• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Inertia Relief in the Prediction of W elding Deformation for Large Complex Structures

    2016-05-15 13:24:15WANGYangLUOYuCHENZhenXUEJian
    船舶力學(xué) 2016年9期
    關(guān)鍵詞:王陽(yáng)上海交通大學(xué)慣性

    WANG Yang,LUO Yu,CHEN Zhen,XUE Jian

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.Jiangsu Newyangzi Shipbuilding Co.,Ltd,Wuxi 214532,China)

    Application of Inertia Relief in the Prediction of W elding Deformation for Large Complex Structures

    WANG Yang1,LUO Yu1,CHEN Zhen1,XUE Jian2

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.Jiangsu Newyangzi Shipbuilding Co.,Ltd,Wuxi 214532,China)

    Rigid-body motion boundary condition during computational welding mechanics,of which at least 6 degrees of freedom of welded structure will be fixed,is widely used to predict the welding distortion.However,because of the large scale and complexity of some structures,it is not advisable to consider the constraint for the unsupported welded structure during the computation.In this study, inertia relief method,the inertia force of the unconstrained structure is relieved to balance the external force,is proposed to investigate the welding deformation.Two methods are compared by predicting the welding deformation of a butt welded joint.Then,a hull block is taken as an example,simulations based on inherent deformation are conducted considering the inertia relief and rigid-body motion boundary conditions.By comparing the deformation of measured point,the computational results by using inertia relief are the most approximate to measurement results compared to other cases,and it is more convenient to set the boundary condition using the proposed method which provides an effective choice for the industrial application of welding structure deformation prediction.

    inertia relief;rigid-body motion;inherent deformation;boundary condition; large complex structures;welding deformation

    0 Introduction

    As a high productive and practical joining method,welding is widely used in constructing and manufacturing industries such as shipbuilding,automobiles,passenger trains,bridges and pressure vessels industries[1].And the assembly process in these field essentially involves the joining of large structures.In order to predict the welding-induced distortions on large structures practically,many researchers have devoted much efforts to this topic up to now.

    Generally,there are two main ways to predict the welding distortion of welded structures: thermal elastic-plastic finite element method and the elastic finite element method.The formerone can be effectively used to predict welding residual stress and distortion for small or medium welded structures,but this method is inapplicable to simulate the welding distortion for large welded structures for the considerable time consuming[2-5].The later one,using shell FE models with elements much larger than those required in thermal elastic plastic FE analysis can effectively predict the welding distortion of large structures[6-8].

    In all above works,researchers mainly concern the optimum of computational methods and FE models.During the state of cooling down,an unconstrained welded structure is assumed to be under balanced external forces,and it can move as a rigid body.Before the finite element analysis,a series of constraints are required to eliminate the rigid body motion due to the singular stiffness matrix of the model.In order to precisely predict welding deformation especially for large welded structures,the effect of constraint should be taken into account.As large structures sometimes are complex,it is not advisable to consider the constraint for the unsupported welded structure during the computation,even though,in general,at least 6 degrees of freedom of welded structure will be fixed.Therefore,in this study an effective method of constraining the finite model is proposed to predict distortion during welding for large structures.

    The technique of inertia relief,the inertia force of the unconstrained structure is relieved to balance the external force,has been a well-known approach for the analysis of unsupported systems including air vehicles in flight,automotives in motion,or satellites in space[9-11].In present method,inertia relief is introduced into the finite element analysis in order to replace the rigid-body motion boundary condition.In this study,in order to verify the practicality of inertia relief,rigid-body motion boundary condition and inertia relief are adopted to compare the welding deformation of a butt welded joint.Then,computation based on inherent deformation is conducted,and a hull block is investigated as an example.This method can be applied in elastic finite element analysis.

    1 Theory of inertia relief

    In the process of analyzing unconstrained structure by FEM,the stiffness matrix[K] is singular and therefore the flexibility matrix[G]=[K]-1does not exist.The motion as a rigid body will be eliminated and a new set of applied loads(relative forces)will be used to analyze the elastic behavior of the unconstrained system[12].

    1.1 Relative motion

    For a unconstrained moving dynamic system,the total displacement vector{x} may be expressed in a pure rigid motion displacement vector {xr}and a relative elastic displacement vector{xe},and considering{x}=[Φ]{η},thus:

    The undamped equation of motion of a dynamic system loaded with the dynamic force{F}is:

    With the introduction of Eq.(1)into Eq.(2)and knowing that[K][Φr]=[0],we obtain:

    1.2 Relative forces

    The uncoupled equations of motion of the dynamic system,exposed to the force vectorand expressed in the generalized coordinates{η}can be written as

    As shown in Fig.1,the relative elastic forcesare defined as

    with

    1.3 Flexibility matrix

    Fig.1 Constrained structure loaded with relative forces

    We want to calculate the elastic displacement{xe,A}of the constrained structure,due to the relative elastic force{Fe},with respect to point A.The displacementis

    The displacement and rotations of point A are zero

    The real relative elastic deformationis a summation of the relative elastic deformation and fractions of rigid body motion.Thus the relative elastic deformationis

    We will remove the fraction of rigid body motion and force the displacement vectorto be mass orthogonal with the rigid body modes[Φr],thus

    This means that the vector of generalized coordinatesis equal to

    The relative elastic deformationfinally becomes

    Fig.2 Calculation procedure of inertia relief

    The calculation procedure is shown in Fig.2.

