• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical and Experimental Investigation of the Problem of Diving Difficulty of Autonomous Underwater Vehicle

    2016-05-16 02:41:57
    船舶力學(xué) 2016年3期
    關(guān)鍵詞:張宏偉文丘里天津大學(xué)

    (School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)

    Numerical and Experimental Investigation of the Problem of Diving Difficulty of Autonomous Underwater Vehicle

    ZHANG Hong-wei,LI Jin-cui,WANG Yan-hui,WANG Shu-xin,HAO Liang

    (School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)

    When an Autonomous Underwater Vehicle dives near free surface,it is influenced by upward suction force,as a function of Venturi effect,which makes it difficult for the underwater vehicle to dive and maintain a constant depth.In order to research the above problem,this paper simulates the flow field around the bare hull of an Autonomous Underwater Vehicle(AUV)near free surface,using Computational Fluid Dynamic(CFD)tools.Simulation result shows that the main factors affecting lift and nose up pitch moment acting on the vehicle are initial diving depth and velocity. Field test shows that the vehicle dives more easily with the initial diving depth increases,which is consistent with numerical simulation.

    diving difficulty;Venturi effect;free surface;autonomous underwater vehicle; CFD

    0 Introduction

    In field test and practical application of streamlined autonomous underwater vehicle,the difficulty in diving near free surface is a common occurrence problem puzzling the developers. Experiment shows that whether changing rudder angle or increasing rotate speed of propeller can hardly make underwater vehicle diving easier,even if the underwater vehicle has a high maneuverability in deep water.So the theory of maneuverability can not explain this problem. Generally,the underwater vehicle is trimmed to be positive buoyancy.Reducing positive buoyancy value will make it easier to dive,but the effect is not obvious.Besides,too small positive buoyancy results in difficulty for field operation.So explaining this problem and putting forward solution will contribute to the design,application and popularization of AUV.Based on the above purpose,this paper simulates the flow field of an AUV.

    The research on the numerical simulation of the flow field of underwater vehicle has been widely carried out.Ettore et al[1]compared CFD and analytical and semiempirical(ASE)methods applied to the prediction of the normal force and moment coefficients of an AUV.The CFD approach allows for a good prediction of the coefficients after validation through experiments in a towing tank.Bystrom[2]measured the normal force and pitch moment acting on the submarine model when it passed seabed level in different distances to the seabed and different velocities,using captive model,and analyzed the influence of the seabed on maneuverability.Wu et al[3]researched the hydrodynamic characteristics of DARPA Suboff model near seabed by numerical simulation.As to the investigation of free surface effect,Xiong and Wu[4]used rankine sources to study the effect of free surface and bank on the ship hydrodynamic forces in restricted water.In condition of bank existing,the existing of free surface will increase cross force.Ali et al[5]studied the interaction of an axisymmetric underwater vehicle and free surface.Yang[6]applied Reynolds averaged Navier-Stokes(RANS)equation to the numerical simulation of the flow around submarine near free surface,and the free surface waveform was obtained.Sun et al[7],Feng[8]and Han et al[9]computed wave forces for a submarine near free surface.Zhang et al[10-12]simulated the flow around submarine operating near surface and the simulation results showed that the free surface has a great influence on waveform and drag. Hong[13]simulated the flow around a square cylinder near free surface by improving the method of VOF.The distance between free surface and square cylinder is the main factor affecting free surface.Autonomous underwater vehicles operating near the sea surface are subjected to wave disturbances in their motion.So a controller structure for compensating the wave disturbances in the vertical plane for a torpedo-like autonomous underwater vehicle has been designed[14]. Researches on free surface effect concerning hydrofoil also have been conducted[15-16].Saout et al[17]used a theoretical methodology to determine the open-loop directional stability of a nearsurface underwater vehicle.Result showed that the presence of the free surface suppresses unsteady velocity oscillations through radiation damping.

    Previous studies concerning underwater vehicle in restricted water focus on bank effect[18]and free surface effect in theoretical aspect.Most of studies in free surface effect are concentrated on waveform,wave resistance and hydrodynamic forces.As far as we know,few give a special study on the problem of difficulty in diving,which is a common problem in research and development of AUV.And it is generally believed that the partially exposed propeller above the water surface when diving is the root cause.In order to explain the problem of difficulty in diving near free surface,this paper simulates the flow field of the bare hull of an AUV developed by Tianjin University at different submergence depths and Froude numbers.The solver adopted in CFD simulation is Fluent,using VOF model which is frequently used in previous researches.The generation mechanism of Venturi effect and its main factor are presented in this paper.Result shows that Venturi effect is the root cause of this problem.From 2011 to 2014, a large number of field tests are conducted and verify this conclusion.

    1 Numerical simulation

    In order to study the problem of diving difficulty for an AUV near free surface,the flowfield of the bare hull at different submergence depths and velocities is simulated.Fig.1 illustrates the schematic diagram of the motion near free surface,where H is the vertical distance from the surface of water to the upper surface of the main body.

    1.1 Computational domain

    The computational domain has a great impact on Fluent simulation authenticity as well as the accuracy of the result.In order to research the motion of the vehicle near free surface,the computational domain covers two parts(see Fig.2).The upper fluid is air while the lower is water.

