• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Strength Evaluating M ethod of the Azimuth Thruster Propeller Blade

    2016-05-15 13:24:17ZHUQuanhuaWEIPengyuYUEYalinHUFanglinLIUDengcheng
    船舶力學(xué) 2016年9期
    關(guān)鍵詞:推進(jìn)器槳葉螺旋槳

    ZHU Quan-hua,WEI Peng-yu,YUE Ya-lin,HU Fang-lin,LIU Deng-cheng

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Structural Strength Evaluating M ethod of the Azimuth Thruster Propeller Blade

    ZHU Quan-hua,WEI Peng-yu,YUE Ya-lin,HU Fang-lin,LIU Deng-cheng

    (China Ship Scientific Research Center,Wuxi 214082,China)

    In order to achieve a precise structural strength evaluation for the azimuth thruster propeller blade,a detailed study is conducted by Computational Fluid Dynamics(CFD)and Finite Element Method(FEM).To solve the problem of unidirectional fluid-structure coupling of the propeller, the method of transferring distributed pressure from fluid field to structure field on the blade surface is mainly discussed.Then a transmission method for fluid pressure on the fluid-structure interface is proposed,and suitable principles of selecting weighting coefficients and element size which impact numerical calculation accuracy are presented.On this basis,strength numerical calculation and safety evaluation of a 5 000 kW azimuth thruster propeller are carried out,and the stress and deformation distribution laws of the propeller are obtained.Finally,the structural strength evaluating method of the azimuth thruster propeller blade is established,which can provide a technical guidance for the design of high-powered azimuth thruster propellers.

    azimuth thruster;propeller blade;hydrodynamic forces;pressure transmission; structural strength evaluation

    0 Introduction

    The azimuth thruster is the core equipment of Dynamic Positioning System for an offshore platform.It can be rotated to any horizontal angle to obtain thrust for the normal operation of the offshore platform.During the long-term service process in marine environment,the azimuth thruster’s propeller mainly withstands the centrifugal force and the complicated hydrodynamic forces.As the substantial increase of engine power,the structural strength of the propeller becomes so prominent that not only the minimum thickness of propeller blades needs to be checked,but also the stress regularity is to be anatomized.Compared to the mature structural strength calculating method,the key to establishing the mechanical model of the propeller is the simulation of external loads,among which the problem of unidirectional fluidstructure coupling is most important.In this paper,the simulation of external loads is achievedby first determining the distribution of fluid pressure on the fluid-structure interface,then exerting the fluid pressure on the propeller surface by a transmission method,and finally exerting the centrifugal force.The key of this process is how to transmit the pressure obtained from the hydrodynamic calculation to the finite element model.

    In this paper,a structural strength calculating method of azimuth thruster propeller is developed based on the CFD method and the finite element method,the calculating process is shown in Fig.1.The pressure transmission is implemented by interpolation based on the principle of spatial proximity.In addition, the impact of weighting coefficients of interpolation and finite element size on the numerical calculation accuracy is deeply studied,and some suitable principles of weighting coefficients and element size are presented.On this basis,the strength evaluation of a 5 000 kW azimuth thruster’s propeller is carried out,from which the stress distribution and the safety factor of the blade are obtained.

    Fig.1 Process of strength calculation

    1 Hydrodynam ic calculation of the azimuth thruster

    1.1 Numerical simulation method

    In this work,strength calculation of the azimuth thruster is divided into two parts:one is the hydrodynamic calculation;the other is the structural finite element analysis.

    The numerical calculating method for hydrodynamic forces is to solve the RANS equation of the three-dimensional incompressible viscous fluid,and the differential equations are discretized by the cell-centered finite volume method.The pressure-velocity coupling is obtained by using the SIMPLE algorithm and pressure interpolating is achieved by using the standard format.In the process of calculation,the momentum,turbulent kinetic energy and turbulent dissipation rate are discretized by the second-order upwind scheme.

    The geometric model of the azimuth thruster for hydrodynamic calculation is shown in Fig.2,which includes a propeller,a duct,a pod and a pillar.The propeller is a right-hand one with four blades,and its diameter is 3.85 m.

    As is shown in Fig.3,the computational domain in Fluent is a circular cylinder with a radius of 6D,where D is the diameter of the propeller.The inlet boundary is located at 10D upstream of the propeller disk plane,and the outlet boundary is located at 10D downstream of the propeller disk plane.

    Fig.3 Diagram of the computational domain

    The inlet boundary and cylindrical surface of the computational domain are defined as the velocity inlet,and are given the inflow velocity and direction.The outlet boundary of the computational domain is defined as the pressure outlet,and is given the static pressure.The surface of the thruster is defined as the no-slip body surface[1].

    The fluid domain is divided by hybrid grids that the unstructured tetrahedral grid is used in the rotating region of the propeller while the structured hexahedral grid in the other regions. The surface of blades is divided by triangular grids,and the element size is about 20 mm.

