• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Comparison of Positioning Capabilities between Vessels with Different Thruster Configurations

    2016-05-16 02:41:55,,,
    船舶力學(xué) 2016年3期
    關(guān)鍵詞:上海交通大學(xué)螺旋槳動(dòng)力

    ,,,

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    A Comparison of Positioning Capabilities between Vessels with Different Thruster Configurations

    XU Sheng-wen,WANG Xue-feng,WANG Lei,MENG Shuai

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Dynamic Positioning Capability(DPCap)analysis is crucially important to the selection of thrusters and their configuration and the preliminary investigation of positioning ability of a newly designed dynamic positioning vessel.In this paper,the effect of the thruster configuration on the positioning capability is investigated,based on a novel synthesized positioning capability criterion.Comparison of positioning capabilities between vessels with different thruster configurations was performed on a semi-submersible.The DPCap results were generated by a newly developed software program.It has been demonstrated that the DPCap results are influenced by the thruster configurations. Based on the synthesized criterion,the comparison of positioning capabilities is highly efficient and accurate.Furthermore,it can be concluded that thruster with a larger distance to the origin of the vessel has more effect on the synthesized positioning capability.

    DPCap;thruster configuration;synthesized positioning capability

    0 Introduction

    A Dynamically Positioned(DP)vessel is by the International Maritime Organization(IMO)and the certifying class societies(DNV,ABS,LR,etc.)defined as a vessel that maintains its position and heading(fixed position or pre-determined track)exclusively by means of active thrusters.Dynamic Positioning System(DPS)has been widely used in offshore engineering over the last five decades.Description of DPSs,including their early history can be found in Fay(1990)[1].

    Operation safety is always the first consideration in the design and operation of a new DPS.To be able to plan a safe and efficient operation,it is important to know the window of operation,and the maximum environmental conditions which the particular DP vessel can withstand.During critical operations such as drilling,oil production and offloading,the positioningprecision requirements are high,regardless of the environmental conditions.It is thus important to know the positioning capability of the vessel in order to plan and execute operations in a safe manner,according to Pivano et al(2012)[2].It is necessary to perform a dynamic positioning capability(DPCap)analysis when designing a new DP vessel.

    DPCap analysis can help determine the maximum environmental forces that the DP system can counteract for given headings,as IMCA(2000)[3]described.Mostly DPCap analysis investigates the dynamic positioning capability of the vessel from 0°to 360°heading.The environmental forces and moment are statically balanced by thrust forces and moment provided by the thrust system which consists of several kinds of thrusters.The positioning capability is determined by the maximum thrust of the thrusters as well as the thruster configuration.

    In the design of a thruster system,there are many factors which are subject to changing (i.e.the number,the types,the maximum thrust and the configuration of the thrusters,etc.). Many efforts can be found in literature focus on the number of the thrusters and their configuration.Mahfouz and El-Tahan(2006)[4]proposed a developed software program as a marine tool in the selection of thrusters,in their configuration,and during preliminary investigation of the positioning ability of a newly designed vessel dynamic positioning system.However,the comparison of vessel’s positioning capability is based on the rough observation of the polar plots,which may cause confusion when these polar plots overlap with each other.A synthesized positioning capability criterion,which can quantify the synthesized positioning capability,is adopted to compare the polar plots.

    In this paper,the influence of the thruster configuration on the synthesized positioning capability is focused.The number,types and the maximum thrust of the thrusters are constant. A software program was developed based on the present study in the State Key Laboratory of Ocean Engineering(SKLOE).A DPCap analysis for a semi-submersible was conducted to investigate the synthesized positioning capability of the vessel with different thruster configurations.

    This paper is logically constructed in 6 chapters.A basis and flow chart of the DPCap analysis is given in Chap.1,followed by illustration of the synthesized positioning capability criterion in Chap.2.Chap.3 gives a description on the relation of thruster configurations and synthesized positioning capability.Chap.4 performs a comparison of the synthesized capabilities between vessels with different thruster configurations on a semi-submersible.The results and discussion are given in Chap.5.Finally,conclusions will be drawn in Chap.6.

    1 DPCap analysis

    DPCap analysis can help find the maximum environmental forces that the DP system can counteract for given headings.The accuracy of DPCap analysis is determined by the preciseestimation of the environmental forces as well as the effectiveness of the thrust allocation logic.Estimation of the environmental forces can be based on model tests,hydrodynamic computation and empirical formulas,see S?rensen and Ronxss(2002)[5].Thrust allocation logic can be formulated as an optimization problem,where the objective typically is to minimize the use of control effort(or power)subject to actuator rate and position constraints,power constraints as well as other operational constraint,see Tor A(2004)[6],Fossen and Johansen(2006)[7]. Many methods for optimization are available in literature and quadratic programming method has been demonstrated to be relatively effective and robust,see DE WIT(2009)[8].

    Wind,wave and current are assumed coincident in direction when one conducts a DPCap analysis.The forces and moment due to each component are evaluated individually and summed to evaluate the total steady-state environmental forces and moment,as API(1987)[9]described. CFD method can be implemented to evaluate the wind loads,see Gosman(1999)[10],Zhang et al(2010)[11].The second order mean wave loads can be obtained based on quadratic transfer functions,see Newman(1977)and Faltinsen(1990)[12-13].Estimation of the current loads can be found in literature,e.g.Kim et al(2009)[14],Vaz et al(2009)[15],and Leite et al(1998)[16].

