豆传媒在线观看 | 少妇熟女aⅴ在线视频| 国产亚洲精品第一综合不卡| 亚洲性夜色夜夜综合| 无人区码免费观看不卡| 天堂av国产一区二区熟女人妻 | 日韩高清综合在线| 在线播放国产精品三级| 国产精品免费视频内射| 久久婷婷人人爽人人干人人爱| 亚洲aⅴ乱码一区二区在线播放 | АⅤ资源中文在线天堂| 最近在线观看免费完整版| 国产精品一区二区免费欧美| 午夜两性在线视频| 久久天堂一区二区三区四区| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲自偷自拍图片 自拍| 久久人人精品亚洲av| 听说在线观看完整版免费高清| 午夜老司机福利片| 窝窝影院91人妻| 午夜视频精品福利| 麻豆国产97在线/欧美 | 欧美成人午夜精品| 久久天堂一区二区三区四区| a在线观看视频网站| 欧美大码av| 国产亚洲精品久久久久久毛片| 日本精品一区二区三区蜜桃| 久久天躁狠狠躁夜夜2o2o| 欧洲精品卡2卡3卡4卡5卡区| 在线a可以看的网站| 色综合亚洲欧美另类图片| 又大又爽又粗| 九色国产91popny在线| 在线观看免费视频日本深夜| 久久久久久久久久黄片| 国产av又大| 成人一区二区视频在线观看| 国内少妇人妻偷人精品xxx网站 | 久久久久性生活片| netflix在线观看网站| 亚洲精品一区av在线观看| 久久中文字幕人妻熟女| 久久久久国产一级毛片高清牌| 欧美日韩瑟瑟在线播放| 一a级毛片在线观看| 母亲3免费完整高清在线观看| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av| 久久天堂一区二区三区四区| 久久性视频一级片| 一级毛片女人18水好多| ponron亚洲| 欧美性猛交黑人性爽| 成人手机av| a级毛片a级免费在线| 老汉色∧v一级毛片| 哪里可以看免费的av片| 麻豆成人午夜福利视频| 国产成人精品久久二区二区免费| 99国产极品粉嫩在线观看| 久久人妻福利社区极品人妻图片| 精品欧美一区二区三区在线| 亚洲色图av天堂| 在线永久观看黄色视频| 日本一二三区视频观看| 亚洲欧美日韩无卡精品| 嫩草影院精品99| 免费看日本二区| 亚洲午夜精品一区,二区,三区| 两个人免费观看高清视频| 这个男人来自地球电影免费观看| 啦啦啦观看免费观看视频高清| 久久久久久人人人人人| 国产一区二区三区在线臀色熟女| 国产97色在线日韩免费| 欧美不卡视频在线免费观看 | 两个人看的免费小视频| 少妇粗大呻吟视频| 久久久精品欧美日韩精品| 可以免费在线观看a视频的电影网站| 老熟妇乱子伦视频在线观看| 91麻豆精品激情在线观看国产| 青草久久国产| 男男h啪啪无遮挡| 国产男靠女视频免费网站| а√天堂www在线а√下载| 亚洲精品国产一区二区精华液| 久久国产精品影院| 老汉色av国产亚洲站长工具| 99热6这里只有精品| 国产伦一二天堂av在线观看| 国产精品香港三级国产av潘金莲| 黄片大片在线免费观看| 可以在线观看毛片的网站| 日本五十路高清| 岛国在线免费视频观看| 欧美大码av| ponron亚洲| 欧美日韩乱码在线| 国产精品 欧美亚洲| 亚洲中文字幕一区二区三区有码在线看 | 久久香蕉国产精品| 国产亚洲欧美98| 久久久久国产精品人妻aⅴ院| 国产主播在线观看一区二区| 午夜精品在线福利| 国产亚洲精品一区二区www| 日韩精品免费视频一区二区三区| 香蕉国产在线看| 午夜日韩欧美国产| 男人舔女人下体高潮全视频| 久久九九热精品免费| 真人做人爱边吃奶动态| 午夜福利欧美成人| 亚洲成av人片免费观看| 在线观看舔阴道视频| 一a级毛片在线观看| 久久九九热精品免费| 亚洲国产欧美网| www日本黄色视频网| 国产成人影院久久av| 国产1区2区3区精品| 最好的美女福利视频网| 亚洲国产欧美一区二区综合| 午夜精品一区二区三区免费看| 人人妻,人人澡人人爽秒播| 成人午夜高清在线视频| 99热这里只有是精品50| 国产男靠女视频免费网站| 亚洲国产欧美一区二区综合| 窝窝影院91人妻| 亚洲国产精品999在线| 中国美女看黄片| 丁香六月欧美| 欧美在线黄色| 国产av又大| 又黄又粗又硬又大视频| 1024香蕉在线观看| 国内精品久久久久久久电影| 国产精品一区二区精品视频观看| 国产精品九九99| 可以免费在线观看a视频的电影网站| 久久香蕉精品热| 