    1.2 Open water performance prediction

    Here the hydrodynamic performance of the azimuth thruster is expressed by the thrust coefficient and the torque coefficient,which are defined by

    where TPODis the propulsive force acting upon the thrust.QPROis the torque of the propeller.ρ is the density of water.n and D are the revolution speed and diameter of the propeller,respectively.

    In this work,the working condition chosen for evaluation is that the inflow velocity is 2 kns and the revolution speed of the propeller is 180 rmp.

    Fig.4 Thrust and torque coefficients at varying rotating angles

    The azimuth thruster can be rotated to any horizontal angle.Fig.4 depicts the results of the thrust coefficient and torque coefficient at different rotating angles.The rotating angle is defined as the angle between inflow direction and x-axis direction of the model.If the thruster rotates anticlockwise when looking down from the top,the rotating angle is positive.Results show that the thrust coefficient reaches the peak at the angle of-120°,and the minimum value appears at the angle of 10°.The variation of the torque coefficients is similar with the thrust coefficients.

    The hydrodynamic forces acting on the thruster are in the form of fluid pressure.Fig.5 shows the pressure contours of the thruster at the rotating angles of 0°and-120°.Comparing the contours at the two different angles,it is obvious that the surface of propeller blades suffers higher pressure when the rotating angle is-120°.Therefore,it is concluded that the propeller subjects to the maximum hydrodynamic forces when running at the rotating angle of -120°.Strength of the propeller when running in this condition is to be evaluated,and a text named‘pres.dat’,which contains the information of the pressure on the blade surface,is exported.

    Fig.5 Pressure contours at the rotating angles of 0°and-120°

    2 Pressure transm ission method

    2.1 Finite element model

    As the propeller is a symmetrical structure,just a single blade is selected for analysis.The finite element model of the blade is shown in Fig.6.In order to reduce the impact of constrains on the result of stress at the root of the blade,a part of hub is added to the blade model and thefixed constrain is imposed on the bottom of the hub.In addition,the root of the blade is rounded with a fillet radius of 60 mm to alleviate the stress concentration.The material of the blade is nickel-aluminum bronze,the mechanical properties of which are shown in Tab.1.

    Tab.1 Mechanical properties of nickel-alum inum bronze

    The geometric shape of the propeller blade is so complex that its local curvatures and thicknesses change greatly along the radial and tangential directions.In order to better reflect the changing regularity of stress,the element size should be as small as possible.Tetrahedral grid is more adaptable for the blade,and can be automatically generated.Thus,the 10-node tetrahedral grid is used to divide the blade model[2],as is shown in Fig.6.

    2.2 Pressure transmission

    Pressure on the blade surface is obtained from hydrodynamic calculation in FLUENT, and given as discretized values on the mesh nodes.As the surface mesh nodes in FLUENT and mesh nodes on the surface of the structural finite element model are not one-to-one correspondent,the fluid pressure acting on the finite element model is to be calculated by interpolation[3-5].

    Pressure interpolation uses the principle of spatial proximity.As is shown in Fig.7,pressure values of three nearest fluid mesh nodes around the interpolating point are chosen to calculate the pressure value of the interpolating point.

    Assume that P is the pressure value of the interpolating point;p1the is nearest fluid mesh node;p2is the second nearest fluid mesh node;p3is the third nearest fluid mesh node.Then,the pressure value of the interpolating point is given as

    where a,b and c are the interpolation coefficients,and a+b+c=1.

    There are three significant problems to be settled for the fluid pressure transmission[6].First is how to extract the information of mesh nodes under pressure.Second is how to distinguish mesh nodes on the pressure side and the suction side.The last is the interpolation of pressure.

    Fig.6 Finite element model of the propeller blade

    Fig.7 Diagram of pressure transmission method

    In this work,transmission of fluid pressure is completed by the UG software and the selfcompiled interface program.The operation in UG is done by first establishing the geometric model,generating mesh,imparting material properties and imposing constrains;then,exerting evenly distributed pressure which is called‘a(chǎn)ssumed pressure’on the blade surface and the pressure value can be an arbitrary constant,simultaneously exerting centrifugal force;finally, exporting a text named‘blade.inp’that contains the above finite element information.However,the values of the pressure on surface nodes in this text are not the real ones.The intuitive purpose of the interface program is to replace the incorrect pressure values with real ones in the text named‘pres.dat’obtained from hydrodynamic calculation,and to export a new text named‘newblade.inp’which contains the real pressure information.This new text can be directly imported into ANSYS for numerical calculation.

    3 Factors affecting the accuracy of strength calculation

    The accuracy of structural strength calculation of propeller blades depends on two key factors:one is the accuracy of pressure transmission,and the other is grid matching performance between models for structural and hydrodynamic calculation.