    According to the concept of unbounded flow field and the need of computation,cuboid computational domain is selected,as is depicted in Fig.2. The height Y=16D,the width Z=16D,where D is the diameter of the vehicle,D=0.8m.X1=3D,X2=6D,where X1is the axial distance from the vehicle fore-end to fluid entrance,X2is the axial distance from the vehicle rear-end to fluid exit.The origin of coordinates locates above the center of gravity.Vertical distance is H+D/2. The initial position of the water surface is z=0.

    1.2 Boundary conditions and flow field parameters

    As shown in Fig.2,considering the effect of free surface,the entrance is divided into two parts,air entrance and water entrance.Set them as velocity-inlet and the velocity is the vehicle’s actual velocity.The calculation velocities are 0.5 m/s,1.0 m/s,1.5 m/s and 2.0 m/s.According to the Ref.[7],choose k-ε turbulence model as the computational model.The air and water inflow velocities are consistent.

    This paper mainly analyzes the flow field and hydrodynamic performances of AUV near free surface.Select the center of gravity as the observation point of lift,drag and pitch moment acting on the hull.Take the variations of force and moment as one of the convergence conditions.The other convergence condition is whether fluid flow rate accords with the law of mass conservation.

    1.3 Verification of calculation method

    In order to verify the reliability of VOF model applied to the simulation of underwater vehicle near free surface,the simulation drag coefficientis compared to the theoretical valueof an ellipsoid with length L=2 m,diameter D=0.2L,submergence depth h/D=0.8,where his the vertical distance from free surface to the symmetric axis of the ellipsoid.The result is shown in Tab.1,where the theoretical value of wave resistance coefficient Cwcites the Ref.[9], frictional resistance coefficient Cfis calculated as:

    Fig.2 Sketch map of computational domain

    where Rerepresents Reynolds number.Viscous pressure resistance coefficient is calculated as

    where Amis the area of midship section area,S is the wetted surface area,Lris the length of the submarine’s tail cone.

    Tab.1 Comparison of the drag coefficient gained by theoretical calculation with numerical simulation

    As is shown in Tab.1,the error rate between the numerical simulation value and theoretical calculation value is in 10%.And the simulation result can meet the precision requirement.

    2 Simulation result and analysis

    2.1 Free Surface deformation

    Fig.3 Dynamic pressure in symmetry plane at(a)H/D=0.5 and(b)H/D=1

    Fig.3 illustrates the dynamic pressure around AUV at different depths in the conditionthat Froude numberis 0.17,Reynolds numberThree groups of data(H/ D=0.5,1,2)were simulated and two of them are illustrated here.The wave making effect is prominent and mainly accumulates in the front part of the hull when it navigates near surface. And the maximum amplitude of the crest decreases sharply with the increase of H/D.When H/D=2,the wave making effect disappears.

    2.2 Fluid dynamic pressure around AUV

    When the hull navigates near surface,the flow around the upper surface can not spread freely due to the restriction of the free surface,as illustrated in Fig.3(a).According to the fluid continuity equation,the flow velocity and the dynamic pressure along the length of the hull will increase as a result of the constraint of the streamlined hull.The maximum of the flow rate and dynamic pressure locate at the connection area of the nose and the cylindrical hull.

    According to the Bernoulli’s equation,larger flow rate results in smaller static pressure and lower liquid level.So,the liquid level drops obviously at the connection area of the nose and the cylindrical hull where the magnitude of flow rate reaches maximum.Simultaneously, the surface wave making is created.The wave making will make the hull fluctuate.After the nose section,the flow velocity around the cylindrical hull decreases due to the resistance of the viscosity force.Thus,wave making process can not be exited obviously any more.

    The water around the lower surface of the hull is not affected by free surface.So the fluid velocity and dynamic pressure along the length of the hull increase slightly.As the submergence depth increases,the free surface effect on the hull decreases sharply,as illustrated in Fig.3(b).

    2.3 Pitch moment,lift and drag force versus depth

    Fig.4 shows the lift at different submergence depths.The positive value of the force means vertically upward.The pressure acting on the hull surface is composed of static pressure and the dynamic pressure components perpendicular to the hull surface.The dynamic pressure component is very small because the fluid velocity is almost perpendicular to the surface,and it can be neglected.Hence,the pressure acting on the hull surface almost equals to static pressure.

    By the above analysis of Fig.3,there is an obvious difference of fluid velocity and static pressure between the upper and lower surface of the hull,especially in the front part of the hull.The difference results in obvious lift and nose up pitch moment by what is referred to as Venturi effect.As the submergence depth increases,the lift decreases sharply.

    Fig.4 Lift at different submergence depths

    Fig.5 Pitch moment at different submergence depths

    For the streamlined underwater vehicle,the location of the hydrodynamic center is in front of the buoyance center along the vehicle.So nose up pitch moment is produced while the lift is produced.Fig.5 illustrates the pitch moment versus submergence depth.The trend of changes with the depth in pitch moment acting on the hull is similar to the lift.Because the action point of hydrodynamic force is in front of the center of gravity,the lift provides nose up pitch moment.Especially,when the AUV navigates near free surface,the nose up moment acting on the hull is relatively larger and the hull’s head is raised.Besides,the hull fluctuates due to the wave making.And this makes the dive more difficult.Thus,Venturi effect is an obstacle for initial dive.So in most cases,AUVs are trimmed to be nose down attitude.With the submergence depth increases,the pitch moment acting on the hull experiences a severe reduction process.When the initial submergence depth is three times the diameter of the hull,the influence of pitch moment on diving could be neglected.

