• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration due to Propeller-Shaft-Hull Coupling of a SWATH

    2016-05-15 13:24:19XIONGChenxiYINXuewenDUANYong
    船舶力學(xué) 2016年9期
    關(guān)鍵詞:雙體船水線軸系

    XIONG Chen-xi,YIN Xue-wen,DUAN Yong

    (National Key Library on Ship Vibration and Noise,China Ship Scientific Research Center,Wuxi 214082,China)

    Vibration due to Propeller-Shaft-Hull Coupling of a SWATH

    XIONG Chen-xi,YIN Xue-wen,DUAN Yong

    (National Key Library on Ship Vibration and Noise,China Ship Scientific Research Center,Wuxi 214082,China)

    Longitudinal vibrational characteristics of a Small Waterplane Area Twin Hull(SWATH) ship due to propeller-shaft-hull structure coupling subject to broadband forces on the propeller are investigated.An integrated vibro-acoustic numerical model comprised of the propellers,shafts and ship structures,as well as the entrained sound fluid is developed.Through experiments,measured data agree well with numerical results.Based on this numerical model,the vibration characteristics of the SWATH due to propeller-shaft-hull structure coupling are analyzed.The numerical results show that propeller-shaft-hull coupling can result in the dynamic magnification effect at the first and second longitudinal resonance frequencies of the shaft.Moreover,when the deformation of propellers is taken into account,the similar dynamic magnification is found at certain resonance frequencies of the blades.Such modes for the shaft,the propeller,and their coupling generally exist in low frequency range,so that the dynamic magnification of propeller forces can easily lead to excessive structural vibration and sound radiation.

    SWATH;propeller-shaft-hull coupling vibration;coupled acoustic-structural analysis;acoustic infinite elements

    0 Introduction

    When travelling in unsteady flows,the blades of the propeller are subjected to turbulence pulsation pressure,which is stochastic,and reasonably possesses continuous excitation spectra in frequency domain,namely,low frequency broadband spectra[1].Such loadings can excite the ship hull via propeller-shaft mounting systems,consequently,low frequency vibration and sound radiation are produced,which is generally termed as propeller-shaft-ship hull coupling sound radiation[2].Recent study work shows that,at low travelling speed,the coupling among propeller,shaft,and ship hull contributes significantly in the total sound radiation level,within which the coupled dynamic characteristics of the propeller,the shaft systems,and the ship hull structures,as well as their individual dynamic characteristics,are embedded[3-4].Generally,the transverse components of the low frequency broadband excitation forces are only 1/3 of the longitudinal components in magnitude[5].Since the response transfer functions from the trans-verse and longitudinal excitation forces to the sound radiation are in similar magnitude level, the sound radiation due to transverse forces is relatively low.Hence,in this paper,our attention is mainly focused on longitudinal propeller broadband excitation forces that induce the vibration coupling among propeller,shaft systems,and ship hull,and the subsequent sound radiation as well.

    In this paper,an integrated vibro-acoustic numerical model for a SWATH ship comprised of the propellers,shafts,ship structures,as well as the entrained sound fluid and the free surface,is developed.Through experiments,measured data for the vibration and sound radiation of the SWATH agree well with numerical results,which partially validate our numerical model.Based on this numerical method,longitudinal vibration characteristics of propeller-shafthull coupling system excited by broadband forces on propellers are analyzed.

    1 Numerical modeling

    1.1 Hull structure model developement

    Shown in Fig.1 is the schematic structure of a SWATH with the dimension of L in length,0.4 L in width,and 0.31 L in height,and with a load draugh of 0.1 L.It consists two submerging objects,two supporting connections,and several cabins on four decks.Each submerging object has a propulsion system with a propeller driven by a motor.

    A vibro-acoustic finite element model for the hull structure is developed,which is shown in Fig.2.Plate type elements are employed for the decks,the ship hull,the walls,the bulkheads,and the machinery bases.Beam type elements are employed for the axial and transverse stiffeners,ribs,and pillars.For sake of numerical efficiency,onboard equipments and machinery are simplified as mass type elements.The mesh size is carefully designed so as to make sure at least 6 meshes exist within the bending wavelength.