    3.1 Effect of weighting coefficients on pressure transmission

    In this paper,pressure transmission is achieved by the interpolating method which is based on the principle of spatial proximity.In order to better control the accuracy of pressure transmission,it is necessary to grasp the effect of weighting coefficients of interpolation.Here four groups of weighting coefficients are chosen for study,which are as follows:

    The model is divided with the element size of 28 mm,and the pressure interpolation is done by the interface program.The pressure distribution on the blade surface calculated by FLUENT is shown in Fig.8(a),and the pressure distribution on the finite element model after interpolation(weighting coefficients:a=1.0,b=0.0,c=0.0)is shown in Fig.8(b).Comparing the pressure contours of(a)and(b),it is found that the two results agree well with each other. Therefore,it is concluded that the transmission method proposed in this paper is to be with a high accuracy.The pressure contours of the other three groups of weighting coefficients also agree well with the one obtained from FLUENT,but deeply comparing the pressure values of some mesh nodes,it is found that the result of the weighting coefficients:a=1.0,b=0.0,c=0.0 has the highest accuracy.Tab.2 presents the maximum pressure values on the pressure side and suction side under different weighting coefficients.

    Fig.8 Comparison of pressure contours

    Tab.2 Maximum pressures under different interpolation coefficients

    According to the comparison of the pressure contours and pressure values,the fourth group of interpolation coefficients:a=1.0,b=0.0,c=0.0 is recommended for the principle of spatial proximity.

    3.2 Effect of the element size on stress calculation

    The working condition for strength calculation is that the inflow velocity is 2 kns,the rotating angle is-120°and the revolution speed of propeller is 180 rmp.According to the finite element method proposed in this paper,the numerical calculation for stress analysis of the blade is done by the ANSYS software.Fig.9 shows the equivalent stress distribution of the blade,of which the element size is 28 mm.As is shown in Fig.9,on the pressure side of the blade,there is a stress concentration region near the leading edge at the radius of 0.8~0.9R,where R is the radius of the propeller.And on the suction side,not only do a stress concentration region exist at the root,but also another stress concentration region exists near the leading edge atthe radius of 0.8~0.9R.

    Fig.9 Stress contours of the blade

    To ensure the precision of calculation,grids in hydrodynamic calculation and FEM analysis should match as well as possible with each other.Generally,in order to decrease the scale and time of calculation,element size in FEM analysis is smaller than that in hydrodynamic calculation.For determining the impact of grid matching performance between models for structural and hydrodynamic analysis on the accuracy of stress calculation,stress analysis under eight different element sizes are done in this work.These element sizes are 60 mm,50 mm,40 mm,36 mm,30 mm,28 mm,24 mm and 20 mm,respectively,which are chosen based on the element size of 20 mm in FLEUNT.Results of stress calculation under different element sizes present the similar regularity of stress gradients and stress concentration regions,as shown in Fig.9.However,the maximum stresses on the concentration regions differ from each other.Tab.3 lists the concentration regions and the maximum stress values under different element sizes.

    Tab.3 Com parison of maximum stresses under different element sizes

    The stress concentration factor is given as

    where σmaxand σnare the maximum stress and the mean stress of the stress concentration region,respectively.

    The mean stress of the root on the suction side is σn=58 MPa,which is calculated by the cantilever beam method[7].According to Eq.(3),the stress concentration factors under the different element sizes are calculated and presented in Fig.10.As can be seen from the figure,the stress concentration factor increases with the decrease of element size,and tends to be a stable value when the element size is less than 30 mm.

    After comparing the stress contours,positions and values of the maximum stress and the stress concentration factors under different element sizes,it is concluded that when the element size in FEM analysis is 1.0~1.5 times of that in hydrodynamic calculation,the grids match well and the stress calculation is to be with a high accuracy.

    Fig.10 Comparison of stress concentration factors

    4 Strength evaluation of azimuth thruster propeller blades

    When checking the structural strength,the maximum equivalent stress of the structure is compared with the allowable stress of the material.The equivalent stress of a blade node is defined as follows:

    where σ1,σ2and σ3are the principal stresses in three directions,respectively. The strength safety factor of propeller blades is expressed as:

    where σbis the ultimate strength of the material and σe,maxis the maximum equivalent stress.

    Strength numerical calculation and safety evaluation of the 5 000 kW azimuth thruster propeller are carried out according to the above studies,in which the weighting coefficients is a=1.0,b=0.0,c=0.0 and the finite element size is 30 mm.The stress and strain contours of the blade are shown in Fig.11.It can be seen that the maximum equivalent stress of the blade is about 100 MPa,and the deformation distribution of the blade is consistent with the characteristics of the cantilever beam.

    Therefore,when running in the selected working condition(Inflow velocity:2 kns,rotating angle:-120°,revolution speed of the propeller:180 rmp),the maximum equivalent stress of the blade is σe,max=100 MPa.According to Eq.(5),the safety factor of the blade is Kb=6.2, which is smaller than that recommended by the rules.This result should be taken seriously in design.

    Fig.11 Stress and deformation contours of the blade

    5 Conclusions

    A pressure transmission method which transfers distributed pressure from fluid field to structure field is put forward to solve the problem of unidirectional fluid-structure coupling of the high-powered azimuth thruster propeller.Then through detailed research about weighting coefficients and element size which impact numerical calculation accuracy,the suitable principles of selecting weighting coefficients and element size are presented.Based on the above research results,the strength numerical calculation and safety evaluation of a 5 000 kW azimuth thruster propeller are carried out,and the stress and deformation distribution laws of the blade are obtained.The results show that the safety factor of blades proves to be small,so the blade structure should be paid more attention in the design process.On the whole,the structural strength evaluating method of the azimuth thruster propeller blade is established,which can provide technical guidance for the design of high-powered azimuth thruster propellers.