    Fig.6 shows the drag versus submergence depth.The total drag is composed of friction drag and residual resistance which contains viscous pressure resistance and wave resistance.The total drag increases as the submergence depth decreases.

    Inspection of Fig.6 reveals that the friction drag is almost unchanged with submergence depth.The friction drag is generated by frictional shear stress in the boundary layer.The frictional shear stress is calculated as

    Fig.6 Drag at different submergence depths

    where μ is liquid kinetic viscosity coefficient,is velocity gradient of the boundary layer. The thickness of boundary layer depends on Reynolds number.In the simulation,the Reynolds number maintains a constant as the submergence depth changes,so that the thickness of boundary layer remains the same.Consequently velocity gradientremains unchanged as well as the frictional shear stress.So the friction drag almost remains the same.

    The viscous pressure resistance is in relation to configuration and velocity of the hull[19].According to the Reynolds law,viscous pressure resistance coefficient only depends on Reynolds number for certain shaped objects.So the viscous pressure resistance does not change while the submergence depth changes.On the other hand,the wave resistance ascends as the submergence depth decreases.As a result,residual resistance increases with the submergence depth decreasing as well as the total drag.

    However,for a certain propulsion power,the increase of the drag near free surface results in the slight decrease of velocity of the vehicle.Thus,the operating efficiency of the rudder and the maneuverability of the vehicle will decrease.So the increase of the drag near free surface is one of the secondary causes of the problem of diving difficulty.

    2.4 Lift and pitch moment versus Froude number

    Fig.7 indicates that the lift and pitch moment obviously ascend with Froude number increasing(H/D=1).For a certain hull,Froude number mainly relies on velocity.With the velocity increase,the fluid on the upper surface of the hull accelerates more quickly,which causes the lift and pitch moment increase obviously.

    Fig.7 Lift(a)and pitch moment(b)at different Froude numbers

    3 Field test

    Related field test of AUV developed by Tianjin University was conducted in South China Sea in early June 2014(see Fig.8 and Fig.9).

    Before the test,the main body of the AUV is trimmed to be below the water surface.While in the navigation process,a part of the back of the main body will rise above water surface under the action of lift and wave making is created(see Fig.8(a)).There is an obvious trough of wave locates at the connection area of the nose and the cylindrical hull,which is highly consistent with the simulation result.

    The task of one test(Fig.9)was set as follows:the AUV navigates straight in the first 150 seconds and then the elevator angle is set at-12°to start diving mode.Test conditions are as below:

    (1)The vehicle oscillates irregularly with very small amplitude in the period of straight navigation.Once diving mode begins,the AUV dives quickly when H equals 0.6 m.The Venturi effect almost has no effect on it.

    (2)When H equals 0.4 m,0.2 m,and 0.1 m,respectively,the upper surface of the vehicle comes up to the water surface discontinuously in the period of straight navigation.According to the test data,there exists periodical oscillation with relatively large amplitude,which means that the Venturi effect is more significant than in the condition of 0.6 m.And the time used to dive is longer.

    Fig.8 Field test in South China Sea(a)The AUV navigating on the water surface; (b)The initial dive of the AUV

    Fig.9 Diving from different initial depths(a)Depth and elevator angle VS time;(b)Pitch angle VS time

    (3)When H equals 0.03 m,the upper surface of the vehicle is lift out of the water under the action of the Venturi effect and navigates at an almost constant pitch angle in the period of straight navigation.After the pitch angle is set at-12°,the vehicle can not be fully immersed in water to dive under the influence of the suction force.At this time,the operator attempts to set the pitch angle at its limit value to dive.However,this approach only results in the increase of pitch angle.And the vehicle still can not dive.Besides,the partial even overall propeller will be lift out of the water surface.Thus,the thrust force is sharply reduced as well as the velocity,which makes diving more difficult.At this circumstance,the vehicle will maintain semi-submersible state.But in such case,the wireless antenna will be immersed under water and wireless communication is interrupted.The acoustics communication also fails due to the semi-submersible state.So this state is very unfavorable.

    From the test result,we can draw the following conclusions:(1)As the value of H decreases,the Venturi effect gets more significant and the vehicle dives more difficultly.When H is smaller than 0.03 m,the AUV can not dive even though the pitch angle is very large;(2) Though the partly exposed propeller leads to the decrease of velocity and hydrodynamics,it is not the root cause of diving difficulty.It is a result of Venturi effect.The test result is consistent with the numerical result.

    4 Conclusions

    This paper researches the problem of diving difficulty near surface of Autonomous Underwater Vehicle by simulating the navigation of the bare hull using CFD software.Related test also has been conducted.According to the simulation and test results,conclusions are drawn as follows:

    (1)When an underwater vehicle navigates near surface,the pressure difference between the upper and the lower side of the vehicle leads to the problem of diving difficulty.

    (2)The lift,pitch moment and drag acting on the hull decrease as the submergence depth increases.The lift and pitch moment increase as the Froude number increases.So the main factors for theVenturi effect are initial diving depth and velocity.

    (3)According to the field test result,the autonomous underwater vehicle researched in this paper can hardly dive if H is smaller than 0.03 m.The result has an important guiding value for the trim in future tests.

    All in all,the lift and nose up moment produced by Venturi effect are the main reasons for the difficulty of diving near water surface,rather than weather and waves.To solve this problem,the critical value H to dive for a certain vehicle should be obtained.Thus,trimming properly in water can make diving easier.