    The coordinate system is fixed to the vessel body with the origin located at the mean oscillatory position in the average water plane with X axis points towards bow,Y axis points towards port and Z axis points towards upwards.The relative environment angle,α is positive anti-clockwise starting from the stern.Moments are positive anti-clockwise. The coordinate system is illustrated in Fig.1.

    A flow chart of DPCap analysis is presented in Fig.2.Given the current heading of the vessel(initially 0),environmental forces and moment are estimated based on the current environmental conditions(initially 0).The environmental forces and moment are balanced by the applied forces and moment,which are provided by the thrust system.Thrust allocation logic determines the optimal solution to generate the applied forces and moment.If the optimal solution exists,the severity of the environmental conditions is increased and the above procedures(Loop1,the small panel in Fig.2)are repeated until an optimal solution no longer exists.The last environmental condition is saved for the current heading.If not all the headings have been completed,move to the next heading and repeat all above procedures(Loop2,the large panel in Fig.2)until all headings are completed.Finally,the polar plot of the vessel is generated based on the heading-dependent environmental conditions.

    Fig.1 Coordinate of the vessel

    Fig.2 Flow chart of the DPCap analysis

    2 Synthesized positioning capability criterion

    In DPCap analysis,it may be possible to compare positioning capability results in different cases.In some circumstances,the results can be distinguished by direct observation of the polar plots.However,for overlapping polar plots,there may be confusion in selecting which case has the better positioning capability.Even though the better case is selected according to one’s preference,other factors such as the stability of the positioning capability cannot be accounted for.Thus,a quantified synthesized positioning capability criterion is essential for a direct and accurate comparison.The synthesized positioning capability is determined by the overall mean positioning capability as well as the stability of the vessel heading-dependent capability.

    2.1 Overall mean positioning capability

    The overall mean positioning capability can be modelled by the expectation of the positioning capabilities.The expectation value can be obtained by integrating the product of the heading-dependent positioning capability and the vessel’s heading probability density function over a given operation heading interval.The operation heading intervalis composed of the headings of the vessel relative to the direction of the environmental conditions. An example of the operation heading interval is given in Fig.3.The overall mean positioningcapability can be represented by

    where ψstartand ψendare the counterclockwise headings of the vessel,and satisfy 0≤is the wind velocity limit dependent on the heading of the vesselcan be generated by DPCap analysis and is usually presented in polar format.is a heading probability density function dependent on the heading ψ to the environmental forces.

    Fig.3 Example of an operation heading interval

    where ψiis an arbitrary heading of the vessel,δψ is a small quantity of ψ.The smaller the quantity of δψ,the more precise of the obtained heading probability density function.Ciis the number of counts of the heading during long-term(likely 1 year)observation for a specific frequency(likely to be 1 count per minute).By use of Tab.1,can be obtained by a longterm observation of the vessel’s heading in field tests.

    Tab.1 Example of statistics for the heading of the vessel(δψ=5°)

    If no field test results can be obtained,the probability of the heading can be assumed to be constant in the given operation heading interval(i.e.Ci=Constant in Eq.(2)).can be represented by

    Eq.(3)is a particular case of Eq.(2).

    The values of ψstartand ψenddepend on the specific requirements of the vessel’s engineering application.Although the positioning capabilities from 0°to 360°are investigated during DPCap analysis,the only positioning capabilities of concern are the specific headings in the operation heading interval.For a particular vessel operated in a specific maritime zone, the headings of the vessel are usually constrained in a fixed interval.However,the probabilities of the headings in the interval are different.The probability density functionaccounts for the probability of every heading in the given operation heading interval,which makes themodelled overall mean positioning capability more realistic.

    2.2 Stability of the capabilities

    The stability of the heading-dependent capabilities can be modeled by an item formed by the standard deviation and the expectation of the capabilities in the given operation heading interval.The stability of the capabilities can be represented by:

    where σ and μ are the standard deviation and the expectation ofin the operation heading intervalrespectively.The heading probability density functionis also considered in the formulation of σ.

    The stability of the capabilities in the given operation heading interval is important for evaluating the synthesized positioning capability of the vessel.With a positioning capability of high stability,the vessel can maintain relatively steady positioning when its heading oscillates, which makes the operation safer.

    2.3 Synthesized criterion

    The synthesized positioning capability is determined by the overall mean positioning capability as well as the stability of the vessel heading-dependent capability.A possible synthesized criterion can be derived from a product of the overall mean positioning capability and the stability of the capabilities.Eq.(6)gives the formula of the synthesized positioning capability criterion.

    where λ is the weight factor of Capstabin the synthesized positioning capability criterion.λ can be increased to give greater weight to the capability stability of the synthesized positioning capability criterion when the vessel requires higher capability stability for safe operation.