国产一区二区三区在线臀色熟女| 亚洲国产精品久久男人天堂| 午夜视频精品福利| 国产成人精品久久二区二区91| 91老司机精品| 无遮挡黄片免费观看| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 久久99热这里只有精品18| 精品熟女少妇八av免费久了| 国产精品国产高清国产av| 亚洲精品色激情综合| 最新在线观看一区二区三区| 亚洲成人免费电影在线观看| 国产精品精品国产色婷婷| 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| 琪琪午夜伦伦电影理论片6080| 久久久久九九精品影院| 搡老熟女国产l中国老女人| 又粗又爽又猛毛片免费看| 色综合站精品国产| www.精华液| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 日韩欧美在线乱码| 丰满的人妻完整版| 国内精品久久久久久久电影| 女同久久另类99精品国产91| 久久中文字幕一级| 欧美一级a爱片免费观看看 | 老司机福利观看| 激情在线观看视频在线高清| 国产免费av片在线观看野外av| tocl精华| 少妇熟女aⅴ在线视频| 天堂√8在线中文| 精品久久蜜臀av无| 亚洲成人久久性| 亚洲av熟女| 亚洲 欧美一区二区三区| 国产精品香港三级国产av潘金莲| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| 这个男人来自地球电影免费观看| 成人永久免费在线观看视频| 亚洲18禁久久av| 中出人妻视频一区二区| 999久久久国产精品视频| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品av在线| 久久中文看片网| 亚洲免费av在线视频| 国产99白浆流出| 男女之事视频高清在线观看| 黑人欧美特级aaaaaa片| 97人妻精品一区二区三区麻豆| 后天国语完整版免费观看| 手机成人av网站| 视频区欧美日本亚洲| 正在播放国产对白刺激| 97人妻精品一区二区三区麻豆| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女| 久久中文字幕一级| 国产激情欧美一区二区| 国产精品一及| 色综合欧美亚洲国产小说| 老熟妇仑乱视频hdxx| 1024视频免费在线观看| 熟妇人妻久久中文字幕3abv| 啦啦啦观看免费观看视频高清| 久久精品夜夜夜夜夜久久蜜豆 | 国产一区二区三区视频了| 岛国在线免费视频观看| 日韩欧美在线乱码| 亚洲国产欧洲综合997久久,| 日本三级黄在线观看| 女人高潮潮喷娇喘18禁视频| 久久久国产成人免费| av福利片在线观看| 日本免费a在线| 亚洲 欧美一区二区三区| 色综合亚洲欧美另类图片| 首页视频小说图片口味搜索| 三级男女做爰猛烈吃奶摸视频| 九色成人免费人妻av| 欧美一级毛片孕妇| 神马国产精品三级电影在线观看 | 国产三级在线视频| 99在线视频只有这里精品首页| 国产精品1区2区在线观看.| 我要搜黄色片| 黄色毛片三级朝国网站| 美女高潮喷水抽搐中文字幕| www.精华液| 亚洲乱码一区二区免费版| 好男人在线观看高清免费视频| 岛国在线观看网站| 极品教师在线免费播放| 国产激情偷乱视频一区二区| 日韩欧美三级三区| 午夜成年电影在线免费观看| 亚洲自拍偷在线| 女警被强在线播放| 999久久久精品免费观看国产| 欧美黑人巨大hd| 熟妇人妻久久中文字幕3abv| 国产一区二区三区在线臀色熟女| 99精品在免费线老司机午夜| 99热只有精品国产| 色尼玛亚洲综合影院| av国产免费在线观看| xxxwww97欧美| 国内少妇人妻偷人精品xxx网站 | 窝窝影院91人妻| 久久久久久久久久黄片| 丰满人妻熟妇乱又伦精品不卡| 一级a爱片免费观看的视频| 老司机午夜十八禁免费视频| 12—13女人毛片做爰片一| 黄片大片在线免费观看| 麻豆成人av在线观看| а√天堂www在线а√下载| 欧美日本视频| 欧美一区二区国产精品久久精品 | 国产精品久久久久久精品电影| 国产精品亚洲av一区麻豆| 波多野结衣高清无吗| 亚洲色图 男人天堂 中文字幕| 女同久久另类99精品国产91| 日本 欧美在线| 少妇熟女aⅴ在线视频| 精品国产乱码久久久久久男人| 精品久久久久久久人妻蜜臀av| 