    2 Com parison of two methods

    As a simple example,a butt welded joint is examined to predict welding deformation based on inherent strain theory using rigid-body motion and inertia relief.A serial computations employing ABAQUS based on inherent strain theory,in which the same magnitude of inherent deformations and different boundary conditions are used,is carried out to show the difference between two kinds of boundary conditions.

    2.1 Finite element model of butt welded joint

    A rectangular plate with a length of 2 000 mm,a width of 1 000 mm,and a thickness of 18.5 mm is selected as a test specimen.The welding deformation behavior of butt welded joint is computed using FE elastic analysis based on ABAQUS code.The finite model is shown in Fig.3.The size of element is 20 mm×40 mm.The number of nodes is 2 601,and that of elements is 2 500.The element type is S4R.According to the theory of inherent deformation[13],the distributions of inherent strain remain in a narrow area near the welding line as shown in Fig.3.

    In order to calculate the welding deformation caused by inherent strain,the thermal expansion coefficient of the element in inherent strain zone is set to be different from basic plate zone.Fig.4 shows the transverse section of the region where the equivalent inherent strain distributes. The width of the area where the equivalent inherent strain distributes is b.The strain components to be considered are in the transverse and the longitudinal directions.The component of the equivalent inherent strain in the transverse direction εy*forms the transverse shrinkage and the angular distortion.These components are assumed to distribute in two layers with the same thickness.The equivalent inherent strains distribute uniformly in each layer but the valuesandare different.According to the definition of the equivalent inherent strain,these are given by the following equations:

    Fig.3 Shell element model of butt welded joint

    Fig.4 Distribution of inherent strain

    In the computation using ABAQUS,these inherent strains are given as the thermal strain under the temperature change of ΔT i.e.,

    The values of thermal expansion coefficient used in this model is listed in Tab.1.Then, Elastic FE analysis is carried out by changing the thermal boundary conditions of the model.

    Tab.1 Expansion coefficient values in inherent strain zone

    2.2 Comparison between different computation results

    Firstly,the rigid-body motion,in which 6 degrees of freedom are fixed,is employed as boundary condition for a normal case.Fig.5(a)shows the computational deformation in Z direction of the joint.The undeformed shape is shown as black lines in Fig.5(a).Then,an elastic analysis using inertia relief and same magnitude of expansion coefficient values is carried out to predict welding deformation.Computational result is shown in Fig.5(b),where the good agreement of two contours between the computational results with different boundary condition shown in Fig.5(a)and(b)can be observed.For the quantitative comparison between two cases,the deflection along line 1 defined in Fig.3 between two cases are plotted in Fig.6.As wecan see from this figure,the distribution of deflection in two cases are the same.The deformed model using rigid-body motion can be changed into the one using inertia relief by translating coordinate axis(0.031 mm in positive direction of X coordinate,0.117 3 mm in positive direction of Y coordinate and 0.785 3 mm in positive direction of Z coordinate).

    Fig.5 Computational welding deformation by elastic analysis with different boundary conditions

    Fig.6 Deflection along line 1

    3 App lication

    Based on the result of predicting the welding deformation in the beam by using inertia relief,the reliability of using inertia relief to simulate the welding deformation of large structure is discussed in this chapter.In the first section,a series of computations of the welding deformation of typical hull structure employing Weld-Sta(developed by Structure Mechanics Research Institute of Shanghai jiaotong University and Joining and Welding Research Institute of Osaka University)based on elastic analysis,in which the same magnitude of inherent deformations and different boundary conditions(three kinds of rigid-body motion boundary condition(fixed in X plane,Y plane and Z plane,respectively)and inertia relief method)are used,is carried out.Then the in-plane(in X direction and Y direction)and out-of-plane(in Z direction)welding deformations of four cases are compared.Results show that the welding deformation in X direction is similar,while the one in Y direction and Z direction is different. By comparing the out-of-plane deformation of measured point,the computed results by using inertia relief are mostly approximate to measurement results compared to other cases.

    3.1 FEM model

    The hull block which is taken as an example is a part of the second cargo hold in 4 250 TEU container ship.The finite model of this hull block is meshed in the commercial software(Hypermesh)and imported into Weld-Sta as shown in Fig.7.The length,width and height of this block are 8 200 mm,27 622 mm and 4 600 mm,respectively.The computational model is made with 2D shell element including three nodes and four nodes,and the number of node and element are 6 082 and 5 254,respectively.The X direction,the Y direction and the Z direction are along the ship length,the ship width and the ship depth,respectively.Thename of each part and its thickness of the hull block are shown in Tab.2.

    Fig.7 FE model of a typical hull block

    Tab.2 Shell element attributes of the model

    3.2 Welding lines of FEM model

    In this model,all members are tack welded,and 168 fillet joints are added on the finite model as shown in Fig.8.The material is made of shipbuilding steels A32.Tab.3 gives the chemical composition and mechanical properties of A32.Welding method is CO2gas metal arc welding,and the filler metal is flux cored wire.By importing the welding parameters of each welded joint including the basic material,the welding method,the number of welding passes,the size of joint(the thickness of web and flange)and groove and welding conditions(current,voltage,velocity and efficiency),the inherent deformation(longitudinal inherent shrinkage,transverse inherent shrinkage and angular distortion)of each fillet joint can be calculated by inherent deformation database of Weld-sta.

