• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Boundary Observability for a Kind of Second-Order Quasilinear Hyperbolic Systems?

    2016-06-05 03:10:14KeWANG
    關(guān)鍵詞:漢斯批評家樣子

    Ke WANG

    1 Introduction

    As a dual problem of controllability,the exact boundary observability for linear wave equations has been deeply studied(see[10–12,18]).Based on the theory of semi-global classical solutions to quasilinear hyperbolic systems(see[6,9]),by a constructive method,Li et al.[4,7–8]obtained the exact boundary observability for quasilinear hyperbolic systems.Later,Li[3,5]and Guo and Wang[1]discussed the exact boundary observability for autonomous and nonautonomous 1-D quasilinear wave equations,respectively,and showed the implicit dualities between the corresponding exact boundary controllability and the exact boundary observability.For the general 1-D quasilinear hyperbolic equation utt+a(u,ux,ut)utx+b(u,ux,ut)uxx=c(u,ux,ut),where u is the unknown function of(t,x)and(a2?4b)(0,0,0)>0,Shang and Zhuang[13]established the corresponding local exact boundary observability,including the 1-D quasilinear wave equation as its special case.

    For second-order quasilinear hyperbolic systems,there are few results on the exact boundary observability.Yu[16]considered the second-order quasilinear hyperbolic system utt+(A+B)(u,ux,ut)utx+AB(u,ux,ut)uxx=F(u,ux,ut),where u=(u1,···,un)Tis the unknown vector function of(t,x),matrices A and B have only n positive eigenvalues and n negative eigenvalues,respectively.By a constructive method,she obtained the local exact boundary observability.Later,for a quasilinear coupled hyperbolic system

    where λ(0)<0,μ(0)<0,ν(0)>0,she got the exact boundary observability by using similar constructive method and applied this result to a first-order quasilinear hyperbolic system of diagonal form and proved that the exact boundary observability is still valid even though the boundary conditions are not coupled(see[17]).

    Recently,for a kind of coupled system of 1-D quasilinear wave equations:

    where w=(w1,···,wn)Tand ai(0)>0(i=1,···,n),the authors of[2]discussed the local exact boundary observability with various types of boundary conditions and showed the implicit dualities between the exact boundary controllability and the exact boundary observability.

    In this paper,we continue to consider the kind of second-orderquasilinear hyperbolic systems proposed in[14].Based on the known result on the existence and uniqueness of semi-global C2solution to this kind of systems(see[14]),by using a constructive method,we discuss the exact boundary observability and show the implicit dualities between it and the corresponding exact boundary controllability given in[14].The conclusions in both[2]and[13]are of its special cases.

    Consider the following kind of second-order quasilinear hyperbolic systems:

    where u=(u1,···,un)Tis the unknown vector function of(t,x),A(u,v,w)=(aij(u,v,w))and B(u,v,w)=(bij(u,v,w))(i,j=1,···,n)are both n×n matrices with smooth entries,and have n real eigenvalues and a complete set of left eigenvectors on the domain under consideration,respectively.Suppose furthermore that

    Thus,there exists an invertible n×n matrix L(u,v,w)such that

    where λ1,···,λnand μ1,···,μnare the real eigenvalues of matrices A and B,respectively,and L=(lij)is just the matrix composed by the common left eigenvectors of A and B.Moreover,we assume that on the domain under consideration

    and

    In addition,C=C(u,v,w)=(c1(u,v,w),···,cn(u,v,w))Tis a smooth vector function with

    By[14],system(1.1)has 2n real eigenvalues

    This paper is organized as follows.In Section 2,we recall the existence and uniqueness of semi-global C2solution to the second-order quasilinear hyperbolic system(1.1)under different cases.Then the two-sided and one-sided exact boundary observability are discussed in Section 3,respectively.Finally,in Section 4,we present an implicit duality between the exact boundary controllability and the exact boundary observability.

    2 Existence and Uniqueness of Semi-global C2Solution

    In this section,we recall brie fly the result on the semi-global C2solution to the second-order quasilinear hyperbolic system(1.1)under different cases in[14].

    For system(1.1),we give the following initial condition:

    where ? =(?1,···,?n)Tis a given C2vector function,ψ =(ψ1,···,ψn)Tis a given C1vector function.

    Let

    By[14],according to different signs of(i=1,···,n)in a neighborhood of(u,v,w)=(0,0,0),we need only to discuss the following three typical cases.

    Case 1System(1.1)has n positive eigenvalues>0 and n negative eigenvalues<0(i=1,···,n).

    In this case,we prescribe the following nonlinear boundary conditions on the ends x=0 and x=L,respectively:

    where Gp,Hp,andare all C2functions with respect to their arguments,Gq,Hq,andare all C1functions with respect to their arguments,and,without loss of generality,we may assume

    In what follows,the following assumptions will be imposed totally or partially in different situations:

    For the convenience of statement,in Case 1 we denote that

    Case 2System(1.1)has d1+d2positive eigenvalues>0,>0 and 2n?(d1+d2)negative eigenvalues<0,<0(j=1,···,d1;k=d1+1,···,d2;h=d2+1,···,n),and,without loss of generality,we may assume

    當漢斯·P離開時,他擺出一副正人君子的樣子說:“你一定理解,我絕對不會讓個人的感情來干擾我作為批評家的天良?!保?014:431)

    namely,the number of positive eigenvalues is less than or equal to that of negative ones.