    [1]Guo Chunyu,Yang Chenjun,MA Ning.RANS simulation of podded propulsor performances in straight forward motion [J].China Ocean Engineering,2008,22(4):663-674.

    [2]Qian Weidong,Wu Chengcai,Len Wenhao,et al.Research on automatic geometric modeling and meshing for marine propellers[J].Ship Science and Technology,2011,33(3):39-43.

    [3]Li Jianbo,Wang Yongsheng,Sun Cunlou.Stress analysis of highly skewed propeller blades[J].Shipbuilding of China, 2009,50(4):1-6.

    [4]Wang Hong,Zeng Zhiwei,Zeng Zhibo.Strength checking method of controllable pitch propeller blades based on numerical calculation[J].Chinese Journal of Ship Research,2014,9(5):53-59.

    [5]Wang Xuefeng,Li Feng,Zhou Wei,et al.Research on grid interpolation method of fluid-structure coupling[J].Journal of Ship Mechanics,2009(4):571-578.

    [6]Hu Fanglin,Sheng Zhenguo,Liu Xiaolong.Analysis method of fluid-structure interaction for composite blades of wind turbine[J].Acta Energiae Solaris Sinica,2014,10:015.

    [7]Huang Yi,Xu Hui,Jiang Zhifang.Strength analysis of highly-skewed propeller[J].Chinese Journal of Ship Research, 2010,5(5):44-48.

    全回轉(zhuǎn)推進(jìn)器螺旋槳槳葉結(jié)構(gòu)強(qiáng)度評(píng)估方法

    朱全華,韋朋余,岳亞霖,胡芳琳,劉登成

    (中國(guó)船舶科學(xué)研究中心,江蘇無(wú)錫214082)

    為了解決全回轉(zhuǎn)推進(jìn)器螺旋槳的單向流固耦合問(wèn)題,實(shí)現(xiàn)螺旋槳槳葉結(jié)構(gòu)強(qiáng)度精確評(píng)估,文章基于計(jì)算流體力學(xué)和有限元法開(kāi)展了螺旋槳槳葉的結(jié)構(gòu)強(qiáng)度計(jì)算方法研究,重點(diǎn)探討了槳葉表面隨機(jī)分布?jí)毫牧黧w域到固體域的轉(zhuǎn)換技術(shù)。在此基礎(chǔ)上,文中提出了槳葉固液交界面上水動(dòng)力載荷的轉(zhuǎn)換方法,詳細(xì)研究了插值加權(quán)系數(shù)和有限元網(wǎng)格尺寸對(duì)槳葉結(jié)構(gòu)強(qiáng)度計(jì)算精度的影響規(guī)律,給出了適用于槳葉強(qiáng)度評(píng)估的插值加權(quán)系數(shù)和單元網(wǎng)格尺寸選取原則。最后,該文以5 000 kW級(jí)全回轉(zhuǎn)推進(jìn)器螺旋槳為例,開(kāi)展了槳葉結(jié)構(gòu)強(qiáng)度數(shù)值計(jì)算和安全評(píng)估,獲得了槳葉的應(yīng)力和變形分布規(guī)律,整體上建立了全回轉(zhuǎn)推進(jìn)器螺旋槳槳葉結(jié)構(gòu)強(qiáng)度評(píng)估方法,可為大功率全回轉(zhuǎn)推進(jìn)器螺旋槳設(shè)計(jì)提供借鑒和參考。

    全回轉(zhuǎn)推進(jìn)器;螺旋槳槳葉;水動(dòng)力載荷;表面壓力轉(zhuǎn)換;結(jié)構(gòu)強(qiáng)度評(píng)估

    U661.4

    A

    朱全華(1991-),男,中國(guó)船舶科學(xué)研究中心碩士研究生;韋朋余(1982-),男,中國(guó)船舶科學(xué)研究中心高級(jí)工程師;岳亞霖(1964-),男,中國(guó)船舶科學(xué)研究中心研究員;劉登成(1982-),男,中國(guó)船舶科學(xué)研究中心高級(jí)工程師;胡芳琳(1981-),女,中國(guó)船舶科學(xué)研究中心高級(jí)工程師。

    U661.4

    A

    10.3969/j.issn.1007-7294.2016.09.007

    1007-7294(2016)09-1160-11

    Received date:2016-06-01

    Foundation item:Supported by the Major State Basic Research Development Program of China(973 Program, No.2014CB046706)and Jiangsu Key Laboratory of Green Ship Technology

    Biography:ZHU Quan-hua(1991-),male,master student of CSSRC,E-mail:951829290@qq.com; WEI Peng-yu(1982-),male,senior engineer.