    The synthesized positioning capability criterion can be used to compare the synthesized positioning capabilities of DP vessels.Actually,for an arbitrary DPCap polar plot,the synthesized capability can be obtained from Eq.(6),which makes the criterion more applicable.For instance,the criterion can be used for comparison of vessels with different thruster configurations or comparison of vessels with different thruster failure modes.Thrust sensitivity analysis takes advantage of the synthesized criterion to quantify the synthesized positioning capability.

    3 Thruster configurations

    Thruster configuration is essentially important to the thrust allocation logic,which is a core part in the DPCap analysis,as illustrated in Chap.1.

    Referring to Tor A(2004)[6],if a marine vessel equipped with m thrusters,the generalizedforce vector τ∈R produced jointly by the thrust system is

    where τX(jué)is the surge force,τYis the sway force and τNis the yaw moment.The vector u∈R2mcontains the magnitude of the forces produced by each individual thruster in the bow and port direction.Thecolumns of the 3×2m matrix B is given by

    The location of the i-th thruster in the horizontal plane isin the adopted coordinate system.

    The thruster configuration is formed by the selection of the locationsof the thrusters.A good thruster configuration can assist the thrust system producing sufficient thrust forces and moment simultaneously.However,a poor thruster configuration may help the thrust system apply the surge or sway forces,cannot help providing enough environment moment. Thus,the synthesized positioning capability of the vessel is highly influenced by the thruster configuration.However,the thruster configuration is subject to many constraints related to the deployment of the equipment of the vessel.In this paper,the comparison of the synthesized positioning capability considering different thruster configurations was performed.The thruster configurations were selected based on designs of the real vessels’thrust system.

    4 Case studies

    Three thruster configurations on the same semi-submersible were taken into consideration for the comparison,as illustrated in Fig.4.The parameters of the semi-submersible is given in Tab.2.It has 8 azimuth thrusters,which have the same particularities.The locations of the thrusters as shown in Fig.4 are tabulated in Tab.3.The maximum thrust of each thruster is 480 kN.Wind and current forces and moment were estimated by a model test conducted in SKLOE.Wave forces and moment were estimated by CFD method.The current velocity was 1 knot in this case,as recommended by IMCA M140.

    The interaction between the azimuth thrusters was considered in this paper due to the close distance of the azimuth thrusters.In order to prevent the thruster-thruster interaction from reducing the performance of DP system,forbidden sectors are generally included in thrust allocation algorithms to forbid a thruster entering a sector where a neighboring thruster could be affected by its wake,see Nienhuis(1992)[17].The forbidden sectors are set up as tabulated in Tab.4.

    Thruster failure modes were also accounted for in the comparison.Investigated cases are tabulated in Tab.5.Actually,the thrusters are centrosymmetry for every thruster configuration in Fig.4.Thus,there are only two thrusters independent,thruster T1 and thruster T2.

    Tab.2 Parameters of the semi-submersible

    Tab.3 Locations of the thrusters

    Fig.4 Different thruster configurations for the same semi-submersible

    Tab.4 Forbidden sectors of the thrusters

    Tab.5 Investigated cases for failure mode analysis

    5 Results and discussions

    The results of the investigated cases are presented in Figs.(5)-(9)in a polar format.The polar plots of all cases are almost coincident,especially for case 5 as shown in Fig.9.Most of the polar plots overlap with each other,which causes confusion when one compares their capabilities.The synthesized positioning capability criterion was employed to quantify the synthesized capabilities of the vessel.in all cases,as no probability density function can be obtained.The operation heading interval isthis paper,as no realistic operation heading interval can be obtained.

    Fig.5 Polar plots of the dynamic positioning capability of Case 1

    Fig.6 Polar plots of the dynamic positioning capability of Case 2

    Fig.7 Polar plots of the dynamic positioning capability of Case 3

    Fig.8 Polar plots of the dynamic positioning capability of Case 4

    Based on the synthesized positioning capability criterion,the quantified positioning capabilities are obtained,as given in Tab.6.For every thruster configuration given in Fig.4,the synthesized positioning capabilities of the semi-submersible have the following relation:It can be concluded that the more thrusters work,the better the semi’s positioning capabilities are.

    From the obtained results,the semisubmersibles with thruster configuration A and thruster configuration B have the similar synthesized positioning capability. Moreover,thruster configuration C has the best positioning capability for all cases except Case 1.When thruster T1 fails,the thrust system cannot supply sufficient moment since thruster T1 of thruster configuration C has a relatively larger distance from the origin of the semi-submersible than that of thruster configurations A and B.This explanation can be confirmed by the results of Case 2,the semi with thruster configuration B has the worst synthesized positioning capability since thruster T2 has the largest distance from the origin of the vessel among all thruster configurations.As a result,the semi with thruster configuration C has the best positioning capability among semis with three thruster configurations in most cases.

    Fig.9 Polar plots of the dynamic positioning capability of Case 5

    Tab.6 Quantified positioning capabilities for investigated cases(normalized)

    Continue Tab.6

    6 Conclusion

    In this study,the authors performed a comparison of positioning capabilities between vessels with different thruster configurations.A synthesized positioning capability criterion was employed to quantify the synthesized positioning capability of the vessel.A software program was developed based on the present study.