    [1]Ettore D B,Jo?o D D,António P,et al.Investigation of normal force and moment coeficients for an AUV at nonlinear angle of attack and sideslip range[J].IEEE Journal of Oceanic Engineering,2008,33:538-549.

    [2]Bystr?m L,Andersson R.Submarine maneuvering with a small bottom clearance[C].Warship-International Symposium then Conference Royal Institution of Navalarchitects,1996:21-21.

    [3]Wu B S,Xing F,Kuang X F,et al.Investigation of hydrodynamic characteristics of submarine moving close to the sea bottom with CFD method[J].Journal of Ship Mechanics,2005,9(3):19-28.

    [4]Xiong X M,Wu X H.A study on the effect of surface and bank on hydrodynamic maneuvering forces acting on ship hulls in restricted water[J].Shipbuilding of China,1994,124:34-43.

    [5]Ali N,Abdolrahman D,Mazyar D.An axisymmetric underwater vehicle-free surface interaction:A numerical study[J].O-cean Engineering,2015,96:205-214.

    [6]Yang C,Lohner R.Prediction of flows over an axisymmetric body with appendages[C]//The 8th International Conference on Numerical Ship Hydrodynamics.Busan,Korea,2003.

    [7]Sun B Q,Miao Q M,Feng X Z,et al.A numerical method for the calculation of the wave forces acting on a submarine travelling near the free surface[J].Journal of Ship Mechanics,1997,1(1):21-26.

    [8]Feng X Z,Jiang Q Q,Miao Q M,et al.Computation of motion and wave forces for a submarine running near free surface in different depth of immersion and direction[J].Journal of Ship Mechanics,2002,6(2):1-14.

    [9]Han D F,Huang D B.Numerical prediction and convergence analysis of wave resistance for submerged body near free surface[J].Journal of Ship Mechanics,2005,9(1):29-35.

    [10]Zhang N,Sheng H C,Yao H Z.Numerical simulation of flow around submarine operating close to the bottom or near free surface[J].Journal of Ship Mechanics,2007,11(4):498-507.

    [11]Zhang N,Ying L M,Yao Huizhi,et al.Numerical simulation of free surface viscous flow around submarine[J].Journal of Ship Mechanics,2005,9(3):29-39.

    [12]Zhang N,Zhang S L.Numerical simulation of hull/propeller interaction of submarine in submergence and near free surface[J].Journal of Hydrodynamics,2014,26:50-56.

    [13]Hong F W.Numerical and experimental study of a body moving near free surface[D].Wuxi:China Ship Scientific Research Center,2001.

    [14]Jo?o D,Jose D C,Ettore D B.Study of autonomous underwater vehicle wave disturbance rejection in the diving plane[J]. Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, 2014,228:122-135.

    [15]Mashud M D,Bijoy P,Nasif R.Numerical simulation of free surface water wave for the flow around NACA 0015 hydrofoil using the volume of fluid(VOF)method[J].Ocean Engineering,2014,78:89-94.

    [16]Filippas E S,Belibassakis K A.Hydrodynamic analysis of flapping-foil thrusters operating beneath the free surface and in waves[J].Engineering Analysis with Boundary Elements,2014,41:47-59.

    [17]Saout O,Ananthakrishnan P.Hydrodynamic and dynamic analysis to determine the directional stability of an underwater vehicle near a free surface[J].Applied Ocean Research,2011,33:158-167.

    [18]Yao J X.Numerical study on bank effects for a ship sailing along bank[D].Shanghai:Shanghai Jiao Tong University, 2010.

    [19]Sheng Z B,Liu Y Z.Principle of Ship(volume1)[M].4th ed.Shanghai:Shanghai Jiao Tong University Press,2004:163.

    自主水下機器人下潛困難問題的數(shù)值仿真與試驗研究

    張宏偉,李金翠,王延輝,王樹新,郝 亮

    (天津大學(xué) 機械工程學(xué)院,天津 300072)

    自主水下機器人在近水面運動時,受到文丘里效應(yīng)產(chǎn)生向上吸力的影響,使得潛器初始下潛困難,近水面的深度保持能力也受到影響。為了研究水下潛器近水面下潛困難問題,文章運用計算流體力學(xué)(CFD)軟件對某AUV主體周圍流場進行近水面數(shù)值模擬。模擬結(jié)果表明,影響升力和抬頭力矩的主要因素是初始的下潛深度和速度。水域試驗表明隨著初始下潛深度的增加,AUV的下潛將變得越來越容易,這與模擬結(jié)果相一致。

    下潛困難;文丘里效應(yīng);近水面;自主水下機器人;CFD

    U661.3

    :A

    張宏偉(1976-),男,天津大學(xué)機械工程學(xué)院副教授;

    U661.3

    A

    10.3969/j.issn.1007-7294.2016.03.005

    1007-7294(2016)03-0277-11

    李金翠(1989-),女,天津大學(xué)機械工程學(xué)院碩士研究生;

    王延輝(1979-),男,天津大學(xué)機械工程學(xué)院副教授;

    王樹新(1966-),男,天津大學(xué)機械工程學(xué)院教授;

    郝 亮(1989-),男,天津大學(xué)機械工程學(xué)院碩士研究生。

    Received date:2015-11-29

    Foundation item:Supported by the Dynamical Behaviors and Control of the Propeller Driven Hybrid Underwater Glider with Controllable Wings(Grant no.51475319)and by the National Hi-tech Research and Development of China(Grant no.2012AA091001)

    Biography:ZHANG Hong-wei(1976-),male,associate professor of Tianjin University,E-mail:zhanghongwei@tju.edu.cn;

    LI Jin-cui(1989-):female,master student of Tianjin University,E-mail:cuijinl1019@163.com;

    WANG Yan-hui(1979-):male,associate professor of Tianjin University,E-mail:yanhuiwang@tju.edu.cn.