    猜你喜歡
    推進(jìn)器槳葉螺旋槳
    探究奇偶旋翼對(duì)雷達(dá)回波的影響
    基于CFD扇翼推進(jìn)器敞水性能預(yù)報(bào)分析
    基于CFD的螺旋槳拉力確定方法
    立式捏合機(jī)槳葉結(jié)構(gòu)與槳葉變形量的CFD仿真*
    發(fā)揮考核“指揮棒”“推進(jìn)器”作用
    讓黨建成為信仰播種機(jī)和工作推進(jìn)器
    直升機(jī)槳葉/吸振器系統(tǒng)的組合共振研究
    3800DWT加油船螺旋槳諧鳴分析及消除方法
    廣東造船(2015年6期)2015-02-27 10:52:46
    螺旋槳轂帽鰭節(jié)能性能的數(shù)值模擬
    立式捏合機(jī)槳葉型面設(shè)計(jì)與優(yōu)化①
    久久久久久亚洲精品国产蜜桃av| 男女下面插进去视频免费观看| 狠狠狠狠99中文字幕| 亚洲人成电影观看| 国产精品欧美亚洲77777| 亚洲欧美一区二区三区久久| 国产精品亚洲av一区麻豆| 国产日韩一区二区三区精品不卡| 久久精品亚洲熟妇少妇任你| av天堂在线播放| 男女床上黄色一级片免费看| 亚洲黑人精品在线| 国产成人免费观看mmmm| 丰满迷人的少妇在线观看| 超碰成人久久| av线在线观看网站| 一二三四社区在线视频社区8| 老鸭窝网址在线观看| 99热网站在线观看| 国产成人免费无遮挡视频| 又紧又爽又黄一区二区| 搡老岳熟女国产| 国产免费现黄频在线看| 一区在线观看完整版| 国产熟女午夜一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 国产视频一区二区在线看| 欧美在线黄色| 日本a在线网址| 久久精品久久久久久噜噜老黄| 国产一区二区 视频在线| 亚洲国产精品成人久久小说| 国产精品香港三级国产av潘金莲| 一级片免费观看大全| 亚洲国产av影院在线观看| 亚洲精品久久午夜乱码| 国产精品一区二区在线观看99| 黑人巨大精品欧美一区二区蜜桃| 在线天堂中文资源库| 超色免费av| 中文字幕色久视频| 国产成人精品久久二区二区免费| 午夜免费成人在线视频| 美女脱内裤让男人舔精品视频| 国产精品秋霞免费鲁丝片| 久久青草综合色| 亚洲精品第二区| 一区二区日韩欧美中文字幕| 日韩人妻精品一区2区三区| 成人国产av品久久久| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产av成人精品| 成年av动漫网址| 男女床上黄色一级片免费看| 在线观看免费午夜福利视频| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| 波多野结衣一区麻豆| 久久影院123| 男女边摸边吃奶| 成人黄色视频免费在线看| 成人影院久久| 少妇 在线观看| avwww免费| 男女免费视频国产| 国产成人欧美在线观看 | 久久久久精品国产欧美久久久 | 日韩视频一区二区在线观看| 国产区一区二久久| 免费日韩欧美在线观看| avwww免费| 国产精品久久久久久人妻精品电影 | 十八禁网站网址无遮挡| 久久久久国内视频| 欧美另类亚洲清纯唯美| 水蜜桃什么品种好| 国产精品久久久人人做人人爽| 国产免费福利视频在线观看| 久久久久久亚洲精品国产蜜桃av| 色老头精品视频在线观看| 搡老岳熟女国产| 亚洲欧美精品自产自拍| 国产精品欧美亚洲77777| 亚洲午夜精品一区,二区,三区| 欧美av亚洲av综合av国产av| 人成视频在线观看免费观看| 久久久久精品国产欧美久久久 | 亚洲一码二码三码区别大吗| www.精华液| a级毛片黄视频| 免费黄频网站在线观看国产| 国产免费福利视频在线观看| 亚洲精品国产色婷婷电影| 久热爱精品视频在线9| 80岁老熟妇乱子伦牲交| 久久性视频一级片| 免费一级毛片在线播放高清视频 | 亚洲精品美女久久av网站| 日本av免费视频播放| 精品一区二区三区av网在线观看 | 少妇精品久久久久久久| cao死你这个sao货| 日本猛色少妇xxxxx猛交久久| 亚洲一区中文字幕在线| 久久天堂一区二区三区四区| 91国产中文字幕| 最黄视频免费看| 亚洲av电影在线观看一区二区三区| 午夜两性在线视频| 国产欧美亚洲国产| 国产一区二区在线观看av| 王馨瑶露胸无遮挡在线观看| 啦啦啦免费观看视频1| 亚洲欧美一区二区三区黑人| 夫妻午夜视频| 亚洲五月色婷婷综合| 亚洲视频免费观看视频| 香蕉国产在线看| 亚洲精品av麻豆狂野| 另类精品久久| www.999成人在线观看| 后天国语完整版免费观看| 精品少妇久久久久久888优播| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频| 美女主播在线视频| 久久 成人 亚洲| 99国产极品粉嫩在线观看| 成人亚洲精品一区在线观看| 少妇的丰满在线观看| 99国产精品一区二区三区| 久久国产精品男人的天堂亚洲| 纵有疾风起免费观看全集完整版| 