    By use of the synthesized positioning capability criterion,the positioning capabilities of vessels with different thruster configurations can be directly compared with a high efficiency. The investigated cases for a semi-submersible demonstrated the comparison is efficient and accurate.Furthermore,from the obtained results,it can be concluded that thruster with a larger distance to the origin of the vessel has more effect on the synthesized positioning capability.

    [1]Fay H.Dynamic positioning systems:Principles,design and applications[Z].Paris:Technip,1990.

    [2]Pivano L,Smogeli ?N,Vik B.Dyncap-the next level dynamic DP capability analysis[C].Mar.Cybern.AS,2012.

    [3]IMCA.Specification for DP capability plots[K].IMCA M140,2000.

    [4]Mahfouz A B,El-Tahan H W.On the use of the capability polar plots program for dynamic positioning systems for marine vessels[J].Ocean Engineering,2006,33:1070-1089.

    [5]S?rensen A J,Ronass M.Mathematical modeling of dynamically positioned and thruster-assisted anchored marine vessels [C].In:The Ocean Engineering Handbook,Ferial El-Hawary Ed,2001.

    [6]Johansen T A,Fossen T I,Berge S P.Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming[J].Control Systems Technology,IEEE Transactions,2004,12(1):211-216.

    [7]Fossen T I,Johansen T A.A survey of control allocation methods for ships and underwater vehicles[C].In:Mediterranean Conference on Control and Automation,IEEE,2006.

    [8]DE WIT C.Optimal thrust allocation methods for dynamic positioning of ships[D].Master thesis.Delft University of Technology,2009.

    [9]API.Analysis of spread mooring systems for floating drilling units[S].Recommended practice RP 2P-87,second ed,1987.

    [10]Gosman A.Developments in CFD for industrial and environmental applications in wind engineering[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,81:21-39.

    [11]Zhang S,Wang L,Yang S Z,Yang H.Numerical evaluation of wind loads on semi-submersible platform by CFD[C].In: ASME 2010 29th International Conference on Ocean,Offshore and Arctic Engineering,2010.

    [12]Newman J N.Marine hydrodynamics[M].Cambridge(MA):MIT press,1977.

    [13]Faltinsen O M.Sea loads on ships and offshore structures[M].Cambridge(UK):Cambridge University Press,1990.

    [14]Kim J S,Hong C B,Lee D Y,Ahn S M.Prediction of current load using computational fluid dynamics[C].In:ASME 2009 28th International Conference on Ocean,Offshore and Arctic Engineering,American Society of Mechanical Engineers,2009.

    [15]Vaz G,Waals O J,Ottens H,Fathi F,Le Souef T,Kiu K.Current affairs:Model tests,semi-empirical predictions and CFD computations for current coefficients of semi-submersibles[C].In:ASME 2009 28th International Conference on O-cean,Offshore and Arctic Engineering,2009.

    [16]Leite A,Aranha J,Umeda C,De Conti M.Current forces in tankers and bifurcation of equilibrium of turret systems:Hydrodynamic model and experiments[J].Applied Ocean Research,1998,20:145-156.

    [17]Nienhuis U.Analysis of thruster effectivity for dynamic positioning and low speed maneuvering[D].Dissertation of Technical University Delft,1992.

    不同螺旋槳配置下船舶的定位能力比較

    徐勝文,汪學(xué)鋒,王 磊,孟 帥

    (上海交通大學(xué) 海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200240)

    動(dòng)力定位能力分析對(duì)于螺旋槳和螺旋槳配置的選型非常重要,并且可以初步探究一個(gè)新設(shè)計(jì)的動(dòng)力定位船舶的定位能力。該文中,基于一個(gè)新奇的綜合動(dòng)力定位能力標(biāo)準(zhǔn),探究了螺旋槳的配置對(duì)動(dòng)力定位能力的影響。不同螺旋槳配置下定位能力的比較在一個(gè)半潛平臺(tái)上進(jìn)行。動(dòng)力定位能力的結(jié)果由一個(gè)最新編寫的程序計(jì)算得到。從得到的結(jié)果看,螺旋槳的配置對(duì)動(dòng)力定位能力產(chǎn)生影響?;诰C合定位能力標(biāo)準(zhǔn),定位能力的比較非常高效和準(zhǔn)確。而且,可以得到一個(gè)結(jié)論:與海洋結(jié)構(gòu)物的中心距離越大的螺旋槳對(duì)綜合定位能力的影響越明顯。

    動(dòng)力定位能力;螺旋槳配置;綜合定位能力標(biāo)準(zhǔn)

    U664.3

    :A

    徐勝文(1986-),男,上海交通大學(xué)博士研究生;

    U664.3

    :A

    10.3969/j.issn.1007-7294.2016.03.004

    1007-7294(2016)03-0265-12

    汪學(xué)鋒(1966-),男,上海交通大學(xué)教授;

    王 磊(1971-),男,上海交通大學(xué)副教授;

    孟 帥(1985-),男,上海交通大學(xué)博士。

    Received date:2015-07-24

    Foundation item:Supported by the National Key Basic Research Development Plan(973 Plan)Project of China(Grant No.2013CB036103);the National Natural Science Foundation of China(Grant No.51179103)

    Biography:XU Sheng-wen(1986-),male,Ph.D.student of Shanghai Jiao Tong University;

    WANG Xue-feng(1966-),male,professor/tutor,E-mail:wangxuef@sjtu.edu.cn.