    猜你喜歡
    張宏偉文丘里天津大學(xué)
    文丘里洗滌器在凈化粗煤氣中的應(yīng)用及優(yōu)化
    云南化工(2023年6期)2023-07-04 01:35:20
    Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
    《天津大學(xué)學(xué)報(社會科學(xué)版)》簡介
    SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS?
    育學(xué)子之德行 潤桃李共芬芳
    高溫高壓飛灰過濾器文丘里管故障原因分析及應(yīng)對措施
    化工管理(2020年10期)2020-04-30 10:20:36
    文丘里管在國六排放標(biāo)準(zhǔn)中的應(yīng)用分析
    北京汽車(2019年3期)2019-07-19 01:44:08
    學(xué)生寫話
    高濃度煤粉流經(jīng)文丘里管的管內(nèi)黏附結(jié)垢現(xiàn)象
    Filtering Surface Water with a Polyurethane-based Hollow Fiber Membrane: Effects of Operating Pressure on Membrane Fouling*
    国产精品国产三级国产专区5o| 久久av网站| 色网站视频免费| 婷婷色麻豆天堂久久| 日本wwww免费看| 久久青草综合色| 一区二区三区激情视频| 午夜福利一区二区在线看| 久久人妻熟女aⅴ| 日韩精品有码人妻一区| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品电影小说| 日日啪夜夜爽| 女性生殖器流出的白浆| 日韩不卡一区二区三区视频在线| 精品少妇久久久久久888优播| 在线免费观看不下载黄p国产| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 日韩伦理黄色片| 亚洲精品久久午夜乱码| 悠悠久久av| 一本一本久久a久久精品综合妖精| 麻豆av在线久日| 美女扒开内裤让男人捅视频| 黄色视频在线播放观看不卡| 赤兔流量卡办理| 欧美精品一区二区大全| 夫妻午夜视频| 一级黄片播放器| 亚洲精品,欧美精品| av又黄又爽大尺度在线免费看| 一级毛片我不卡| 亚洲图色成人| 最近中文字幕2019免费版| 一区二区av电影网| 国产成人a∨麻豆精品| 欧美日韩亚洲高清精品| 美女高潮到喷水免费观看| 国产精品偷伦视频观看了| 日韩av免费高清视频| 超碰成人久久| 精品国产一区二区三区四区第35| 你懂的网址亚洲精品在线观看| 日韩大码丰满熟妇| 亚洲一码二码三码区别大吗| 又黄又粗又硬又大视频| 最近2019中文字幕mv第一页| 丰满饥渴人妻一区二区三| 悠悠久久av| 黄网站色视频无遮挡免费观看| 伊人久久国产一区二区| 秋霞伦理黄片| 日本欧美视频一区| 亚洲成av片中文字幕在线观看| 亚洲成人av在线免费| 亚洲av欧美aⅴ国产| 男人操女人黄网站| 七月丁香在线播放| av天堂久久9| 一区二区三区乱码不卡18| 在线观看www视频免费| 无遮挡黄片免费观看| 国产探花极品一区二区| 欧美日韩综合久久久久久| 免费在线观看完整版高清| 亚洲国产毛片av蜜桃av| 精品人妻在线不人妻| 大陆偷拍与自拍| 中文字幕人妻熟女乱码| 在线观看三级黄色| 成人18禁高潮啪啪吃奶动态图| 一本大道久久a久久精品| 啦啦啦啦在线视频资源| 精品一区二区三卡| 日韩欧美一区视频在线观看| av网站免费在线观看视频| 18在线观看网站| 汤姆久久久久久久影院中文字幕| 69精品国产乱码久久久| 欧美人与善性xxx| 中文字幕人妻丝袜制服| 国产免费现黄频在线看| 99国产综合亚洲精品| 欧美精品一区二区免费开放| 免费不卡黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看国产h片| 中文字幕高清在线视频| 99久久综合免费| 99久久精品国产亚洲精品| 日韩一区二区视频免费看| www.av在线官网国产| 日韩大码丰满熟妇| 亚洲av成人不卡在线观看播放网 | 婷婷成人精品国产| 美女午夜性视频免费| 熟女av电影| 国产男女超爽视频在线观看| 久久99一区二区三区| 欧美日韩成人在线一区二区| 免费在线观看黄色视频的| 亚洲综合色网址| 久久国产亚洲av麻豆专区| 一级毛片我不卡| 99久久99久久久精品蜜桃| 嫩草影院入口| 日韩欧美精品免费久久| 一级黄片播放器| 成年av动漫网址| 午夜影院在线不卡| 成年人免费黄色播放视频| 男女边摸边吃奶| 桃花免费在线播放| 久久久国产一区二区| 亚洲四区av| 亚洲国产欧美日韩在线播放| 日韩精品免费视频一区二区三区| 日韩欧美一区视频在线观看| 