精品一区二区三区av网在线观看 | 极品少妇高潮喷水抽搐| cao死你这个sao货| 国产精品一区二区免费欧美 | 国产成人免费观看mmmm| 亚洲精品第二区| 99国产精品免费福利视频| 美女主播在线视频| 色婷婷久久久亚洲欧美| 欧美黄色片欧美黄色片| 日本wwww免费看| 91九色精品人成在线观看| 国产亚洲av片在线观看秒播厂| 国产有黄有色有爽视频| 91麻豆av在线| 一级a爱视频在线免费观看| 欧美午夜高清在线| 91国产中文字幕| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| 免费观看a级毛片全部| xxxhd国产人妻xxx| 少妇精品久久久久久久| 久久九九热精品免费| 久久久久久久久免费视频了| 99国产极品粉嫩在线观看| 国产伦人伦偷精品视频| 夫妻午夜视频| 女人被躁到高潮嗷嗷叫费观| 狠狠狠狠99中文字幕| √禁漫天堂资源中文www| 久久久久国产精品人妻一区二区| 欧美日本中文国产一区发布| 久久精品成人免费网站| 日日爽夜夜爽网站| 妹子高潮喷水视频| 1024香蕉在线观看| 制服诱惑二区| 老司机深夜福利视频在线观看 | 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆| 精品免费久久久久久久清纯 | 欧美一级毛片孕妇| 亚洲精品第二区| 欧美日本中文国产一区发布| 美女扒开内裤让男人捅视频| 亚洲精品在线美女| 亚洲七黄色美女视频| 国产亚洲欧美精品永久| 一区二区三区激情视频| 国产男女超爽视频在线观看| 久久久精品94久久精品| 国产欧美日韩一区二区三区在线| 伊人亚洲综合成人网| 久久久久国产一级毛片高清牌| 下体分泌物呈黄色| 亚洲成av片中文字幕在线观看| bbb黄色大片| 热99国产精品久久久久久7| 亚洲男人天堂网一区| 99热国产这里只有精品6| 美女福利国产在线| 午夜免费观看性视频| 最黄视频免费看| 久久久久网色| 亚洲性夜色夜夜综合| 伦理电影免费视频| 在线观看人妻少妇| 久久久国产成人免费| 我要看黄色一级片免费的| 国产欧美日韩一区二区三 | 蜜桃国产av成人99| 满18在线观看网站| av在线播放精品| 丝袜喷水一区| 男人操女人黄网站| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 亚洲国产精品一区三区| 丝袜喷水一区| 精品国产一区二区久久| 亚洲熟女毛片儿| 性高湖久久久久久久久免费观看| 精品欧美一区二区三区在线| 丰满饥渴人妻一区二区三| 国产亚洲欧美在线一区二区| 久久久国产一区二区| 999久久久国产精品视频| 男女之事视频高清在线观看| 精品少妇久久久久久888优播| 精品一区二区三卡| 国产麻豆69| 色婷婷久久久亚洲欧美| 天天添夜夜摸| xxxhd国产人妻xxx| 午夜免费观看性视频| 国产麻豆69| 国产日韩欧美视频二区| 国产av精品麻豆| 国产人伦9x9x在线观看| 久久国产精品男人的天堂亚洲| 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看 | 制服人妻中文乱码| 亚洲国产毛片av蜜桃av| 免费高清在线观看视频在线观看| 国产老妇伦熟女老妇高清| 99re6热这里在线精品视频| 亚洲综合色网址| 老汉色∧v一级毛片| cao死你这个sao货| 我要看黄色一级片免费的| 精品人妻熟女毛片av久久网站| 久久久国产一区二区| 自线自在国产av| 免费高清在线观看视频在线观看| 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 深夜精品福利| 夫妻午夜视频| 精品一区二区三卡| 少妇的丰满在线观看| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| 国产成+人综合+亚洲专区| 亚洲精品一二三| 午夜精品国产一区二区电影| 亚洲精品在线美女| 亚洲av日韩精品久久久久久密| √禁漫天堂资源中文www| 精品亚洲乱码少妇综合久久| 亚洲欧美精品自产自拍| 99九九在线精品视频| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区三区av在线| 啦啦啦中文免费视频观看日本| 午夜福利一区二区在线看| 欧美成狂野欧美在线观看| 亚洲精品国产一区二区精华液| 国产精品影院久久| 久久国产精品大桥未久av| 成年人黄色毛片网站| 高清欧美精品videossex| 99国产极品粉嫩在线观看| 国产精品偷伦视频观看了| 日日爽夜夜爽网站| 少妇精品久久久久久久| 国产精品久久久久久人妻精品电影 | av天堂在线播放| 俄罗斯特黄特色一大片| 9色porny在线观看| av线在线观看网站| 美女主播在线视频| 中文字幕精品免费在线观看视频| 国产av精品麻豆| 夜夜夜夜夜久久久久| 建设人人有责人人尽责人人享有的| 老汉色av国产亚洲站长工具| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 