    猜你喜歡
    上海交通大學(xué)螺旋槳動(dòng)力
    上海交通大學(xué)
    學(xué)習(xí)動(dòng)力不足如何自給自足
    基于CFD的螺旋槳拉力確定方法
    上海交通大學(xué)參加機(jī)器人比賽
    胖胖一家和瘦瘦一家(10)
    動(dòng)力船
    3800DWT加油船螺旋槳諧鳴分析及消除方法
    廣東造船(2015年6期)2015-02-27 10:52:46
    螺旋槳轂帽鰭節(jié)能性能的數(shù)值模擬
    基于多動(dòng)力總成的六點(diǎn)懸置匹配計(jì)算
    我的三大絕招
    男人爽女人下面视频在线观看| 少妇 在线观看| 嫩草影视91久久| 中文字幕人妻丝袜一区二区| 国产欧美日韩一区二区精品| 人人澡人人妻人| 亚洲专区国产一区二区| 国产主播在线观看一区二区| 99国产精品一区二区蜜桃av | 精品福利永久在线观看| 狂野欧美激情性xxxx| 天堂8中文在线网| 久久人人爽人人片av| 精品国产一区二区三区四区第35| 大陆偷拍与自拍| 99热国产这里只有精品6| 我的亚洲天堂| 韩国高清视频一区二区三区| 亚洲第一青青草原| 亚洲色图 男人天堂 中文字幕| 欧美精品一区二区免费开放| 精品欧美一区二区三区在线| 国产免费视频播放在线视频| 欧美精品啪啪一区二区三区 | 成人黄色视频免费在线看| 久久影院123| 97人妻天天添夜夜摸| av在线老鸭窝| 久久99一区二区三区| 99热网站在线观看| 99国产精品一区二区三区| 91成人精品电影| 午夜福利在线免费观看网站| 一本—道久久a久久精品蜜桃钙片| 午夜日韩欧美国产| 波多野结衣av一区二区av| 大陆偷拍与自拍| 亚洲伊人久久精品综合| 亚洲中文日韩欧美视频| 极品少妇高潮喷水抽搐| 男女免费视频国产| svipshipincom国产片| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看| 日韩人妻精品一区2区三区| 亚洲国产中文字幕在线视频| 日韩一区二区三区影片| 亚洲精品一二三| 丝袜人妻中文字幕| 免费在线观看日本一区| 国产深夜福利视频在线观看| 美女脱内裤让男人舔精品视频| 少妇人妻久久综合中文| 一本久久精品| 波多野结衣av一区二区av| 91av网站免费观看| svipshipincom国产片| 国产精品1区2区在线观看. | 蜜桃国产av成人99| 啦啦啦 在线观看视频| 欧美人与性动交α欧美精品济南到| 高潮久久久久久久久久久不卡| 亚洲精品在线美女| 久久久国产精品麻豆| 午夜老司机福利片| 在线十欧美十亚洲十日本专区| 国产一区有黄有色的免费视频| 中文字幕另类日韩欧美亚洲嫩草| www.精华液| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品亚洲av一区麻豆| 夜夜骑夜夜射夜夜干| 国产精品麻豆人妻色哟哟久久| 肉色欧美久久久久久久蜜桃| 国产高清videossex| 久久人人爽人人片av| 亚洲,欧美精品.| 国产精品偷伦视频观看了| 亚洲情色 制服丝袜| 丰满饥渴人妻一区二区三| 深夜精品福利| 菩萨蛮人人尽说江南好唐韦庄| 丰满少妇做爰视频| 欧美变态另类bdsm刘玥| 最新的欧美精品一区二区| 久久影院123| 久久天躁狠狠躁夜夜2o2o| 亚洲第一欧美日韩一区二区三区 | 一边摸一边做爽爽视频免费| 欧美午夜高清在线| 国产欧美日韩综合在线一区二区| 超碰成人久久| 久久精品熟女亚洲av麻豆精品| 欧美精品人与动牲交sv欧美| 精品国产乱子伦一区二区三区 | 老司机午夜福利在线观看视频 | a级毛片黄视频| 久久久久久久大尺度免费视频| 久久久久久久国产电影| 欧美另类一区| 十分钟在线观看高清视频www| 精品一区二区三区四区五区乱码| 制服诱惑二区| 黄片大片在线免费观看| 成人国语在线视频| 黄片播放在线免费| 成年人午夜在线观看视频| 男人舔女人的私密视频| 欧美午夜高清在线| 日韩欧美免费精品| 女警被强在线播放| 亚洲国产精品成人久久小说| 久久久水蜜桃国产精品网| 欧美人与性动交α欧美精品济南到| 欧美精品av麻豆av| 9色porny在线观看| 中文字幕av电影在线播放| 人人澡人人妻人| 99九九在线精品视频| 777久久人妻少妇嫩草av网站| 免费在线观看影片大全网站| 久久人妻熟女aⅴ| 国产激情久久老熟女| 午夜两性在线视频| 99re6热这里在线精品视频| 一进一出抽搐动态| av免费在线观看网站| 99精品欧美一区二区三区四区| 如日韩欧美国产精品一区二区三区| 国精品久久久久久国模美| 人人妻,人人澡人人爽秒播| 狠狠婷婷综合久久久久久88av| 美女扒开内裤让男人捅视频| 中文字幕制服av| 精品国产一区二区三区久久久樱花| 777米奇影视久久| 又紧又爽又黄一区二区| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 中文字幕制服av| 香蕉丝袜av| 夫妻午夜视频| 飞空精品影院首页| 