五月玫瑰六月丁香| 成人18禁高潮啪啪吃奶动态图| 草草在线视频免费看| 免费看日本二区| av中文乱码字幕在线| 女警被强在线播放| 国产爱豆传媒在线观看 | 成人三级黄色视频| 亚洲人成伊人成综合网2020| 91字幕亚洲| 久99久视频精品免费| 欧美日韩黄片免| 亚洲五月婷婷丁香| 亚洲成人免费电影在线观看| 久久久久国内视频| av免费在线观看网站| 免费搜索国产男女视频| 免费无遮挡裸体视频| 成人午夜高清在线视频| www日本在线高清视频| 国产伦人伦偷精品视频| 成人永久免费在线观看视频| 精品国产乱码久久久久久男人| netflix在线观看网站| 亚洲无线在线观看| 真人做人爱边吃奶动态| 久久精品综合一区二区三区| 窝窝影院91人妻| 亚洲熟妇熟女久久| 成人欧美大片| 亚洲中文av在线| 国产精品电影一区二区三区| 麻豆国产97在线/欧美 | 美女高潮喷水抽搐中文字幕| 亚洲人成网站高清观看| 国产高清视频在线观看网站| 欧美一级a爱片免费观看看 | 超碰成人久久| 黄频高清免费视频| 亚洲va日本ⅴa欧美va伊人久久| 我要搜黄色片| 不卡av一区二区三区| 在线观看美女被高潮喷水网站 | 欧美日韩中文字幕国产精品一区二区三区| 窝窝影院91人妻| 九色成人免费人妻av| 精品国内亚洲2022精品成人| 19禁男女啪啪无遮挡网站| 成人欧美大片| 色综合站精品国产| 91在线观看av| 国产亚洲精品久久久久5区| 国产亚洲精品一区二区www| 国产精品av久久久久免费| 国产伦一二天堂av在线观看| 男女之事视频高清在线观看| 亚洲国产精品合色在线| 色播亚洲综合网| 精品福利观看| 免费看十八禁软件| 动漫黄色视频在线观看| 欧美人与性动交α欧美精品济南到| 不卡一级毛片| av福利片在线| 成人国产一区最新在线观看| 夜夜夜夜夜久久久久| 久久国产乱子伦精品免费另类| 性欧美人与动物交配| 搡老岳熟女国产| 一卡2卡三卡四卡精品乱码亚洲| av国产免费在线观看| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 精品国产美女av久久久久小说| 亚洲欧洲精品一区二区精品久久久| 1024香蕉在线观看| 国内精品久久久久精免费| 黄色视频不卡| 国产亚洲精品av在线| 91av网站免费观看| 亚洲午夜精品一区,二区,三区| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 在线观看午夜福利视频| 日本黄大片高清| 欧美日韩一级在线毛片| 国产三级中文精品| 性欧美人与动物交配| 99re在线观看精品视频| 午夜成年电影在线免费观看| 丰满人妻一区二区三区视频av | 欧美日韩一级在线毛片| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 啦啦啦免费观看视频1| 亚洲国产中文字幕在线视频| 他把我摸到了高潮在线观看| 怎么达到女性高潮| 久久久久久久午夜电影| 久久久久免费精品人妻一区二区| 99国产精品一区二区蜜桃av| 熟女电影av网| 久久香蕉激情| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 国产真人三级小视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 88av欧美| 亚洲av成人一区二区三| 国产伦人伦偷精品视频| 久热爱精品视频在线9| 欧美乱妇无乱码| 好男人电影高清在线观看| 国产97色在线日韩免费| 亚洲美女视频黄频| 欧美一级a爱片免费观看看 | 三级男女做爰猛烈吃奶摸视频| 青草久久国产| 国产精品久久久久久亚洲av鲁大| 99久久综合精品五月天人人| 色精品久久人妻99蜜桃| 黄色 视频免费看| 久久这里只有精品19| 成人av在线播放网站| 国产99白浆流出| 黄色片一级片一级黄色片| 无遮挡黄片免费观看| 国产精品久久电影中文字幕| www.999成人在线观看| 天堂av国产一区二区熟女人妻 | 波多野结衣巨乳人妻| 我要搜黄色片| 国产视频一区二区在线看| 国产真实乱freesex| 男女午夜视频在线观看| svipshipincom国产片| 亚洲国产欧洲综合997久久,| 搡老熟女国产l中国老女人| 久久久久久久精品吃奶| 亚洲精品中文字幕在线视频| xxxwww97欧美| 