    Fig.8 Weldlines of the typical ship block

    Tab.3 Chem ical com positions and mechanical properties of shipbuilding steel A32

    3.3 Results and discussion

    In order to compare the influence of different boundary conditions on the prediction of welding deformation in the large structure,three kinds of rigid-body motion boundary conditions are proposed in this study.Six nodes(A(0,12 186,4 574),B(8 049,13 829,4 574),C (8 049,-13 829,4 574),D(8 200,0,0),E(7 100,0,4 304),F(900,0,2 370))are selected as fixed points in the elastic FE analysis.The detailed boundary condition of each case is shown in Tab.4.In this study,inertia relief method is used in case 4,where no rigid-body motion is applied in this case.

    Tab.4 Rigid-body motion boundary conditions of different cases

    Fig.9 shows the welding deformation of case 1.As it can be seen from Fig.9(a),the shrinkage in Z direction of the structure is concentrated in the bottom plate due to three nodes(node A,node B and node C)of this part are constrained in the direction of ship depth.Fig.9(b)shows the top view of the deformed model after welding.One can see that the shrinkage in Y direction is concentrated in the one side of the structure.The reason is that the constraint in Y direction(node A and node B)is focus on the other side of the block.Also, the whole structure can deform freely in X direction because only one node (node A)is fixed in this direction.

    The welding deformation of case 2 is shown in Fig.10.Fig.10(a)shows the isometric view of the deformed model after welding.From this figure, it can been seen that the shrinkage in Z direction is concentrated in the bottom plate due to the constraint in the direction of ship depth of two nodes (node B and node C).Furthermore,because three nodes(node B,node C and node D)are constrained on the side near the stern in the direction of ship length,the shrinkage in X direction of the structure shown in Fig.10(b)is concentrated in the other side of the structure.Finally,the whole structure can deform freely in Y direction because only one node(node B)is fixedin this direction.

    Fig.9 Welding deformation of case 1

    Fig.10 Welding deformation of case 2

    Fig.11 shows the welding deformation of case 3.In this case,the shrinkage in Z direction is found in both platform deck and bottom plate due to the constraint of two nodes(node D and node F)in this direction as shown in Fig.11(a).Fig.11(b)shows the top view of the deformed model after welding.The shrinkage in Y direction of the structure can be found in both sides of the bottom plate because three nodes(node D,node E and node F)is constrained in the middle part of the block.The whole structure can deform freely in X direction because only one node(node D)is fixed in this direction.

    Fig.12 shows the welding deformation of case 4.As it can be seen from this figure,the whole structure shrinks towards the center of the mass. And this phenomenon is ordinary in production of hull block.Moreover,the constraining anti-forces of constraint nodes are large by using rigid-body motion boundary condition.Unreasonable rigid-body boundary condition in FE analysis will lead to false results. Therefore,it is important to design reasonable boundary condition for computation.

    Fig.13 compares the welding deformation in X direction among four cases.From this figure,one can observe that the welding deformations in X direction of four cases are similar in spite of the welding deformation of case 2 is slightly different from other cases in the one end and the middle part of block.

    Fig.11 Welding deformation of case 3

    Fig.12 Welding deformation of case 4

    Fig.14 shows the welding deformation in Y direction of the above four cases.It is clear that the difference among four cases is obvious near the position where X equals to 0 mm, while the difference becomes smaller when the value of X coordinate is larger than 2 000 mm. Furthermore,the welding deformation of case 1 is different compared to other cases in the po-sition where X approximately equals to 8 049 mm.This implies that the boundary condition of case 3 has a similar effect with that of case 4 in Y direction.And the constraint of node B in Y direction will cause different welding deformation in this direction compared to cases without constraining this node.Comparing the symmetry of the structure in X direction of that in Y direction,this block is more asymmetric in X direction.And different boundary condition may have great influence on the deformation of this structure.

    Fig.13 Welding deformation in X direction

    Fig.14 Welding deformation in Y direction

    Fig.15 Welding deformation in Z direction along line 1

    Fig.16 Welding deformation in Z direction along line 2

    Fig.17 Welding deformation in Z direction along line 3

    Figs.15 and 16 show the welding deformation in Z direction along line 1 and line 2,respectively.From these two figures,it can be seen that the welding deformation in Z direction of case 4 is the largest,and that of case 2 and case 3 is similar.In this figure,the measured results along line 1 are also plotted.It is clear that the welding deformation along line 1 predicted by case 4 is the closest to the experimental value among four cases.Fig.17 shows the welding deformation in Z direction along line 3.The simulated results of fourcases are similar in the middle part of the block within the range-4 420 mm

    4 Conclusions

    A practical computational approach applying boundary condition(inertia relief method)to predict welding deformation was proposed.The following conclusions can be drawn:

    (1)It is more convenient to apply boundary condition for predicting welding deformation of large structure by using inertia relief method than body-rigid motion method;

    (2)There is no difference between the deformed model calculated by two methods based on inherent strain theory for simple structures;

    (3)Complicated rigid-body motion boundary conditions are required in predicting the welding deformation of large complicated structures.The good agreement between computed results using inertia relief and measured ones shows that the computation using inertia relief can obtain reliable results in predicting the welding deformation of large complicated structure.