欧美在线一区亚洲| 国产成人a∨麻豆精品| 亚洲欧美色中文字幕在线| 午夜福利在线观看吧| 高潮久久久久久久久久久不卡| 国产在线一区二区三区精| 在线看a的网站| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 亚洲一区二区三区欧美精品| 欧美日韩国产mv在线观看视频| 美女中出高潮动态图| 免费高清在线观看视频在线观看| 一本综合久久免费| 91精品三级在线观看| 性少妇av在线| 黄网站色视频无遮挡免费观看| 女人久久www免费人成看片| bbb黄色大片| 久久久久视频综合| 欧美另类亚洲清纯唯美| 欧美大码av| 9191精品国产免费久久| 精品乱码久久久久久99久播| 精品欧美一区二区三区在线| 18禁观看日本| 亚洲欧美一区二区三区黑人| 一级毛片精品| 亚洲精品久久成人aⅴ小说| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| 久热这里只有精品99| 中亚洲国语对白在线视频| 18禁黄网站禁片午夜丰满| 亚洲国产精品一区三区| 亚洲中文日韩欧美视频| 久久人人爽人人片av| 久久久国产欧美日韩av| 91国产中文字幕| 在线观看舔阴道视频| 精品人妻在线不人妻| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 精品国产一区二区三区久久久樱花| 午夜成年电影在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 电影成人av| 国产免费视频播放在线视频| 宅男免费午夜| 自拍欧美九色日韩亚洲蝌蚪91| 超碰97精品在线观看| 久久中文字幕一级| av在线播放精品| 啦啦啦免费观看视频1| 中文欧美无线码| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲| 日韩一卡2卡3卡4卡2021年| 日韩 亚洲 欧美在线| 亚洲精品国产精品久久久不卡| 91麻豆av在线| 亚洲 国产 在线| 美女大奶头黄色视频| 国产免费视频播放在线视频| 欧美黄色片欧美黄色片| 高清av免费在线| 丝袜在线中文字幕| 免费看十八禁软件| 五月天丁香电影| 日韩,欧美,国产一区二区三区| av网站在线播放免费| 女人被躁到高潮嗷嗷叫费观| 老鸭窝网址在线观看| 国产成人a∨麻豆精品| 久久久精品免费免费高清| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| 中文字幕精品免费在线观看视频| 丝袜喷水一区| 久久国产精品大桥未久av| 国产成人欧美在线观看 | 亚洲精品成人av观看孕妇| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 伊人亚洲综合成人网| 自拍欧美九色日韩亚洲蝌蚪91| 50天的宝宝边吃奶边哭怎么回事| 女性被躁到高潮视频| av欧美777| 丝袜人妻中文字幕| 国产片内射在线| 久久热在线av| 最新的欧美精品一区二区| 亚洲欧洲日产国产| 超碰97精品在线观看| 国产成人精品在线电影| 老司机午夜福利在线观看视频 | 精品久久久久久电影网| 免费在线观看视频国产中文字幕亚洲 | 日韩欧美一区二区三区在线观看 | 97人妻天天添夜夜摸| 十八禁网站网址无遮挡| 日韩一卡2卡3卡4卡2021年| 水蜜桃什么品种好| 亚洲国产日韩一区二区| 在线av久久热| 建设人人有责人人尽责人人享有的| 人人妻人人澡人人爽人人夜夜| 各种免费的搞黄视频| 岛国在线观看网站| 国产精品麻豆人妻色哟哟久久| 亚洲性夜色夜夜综合| 久久这里只有精品19| 精品卡一卡二卡四卡免费| 婷婷色av中文字幕| 人妻一区二区av| 免费在线观看黄色视频的| 99九九在线精品视频| 精品国产一区二区三区四区第35| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 中文字幕制服av| 欧美日韩中文字幕国产精品一区二区三区 | 日韩大码丰满熟妇| 欧美日韩成人在线一区二区| 日韩中文字幕视频在线看片| 日日爽夜夜爽网站| 另类精品久久| 日本黄色日本黄色录像| a在线观看视频网站| 黑人欧美特级aaaaaa片| 男女高潮啪啪啪动态图| 99久久99久久久精品蜜桃| 建设人人有责人人尽责人人享有的| 两个人免费观看高清视频| 中亚洲国语对白在线视频| 熟女少妇亚洲综合色aaa.| 真人做人爱边吃奶动态| www.