国产精品九九99| 精品一区二区三区四区五区乱码| 嫩草影视91久久| 99精国产麻豆久久婷婷| 一本色道久久久久久精品综合| 国产成人免费无遮挡视频| 亚洲精品一二三| 久久精品成人免费网站| 国产成人a∨麻豆精品| 91字幕亚洲| 嫁个100分男人电影在线观看| 久久99热这里只频精品6学生| 乱人伦中国视频| 一二三四社区在线视频社区8| 伦理电影免费视频| 久久久久久人人人人人| 日本a在线网址| 久久 成人 亚洲| 啦啦啦免费观看视频1| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区| 深夜精品福利| 国产一区二区 视频在线| 狠狠精品人妻久久久久久综合| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲国产看品久久| 婷婷丁香在线五月| 12—13女人毛片做爰片一| 久久中文字幕一级| 婷婷丁香在线五月| 午夜影院在线不卡| 午夜福利在线观看吧| 黄色片一级片一级黄色片| 亚洲五月色婷婷综合| 久久久欧美国产精品| 电影成人av| 99国产精品一区二区三区| 80岁老熟妇乱子伦牲交| 国产精品 欧美亚洲| 丝袜在线中文字幕| 天堂中文最新版在线下载| 欧美一级毛片孕妇| 欧美在线黄色| 国产av又大| 日本wwww免费看| 日韩 亚洲 欧美在线| 久久亚洲精品不卡| 国产精品亚洲av一区麻豆| 狂野欧美激情性bbbbbb| 欧美激情极品国产一区二区三区| 国产成人av教育| 免费在线观看影片大全网站| 亚洲国产欧美一区二区综合| 亚洲欧洲精品一区二区精品久久久| 久久人人97超碰香蕉20202| 最近中文字幕2019免费版| 欧美黄色淫秽网站| 女人爽到高潮嗷嗷叫在线视频| 日韩熟女老妇一区二区性免费视频| 91麻豆av在线| 好男人电影高清在线观看| 一区在线观看完整版| av不卡在线播放| 高清视频免费观看一区二区| 在线观看免费午夜福利视频| 三上悠亚av全集在线观看| 狠狠婷婷综合久久久久久88av| 欧美少妇被猛烈插入视频| 一区二区日韩欧美中文字幕| 亚洲伊人久久精品综合| 亚洲精品成人av观看孕妇| videos熟女内射| 亚洲熟女精品中文字幕| 五月天丁香电影| 1024香蕉在线观看| 777米奇影视久久| 欧美日韩黄片免| 男女无遮挡免费网站观看| 日韩制服骚丝袜av| 亚洲欧美日韩另类电影网站| av欧美777| 在线av久久热| 精品少妇一区二区三区视频日本电影| 91av网站免费观看| 亚洲精品国产av成人精品| 免费在线观看完整版高清| 色婷婷av一区二区三区视频| 伊人久久大香线蕉亚洲五| 国产亚洲精品久久久久5区| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 一区在线观看完整版| 老熟妇乱子伦视频在线观看 | 99热国产这里只有精品6| 手机成人av网站| 亚洲av欧美aⅴ国产| 久久久久久久久免费视频了| 日韩电影二区| 高清在线国产一区| 欧美在线黄色| 99久久国产精品久久久| 在线观看人妻少妇| 国产欧美日韩综合在线一区二区| 亚洲精品国产av蜜桃| 中文字幕人妻熟女乱码| 欧美成人午夜精品| 1024视频免费在线观看| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 亚洲精品成人av观看孕妇| 在线观看免费日韩欧美大片| 亚洲精品国产区一区二| 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| 国产精品国产av在线观看| 十分钟在线观看高清视频www| 又黄又粗又硬又大视频| 性色av乱码一区二区三区2| 精品一区二区三区av网在线观看 | 国产日韩欧美视频二区| 亚洲精品国产精品久久久不卡| 淫妇啪啪啪对白视频 | 欧美人与性动交α欧美精品济南到| 亚洲欧美日韩另类电影网站| 后天国语完整版免费观看| 久久久久久久大尺度免费视频| 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| 国产极品粉嫩免费观看在线| 午夜免费成人在线视频| av网站在线播放免费| 精品一品国产午夜福利视频| 亚洲av男天堂| 在线观看免费视频网站a站| 欧美少妇被猛烈插入视频| av免费在线观看网站| 深夜精品福利| 丰满迷人的少妇在线观看| 在线天堂中文资源库| 国产激情久久老熟女| 午夜日韩欧美国产| 亚洲国产精品一区二区三区在线| 9191精品国产免费久久| 在线看a的网站| 日日摸夜夜添夜夜添小说| av欧美777| 亚洲国产精品一区三区| 日韩 欧美 亚洲 中文字幕| 多毛熟女@视频| 少妇精品久久久久久久| 国产亚洲午夜精品一区二区久久| 人人妻,人人澡人人爽秒播| 在线av久久热| 久久久久久免费高清国产稀缺| 日本一区二区免费在线视频| 热re99久久精品国产66热6| 美女福利国产在线| 99九九在线精品视频| www.999成人在线观看| 国产成人免费无遮挡视频| 深夜精品福利| 中国国产av一级| 国产精品九九99| 欧美另类一区| 蜜桃在线观看..