国产精品 国内视频| 美女主播在线视频| 久久久精品国产亚洲av高清涩受| 国产高清国产精品国产三级| 婷婷色综合www| 伊人久久大香线蕉亚洲五| 中文乱码字字幕精品一区二区三区| 中文字幕制服av| 国产在线一区二区三区精| 欧美日本中文国产一区发布| 日韩人妻精品一区2区三区| 国产成人91sexporn| 夫妻午夜视频| 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 国产在线免费精品| 欧美精品一区二区大全| 一本色道久久久久久精品综合| 中文字幕最新亚洲高清| 一区二区三区乱码不卡18| 国产精品久久久久久精品电影小说| 精品亚洲乱码少妇综合久久| 亚洲,欧美精品.| 黄色视频不卡| 免费观看人在逋| 午夜av观看不卡| 亚洲综合色网址| 亚洲欧洲精品一区二区精品久久久 | 亚洲天堂av无毛| 91国产中文字幕| 国产男人的电影天堂91| 亚洲情色 制服丝袜| 亚洲一区中文字幕在线| 18禁动态无遮挡网站| 天天影视国产精品| 亚洲精品美女久久久久99蜜臀 | 电影成人av| 七月丁香在线播放| av一本久久久久| 卡戴珊不雅视频在线播放| 麻豆乱淫一区二区| 少妇精品久久久久久久| 国产在线免费精品| 欧美最新免费一区二区三区| 91aial.com中文字幕在线观看| 一级片'在线观看视频| 亚洲,一卡二卡三卡| a 毛片基地| 精品视频人人做人人爽| 色94色欧美一区二区| 亚洲美女黄色视频免费看| 黑人猛操日本美女一级片| 久久精品国产综合久久久| 久久久久久免费高清国产稀缺| 欧美在线黄色| 十八禁网站网址无遮挡| 国产免费福利视频在线观看| 亚洲色图 男人天堂 中文字幕| av网站在线播放免费| 丝袜美足系列| 免费黄色在线免费观看| 久久精品国产a三级三级三级| 亚洲人成网站在线观看播放| 精品国产乱码久久久久久男人| 99精品久久久久人妻精品| 国产精品三级大全| 日本欧美国产在线视频| 亚洲美女搞黄在线观看| 欧美变态另类bdsm刘玥| 叶爱在线成人免费视频播放| 亚洲欧洲国产日韩| av在线播放精品| 国产野战对白在线观看| 老鸭窝网址在线观看| 久久久国产一区二区| av片东京热男人的天堂| av又黄又爽大尺度在线免费看| 国产成人av激情在线播放| 男人爽女人下面视频在线观看| 免费黄色在线免费观看| 嫩草影视91久久| 熟女av电影| 纵有疾风起免费观看全集完整版| 日韩精品有码人妻一区| 欧美日韩视频高清一区二区三区二| 大片免费播放器 马上看| 国产 精品1| 亚洲国产成人一精品久久久| 精品人妻熟女毛片av久久网站| 波野结衣二区三区在线| 伊人亚洲综合成人网| 成人国语在线视频| 久久久久久久精品精品| 亚洲精品第二区| 麻豆乱淫一区二区| 久久久久久久国产电影| 一二三四在线观看免费中文在| 赤兔流量卡办理| 在线观看三级黄色| 精品一区在线观看国产| 久久久久国产一级毛片高清牌| 国产精品免费大片| 国产在视频线精品| 婷婷色综合www| 免费黄网站久久成人精品| 中文字幕制服av| 国产精品久久久久久久久免| 欧美日韩亚洲高清精品| 午夜影院在线不卡| 熟女av电影| 亚洲精品日韩在线中文字幕| av网站免费在线观看视频| 日韩av不卡免费在线播放| 午夜av观看不卡| 欧美少妇被猛烈插入视频| 亚洲 欧美一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲美女搞黄在线观看| 黄色视频不卡| 亚洲第一区二区三区不卡| 久久精品国产亚洲av高清一级| 在线天堂最新版资源| 国产精品av久久久久免费| 欧美激情高清一区二区三区 | 免费在线观看视频国产中文字幕亚洲 | a级片在线免费高清观看视频| 亚洲av中文av极速乱| 国产片内射在线| 少妇 在线观看| 亚洲视频免费观看视频| 1024视频免费在线观看| 国产精品欧美亚洲77777| 秋霞在线观看毛片| 久久天堂一区二区三区四区| 亚洲激情五月婷婷啪啪| 国产片内射在线| 啦啦啦啦在线视频资源| 五月开心婷婷网| 日韩制服骚丝袜av| av电影中文网址| 亚洲,欧美精品.| 国产97色在线日韩免费| 高清黄色对白视频在线免费看| 制服人妻中文乱码| 午夜福利乱码中文字幕| 精品午夜福利在线看| 自线自在国产av| 在线观看免费日韩欧美大片| 亚洲五月色婷婷综合| 丝袜美腿诱惑在线| av卡一久久| a级片在线免费高清观看视频| 亚洲国产欧美在线一区| 日本91视频免费播放| 午夜av观看不卡| 最近2019中文字幕mv第一页| 亚洲精品aⅴ在线观看| 午夜日韩欧美国产| 成年人免费黄色播放视频| 国产人伦9x9x在线观看| 秋霞伦理黄片| 日本猛色少妇xxxxx猛交久久| 涩涩av久久男人的天堂| 亚洲国产av影院在线观看| 婷婷色av中文字幕| 亚洲精品,欧美精品| 国产精品久久久久久精品电影小说| 成人亚洲欧美一区二区av| 久久综合国产亚洲精品| 久久久欧美国产精品| 