    In this case,we prescribe the following nonlinear boundary conditions on the ends x=0 and x=L,respectively:

    where Gp,Hp,andare all C2functions with respect to their arguments,Gq,Hq,andare all C1functions with respect to their arguments,and,without loss of generality,we may assume

    In what follows,the following assumptions will be imposed totally or partially in different situations:

    in which(L?1D?){1,d1}indicates the matrix composed of the first column to the d1th column of matrix(L?1D?),etc.

    In Case 2,we denote that

    Case 3System(1.1)has 2n positive eigenvalues>0(i=1,···,n).

    In this case,we need only 2n boundary conditions on the end x=0:

    First of all,in Case 1 we give the following lemma on the existence and uniqueness of semi-global C2solution to system(1.1)(see[14]).

    Lemma 2.1Suppose that(2.6)and(2.9)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively.Then,for any given and possibly quite large T >0,if the norms?(?,ψ)?C2[0,L]×C1[0,L],?(Hp,Hq)?C2[0,T]×C1[0,T]and(p=1,···,l;q=l+1,···,n;r=1,···,m;s=m+1,···,n)are small enough,the forward mixed initial-boundary value problem(1.1),(2.1)and(2.3)–(2.4)admits a unique semi-global C2solution u=u(t,x)on the domain R(T)={(t,x)|0≤t≤T,0≤x≤L}with small C2norm,and

    where C is a positive constant.

    Corollary 2.1If?(?,ψ)?C2[0,L]×C1[0,L]is suitably small,then the Cauchy problem(1.1)and(2.1)admits a unique global C2solution u=u(t,x)on its whole maximum determinate domain with small C2norm,and

    where C is a positive constant.

    Remark 2.1If we give the following final condition

    where Φ =(Φ1,···,Φn)Tis a given C2vector function,Ψ =(Ψ1,···,Ψn)Tis a given C1vector function.Suppose that(2.7)–(2.8)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(T,0)and(T,L),respectively.For any given and possibly quite large T>0,if the normsand(p=1,···,l;q=l+1,···,n;r=1,···,m;s=m+1,···,n)are small enough,the backward mixed initial-boundary value problem(1.1),(2.20)and(2.3)–(2.4)admits a unique semi-global C2solution on the domain R(T)with small C2norm,and

    where C is a positive constant.

    In Case 2 and Case 3,we have the corresponding existence and uniqueness of semi-global C2solution,see Lemma 2.2 and Lemma 2.3,respectively(see[14]).

    Lemma 2.2Suppose that(2.14)and(2.16)hold,and the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively.Then,for any given and possibly quite large T>0,if the norms?(?,ψ)?C2[0,L]×C1[0,L],?(Hp,Hq)?C2[0,T]×C1[0,T]and(p=1,···,l;q=l+1,···,d1+d2;r=1,···,m;s=m+1,···,2n?(d1+d2))are small enough,the forward mixed initial-boundary value problem(1.1),(2.1)and(2.11)–(2.12)admits a unique semi-global C2solution u=u(t,x)on the domain R(T)with small C2norm,and

    where C is a positive constant.

    Lemma 2.3For any given and possibly quite large T>0,if the norms

    are small enough,and the conditions of C2compatibility are satisfied at the point(t,x)=(0,0),the forward mixed initial-boundary value problem(1.1),(2.1)and(2.17)admits a unique semiglobal C2solution u=u(t,x)on the domain R(T)with small C2norm,and

    where C is a positive constant.

    3 Local Exact Boundary Observability in Case 1

    Theorem 3.1(Two-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.6)and(2.9)hold.Suppose furthermore that

    and

    Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small norms?(?,ψ)?C2[0,L]×C1[0,L]andsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed values uq=(t),upx=(t)(p=1,···,l;q=l+1,···,n)at x=0 and us=(t),urx=(t)(r=1,···,m;s=m+1,···,n)at x=L on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values and(H(t),Moreover,we have the following observability inequality:

    where C is a positive constant.

    ProofSince?(?,ψ)?C2[0,L]×C1[0,L]andare small,by Lemma 2.1,the mixed initial-boundary value problem(1.1),(2.1)and(2.3)–(2.4)admits a unique C2solution on the domain R(T)with small C2norm.Thus,the corresponding C2norms or C1norms of the observed values(p=1,···,l;q=l+1,···,n)at x=0,and(r=1,···,m;s=m+1,···,n)at x=L are all small.

    By(3.1),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.3)at x=0 can be equivalently rewritten as

    where gp(p=1,···,l)are C2functions,gq(q=l+1,···,n)are C1functions,and by(2.5),we have

    Then,the values(t)of ui(i=1,···,n)at x=0 can be uniquely determined by the observed values uq=(t)(q=l+1,···,n)at x=0 as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=0 can be uniquely determined by the observed values upx=(t)(p=1,···,l)at x=0 as follows:

    and

    Similarly,by(3.2),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.4)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,(s=m+1,···,n)are C1functions,and by(2.5),we have

    Then,the valuesof ui(i=1,···,n)at x=L can be uniquely determined by the observed values us=(s=m+1,···,n)at x=L as follows:

    and

    On the other hand,the valuesof uix(i=1,···,n)at x=L can be uniquely determined by the observed values urx=(r=1,···,m)at x=L as follows:

    and

    Changing the role of t and x,we consider the rightward Cauchy problem for system(1.1)with the initial condition

    By Corollary 2.1 and noting(3.8)and(3.10),this Cauchy problem admits a unique C2solution u=(t,x)on its whole maximum determinate domain,and

    Similarly,the leftward Cauchy problem for system(1.1)with the final condition

    admits a unique C2solution u=(t,x)on its whole maximum determinate domain,and

    Obviously,both u=(t,x)and u=(t,x)are the restrictions of the solution u=u(t,x)to the original mixed problem on the corresponding domains,respectively.