    Fig.1 Deployment of exciting point and hydrophone in site experiment

    Fig.2 The hull structure vibro-acoustic model

    Since the ship hull is surrounded by the fluid below the water surface,the coupling between them should be taken into account.In addition,the sound radiation due to vibrating ship hulls is one of our major concerns.Acoustic finite type elements are assigned to the fluid domain,and the fluid-structure coupling condition is enforced by bonding the displacement degrees of freedom for the fluid and ship hull at their interface.Besides,in order to model the infinite fluid,infinite acoustic elements are assigned onto the exterior surface of fluid domainshown in Fig.2.In the case of more complex sound field,infinite acoustic element algorithm has better precision than the equivalent impedance type boundary conditions.To model the free water surface,equivalent impedance type boundary condition is enforced onto the water surface,to which the air impedance property is assigned.Since the acoustic finite element has excellent precision,the dimension of the fluid domain can be reduced for sake of computation efficiency.By balancing the computer capabilities,computation precision,and simulation objectives,the fluid domain for the acoustic finite elements is designed as an ellipsoid that has 1.3 L and 0.67 L for the long and short axis respectively.The mesh size of the surface that contacts the hull is the same as the hull structure,and the mesh size of the infinite domain is relatively large.

    1.2 Propeller-shafting model developement

    Eventually,the vibro-acoustic model of the SWATH hull is developed,which accounts for the fluid-structure coupling,infinite acoustic field,and the free water surface as well.To considering the propeller-shafting system,a submodel is developed which is illustrated in Fig.3.

    Fig.3 Propeller-shafting system

    The total length of the shafting is 0.29 L,which is comprised of stern shaft,middle shaft, thrust shaft,couplings and flexible coupling.The shafts are supported on the hull through aft sterntube bearing,forward sterntube bearing,middle bearing and thrust bearing.The propeller has 6 blades and 0.044 L in diameter.The inner face of propeller’s hub is rigidly connected to the shaft.Except the thrust bearing,the axial constraints to the shaft from other bearings are ignored[6].

    The propellers are specified with quadratic 3D solid elements,the shafts are modelled as rod elements,and all shaft bearings except the thrust bearing are simplified as horizontal springs and vertical springs.Thrust bearing is modelled as a horizontal spring,a vertical spring and a longitudinal spring,and the stiffness of the longitudinal spring is prescribed to be 9e8 N/m, which denotes the stiffness of thrust bearing’s oil film.Thrust pads,couplings and flexible coupling are represented by point mass.

    In order to fully consider the coupling between the propeller and the shaft,the shaft and the hull,the hull and surrounding fluid,the propeller and the exterior fluid,the above hull structure model and propeller-shafting model are incorparated into an integrated vibro-acoustic numerical model of a SWATH shown in Fig.4.

    Fig.4 Propeller-shaft-hull coupling vibro-acoustic model of a SWATH

    As the contact area of the shaft and the fluid is relatively small,the interaction between them can be ignored.On the other hand,the coupled effect of the propellers and the fluid must be taken into account[7].The acoustic domain around the hull shown in Fig.2 is exported to propeller-shaft-hull coupling vibro-acoustic model,and the surfaces of propeller’s blades are also coupled with surrounding fluid,so the fluid loading of the hull and propellers are both included in the intergrated model.

    2 Experimental verification of numerical results

    In vibration and acoustic tests for this SWATH ship,we measured the sound radiation at moored conidtion as a force hammer knocked on the deck;we also measured the vibration of shafting and its adjacent cabins when the ship sailed in the sea.In this section,the comparison of test and numerical results for the underwater sound pressure is made to verify the acoustic computation capability of our numerical model.The comparison of shaft vibration when the ship sails in the sea is also made to verify the shafting vibration computation capability of the model.