    Acknow ledgements

    This research is technically supported by Jiangsu Newyangzi Co.,Ltd and is financially supported by Science and Technology Department of Jiangsu Province(Grant No.BE2010172).

    [1]Satoh K,Ueda Y,and Fujimoto J.Welding distortion and residual stresses[M].Sampo Publications,Tokyo,1979.

    [2]Wang J,Ueda Y,Murakawa H,et al.Improvement in numerical accuracy and stability of 3-D FEM analysis in welding [J].Welding Journal,1996,75(4):129-134.

    [3]Deng D,Luo Y,Serizawa H,et al.Numerical simulation of residual stress and deformation considering phase transformation effect[J].Trans.JWRI,2003,23:325-333.

    [4]Deng D,Murakawa H.Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J].Computational Material Science,2006,37:269-277.

    [5]Teng T L,Fung C P,et al.Analysis of residual stresses and distortions in T-Joint fillet welds[J].Pressure Vessel and Piping,2001,78(8):523-538.

    [6]Brown S B,Song H.Implications of three-dimensional numerical simulations of welding of large structures[J].Welding Journal,1992,71(2):55-62.

    [7]Wang J H,Luo H.Prediction of welding deformation by FEM based on inherent strains[J].Journal of Shanghai Jiaotong University(English Editorial Board),2000,5(2):83-87.

    [8]Luo Y,Deng D,Xie L,Murakawa H.Prediction of deformation for large welded structures based on inherent strain[J]. Transactions of JWRI,2004,33:65-70.

    [9]Bisplinghoff R L,Ashley H,Halfman R L.Aeroelasticity[M].Addison-Wesley Publishing Company,Inc.Boston,1955.

    [10]Nelson M F,Wolf J A.Use of inertia relief to estimate impact loads[C].Proceedings of International Conference on Vehicle.Structural Mechanics,1977:149-155.

    [11]Harry G S.MSC/NASTRAN Primer static and normal modes analysis[M].Shaeffer Analysis,Inc,1979.

    [12]Wijker J J.Mechanical vibrations in spacecraft design[M].Springer,2004:303-312.

    [13]Luo Y,Ishiyama M,Murakawa H.Welding deformation of plates with longitudinal curvature[J].JWRI Transaction,1999, 28:57-65.

    慣性釋放法在大型復(fù)雜結(jié)構(gòu)焊接變形預(yù)測(cè)中的應(yīng)用

    王陽(yáng)1,羅宇1,陳震1,薛健2

    (1.上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200240;2.江蘇新?lián)P子造船有限公司,江蘇無(wú)錫214532)

    在進(jìn)行大型結(jié)構(gòu)焊接變形有限元分析時(shí),為了固定整體結(jié)構(gòu)剛體位移必須施加不少于6個(gè)自由度的約束,但對(duì)于自由狀態(tài)下的結(jié)構(gòu)而言,如何施加這6個(gè)最少約束是非常的困難,長(zhǎng)期以來(lái)是困擾研究人員的難題,也是焊接結(jié)構(gòu)有限元分析在工業(yè)現(xiàn)場(chǎng)應(yīng)用的一個(gè)瓶頸。所謂慣性釋放法就是可以在不加約束的情況下模擬自由結(jié)構(gòu)的變形。該文將在航海航空領(lǐng)域得到廣泛應(yīng)用的慣性釋放法引入大型焊接結(jié)構(gòu)變形分析,解決了自由狀態(tài)下結(jié)構(gòu)必須施加約束的問(wèn)題。首先以典型的對(duì)接接頭為例,比較了兩種不同的約束方法之間的差別。然后通過(guò)一個(gè)典型的船體焊接變形預(yù)測(cè)的實(shí)例,驗(yàn)證了慣性釋放法在大型結(jié)構(gòu)中應(yīng)用的可行性,為焊接結(jié)構(gòu)變形分析在工業(yè)生產(chǎn)中廣泛應(yīng)用提供了一個(gè)有效的方法。

    慣性釋放;剛體位移;固有變形;邊界條件;大型復(fù)雜結(jié)構(gòu);焊接變形

    TG404

    A

    王陽(yáng)(1986-),男,上海交通大學(xué)博士研究生,通訊作者;羅宇(1971-),男,博士,上海交通大學(xué)教授;陳震(1976-),男,博士,上海交通大學(xué)副教授;薛?。?967-),男,高級(jí)工程師。

    TG404

    A

    10.3969/j.issn.1007-7294.2016.09.006

    1007-7294(2016)09-1147-13

    Received date:2016-05-22

    Foundation item:Supported by Science and Technology Department of Jiangsu Province(Grant No.E2010172)

    Biography:WANG Yang(1986-),male,Ph.D.student of Shanghai Jiao Tong University,E-mail:maible@sjtu.edu.cn; LUO Yu(1961-),male,Ph.D.,professor; CHEN Zhen(1976-),male,Ph.D.,associate professor of Shanghai Jiao Tong University; XUE Jian(1967-),male,senior engineer.