| 国产激情久久老熟女| kizo精华| 国产激情久久老熟女| 在线永久观看黄色视频| 日本猛色少妇xxxxx猛交久久| 日韩欧美国产一区二区入口| 老司机午夜福利在线观看视频 | 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区免费欧美 | 久久精品亚洲av国产电影网| 在线观看www视频免费| 亚洲国产欧美一区二区综合| av国产精品久久久久影院| 叶爱在线成人免费视频播放| 国产免费视频播放在线视频| 性色av乱码一区二区三区2| 在线观看免费高清a一片| 国产欧美日韩一区二区三 | 国产成+人综合+亚洲专区| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 国产精品.久久久| 欧美久久黑人一区二区| 国产精品香港三级国产av潘金莲| 黄色a级毛片大全视频| 久久精品熟女亚洲av麻豆精品| 大香蕉久久成人网| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 亚洲一区中文字幕在线| 如日韩欧美国产精品一区二区三区| 狂野欧美激情性bbbbbb| 少妇裸体淫交视频免费看高清 | 日韩制服丝袜自拍偷拍| 中文字幕人妻丝袜制服| 黑人巨大精品欧美一区二区mp4| 91av网站免费观看| 99九九在线精品视频| 亚洲国产欧美一区二区综合| 久久久久网色| 69精品国产乱码久久久| 亚洲熟女毛片儿| 老鸭窝网址在线观看| 999久久久精品免费观看国产| 母亲3免费完整高清在线观看| 欧美乱码精品一区二区三区| 一级片免费观看大全| 国产老妇伦熟女老妇高清| 黄片大片在线免费观看| 91精品伊人久久大香线蕉| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 高清av免费在线| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 午夜福利一区二区在线看| 狂野欧美激情性xxxx| 亚洲精品久久成人aⅴ小说| 亚洲第一欧美日韩一区二区三区 | 丰满迷人的少妇在线观看| 久久久久久久国产电影| 国产亚洲精品久久久久5区| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 咕卡用的链子| 久久99一区二区三区| 在线十欧美十亚洲十日本专区| 欧美xxⅹ黑人| 最黄视频免费看| 欧美 日韩 精品 国产| 国产精品成人在线| 无遮挡黄片免费观看| 亚洲av男天堂| 国产精品麻豆人妻色哟哟久久| 国产日韩一区二区三区精品不卡| 1024香蕉在线观看| 欧美另类亚洲清纯唯美| av有码第一页| 亚洲精品av麻豆狂野| 欧美在线一区亚洲| 老熟妇乱子伦视频在线观看 | 国产真人三级小视频在线观看| 亚洲欧美成人综合另类久久久| 久久精品熟女亚洲av麻豆精品| 可以免费在线观看a视频的电影网站| 男女午夜视频在线观看| 久久香蕉激情| 黄色 视频免费看| 美女主播在线视频| 久久精品熟女亚洲av麻豆精品| 2018国产大陆天天弄谢| 悠悠久久av| 777米奇影视久久| 欧美在线黄色| 成人三级做爰电影| 女性生殖器流出的白浆| 国产成人a∨麻豆精品| 国产亚洲欧美在线一区二区| 久久久久久久久免费视频了| 亚洲久久久国产精品| 正在播放国产对白刺激| 丝袜美腿诱惑在线| 高清欧美精品videossex| 大香蕉久久成人网| 妹子高潮喷水视频| 制服诱惑二区| av欧美777| 免费av中文字幕在线| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 久久精品人人爽人人爽视色| 久久久久国产精品人妻一区二区| 久久久国产精品麻豆| 国产1区2区3区精品| 19禁男女啪啪无遮挡网站| 脱女人内裤的视频| 高清视频免费观看一区二区| 欧美中文综合在线视频| 免费黄频网站在线观看国产| 黄色a级毛片大全视频| 成年动漫av网址| 99久久国产精品久久久| 91麻豆精品激情在线观看国产 | 午夜老司机福利片| 欧美变态另类bdsm刘玥| 成人影院久久| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| a级毛片在线看网站| 国产在线一区二区三区精| 操出白浆在线播放| 亚洲熟女毛片儿| 天堂8中文在线网| av天堂在线播放| 免费在线观看黄色视频的| 纯流量卡能插随身wifi吗| 极品人妻少妇av视频| 日韩制服丝袜自拍偷拍| 久久综合国产亚洲精品| 久久久水蜜桃国产精品网| 岛国在线观看网站| 成人亚洲精品一区在线观看| 亚洲国产欧美网| tocl精华| 亚洲国产成人一精品久久久| 免费看十八禁软件| 在线观看人妻少妇| 777米奇影视久久| 悠悠久久av| 午夜久久久在线观看| 人妻一区二区av| 中文字幕av电影在线播放|