在线观看三级黄色| 在线观看一区二区三区激情| av片东京热男人的天堂| 国产乱人偷精品视频| 中文字幕人妻熟女乱码| 女人被躁到高潮嗷嗷叫费观| 哪个播放器可以免费观看大片| 在线 av 中文字幕| 国产成人精品久久二区二区91 | 欧美黑人精品巨大| 亚洲av男天堂| 国产野战对白在线观看| 国产97色在线日韩免费| 免费黄网站久久成人精品| 日本av免费视频播放| 最近的中文字幕免费完整| 高清黄色对白视频在线免费看| 欧美日韩国产mv在线观看视频| 黄色视频不卡| 日日摸夜夜添夜夜爱| 国产毛片在线视频| 国产人伦9x9x在线观看| 久久天堂一区二区三区四区| av天堂久久9| 久热这里只有精品99| 亚洲一级一片aⅴ在线观看| 18禁观看日本| 人人妻人人澡人人看| 飞空精品影院首页| 99精品久久久久人妻精品| 性色av一级| 久久免费观看电影| 亚洲精品日本国产第一区| 色网站视频免费| 国产成人a∨麻豆精品| 日韩,欧美,国产一区二区三区| 中文字幕最新亚洲高清| 亚洲精品一二三| www.精华液| 久久狼人影院| 国产亚洲午夜精品一区二区久久| avwww免费| 狂野欧美激情性xxxx| 97在线人人人人妻| 一级毛片 在线播放| 免费黄网站久久成人精品| 观看av在线不卡| 丰满饥渴人妻一区二区三| 日韩大码丰满熟妇| 热re99久久精品国产66热6| 国产精品国产三级专区第一集| 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 一边摸一边抽搐一进一出视频| 欧美激情高清一区二区三区 | 一级,二级,三级黄色视频| 男人爽女人下面视频在线观看| 制服丝袜香蕉在线| 成年人午夜在线观看视频| av.在线天堂| 夜夜骑夜夜射夜夜干| 国产精品av久久久久免费| 久久精品国产综合久久久| 免费高清在线观看日韩| 女人爽到高潮嗷嗷叫在线视频| 天天添夜夜摸| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 一区二区三区乱码不卡18| 成人亚洲欧美一区二区av| 王馨瑶露胸无遮挡在线观看| 波野结衣二区三区在线| 亚洲综合精品二区| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 美女脱内裤让男人舔精品视频| 亚洲国产欧美网| 老司机影院毛片| 9191精品国产免费久久| av.在线天堂| 久久精品亚洲熟妇少妇任你| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 伦理电影免费视频| 欧美激情 高清一区二区三区| 中国国产av一级| 亚洲精品一二三| 欧美久久黑人一区二区| 中文字幕人妻丝袜一区二区 | 欧美激情高清一区二区三区 | 91国产中文字幕| 久久久久久免费高清国产稀缺| 日本av免费视频播放| 999精品在线视频| 最黄视频免费看| 中文字幕制服av| 视频区图区小说| 韩国精品一区二区三区| 99久久精品国产亚洲精品| 男女午夜视频在线观看| 成人三级做爰电影| 久久天堂一区二区三区四区| 观看美女的网站| 亚洲国产日韩一区二区| 午夜福利视频精品| 欧美激情高清一区二区三区 | 中文欧美无线码| 悠悠久久av| 成人国产麻豆网| 国产在线一区二区三区精| e午夜精品久久久久久久| 精品亚洲成a人片在线观看| 最近最新中文字幕免费大全7| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 国产又色又爽无遮挡免| 看免费av毛片| 亚洲成人av在线免费| 欧美人与性动交α欧美软件| 交换朋友夫妻互换小说| 欧美乱码精品一区二区三区| 不卡视频在线观看欧美| 亚洲精华国产精华液的使用体验| 人成视频在线观看免费观看| 校园人妻丝袜中文字幕| 午夜福利视频在线观看免费| 午夜av观看不卡| 无限看片的www在线观看| 一本一本久久a久久精品综合妖精| 一级毛片 在线播放| 国产亚洲一区二区精品| 天堂中文最新版在线下载| 午夜福利视频精品| 少妇被粗大的猛进出69影院| 国产成人91sexporn| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av高清一级| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| 国产精品亚洲av一区麻豆 | 人体艺术视频欧美日本| 色视频在线一区二区三区| 在线观看免费视频网站a站| 中文精品一卡2卡3卡4更新| 一区二区三区激情视频| 中文欧美无线码| 亚洲精品国产av蜜桃| 女人精品久久久久毛片| 午夜免费观看性视频| 精品第一国产精品| 90打野战视频偷拍视频| 国产精品熟女久久久久浪| 亚洲精品视频女| 精品国产超薄肉色丝袜足j| 国产极品粉嫩免费观看在线| 少妇精品久久久久久久| 中文字幕最新亚洲高清| 国产精品.