    猜你喜歡
    王陽(yáng)上海交通大學(xué)慣性
    你真的了解慣性嗎
    上海交通大學(xué)
    “音”差陽(yáng)錯(cuò)
    華聲(2022年6期)2022-05-30 10:48:04
    沖破『慣性』 看慣性
    Digital synthesis of programmable photonic integrated circuits
    女哥們概述
    山花(2020年11期)2020-11-30 09:14:44
    音差陽(yáng)錯(cuò)
    上海交通大學(xué)參加機(jī)器人比賽
    無(wú)處不在的慣性
    普遍存在的慣性
    丰满乱子伦码专区| 国产伦一二天堂av在线观看| 欧美最新免费一区二区三区| 村上凉子中文字幕在线| 我要看日韩黄色一级片| 亚洲国产色片| 啦啦啦观看免费观看视频高清| 亚洲,欧美,日韩| 亚洲精品乱码久久久久久按摩| 国产精品国产三级国产av玫瑰| 亚洲国产精品成人综合色| a级毛色黄片| 久久精品熟女亚洲av麻豆精品 | 国产午夜精品论理片| 纵有疾风起免费观看全集完整版 | 精品久久国产蜜桃| 午夜免费激情av| 成年av动漫网址| 亚洲国产日韩欧美精品在线观看| 欧美日本亚洲视频在线播放| 午夜亚洲福利在线播放| 99热这里只有是精品在线观看| 国产精品野战在线观看| 亚洲精品自拍成人| 中国国产av一级| 乱系列少妇在线播放| 99热这里只有是精品50| 人妻夜夜爽99麻豆av| 国产私拍福利视频在线观看| 毛片女人毛片| av在线老鸭窝| av福利片在线观看| 国产精品,欧美在线| 亚洲高清免费不卡视频| 国产精品久久电影中文字幕| 色网站视频免费| 亚洲美女视频黄频| 日韩高清综合在线| 黄色欧美视频在线观看| 日本免费一区二区三区高清不卡| 色哟哟·www| 亚洲欧美日韩高清专用| 久久这里有精品视频免费| 精品一区二区三区人妻视频| 97在线视频观看| 美女cb高潮喷水在线观看| 久久久久久久久久久丰满| 国产黄片美女视频| 亚洲欧美成人综合另类久久久 | 日本-黄色视频高清免费观看| 久久久久久伊人网av| av卡一久久| 成年av动漫网址| 三级经典国产精品| 亚洲伊人久久精品综合 | 国产伦一二天堂av在线观看| 久久精品久久久久久噜噜老黄 | 免费观看在线日韩| 国产高清视频在线观看网站| 日韩 亚洲 欧美在线| 一级毛片aaaaaa免费看小| 久久精品91蜜桃| 亚洲av.av天堂| 一边摸一边抽搐一进一小说| 黄色欧美视频在线观看| 国产av在哪里看| 国产高清国产精品国产三级 | 国产不卡一卡二| 日本爱情动作片www.在线观看| 麻豆av噜噜一区二区三区| 成年av动漫网址| 国产毛片a区久久久久| 午夜a级毛片| 一二三四中文在线观看免费高清| 嘟嘟电影网在线观看| 亚洲,欧美,日韩| 亚洲成人中文字幕在线播放| 亚洲综合精品二区| 久久久欧美国产精品| 亚洲av中文av极速乱| 九九热线精品视视频播放| 热99re8久久精品国产| 国产又色又爽无遮挡免| 日本五十路高清| 国产一区二区亚洲精品在线观看| 国产麻豆成人av免费视频| 国产在线男女| 精华霜和精华液先用哪个| 成人午夜高清在线视频| 观看免费一级毛片| 亚洲欧美精品自产自拍| 97在线视频观看| 麻豆精品久久久久久蜜桃| 尾随美女入室| 日本wwww免费看| 丰满少妇做爰视频| 国产精品野战在线观看| 久久99精品国语久久久| 天天躁日日操中文字幕| 午夜精品一区二区三区免费看| 1000部很黄的大片| 超碰av人人做人人爽久久| 婷婷色av中文字幕| 色综合色国产| 亚洲国产欧洲综合997久久,| 亚洲欧美一区二区三区国产| 国内精品一区二区在线观看| 日韩制服骚丝袜av| 大香蕉97超碰在线| 亚洲国产日韩欧美精品在线观看| 黄片wwwwww| 狠狠狠狠99中文字幕| 免费黄网站久久成人精品| 在线观看66精品国产| 在线免费观看的www视频| 亚洲va在线va天堂va国产| 亚洲精品456在线播放app| 又爽又黄a免费视频| 小蜜桃在线观看免费完整版高清| 国产熟女欧美一区二区| 欧美又色又爽又黄视频| 亚洲欧洲国产日韩| 国产精品女同一区二区软件| 成人性生交大片免费视频hd| 精品人妻一区二区三区麻豆| 永久网站在线| 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 亚洲国产高清在线一区二区三| 国产成人精品婷婷| 嘟嘟电影网在线观看| 国产黄片美女视频| 91久久精品国产一区二区三区| 久久精品国产99精品国产亚洲性色| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲怡红院男人天堂| 午夜免费激情av| 亚洲丝袜综合中文字幕| 免费观看a级毛片全部| 亚洲五月天丁香| av在线老鸭窝| 少妇人妻一区二区三区视频| 毛片一级片免费看久久久久| 国产激情偷乱视频一区二区| 久久精品久久久久久噜噜老黄 | 久久99精品国语久久久| 一本久久精品| 秋霞伦理黄片| 在线观看一区二区三区| 亚洲国产精品成人久久小说| 黄色一级大片看看| 一边亲一边摸免费视频| 老司机福利观看| 最近中文字幕2019免费版| 国产成人精品婷婷| 极品教师在线视频| 人妻夜夜爽99麻豆av| 国产精品精品国产色婷婷| 亚洲av电影不卡..