自偷自拍.com| 欧美日本中文国产一区发布| tocl精华| 王馨瑶露胸无遮挡在线观看| 丝袜在线中文字幕| 亚洲av日韩精品久久久久久密| 性色av乱码一区二区三区2| 色综合欧美亚洲国产小说| 亚洲av电影在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 青春草视频在线免费观看| 亚洲一码二码三码区别大吗| 各种免费的搞黄视频| 国产视频一区二区在线看| 五月开心婷婷网| 亚洲国产av新网站| 在线观看舔阴道视频| 天堂俺去俺来也www色官网| 亚洲精品国产精品久久久不卡| 男人操女人黄网站| 国产精品一区二区在线不卡| av免费在线观看网站| 男女床上黄色一级片免费看| 精品一区二区三区四区五区乱码| 老司机影院成人| 宅男免费午夜| 午夜老司机福利片| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 国产熟女午夜一区二区三区| 精品少妇内射三级| 免费少妇av软件| 亚洲av日韩在线播放| av网站在线播放免费| 纵有疾风起免费观看全集完整版| 肉色欧美久久久久久久蜜桃| 欧美少妇被猛烈插入视频| 午夜激情av网站| 欧美午夜高清在线| 日韩有码中文字幕| 美国免费a级毛片| a级片在线免费高清观看视频| 日韩大片免费观看网站| 老汉色∧v一级毛片| 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 热99久久久久精品小说推荐| 首页视频小说图片口味搜索| 蜜桃国产av成人99| 天堂中文最新版在线下载| 亚洲伊人久久精品综合| 在线观看免费高清a一片| av视频免费观看在线观看| av片东京热男人的天堂| 久久国产精品影院| 欧美激情高清一区二区三区| 亚洲欧美日韩高清在线视频 | 夜夜骑夜夜射夜夜干| 国产免费av片在线观看野外av| 菩萨蛮人人尽说江南好唐韦庄| 日韩 亚洲 欧美在线| 成人亚洲精品一区在线观看| 欧美另类亚洲清纯唯美| 国产精品久久久久成人av| 三上悠亚av全集在线观看| 女性生殖器流出的白浆| 色播在线永久视频| 精品人妻1区二区| 男女边摸边吃奶| 国产成人a∨麻豆精品| 在线观看免费视频网站a站| 欧美亚洲 丝袜 人妻 在线| 亚洲av国产av综合av卡| 欧美精品一区二区大全| 精品欧美一区二区三区在线| 超碰97精品在线观看| 一二三四社区在线视频社区8| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费高清a一片| 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| av免费在线观看网站| 国产一区二区三区在线臀色熟女 | 免费在线观看视频国产中文字幕亚洲 | 国产av又大| 高清欧美精品videossex| 91成年电影在线观看| 91麻豆av在线| 十八禁高潮呻吟视频| 日韩有码中文字幕| 亚洲三区欧美一区| 美女大奶头黄色视频| 一本久久精品| 精品人妻熟女毛片av久久网站| 亚洲免费av在线视频| 丝袜脚勾引网站| 他把我摸到了高潮在线观看 | 中文欧美无线码| 一区二区三区四区激情视频| 国产日韩欧美亚洲二区| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看舔阴道视频| 亚洲精品国产av蜜桃| 欧美精品人与动牲交sv欧美| 美女福利国产在线| 他把我摸到了高潮在线观看 | a级毛片在线看网站| netflix在线观看网站| 亚洲第一青青草原| 大片电影免费在线观看免费| 好男人电影高清在线观看| 午夜福利在线观看吧| av国产精品久久久久影院| 十八禁高潮呻吟视频| 巨乳人妻的诱惑在线观看| 国产精品免费视频内射| 国产精品二区激情视频| av福利片在线| 欧美日韩av久久| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 色老头精品视频在线观看| 十八禁网站网址无遮挡| 伦理电影免费视频| 悠悠久久av| 美女脱内裤让男人舔精品视频| av又黄又爽大尺度在线免费看| 天堂俺去俺来也www色官网| 19禁男女啪啪无遮挡网站| 日本wwww免费看| 老司机深夜福利视频在线观看 | 这个男人来自地球电影免费观看| 丰满少妇做爰视频| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| 十八禁高潮呻吟视频| tocl精华| 侵犯人妻中文字幕一二三四区| 久久中文字幕一级| 中文字幕精品免费在线观看视频| 老鸭窝网址在线观看| 午夜两性在线视频| 在线观看免费午夜福利视频| 国产野战对白在线观看| 亚洲欧洲日产国产| 91精品三级在线观看| 91精品伊人久久大香线蕉| 叶爱在线成人免费视频播放| 日日夜夜操网爽| 深夜精品福利| 亚洲avbb在线观看| 国产在线一区二区三区精| 美女主播在线视频| 精品卡一卡二卡四卡免费| 男女高潮啪啪啪动态图| 777久久人妻少妇嫩草av网站| 免费观看人在逋| 一区二区三区四区激情视频| 免费少妇av软件| 久久久国产成人免费| 高清欧美精品videossex| 成年美女黄网站色视频大全免费| 免费一级毛片在线播放高清视频 | 99热全是精品| 男女免费视频国产| 中文字幕精品免费在线观看视频| 老司机影院成人| 日韩三级视频一区二区三区| 精品少妇久久久久久888优播| kizo精华| 国产一区二区 视频在线| av视频免费观看在线观看| 狂野欧美激情性xxxx| 久久精品国产a三级三级三级| 午夜老司机福利片| 91字幕亚洲| 国产欧美日韩综合在线一区二区| 午夜精品国产一区二区电影| tocl精华| 