    Noting(3.3),these two maximum determinate domains must intersect each other.Then,there exists T0(0

    We now consider the backward mixed initial-boundary value problem for system(1.1)with

    on the domain R(T0)={(t,x)|0≤t≤T0,0≤x≤L}.By Remark 2.1,this backward mixed problem admits a unique C2solution u=ub(t,x),which is the restriction of the original C2solution u=u(t,x)on the domain R(T0),thus we have

    By(2.1)and noting(3.8),(3.14)and(3.21),we get the desired observability inequality(3.4).

    Theorem 3.2(One-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.6),(2.8)–(2.9)and(3.1)hold.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normsandsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed values(p=1,···,l;q=l+1,···,n)at x=0 on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:

    where C is a positive constant.

    ProofChanging the role of t and x,we consider the rightward Cauchy problem for system(1.1)with the initial condition(3.17),which admits a unique C2solution u=(t,x)on its whole maximum determinate domain and(3.18)holds.Obviously,u=(t,x)is the restriction of the C2solution u=u(t,x)to the original mixed problem on the corresponding domain.

    Noting(3.26),this maximum determinate domain must intersect x=L.Then,there exists T0(0

    We consider the backward mixed initial-boundary value problem for system(1.1)with the final condition(3.22)and boundary conditions(3.23)and(2.4)on the domain R(T0).By Remark 2.1,this backward mixed problem admits a unique C2solution u=ub(t,x)on the domain R(T0),which is just the restriction of the original C2solution u=u(t,x)on the domain R(T0),thus we have

    By(2.1)and noting(3.8)and(3.28),we get the desired observability inequality(3.27).

    Remark 3.1In Case 1,if the boundary conditions are particularly given as

    it is easy to see that assumptions(3.1)–(3.2)are automatically satisfied.

    Remark 3.2In Case 1,since the number of positive eigenvalues for system(1.1)is equal to that of negative eigenvalues,similar result holds if we take observed values at x=L instead of at x=0,and hypotheses(2.6),(2.8)–(2.9)and(3.1)are replaced by(2.6)–(2.7),(2.9)and(3.2).

    4 Local Exact Boundary Observability in Case 2 and Case 3

    Let

    Assume that α≥0.

    Theorem 4.1(Two-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.10),(2.14)and(2.16)hold.Suppose furthermore that

    and

    Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normsandsuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed valuesat x=0 andat x=L on the interval[0,T],then the initial data(?(x),ψ(x))can be uniquely determined by these observed values and(H(t),Moreover,we have the following observability inequality:

    where C is a positive constant.

    ProofThe proof of Theorem 4.1 is similar to that of Theorem 3.1.By(4.2),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.11)at x=0 can be equivalently rewritten as

    where gp(p=1,···,l)are C2functions,gq(q=l+1,···,d1+d2)are C1functions,and by(2.13),we have

    Then,the values(t)of ui(i=1,···,n)at x=0 can be uniquely determined by the observed valuesat x=0 as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=0 can be uniquely determined by the observed valuesat x=0 as follows:

    and

    The observed values at x=L depend on the value of α,which is divided into two subcases.

    (a)α=0,namely,m=n?(d1+d2).

    By(4.3),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.12)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,gi(i=1,···,n)are C1functions,and by(2.13),we have

    Then,the values(t)of uiand the values(t)of uix(i=1,···,n)at x=L can be uniquely determined by the observed values u?s=(t)(=m+1,···,n)at x=L as follows:

    and

    (b)α>0,namely,m>n?(d1+d2).

    By(4.3),in a neighborhood of(u,v,w)=(0,0,0),the boundary condition(2.12)at x=L can be equivalently rewritten as

    where(r=1,···,m)are C2functions,(β = α +1,···,n)are C1functions,and by(2.13),we have

    Then,the values(t)of ui(i=1,···,n)at x=L can be uniquely determined by the observed valuesat x=L as follows:

    and

    On the other hand,the values(t)of uix(i=1,···,n)at x=L can be uniquely determined by the observed valuesat x=L as follows:

    and

    The rest of the proof is similar to the proof of Theorem 3.1 and can be omitted.

    Similarly to Theorem 3.2,we have the following theorem.

    Theorem 4.2(One-Sided Exact Boundary Observability) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments,and(2.10),(2.14)–(2.16)and(4.2)hold.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normssuch that the conditions of C2compatibility are satisfied at the points(t,x)=(0,0)and(0,L),respectively,if we have the observed valuesat x=0,then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:

    where C is a positive constant.