    In the experiment of knocking excition,the exciting point and the hydrophone are deployed as shown in Fig.1.The sound transfer function is defined as the sound pressure by exciting force of 1.0 N,and the comparison of the experimental data and numerical results is shown in Fig. 5(a),where f/fpis the nondimensional frequency(fpis the reference frequency),and the sound pressure level is expressed in terms of 20log (p/p0),p0is reference sound pressure.From Fig.5 (a),we can find that in low frequency domain,the experimental data and the numerical results are in good agreement,which demonstrates that our vibro-acoustic numerical model can meet the precision requirements for sound radiation analysis in low frequency domain.

    When the ship was sailing in the sea,the acceleration sensor was installed at the point A2 shown in Fig.3,which is located on the thrust shaft,and the rotation speed of shaft is 10 fp(r/ min),viz.blade-passing frequency is fp(Hz).The test results of longitudinal acceleration at point A2 are shown in Fig.5(b),the horizontal axis denotes nondimensional frequency f/fp,thevertical axis is vibration level 20log (a/p0),p0is also the reference acceleration.Now we assume that when the ship sails in the water,the longitudinal vibration at point A2 in low frequency range is totally induced by the longitudinal component of forces on propellers,so we can compare the measured data with the numerical results.In the numerical model,the longitudinal harmonic force is applied to each blade,and the amplitude-frequency curve of the force is given by the semi-empirical formula of low frequency range broadband force on the propeller[4]. The vibration level at point A2 due to these forces is calculated,which is shown in Fig.5(b).It can be concluded from the plot that the nondimensional resonance frequencies in numerical results are 1.053,1.214,1.481,2.310,5.521,6.086,7.851 and 8.251,while in the test results are 1.000,1.211,1.514,2.320,5.491,6.149,7.869 and 8.297.Numerical and test curves have great coincidence in resonance frequencies,as well as in vibrtation amplitude,which demonstrates that the vibro-acoustic numerical model is reliable to analyze the longitudinal vibration of the ship structure excited by propeller forces.

    3 Analysis of propeller-shaft-hull vibration coup ling

    Generally,the forces on the propellers are transmitted to the thrust bearing foundations through the propeller and shaft,and consequenlty,produce hull vibration and radiate sound. The sound field is affected by dynamic characteristics of propeller,shafting,hull structures, and their coupling as well.The numerical models developed in last section are employed for the calculation of the nodal force,ship vibration,and the sound field.The numerical data can be used to analyze the vibration and sound radiation characterstics and to find the origin of line-spectrum noise.

    Natural frequencies of propeller are calculated by the propeller dynamic model.In this model the domain for the acoustic finite elements is chosen as a sphere with 0.11 L in diameter.Except the fluid loading,the propeller is not constrained by other boundary conditions. The shafting and hull are not included in this model.

    The modal analysis results indicate that besides individual bending modes of blades, there exists a type of modes called longitudinal umbrella modes since all the blades bend in the same direction and the hub vibrates longitudinally as well[8].There are 3 longitudinal umbrella modes within the analysis frequency range.Their mode shapes and nondimensional resonance frequencies are shown in Fig.6.

    Fig.6 The first,second and third order longitudinal umbrella modes of the propeller

    Then the force transmission characteristics of the propeller are studied based on this model.Assuming that the turbulence force is uniformly distributed on each blade,a longitudinal harmonic force with the amplitude of 1/6N is applied to each blade.The nodal force on the inner face of hub is calculated,the curve of which is labled as propeller in Fig.7,representing the longitudinal force transmission function of propeller in free boundary condition.The vertical axis is shown in terms of force level,i.e.20log F.The curve indicates that when the force is transmitted from the blade to the hub,the propeller magnifies the force at 3 frequencies.The nondimensional frequencies are 2.578,5.976 and 8.304,which are coincident to the resonance frequencies of the first,second and third longitudinal umbrella modes of propeller.