在线观看| 欧美一区二区精品小视频在线| 听说在线观看完整版免费高清| 欧美成人免费av一区二区三区| 亚洲成人av在线免费| 亚洲av成人av| 国产91av在线免费观看| 欧美精品一区二区大全| 欧美zozozo另类| 又黄又爽又刺激的免费视频.| 中文字幕av成人在线电影| 免费观看性生交大片5| 日韩欧美国产在线观看| 欧美日韩在线观看h| 久久午夜福利片| 国产探花在线观看一区二区| 久久这里只有精品中国| 水蜜桃什么品种好| 精品酒店卫生间| 亚洲av成人av| 午夜福利成人在线免费观看| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 精品国内亚洲2022精品成人| 婷婷色综合大香蕉| 能在线免费观看的黄片| 国产精品1区2区在线观看.| 国产亚洲91精品色在线| 99热这里只有精品一区| 国产爱豆传媒在线观看| 日日干狠狠操夜夜爽| 国产免费又黄又爽又色| 国产精品av视频在线免费观看| 国内精品宾馆在线| 欧美激情久久久久久爽电影| 国产av不卡久久| 男人狂女人下面高潮的视频| 男的添女的下面高潮视频| 观看美女的网站| 最近最新中文字幕大全电影3| 男女啪啪激烈高潮av片| 性色avwww在线观看| 欧美变态另类bdsm刘玥| 99久久中文字幕三级久久日本| 热99re8久久精品国产| 国产白丝娇喘喷水9色精品| 亚洲精品色激情综合| 免费看av在线观看网站| 天天躁夜夜躁狠狠久久av| 亚洲av熟女| 夜夜爽夜夜爽视频| 草草在线视频免费看| 国产精品美女特级片免费视频播放器| 小说图片视频综合网站| 久久精品久久精品一区二区三区| 国产色婷婷99| 少妇被粗大猛烈的视频| 久久精品国产亚洲网站| 全区人妻精品视频| 成人漫画全彩无遮挡| 精品人妻一区二区三区麻豆| 黄片wwwwww| 能在线免费观看的黄片| 亚洲电影在线观看av| 国产精品精品国产色婷婷| 亚洲图色成人| 欧美日本亚洲视频在线播放| 国产成人aa在线观看| .国产精品久久| 我要看日韩黄色一级片| 啦啦啦韩国在线观看视频| 最新中文字幕久久久久| 韩国高清视频一区二区三区| 国产免费福利视频在线观看| 欧美成人一区二区免费高清观看| 内射极品少妇av片p| 国产成年人精品一区二区| 国产69精品久久久久777片| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 99久久人妻综合| 亚洲中文字幕日韩| 国产 一区精品| 综合色丁香网| 99热全是精品| 不卡视频在线观看欧美| 国产一区二区三区av在线| 最近中文字幕高清免费大全6| 婷婷色av中文字幕| 欧美激情久久久久久爽电影| 少妇人妻一区二区三区视频| 青春草亚洲视频在线观看| 国产真实乱freesex| 成人欧美大片| 男人舔奶头视频| 舔av片在线| 国产一级毛片在线| 欧美不卡视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久亚洲中文字幕| 国产一级毛片七仙女欲春2| 国产av不卡久久| 久久人人爽人人片av| 亚洲无线观看免费| 国产 一区精品| 最后的刺客免费高清国语| 青春草视频在线免费观看| 日韩人妻高清精品专区| 久久久久久久午夜电影| 三级国产精品片| 欧美日韩国产亚洲二区| 日韩精品青青久久久久久| av在线天堂中文字幕| 啦啦啦啦在线视频资源| 三级经典国产精品| 国产成年人精品一区二区| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 菩萨蛮人人尽说江南好唐韦庄 | 18+在线观看网站| av免费观看日本| 亚洲婷婷狠狠爱综合网| 欧美97在线视频| 自拍偷自拍亚洲精品老妇| 色播亚洲综合网| 看片在线看免费视频| www.