    Remark 4.1In Case 2,suppose that the boundary conditions are particularly given as

    By Laplace theorem of determinant(see[15]),for the invertible matrix L(0),there exists a nonsingular subdeterminant composed of the elements of the intersections of,for instance,the first row to the d2th row with the first column to the d2th column,and we denote this d2-subdeterminant of L(0)asMeanwhile,the(n?d2)-algebraic cofactor of this d2-subdeterminant satisfiesThus it is easy to see that the assumption(4.2)is automatically satisfied.Similarly,we can also get(4.3).

    In Case 3,we need only to consider the local one-sided exact boundary observability at x=L.

    Theorem 4.3(One-Sided Exact Boundary Observability at x=L) Suppose that aij,bij,ci,λi,μi,lij(i,j=1,···,n)are all C1functions with respect to their arguments.Let

    For any given initial data(?(x),ψ(x))and boundary functions(H(t),H(t))with small normssuch that the conditions of C2compatibility are satisfied at the point(t,x)=(0,0),if we have the observed valuesat x=L,then the initial data(?(x),ψ(x))can be uniquely determined by these observed values andMoreover,we have the following observability inequality:where C is a positive constant.

    5 Implicit Duality Between Controllability and Observability

    Comparing the observability discussed above with the controllability obtained in[14],we may find an implicit duality between the exact boundary controllability and the exact boundary observability for this kind of second-order quasilinear hyperbolic systems.

    For the two-sided control,we have

    (i)The controllability time is equal to the observability time,and both of them are sharp.The restriction on the controllability time essentially means that the two maximum determinate domains for the forward and backward Cauchy problems do not intersect each other,while,the restriction on the observability time essentially means that the two maximum determinate domains for the leftward and rightward Cauchy problems must intersect each other.

    (ii)Both the number of boundary controls and the number of boundary observed values are equal to 2n,which is the number of all positive eigenvalues and negative eigenvalues.

    For the one-sided control,we have

    (i)The controllability time is still equal to the observability time,and both of them are sharp.The restriction on the controllability time essentially means that the two maximum determinate domains for the forward and backward one-sided mixed problems do not intersect each other,while,the restriction on the observability time essentially means that the maximum determinate domain for the rightward Cauchy problems must intersect x=L.

    (ii)Both the number of boundary controls and the number of boundary observed values are equal to the maximum value between the number of positive eigenvalues and that of negative eigenvalues.

    [1]Guo,L.N.and Wang,Z.Q.,Exact boundary observability for nonautonomous quasilinear wave equations,J.Math.Anal.Appl.,364,2010,41–50.

    [2]Hu,L.,Ji,F.Q.and Wang,K.,Exact boundary controllability and observability for a coupled system of quasilinear wave equations,Chin.Ann.Math.,Ser.B,34(4),2013,479–490.

    [3]Li,T.T.,Exact boundary observability for 1-D quasilinear wave equations,Math.Meth.Appl.Sci.,29,2006,1543–1553.

    [4]Li,T.T.,Exact boundary observability for quasilinear hyperbolic systems,ESIAM:Control,Optimisation and Calculus Variations,14,2008,759–766.

    [5]Li,T.T.,Controllability and Observability for Quasilinear Hyperbolic Systems,AIMS Series on Applied Mathematics,Vol.3,American Institute of Mathematical Sciences&Higher Education Press,Spring field&Beijing,2010.

    [6]Li,T.T.and Jin,Y.,Semi-global C1solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,22(3),2001,325–336.

    [7]Li,T.T.and Rao,B.P.,Strong(weak)exact controllability and strong(weak)exact observability for quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,31(5),2010,723–742.

    [8]Li,T.T.,Rao,B.P.and Wang,Z.Q.,A note on the one-side exact boundary observability for quasilinear hyperbolic systems,Georgian Math.J.,15,2008,571–580.

    [9]Li,T.T.and Yu,W.C.,Boundary Value Problems for Quasilinear Hyperbolic Systems,Duke Univ.Math.Ser.V,Duke Univ.Press,Durham,1985.

    [10]Lions,J.-L.,Exact controllability,stabilization and perturbations for distributed systems,SIAM Rev.,30,1988,1–68.

    [11]Lions,J.-L.,Exact Controllability,Stabilization and Perturbations for Distributed Systems(in Chinese),Vol.1,translated by Jinhai Yan and Ying Huang,Higher Education Press,Beijing,2012.

    [12]Russell,D.L.,Controllability and stabilization for linear partial differential equations,recent progress and open questions,SIAM Rev.,20,1978,639–739.

    [13]Shang,P.P.and Zhuang,K.L.,Exact observability for second order quasilinear hyperbolic equations(in Chinese),Chin.J.Engin.Math.,26,2009,618–636.

    [14]Wang,K.,Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems,Chin.Ann.Math.,Ser.B,32(6),2011,803–822.

    [15]Yao,M.S.,Advanced Algebra(in Chinese),Fudan University Press,Shanghai,2005.

    [16]Yu,L.X.,Exact boundary observability for a kind of second order quasilinear hyperbolic systems and its applications,Nonlinear Analysis,72,2010,4452–4465.

    [17]Yu,L.X.,Exact boundary observability for a kind of second-order quasilinear hyperbolic system,Nonlinear Analysis,74,2011,1073–1087.

    [18]Zuazua,E.,Boundary observability for the space-discretization of the 1-D wave equation,C.R.Acad.Sci.Paris,Sér.I,326,1998,713–718.