    The force transmission characteristics from shaft aft end to thrust bearing can be studied through the following shafting dynamic model.The propeller and the hull are simplified as a mass and a longitudinal spring respectively.The elasticity of the propeller,the inertia of the hull and the fluid loading are all ignored.The longitudinal stiffness of the hull could be simplified in different ways.The static stiffness and dynamic stiffness of the hull at the thrust bearing foundation panel are computed through the hull structure vibro-acoustic model.When we calculate the static stiffness,the bulkheads in front of the shaft cabin are constrained,and the longitudinal displacement of the panel subjected to a static longitudinal force is computed. When we calculate the dynamic stiffness,the hull structure is not contrained,and the longitudinal vibration amplitude of the panel subjected to a harmonic longitudinal force is computed. The result shows that the static stiffness of the hull is 1.8e8 N/m,and the dynamic stiffness in low frequency range is in the similar quantity,so the longitudinal stiffness of the hull in this model is prescribed to be 1.8e8 N/m.

    Fig.7 Force transmission functions of propeller,shafting and their coupling system

    Based on the shafting model,when the propeller mass point is excited by a unit longitudinal harmonic force,the nodal force magnitude at a point close to the thrust bearing is com-puted,which represents the force transmission function of the shaft labeled as shafting in Fig. 7.The curve indicates that the shafting resonates at 2 frequencies,the nondimensional frequencies of which are 1.321 and 5.976,respectively.From shafting modal analysis,it is shown that there are 2 longitudinal vibration modes in the analysis frequency domain,the resonance frequencies of which exactly correspond to that of the shafting mentioned above.

    Considering the effect of elasticity of the propeller and fluid loading,the propeller-shafting system dynamic model is used to calculate the force transmission function.This model is developed by replacing the propeller point mass in shafting model with the propeller 3D solid model and its surrounding fluid.

    A longitudinal harmonic force with the amplitude of 1/6N is applied to each blade of the propeller,the nodal force at a location on shaft which is close to the thrust bearing is calculated.The result is labeled as propeller-shafting system in Fig.7.This plot indicates that 6 resonance frequencies exist in the anlaysis frequency domain,which are 1.214,2.284,5.521,6. 163,7.849 and 8.250.Through modal analysis,it is shown that 1.214 is corresponding to the first longitudinal resonance frequency of the shaft,which is 1.321 in the air.Due to the propeller-fluid coupling,this resonance frequency is reduced.

    As for the propeller modes,2.284 is corresponding to the first longitudinal umbrella modal frequency of the propeller,which is 2.586 for the free propeller,and this resonance frequency is also reduced due to the change of boundary condition.The other four resonance frequencies are very complex to describe,they are the coupled modes for the propeller and the shafting.The second longitudinal mode along with the bending vibration mode of the shafting is all reflected in these four modes.The former two modes at 5.521 and 6.163 are also corresponding to the second longitudinal umbrella mode of the propeller while the latter two at 7.849 and 8.250 are corresponding to the third longitudinal umbrella mode of the propeller.

    The longitudinal forces on propeller are transmitted to the hull via the shafting to excite the hull at the base of the thrust bearing,and induce the hull vibration and sound radiation.The vibro-acoustic characteristics of the hull have significant influence on the final radiated sound field.The radiated sound of the hull is calculated by the hull structure vibroacoustic numerical model.The sound transfer function of the hull is shown in Fig.8,which plots the sound source level when a longitudinal harmonic force with the amplitude of 1.0N is applied to the base of thrust bearing.Due to the special configuration of the SWATH,the hull has no apparent longitudinal vibration modes so that the sound radiation curve alters smoothly with respect to frequency.

    Fig.8 The sound transfer function of the hull structure

    The coupled dynamic characteristics are studied based on the propeller-shaft-hull vibro-acoustic model.The force transmission function from blade to the thrust bearing is shown in Fig.9,in which one curve labeled as propeller-shafting system in Fig.7 is duplicated.The differences between these two curves indicate the impact of the hull structure.It can be concluded that due to the coupling between the propeller-shafting system and the hull structure, at the first resonance frequency of the propeller-shafting system,namely at 1.214,the magnitude of the force decreases by about 17 dB;at the two resonance frequencies of propeller’s second longitudinal harmonic mode,the magnitude decreases by about 5 dB;at other resonance frequencies the force magnitude keeps nearly the same.