欧美黑人精品巨大| 99精品在免费线老司机午夜| 男女之事视频高清在线观看| 亚洲中文字幕日韩| 精品无人区乱码1区二区| 99re在线观看精品视频| 夜夜躁狠狠躁天天躁| 天天添夜夜摸| av免费在线观看网站| 麻豆成人午夜福利视频| 国产精品久久久av美女十八| 两个人看的免费小视频| 欧美性猛交╳xxx乱大交人| 激情在线观看视频在线高清| 精品欧美国产一区二区三| 日韩欧美国产一区二区入口| 欧美中文综合在线视频| 亚洲精品美女久久久久99蜜臀| 色综合婷婷激情| 亚洲黑人精品在线| 久久久久久人人人人人| 成人三级做爰电影| 亚洲男人天堂网一区| 色综合婷婷激情| 亚洲黑人精品在线| 老熟妇仑乱视频hdxx| 精品久久蜜臀av无| 日本精品一区二区三区蜜桃| 亚洲专区字幕在线| 久久久久九九精品影院| 免费看a级黄色片| 欧美国产日韩亚洲一区| 欧美一区二区国产精品久久精品 | 欧美日韩亚洲综合一区二区三区_| 亚洲精品一卡2卡三卡4卡5卡| 一级作爱视频免费观看| 中文字幕人成人乱码亚洲影| 欧美一级a爱片免费观看看 | 国产午夜福利久久久久久| 两人在一起打扑克的视频| 久久精品aⅴ一区二区三区四区| 欧美最黄视频在线播放免费| 亚洲精品中文字幕一二三四区| 在线观看www视频免费| 日本撒尿小便嘘嘘汇集6| 99久久精品热视频| 久久久久久久久中文| 免费搜索国产男女视频| 999久久久国产精品视频| 一卡2卡三卡四卡精品乱码亚洲| 一二三四社区在线视频社区8| 一本大道久久a久久精品| 十八禁人妻一区二区| 国产精品影院久久| 日韩欧美国产在线观看| 黄色视频,在线免费观看| 小说图片视频综合网站| 国产日本99.免费观看| 精品国产美女av久久久久小说| 看黄色毛片网站| a级毛片在线看网站| 999久久久国产精品视频| 欧美另类亚洲清纯唯美| 国产三级黄色录像| av免费在线观看网站| 国产成人av教育| 久久婷婷人人爽人人干人人爱| 精品久久久久久久人妻蜜臀av| 亚洲黑人精品在线| 成人国产一区最新在线观看| 国产av一区在线观看免费| 一个人免费在线观看的高清视频| 日本成人三级电影网站| 99热6这里只有精品| 精品国产美女av久久久久小说| 亚洲国产欧美网| 又大又爽又粗| 亚洲自拍偷在线| 精品一区二区三区av网在线观看| 亚洲欧美一区二区三区黑人| 悠悠久久av| 亚洲男人的天堂狠狠| 国产亚洲欧美在线一区二区| 亚洲专区国产一区二区| 亚洲欧美激情综合另类| 精品国产美女av久久久久小说| 黑人操中国人逼视频| 18禁裸乳无遮挡免费网站照片| 最好的美女福利视频网| 久久久久久久久免费视频了| 日本a在线网址| 两个人的视频大全免费| 亚洲一区高清亚洲精品| 一二三四社区在线视频社区8| 又黄又爽又免费观看的视频| 亚洲人与动物交配视频| 香蕉av资源在线| 国产成+人综合+亚洲专区| 亚洲成av人片免费观看| 亚洲国产看品久久| 男男h啪啪无遮挡| 日韩高清综合在线| 欧美av亚洲av综合av国产av| 啦啦啦观看免费观看视频高清| 亚洲aⅴ乱码一区二区在线播放 | 国产成人啪精品午夜网站| 90打野战视频偷拍视频| 亚洲中文字幕日韩| 久久久久国产一级毛片高清牌| 久久香蕉国产精品| 麻豆成人av在线观看| 亚洲免费av在线视频| 波多野结衣高清作品| 日韩精品中文字幕看吧| 久久这里只有精品19| 黄片小视频在线播放| 成人高潮视频无遮挡免费网站| 日本一区二区免费在线视频| 欧美午夜高清在线| 超碰成人久久| 日本一区二区免费在线视频| 国产精品一及| www日本在线高清视频| 无人区码免费观看不卡| 日韩欧美三级三区| 亚洲一区中文字幕在线| x7x7x7水蜜桃| 天堂动漫精品| 亚洲精品一卡2卡三卡4卡5卡| 国产97色在线日韩免费| 国产av不卡久久| 亚洲色图av天堂| 国产亚洲欧美98| 黄色视频不卡| 国产精品亚洲一级av第二区| 久久久久国产一级毛片高清牌| 久久久久久久午夜电影| 亚洲国产高清在线一区二区三| 中出人妻视频一区二区| 九九热线精品视视频播放| 欧美三级亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区在线臀色熟女| 不卡一级毛片| 国内久久婷婷六月综合欲色啪| 日本免费a在线| 伊人久久大香线蕉亚洲五| 亚洲av成人精品一区久久| 男女视频在线观看网站免费 |