    猜你喜歡
    漢斯批評家樣子
    魔鬼與天使
    你是我的天使
    你是我的天使
    新銳批評家
    文藝論壇(2020年3期)2020-12-24 09:53:50
    今日批評家
    詩林(2019年6期)2019-11-08 01:51:34
    你們怎么可以這樣子呢!
    桃之夭夭B(2016年12期)2016-12-22 20:04:02
    最想要的樣子
    好孩子畫報(2016年7期)2016-12-12 11:54:37
    就喜歡你看不慣我又干不掉我的樣子
    就喜歡你看不慣我又干不掉我的樣子之《少年,來玩我吧!》
    你是我的天使
    小品文選刊(2016年1期)2016-02-12 03:56:50
    女人久久www免费人成看片| 国产成人freesex在线| 大话2 男鬼变身卡| 干丝袜人妻中文字幕| 国产男人的电影天堂91| 午夜福利网站1000一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产成人精品久久久久久| 韩国av在线不卡| 麻豆国产97在线/欧美| 午夜福利网站1000一区二区三区| 国产午夜精品一二区理论片| 国产美女午夜福利| 18禁裸乳无遮挡免费网站照片| 日韩强制内射视频| 综合色丁香网| 狂野欧美白嫩少妇大欣赏| 国产精品蜜桃在线观看| 波多野结衣巨乳人妻| 亚洲av二区三区四区| 亚洲激情五月婷婷啪啪| 亚洲自偷自拍三级| 91在线精品国自产拍蜜月| 国产精品熟女久久久久浪| 国产精品伦人一区二区| 欧美日本视频| 精品酒店卫生间| 天天躁夜夜躁狠狠久久av| 自拍偷自拍亚洲精品老妇| 夜夜看夜夜爽夜夜摸| 特大巨黑吊av在线直播| 亚洲av电影在线观看一区二区三区 | 亚洲欧洲日产国产| 国产黄片美女视频| 狂野欧美激情性bbbbbb| 久久99热这里只有精品18| 99久久精品一区二区三区| 国产成人a∨麻豆精品| 三级经典国产精品| 亚洲综合精品二区| 亚洲自拍偷在线| 别揉我奶头 嗯啊视频| 久久久久久久久大av| 亚洲丝袜综合中文字幕| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 久久久久久久久久久丰满| 深夜a级毛片| 国产欧美日韩精品一区二区| 99久久精品国产国产毛片| 国产欧美另类精品又又久久亚洲欧美| 2021天堂中文幕一二区在线观| 天堂中文最新版在线下载 | 自拍偷自拍亚洲精品老妇| 国产午夜精品久久久久久一区二区三区| 亚洲伊人久久精品综合| 免费观看a级毛片全部| 精品人妻偷拍中文字幕| 内射极品少妇av片p| 狂野欧美激情性bbbbbb| 一级片'在线观看视频| 免费观看在线日韩| 特大巨黑吊av在线直播| 亚洲最大成人中文| 狂野欧美白嫩少妇大欣赏| 偷拍熟女少妇极品色| 成人黄色视频免费在线看| 国产又色又爽无遮挡免| 国产v大片淫在线免费观看| 一个人观看的视频www高清免费观看| 亚洲av成人精品一二三区| 中国国产av一级| 1000部很黄的大片| 亚洲精品乱码久久久v下载方式| 日韩成人av中文字幕在线观看| 亚洲精品,欧美精品| 国产毛片在线视频| 老师上课跳d突然被开到最大视频| 亚洲欧美一区二区三区国产| 午夜激情久久久久久久| 精品国产一区二区三区久久久樱花 | 久久久久久久精品精品| av国产免费在线观看| 欧美xxⅹ黑人| 人妻制服诱惑在线中文字幕| 极品少妇高潮喷水抽搐| 欧美丝袜亚洲另类| 激情 狠狠 欧美| 日韩一本色道免费dvd| 国产 一区 欧美 日韩| 欧美日韩国产mv在线观看视频 | 直男gayav资源| 精品国产乱码久久久久久小说| 九草在线视频观看| 国产 一区 欧美 日韩| 日韩 亚洲 欧美在线| 成人漫画全彩无遮挡| 婷婷色综合大香蕉| 另类亚洲欧美激情| 精品人妻熟女av久视频| 99热这里只有是精品在线观看| 99久久精品国产国产毛片| 国产精品一二三区在线看| 国产成人精品一,二区| 国产成人freesex在线| 国产乱人视频| 爱豆传媒免费全集在线观看| 婷婷色综合www| 韩国高清视频一区二区三区| 熟女av电影| 欧美区成人在线视频| 亚洲成人精品中文字幕电影| 99久久中文字幕三级久久日本| 欧美日韩视频高清一区二区三区二| 国产人妻一区二区三区在| 人妻 亚洲 视频| 亚洲精品乱码久久久久久按摩| 成人特级av手机在线观看| 久久99热6这里只有精品| 尾随美女入室| 亚洲欧美成人综合另类久久久| 久久午夜福利片| 老女人水多毛片| 边亲边吃奶的免费视频| 黄色怎么调成土黄色| 99热这里只有精品一区| 夜夜看夜夜爽夜夜摸| 中文精品一卡2卡3卡4更新| 51国产日韩欧美| 