色视频.com| 人妻系列 视频| 精品国产一区二区三区久久久樱花 | 国产不卡一卡二| 亚洲四区av| 91精品一卡2卡3卡4卡| 国产成人精品婷婷| 亚洲人成网站高清观看| 久久久久精品久久久久真实原创| 女人被狂操c到高潮| 国产乱人视频| 国产真实乱freesex| 全区人妻精品视频| 最近手机中文字幕大全| 亚洲成人av在线免费| 成人午夜高清在线视频| 久久久久国产网址| 国产黄片视频在线免费观看| 欧美高清成人免费视频www| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日摸夜夜添夜夜爱| 在线播放无遮挡| АⅤ资源中文在线天堂| 精品久久久噜噜| 菩萨蛮人人尽说江南好唐韦庄 | 久久欧美精品欧美久久欧美| 中文乱码字字幕精品一区二区三区 | 国产成人精品久久久久久| 国模一区二区三区四区视频| 夫妻性生交免费视频一级片| 国产精品久久久久久av不卡| 少妇高潮的动态图| 亚洲,欧美,日韩| 菩萨蛮人人尽说江南好唐韦庄 | 国产三级在线视频| 免费在线观看成人毛片| 日韩人妻高清精品专区| 最近2019中文字幕mv第一页| 国产精品综合久久久久久久免费| 中文乱码字字幕精品一区二区三区 | 日韩一本色道免费dvd| 久久国内精品自在自线图片| 夜夜看夜夜爽夜夜摸| 性插视频无遮挡在线免费观看| 国内精品一区二区在线观看| 丝袜美腿在线中文| 高清视频免费观看一区二区 | 三级国产精品片| 日韩av在线免费看完整版不卡| 精品欧美国产一区二区三| 精品国产一区二区三区久久久樱花 | av线在线观看网站| 国产伦精品一区二区三区视频9| 18禁动态无遮挡网站| 亚洲欧美精品专区久久| 国产亚洲一区二区精品| av播播在线观看一区| 麻豆乱淫一区二区| 亚洲精品自拍成人| 99热这里只有是精品在线观看| 婷婷色麻豆天堂久久 | eeuss影院久久| 国产单亲对白刺激| 日本色播在线视频| 国产一级毛片在线| 免费播放大片免费观看视频在线观看 | 特级一级黄色大片| 国产黄色小视频在线观看| 国产精品不卡视频一区二区| 乱人视频在线观看| 久久精品国产亚洲av涩爱| 国产精品精品国产色婷婷| 国产精品不卡视频一区二区| 免费观看人在逋| 中文资源天堂在线| 超碰av人人做人人爽久久| 伦精品一区二区三区| 国产精品女同一区二区软件| 日韩,欧美,国产一区二区三区 | 中文亚洲av片在线观看爽| 亚洲av.av天堂| 高清在线视频一区二区三区 | 特大巨黑吊av在线直播| 国产不卡一卡二| 中文字幕亚洲精品专区| 午夜a级毛片| 蜜桃久久精品国产亚洲av| 少妇丰满av| 亚洲av不卡在线观看| 精华霜和精华液先用哪个| 晚上一个人看的免费电影| 国产 一区精品| 99久国产av精品| 亚洲精品日韩av片在线观看| 中文字幕亚洲精品专区| www.色视频.com| 亚洲天堂国产精品一区在线| 亚洲18禁久久av| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 青春草视频在线免费观看| 国产黄a三级三级三级人| 天堂av国产一区二区熟女人妻| 精品久久国产蜜桃| 久久亚洲国产成人精品v| 舔av片在线| 高清视频免费观看一区二区 | 99热这里只有精品一区| 亚洲综合色惰| 国产探花在线观看一区二区| 噜噜噜噜噜久久久久久91| 97超碰精品成人国产| 最近视频中文字幕2019在线8| 日韩在线高清观看一区二区三区| 国产高清国产精品国产三级 | 午夜免费激情av| 亚洲欧美精品自产自拍| 三级毛片av免费| 久久欧美精品欧美久久欧美| 免费看日本二区| 3wmmmm亚洲av在线观看| 日韩欧美国产在线观看| 一边亲一边摸免费视频| 日韩成人伦理影院| 亚洲aⅴ乱码一区二区在线播放| 国产精品1区2区在线观看.| 18禁裸乳无遮挡免费网站照片| 亚洲中文字幕日韩| 国产精品美女特级片免费视频播放器| 自拍偷自拍亚洲精品老妇| 国产一级毛片在线| 国产成人91sexporn| 乱码一卡2卡4卡精品| 亚州av有码| 美女被艹到高潮喷水动态| 久久久久久久午夜电影| 搞女人的毛片| 欧美成人a在线观看| 精品不卡国产一区二区三区| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| 日本黄色片子视频| 搡女人真爽免费视频火全软件| 亚洲国产精品国产精品| 日韩三级伦理在线观看| 秋霞伦理黄片| 日本av手机在线免费观看| 欧美激情久久久久久爽电影| 日本一二三区视频观看| 日韩av在线免费看完整版不卡| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 老师上课跳d突然被开到最大视频| 黑人高潮一二区| 久久精品熟女亚洲av麻豆精品 | 色播亚洲综合网| 久久久久国产网址| 男女国产视频网站| 成人一区二区视频在线观看| av又黄又爽大尺度在线免费看 | 婷婷色综合大香蕉| 国产综合懂色| 淫秽高清视频在线观看| 国产毛片a区久久久久| 午夜老司机福利剧场| 国产精品日韩av在线免费观看| 欧美一级a爱片免费观看看| a级毛片免费高清观看在线播放| 国产伦一二天堂av在线观看| 亚洲婷婷狠狠爱综合网| 国内精品美女久久久久久| 精品无人区乱码1区二区| av免费观看日本| 亚洲国产精品国产精品| 国产av不卡久久| 中国美白少妇内射xxxbb| 日日干狠狠操夜夜爽| 精品国产露脸久久av麻豆 | 