国产成人欧美| 免费看十八禁软件| 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 精品少妇内射三级| www.999成人在线观看| 国产男人的电影天堂91| 纯流量卡能插随身wifi吗| 亚洲精品久久久久久婷婷小说| www日本在线高清视频| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 国产av一区二区精品久久| 欧美日韩亚洲国产一区二区在线观看 | 国产成人系列免费观看| av福利片在线| 欧美 日韩 精品 国产| 亚洲色图 男人天堂 中文字幕| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 亚洲精品第二区| 亚洲精华国产精华精| 精品高清国产在线一区| 激情视频va一区二区三区| 亚洲精品自拍成人| 亚洲第一青青草原| 两人在一起打扑克的视频| 日韩欧美国产一区二区入口| 在线观看免费午夜福利视频| 少妇粗大呻吟视频| 99香蕉大伊视频| 麻豆乱淫一区二区| 伊人亚洲综合成人网| 精品少妇一区二区三区视频日本电影| 国产精品偷伦视频观看了| 国产成人欧美| 免费在线观看黄色视频的| 日韩欧美国产一区二区入口| 在线av久久热| 精品一品国产午夜福利视频| 亚洲国产中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9 | 亚洲人成77777在线视频| 日日夜夜操网爽| 深夜精品福利| 91老司机精品| 国产亚洲av片在线观看秒播厂| 少妇精品久久久久久久| 欧美精品一区二区免费开放| 久久久久久免费高清国产稀缺| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 亚洲黑人精品在线| 老熟妇乱子伦视频在线观看 | 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 黄色片一级片一级黄色片| 亚洲少妇的诱惑av| 午夜激情久久久久久久| 亚洲精品一二三| 久久青草综合色| 国产精品自产拍在线观看55亚洲 | 日本vs欧美在线观看视频| 国产亚洲av片在线观看秒播厂| 熟女少妇亚洲综合色aaa.| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 十八禁网站网址无遮挡| 亚洲av成人一区二区三| 中文字幕人妻丝袜制服| 中文字幕精品免费在线观看视频| 国产福利在线免费观看视频| 97人妻天天添夜夜摸| 汤姆久久久久久久影院中文字幕| 久久久久久免费高清国产稀缺| 国产av又大| 亚洲国产欧美日韩在线播放| 午夜影院在线不卡| 日本a在线网址| 欧美国产精品va在线观看不卡| 天天操日日干夜夜撸| 97精品久久久久久久久久精品| a在线观看视频网站| 欧美亚洲日本最大视频资源| 亚洲美女黄色视频免费看| 老熟妇仑乱视频hdxx| 精品一区二区三区四区五区乱码| 巨乳人妻的诱惑在线观看| 久久久精品94久久精品| 在线精品无人区一区二区三| 丁香六月欧美| 中文字幕人妻丝袜制服| 亚洲午夜精品一区,二区,三区| 亚洲一区二区三区欧美精品| 国产成人欧美| e午夜精品久久久久久久| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 日韩精品免费视频一区二区三区| 国产男女内射视频| 两个人免费观看高清视频| 久久综合国产亚洲精品| 国产在线免费精品| 一本大道久久a久久精品| av超薄肉色丝袜交足视频| 热re99久久精品国产66热6| 国产精品秋霞免费鲁丝片| 国产在线观看jvid| 国产成人啪精品午夜网站| 久久毛片免费看一区二区三区| 久久久久久久久免费视频了| videosex国产| 咕卡用的链子| 国产精品麻豆人妻色哟哟久久| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 男女下面插进去视频免费观看| 建设人人有责人人尽责人人享有的| 国产成人一区二区三区免费视频网站| 亚洲欧美色中文字幕在线| 搡老乐熟女国产| 日韩,欧美,国产一区二区三区| 久久精品国产综合久久久| 亚洲欧美一区二区三区黑人| 亚洲专区国产一区二区| 大香蕉久久成人网| 成年av动漫网址| 桃花免费在线播放| 午夜影院在线不卡| 国产亚洲午夜精品一区二区久久| 亚洲第一青青草原| 窝窝影院91人妻| 国产伦人伦偷精品视频| 丝袜脚勾引网站| 叶爱在线成人免费视频播放| 桃红色精品国产亚洲av| 曰老女人黄片| 丝袜人妻中文字幕| 成年av动漫网址| 爱豆传媒免费全集在线观看| 欧美黑人精品巨大| 久久热在线av| 人人妻人人澡人人爽人人夜夜| 水蜜桃什么品种好| 三级毛片av免费| av视频免费观看在线观看| 美女福利国产在线| 久久免费观看电影| 在线亚洲精品国产二区图片欧美| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻熟女毛片av久久网站| 国产精品熟女久久久久浪|