久久精品熟女亚洲av麻豆精品| 成年女人看的毛片在线观看| 日韩中字成人| av国产精品久久久久影院| 日韩一区二区三区影片| 久久久欧美国产精品| 两个人的视频大全免费| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲av嫩草精品影院| 久久久久久久大尺度免费视频| 亚洲人成网站在线观看播放| av在线亚洲专区| 夜夜爽夜夜爽视频| 可以在线观看毛片的网站| 在线观看一区二区三区激情| 精品亚洲乱码少妇综合久久| av在线app专区| 国产色婷婷99| 成人欧美大片| 在线观看一区二区三区激情| 高清毛片免费看| 青春草国产在线视频| 男男h啪啪无遮挡| 亚洲精品国产色婷婷电影| 高清日韩中文字幕在线| 伊人久久精品亚洲午夜| 中文字幕制服av| 久久6这里有精品| 精品午夜福利在线看| av国产免费在线观看| 免费观看av网站的网址| 日韩,欧美,国产一区二区三区| av福利片在线观看| 色综合色国产| 国产淫语在线视频| 国产欧美日韩一区二区三区在线 | 久久影院123| 美女主播在线视频| 日韩人妻高清精品专区| 亚洲在久久综合| 亚洲久久久久久中文字幕| 久久国内精品自在自线图片| 在线观看美女被高潮喷水网站| 五月玫瑰六月丁香| 亚洲av中文av极速乱| 免费看光身美女| 亚洲av成人精品一区久久| 久久久久久久大尺度免费视频| 美女cb高潮喷水在线观看| 国产成人福利小说| 午夜日本视频在线| 午夜福利高清视频| 日本-黄色视频高清免费观看| 日本三级黄在线观看| 在线 av 中文字幕| 国产一区二区亚洲精品在线观看| 国产午夜福利久久久久久| 国产色爽女视频免费观看| 国产精品久久久久久精品古装| 国产人妻一区二区三区在| 久久人人爽av亚洲精品天堂 | 日韩av不卡免费在线播放| 国产成人一区二区在线| 真实男女啪啪啪动态图| 精品99又大又爽又粗少妇毛片| 毛片女人毛片| 各种免费的搞黄视频| 精华霜和精华液先用哪个| 最新中文字幕久久久久| 亚洲av二区三区四区| 国产精品人妻久久久久久| 午夜免费观看性视频| 精品一区二区三卡| 日韩一区二区视频免费看| 免费人成在线观看视频色| 最近最新中文字幕大全电影3| 国产欧美日韩精品一区二区| 免费大片黄手机在线观看| 天天躁夜夜躁狠狠久久av| 国产男人的电影天堂91| 国产在视频线精品| 男人狂女人下面高潮的视频| 日韩欧美一区视频在线观看 | 国产淫片久久久久久久久| av线在线观看网站| 久久久久久九九精品二区国产| 亚洲av电影在线观看一区二区三区 | 免费观看av网站的网址| 精品少妇久久久久久888优播| 亚洲在线观看片| 亚洲自拍偷在线| 国产精品嫩草影院av在线观看| 欧美人与善性xxx| 精品午夜福利在线看| 极品教师在线视频| 亚洲精品亚洲一区二区| 国产精品嫩草影院av在线观看| 亚洲欧美日韩东京热| 自拍欧美九色日韩亚洲蝌蚪91 | 国产黄色视频一区二区在线观看| 99视频精品全部免费 在线| 日韩强制内射视频| 日韩电影二区| 亚洲国产av新网站| 女人被狂操c到高潮| 亚洲电影在线观看av| 天美传媒精品一区二区| 另类亚洲欧美激情| 高清av免费在线| 内地一区二区视频在线| 街头女战士在线观看网站| 亚洲av免费高清在线观看| 亚洲欧美日韩东京热| 亚洲欧洲日产国产| 观看免费一级毛片| 亚洲欧美成人综合另类久久久| 在线免费观看不下载黄p国产| .国产精品久久| 听说在线观看完整版免费高清| 国产精品麻豆人妻色哟哟久久| 精品人妻视频免费看| 亚洲欧美中文字幕日韩二区| .国产精品久久| 欧美性猛交╳xxx乱大交人| 在线观看人妻少妇| 精品久久久久久电影网| 性色av一级| 亚洲电影在线观看av| 一级毛片电影观看| 国产高清三级在线| 国产伦精品一区二区三区视频9| 国产精品一二三区在线看| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 久久久久久久精品精品| 另类亚洲欧美激情| 国产精品三级大全| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品电影小说 | 国产免费福利视频在线观看| 夫妻午夜视频| 亚洲最大成人手机在线| 晚上一个人看的免费电影| 亚洲无线观看免费| 久久精品人妻少妇| 激情五月婷婷亚洲| 麻豆乱淫一区二区| 久热这里只有精品99| 男女边摸边吃奶| 在线观看国产h片| 女人被狂操c到高潮| 女人久久www免费人成看片| 日韩大片免费观看网站| 久久国内精品自在自线图片| 国产大屁股一区二区在线视频| 你懂的网址亚洲精品在线观看| 亚洲精品色激情综合| 毛片女人毛片| 熟女av电影| 自拍欧美九色日韩亚洲蝌蚪91 | 