久久久| 咕卡用的链子| 日韩一本色道免费dvd| 国产精品一二三区在线看| 日韩伦理黄色片| 无遮挡黄片免费观看| 亚洲欧洲日产国产| 国产在线视频一区二区| 夜夜骑夜夜射夜夜干| 一级,二级,三级黄色视频| 欧美亚洲日本最大视频资源| 99热网站在线观看| 欧美变态另类bdsm刘玥| 啦啦啦视频在线资源免费观看| 精品国产露脸久久av麻豆| 9热在线视频观看99| 欧美精品一区二区免费开放| av在线app专区| 国产男女内射视频| 男女床上黄色一级片免费看| 99九九在线精品视频| 久久99一区二区三区| 国产精品一二三区在线看| 人人妻人人澡人人看| 亚洲第一av免费看| 国产毛片在线视频| 精品一区二区三区av网在线观看 | 色视频在线一区二区三区| 波野结衣二区三区在线| 欧美日韩av久久| 亚洲精品日韩在线中文字幕| 免费黄网站久久成人精品| 亚洲综合色网址| 欧美黄色片欧美黄色片| 一级毛片我不卡| a级毛片在线看网站| 悠悠久久av| 一本色道久久久久久精品综合| 久久毛片免费看一区二区三区| xxxhd国产人妻xxx| 精品国产乱码久久久久久男人| 久热爱精品视频在线9| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看人妻少妇| 国产片内射在线| 女人久久www免费人成看片| 老司机亚洲免费影院| 欧美精品一区二区免费开放| 久久久国产欧美日韩av| 久久久久精品国产欧美久久久 | 亚洲精品一区蜜桃| 国产精品 欧美亚洲| 九草在线视频观看| av女优亚洲男人天堂| 波多野结衣一区麻豆| tube8黄色片| 欧美精品av麻豆av| 国产成人精品在线电影| 黄色视频在线播放观看不卡| 国产欧美日韩综合在线一区二区| 国产精品香港三级国产av潘金莲 | 纯流量卡能插随身wifi吗| 狂野欧美激情性xxxx| 午夜福利,免费看| 美国免费a级毛片| 十八禁人妻一区二区| 高清在线视频一区二区三区| 国产视频首页在线观看| 亚洲成色77777| 狂野欧美激情性bbbbbb| 成人国产麻豆网| 午夜免费观看性视频| 啦啦啦视频在线资源免费观看| 国产福利在线免费观看视频| 黄色 视频免费看| 中文字幕色久视频| 国产探花极品一区二区| 亚洲精品日本国产第一区| 亚洲天堂av无毛| 日韩视频在线欧美| 亚洲情色 制服丝袜| 欧美激情高清一区二区三区 | 七月丁香在线播放| 国产毛片在线视频| 日本欧美国产在线视频| 国产熟女午夜一区二区三区| 男人添女人高潮全过程视频| 亚洲 欧美一区二区三区| 久久99一区二区三区| 女人被躁到高潮嗷嗷叫费观| 国产精品免费大片| 久久精品人人爽人人爽视色| 在线免费观看不下载黄p国产| 男人操女人黄网站| 自线自在国产av| 中国三级夫妇交换| 国产1区2区3区精品| 男人添女人高潮全过程视频| 搡老乐熟女国产| 另类亚洲欧美激情| 精品久久蜜臀av无| 久久天堂一区二区三区四区| 亚洲,一卡二卡三卡| 欧美日韩综合久久久久久| 美国免费a级毛片| 国产福利在线免费观看视频| 国产乱来视频区| 欧美日韩视频精品一区| 亚洲专区中文字幕在线 | 最近的中文字幕免费完整| 黄片无遮挡物在线观看| 三上悠亚av全集在线观看| 亚洲av男天堂| 精品视频人人做人人爽| 成人18禁高潮啪啪吃奶动态图| 国产在线免费精品| 老司机深夜福利视频在线观看 | 日本欧美视频一区| 丰满乱子伦码专区| 久久精品久久久久久噜噜老黄| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 精品亚洲乱码少妇综合久久| 777米奇影视久久| 蜜桃在线观看..| 日日爽夜夜爽网站| 免费高清在线观看日韩| 欧美国产精品va在线观看不卡| 亚洲av中文av极速乱| 国产成人欧美| 最新在线观看一区二区三区 | 欧美成人精品欧美一级黄| 极品人妻少妇av视频| 精品视频人人做人人爽| 中文字幕最新亚洲高清| 大香蕉久久网| 亚洲自偷自拍图片 自拍| 久久天躁狠狠躁夜夜2o2o | 国产又爽黄色视频| 在线观看国产h片| 亚洲av日韩精品久久久久久密 | av国产精品久久久久影院| 老司机影院毛片| 9热在线视频观看99| 91国产中文字幕| 国产精品久久久久久久久免| 日本一区二区免费在线视频| 日日啪夜夜爽| 999久久久国产精品视频| 亚洲欧洲国产日韩| 精品国产一区二区三区四区第35| 青春草亚洲视频在线观看| videosex国产| 欧美国产精品va在线观看不卡| 日韩大码丰满熟妇| 伊人久久大香线蕉亚洲五| 啦啦啦在线观看免费高清www| 欧美黑人精品巨大| 久久精品久久精品一区二区三区| 亚洲成人av在线免费| 97人妻天天添夜夜摸| 99香蕉大伊视频| 亚洲国产毛片av蜜桃av| 中文字幕最新亚洲高清| 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频| 亚洲av中文av极速乱| 久久久久久人妻| 亚洲国产欧美在线一区|