国产精品国产三级国产专区5o | 成人综合一区亚洲| 激情 狠狠 欧美| 国产精品一区二区三区四区免费观看| 午夜免费激情av| 中文字幕av成人在线电影| 又爽又黄无遮挡网站| 热99在线观看视频| 中文字幕久久专区| 久久久精品欧美日韩精品| 99久久九九国产精品国产免费| 午夜福利视频1000在线观看| 蜜臀久久99精品久久宅男| 亚洲国产成人一精品久久久| 精品午夜福利在线看| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区成人| 高清午夜精品一区二区三区| 一级黄片播放器| 精品久久久久久久久亚洲| av在线老鸭窝| 亚洲av电影在线观看一区二区三区 | 晚上一个人看的免费电影| 日韩大片免费观看网站 | 亚洲精品色激情综合| 免费av观看视频| 久久6这里有精品| 你懂的网址亚洲精品在线观看 | 五月伊人婷婷丁香| 乱码一卡2卡4卡精品| 久久久久久大精品| 欧美不卡视频在线免费观看| 精品欧美国产一区二区三| 久久99蜜桃精品久久| 高清在线视频一区二区三区 | 久久精品国产鲁丝片午夜精品| 狂野欧美白嫩少妇大欣赏| 91午夜精品亚洲一区二区三区| 男人狂女人下面高潮的视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 卡戴珊不雅视频在线播放| 国产毛片a区久久久久| 能在线免费看毛片的网站| 久久精品91蜜桃| 久久人人爽人人片av| 久久亚洲精品不卡| 日韩视频在线欧美| 精品免费久久久久久久清纯| 午夜福利在线观看免费完整高清在| 三级毛片av免费| 亚洲欧洲国产日韩| 国产色婷婷99| 日本猛色少妇xxxxx猛交久久| 免费一级毛片在线播放高清视频| 黄片wwwwww| 久久久成人免费电影| 精品久久久久久成人av| 久久99精品国语久久久| 三级毛片av免费| av在线观看视频网站免费| 久久99热6这里只有精品| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 51国产日韩欧美| 国产乱人视频| 国产精品国产三级国产专区5o | 久久99热这里只频精品6学生 | 欧美精品一区二区大全| 亚洲国产精品成人久久小说| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器| 网址你懂的国产日韩在线| 亚洲精品,欧美精品| 亚洲一区高清亚洲精品| 国产午夜精品久久久久久一区二区三区| 国语对白做爰xxxⅹ性视频网站| kizo精华| 国产高清国产精品国产三级 | 亚洲电影在线观看av| 99久久精品热视频| 国产在线一区二区三区精 | 午夜福利视频1000在线观看| 永久网站在线| 在线免费十八禁| 又粗又爽又猛毛片免费看| 51国产日韩欧美| 国产av在哪里看| 建设人人有责人人尽责人人享有的 | 亚洲av不卡在线观看| 热99在线观看视频| 精品人妻一区二区三区麻豆| 免费不卡的大黄色大毛片视频在线观看 | 免费观看的影片在线观看| 国产熟女欧美一区二区| 久久国内精品自在自线图片| 边亲边吃奶的免费视频| 国产精品美女特级片免费视频播放器| 男女啪啪激烈高潮av片| 久99久视频精品免费| 亚洲精品亚洲一区二区| 中文字幕精品亚洲无线码一区| 国产精品国产三级专区第一集| 午夜激情福利司机影院| 人人妻人人澡欧美一区二区| 麻豆av噜噜一区二区三区| 久久99精品国语久久久| 99热全是精品| 亚洲自拍偷在线| 亚洲国产成人一精品久久久| 日本午夜av视频| 午夜精品国产一区二区电影 | 日本一二三区视频观看| 日韩欧美 国产精品| 久久久久性生活片| 日韩欧美精品v在线| 晚上一个人看的免费电影| 久久精品夜夜夜夜夜久久蜜豆| 99久久人妻综合| 久久久久久久久久黄片| 日韩欧美在线乱码| 综合色丁香网| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 边亲边吃奶的免费视频| 午夜激情欧美在线| 91aial.com中文字幕在线观看| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久 | 亚洲av.av天堂| 最近最新中文字幕大全电影3| 久久人人爽人人爽人人片va| 麻豆一二三区av精品| 噜噜噜噜噜久久久久久91| 不卡视频在线观看欧美| 性插视频无遮挡在线免费观看| 国产熟女欧美一区二区| 亚洲成人久久爱视频| 91aial.com中文字幕在线观看| 高清毛片免费看| 中文精品一卡2卡3卡4更新| 亚洲精华国产精华液的使用体验| 狠狠狠狠99中文字幕| 精品国产一区二区三区久久久樱花 | 亚洲精品国产av成人精品| 国产精品一区二区性色av| 午夜激情欧美在线| 免费观看a级毛片全部| 亚洲不卡免费看| 97超视频在线观看视频| 久久这里有精品视频免费| 在线观看美女被高潮喷水网站|