99热这里只有是精品在线观看| 交换朋友夫妻互换小说| 精品一区二区三区视频在线| 在线a可以看的网站| 亚洲色图综合在线观看| 久久精品国产亚洲av涩爱| 男女边吃奶边做爰视频| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区视频9| 免费看日本二区| 日日啪夜夜撸| 亚洲欧美一区二区三区国产| 身体一侧抽搐| 老司机影院成人| 人体艺术视频欧美日本| av国产久精品久网站免费入址| 看免费成人av毛片| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 日韩电影二区| 有码 亚洲区| 丝袜喷水一区| 亚州av有码| 亚洲国产精品国产精品| 免费播放大片免费观看视频在线观看| 欧美极品一区二区三区四区| 最新中文字幕久久久久| 蜜桃久久精品国产亚洲av| 少妇人妻一区二区三区视频| 国产亚洲一区二区精品| 亚洲欧美精品专区久久| 婷婷色av中文字幕| 亚洲天堂av无毛| 麻豆乱淫一区二区| 一区二区三区精品91| 少妇人妻精品综合一区二区| 日日啪夜夜撸| 国产亚洲一区二区精品| 欧美日韩在线观看h| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| a级毛色黄片| 亚洲av国产av综合av卡| 在线免费观看不下载黄p国产| 成人毛片60女人毛片免费| 一区二区三区乱码不卡18| .国产精品久久| 午夜福利视频精品| 亚洲经典国产精华液单| videossex国产| 九草在线视频观看| 一个人观看的视频www高清免费观看| 免费看光身美女| 午夜亚洲福利在线播放| 亚洲精华国产精华液的使用体验| 九色成人免费人妻av| 国产精品麻豆人妻色哟哟久久| 久久久久久伊人网av| 国产91av在线免费观看| 亚洲精品成人久久久久久| 免费看av在线观看网站| 日本与韩国留学比较| 高清欧美精品videossex| 国产黄片美女视频| 一区二区三区四区激情视频| 久久久久国产网址| 一区二区三区四区激情视频| 三级经典国产精品| 国精品久久久久久国模美| 日韩在线高清观看一区二区三区| 亚洲国产欧美人成| 欧美老熟妇乱子伦牲交| 日本av手机在线免费观看| av在线亚洲专区| 嫩草影院精品99| 美女被艹到高潮喷水动态| 欧美精品国产亚洲| 精品久久久噜噜| 国产成人免费观看mmmm| av在线app专区| eeuss影院久久| 免费看av在线观看网站| 精华霜和精华液先用哪个| 又爽又黄无遮挡网站| 国产精品国产三级专区第一集| 97精品久久久久久久久久精品| 22中文网久久字幕| 99久国产av精品国产电影| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 亚洲精品日韩在线中文字幕| 三级国产精品片| 自拍偷自拍亚洲精品老妇| 欧美丝袜亚洲另类| 亚洲精品日韩av片在线观看| 99热这里只有精品一区| 免费电影在线观看免费观看| 国产一区有黄有色的免费视频| av又黄又爽大尺度在线免费看| 天堂网av新在线| 日韩大片免费观看网站| 国产免费又黄又爽又色| 欧美少妇被猛烈插入视频| 免费看不卡的av| 激情 狠狠 欧美| 人妻一区二区av| 精品少妇久久久久久888优播| 人妻制服诱惑在线中文字幕| av国产久精品久网站免费入址| 国产有黄有色有爽视频| 亚洲欧美中文字幕日韩二区| 免费高清在线观看视频在线观看| 蜜桃亚洲精品一区二区三区| 久久99热这里只有精品18| 中文在线观看免费www的网站| 黑人高潮一二区| 男人添女人高潮全过程视频| 欧美少妇被猛烈插入视频| 欧美老熟妇乱子伦牲交| 国精品久久久久久国模美| 一个人看的www免费观看视频| videossex国产| 欧美三级亚洲精品| 国产 精品1| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 九九久久精品国产亚洲av麻豆| 国产乱人偷精品视频| 国产欧美另类精品又又久久亚洲欧美| 成人午夜精彩视频在线观看| 欧美日韩视频高清一区二区三区二| www.av在线官网国产| 国产成人a∨麻豆精品| 精品国产露脸久久av麻豆| 亚洲av免费高清在线观看| 久久久久久九九精品二区国产| 99热全是精品| 又大又黄又爽视频免费| 高清在线视频一区二区三区| 久久久国产一区二区| 亚洲欧美日韩另类电影网站 | 深夜a级毛片| 亚洲精品国产av蜜桃| 少妇人妻久久综合中文| 亚洲在线观看片| 国产一区二区亚洲精品在线观看| 91精品一卡2卡3卡4卡| 午夜亚洲福利在线播放| 亚洲经典国产精华液单| 欧美性猛交╳xxx乱大交人| 久久鲁丝午夜福利片| 国产精品久久久久久av不卡| 久久女婷五月综合色啪小说 | 成人亚洲精品一区在线观看 | 久久久久精品性色| 欧美日韩一区二区视频在线观看视频在线 | 一级二级三级毛片免费看| 国产精品麻豆人妻色哟哟久久| 国产 一区精品| 人妻系列 视频| 在线观看av片永久免费下载| 婷婷色av中文字幕| 高清日韩中文字幕在线| 波多野结衣巨乳人妻| 久久久久久久精品精品| 国产av码专区亚洲av| 国产精品久久久久久精品电影小说 | 精品久久久久久久久亚洲| 精品人妻一区二区三区麻豆| 久久久国产一区二区| 欧美老熟妇乱子伦牲交| 大片免费播放器 马上看| 在线看a的网站| 国产美女午夜福利| 五月伊人婷婷丁香| 观看免费一级毛片| 丰满人妻一区二区三区视频av| 中文字幕制服av| 99久久精品热视频| 秋霞伦理黄片| 日韩av免费高清视频| 又黄又爽又刺激的免费视频.| 自拍欧美九色日韩亚洲蝌蚪91 | 联通29元200g的流量卡| 亚洲av一区综合| 老司机影院毛片| av女优亚洲男人天堂| 国产乱人视频| 韩国av在线不卡| 又大又黄又爽视频免费| 国产探花在线观看一区二区| 午夜免费鲁丝| 全区人妻精品视频| 久久精品国产亚洲网站| 精品久久久久久久久亚洲| 精品人妻一区二区三区麻豆| 综合色av麻豆| 亚洲色图av天堂| 国产老妇伦熟女老妇高清| 2022亚洲国产成人精品| 亚洲欧美一区二区三区国产| 日韩伦理黄色片| 午夜精品一区二区三区免费看| av在线天堂中文字幕| 免费av不卡在线播放| 国产 精品1| 日韩中字成人| 亚洲三级黄色毛片| 久久99热这里只频精品6学生| 色网站视频免费| 狂野欧美白嫩少妇大欣赏| 日韩伦理黄色片| 成人综合一区亚洲| 免费观看性生交大片5| 亚洲国产高清在线一区二区三| 麻豆乱淫一区二区| 国产精品久久久久久精品电影| 成人午夜精彩视频在线观看| 久久韩国三级中文字幕| 国产永久视频网站| 18禁动态无遮挡网站| 亚洲av福利一区| 欧美激情国产日韩精品一区| 免费观看的影片在线观看| 婷婷色麻豆天堂久久| 欧美极品一区二区三区四区| 精品久久久久久久久av| 九草在线视频观看| 简卡轻食公司| 五月伊人婷婷丁香| 国产淫语在线视频| 一二三四中文在线观看免费高清| 91久久精品电影网| 久久久久久久国产电影| 精品久久久久久久久av| 成年版毛片免费区| 在线免费十八禁| 少妇被粗大猛烈的视频| 成人欧美大片| 男男h啪啪无遮挡| 日韩av不卡免费在线播放| 亚洲不卡免费看| 国产一区二区亚洲精品在线观看| 欧美激情久久久久久爽电影| 国产人妻一区二区三区在| 26uuu在线亚洲综合色| 一级毛片aaaaaa免费看小| 色视频在线一区二区三区| 国产午夜福利久久久久久| 欧美3d第一页| 国产精品国产三级国产av玫瑰| 日韩在线高清观看一区二区三区| 18禁在线无遮挡免费观看视频| 日韩av在线免费看完整版不卡| av线在线观看网站| 激情 狠狠 欧美| 高清午夜精品一区二区三区| 性色av一级| 亚洲自偷自拍三级| 亚洲最大成人中文| 国产人妻一区二区三区在| 成人国产麻豆网| 午夜免费男女啪啪视频观看| 日韩欧美精品免费久久| 国产精品成人在线| 国产免费又黄又爽又色| 国产av国产精品国产| 1000部很黄的大片| 九九爱精品视频在线观看| 日韩av免费高清视频| 亚洲经典国产精华液单| 人妻系列 视频| 一本色道久久久久久精品综合| 久久精品国产亚洲av涩爱| 男人爽女人下面视频在线观看| 免费播放大片免费观看视频在线观看| 国产午夜精品一二区理论片| 插阴视频在线观看视频| 精品人妻视频免费看| 免费人成在线观看视频色| 毛片一级片免费看久久久久| 男女边摸边吃奶| 中文在线观看免费www的网站| 亚洲av一区综合| 1000部很黄的大片| 国产久久久一区二区三区| 久久ye,这里只有精品| 日本免费在线观看一区| 特大巨黑吊av在线直播| 丰满乱子伦码专区| 国产有黄有色有爽视频| 如何舔出高潮| 国产成人福利小说| 国产白丝娇喘喷水9色精品| 51国产日韩欧美| 中国三级夫妇交换| 亚洲国产日韩一区二区| 狂野欧美白嫩少妇大欣赏| 26uuu在线亚洲综合色| 成人欧美大片| 日韩欧美精品免费久久| 亚洲天堂av无毛| 一级毛片aaaaaa免费看小| 欧美成人一区二区免费高清观看| 久久久午夜欧美精品| 国产 一区 欧美 日韩| 一区二区三区四区激情视频| 午夜日本视频在线| 成年av动漫网址| 有码 亚洲区| 免费大片黄手机在线观看| 亚洲精品成人av观看孕妇| 日韩精品有码人妻一区| 欧美日本视频| 精品一区二区三区视频在线| 少妇人妻久久综合中文| 十八禁网站网址无遮挡 | 久久久久九九精品影院| 哪个播放器可以免费观看大片| 80岁老熟妇乱子伦牲交| 婷婷色综合www| 在线观看一区二区三区| 亚洲精品一二三|