    The sound source level of the hull due to the propeller-shafting system excited by the propeller force is shown in Fig.10.In combination to Fig.9,it is concluded that the sound radiation characteristics of the propeller-shaft-hull coupling system due to the excitation of propeller force are determined by the sound radiation characteristics of the hull structure and the force transmission function of propeller-shafting system;in addition,the force transmission characteristics of propeller-shafting system also are affected by the dynamics of the hull structure.

    Fig.9 Force transmission function of propellershafting in coupling system

    Fig.10 The sound transfer function of propellershaft-hull coupling system

    4 Conclusions

    An integrated vibro-acoustic numerical model for a SWATH ship which is comprised of propeller-shaft-hull structure coupling system is developed to investigate the longitudinal vibrational characteristics and its corresponding sound radiation.In this model,structural finite element method is employed for the hull,shaft and propeller,acoustic finite element methodis employed for their surrounding medium,fluid-structure coupling condition is enforced onto solid-fluid interface,and far-field condition is satisfied by the infinite element method.Through experiments,the experimental data and the numerical results are in good agreement,which demonstrates that our vibro-acoustic numerical model can meet the precision requirements for vibration and sound radiation analysis in low frequency domain.

    The numerical calculation results show that the excitation from propellers transmitted to hull structure is magnified due to propeller-shaft-hull coupling,which occurs at the first and second longitudinal vibration resonance frequencies of shaft sub-system.Moreover,when the deformation of the propellers is taken into account,the similar dynamic magnification is found at certain resonance frequencies of the blades.The sound radiation characteristics of the SWATH due to the excitation of propeller force are determined by the sound radiation characterisitcs of the hull structure,and the force transmission function of propeller-shafting system.In addition,the force transmission characteristics of propeller-shafting system are also affected by the dyanmics of the hull structure.

    [1]Zhu Xiqing,Tang Denghai,Sun Hongxing,et al.Study of low-frequency noise induced by marine propeller[J].Journal of Hydrodynamics,2000,15(1):74-81.

    [2]Xie Jirong,Shen Shungen,Wu Yousheng.Calculational method for radiating sound excited by vibration of ship propeller [J].Journal of Ship Mechanics,2011,15(5):563-569.

    [3]Xie Jirong,Shen Shungen,Wu Yousheng.Research status on noise radiation from vibrating hull induced by propeller and reduction measures[J].Shipbuilding of China,2010,51(4):234-241.

    [4]Merz S,Kinns R,Kessissoglou N.Structual-acoustic sensitivity analysis of propulsion system parameters for a coup led FE/BE model of a submarine[J].The 16th International Congress on Sound and Vibration,2009:2341-2348.

    [5]Xiong Ziying,Sun Hongxing,Zhu Xiqing.Prediction of low-frequency broadband noise induced by the interaction between injected turbulence and propeller[J].Shipbuilding of China,2014,55(3):1-11.

    [6]Xie Jirong,Shen Shungen,Wu Yousheng.Transmission character of propeller excitation through shaft-line system to hull [J].Shipbuilding of China,2011,52(1):80-89.

    [7]Neugebauer J,Abdel-Maksoud M,Braun M.Fluid-structure interaction of propellers[C]//IUTAM Symposium on Fluidstructure Interaction in Ocean Engineering.Springer Netherlands,2008,8:191-204.

    [8]Qi Libo.Three-dimensional sono-elastical analysis method of propeller-shaft-hull coupled vibration and acoustic radiation of a ship[D].China Ship Research&Development Academy,2015.

    摘要:文章研究了小水線面雙體船的槳—軸—船體耦合系統(tǒng)在螺旋槳受寬帶力激勵(lì)下的縱向振動(dòng)特性。建立了考慮周圍流體介質(zhì)作用的槳—軸—船體動(dòng)態(tài)耦合系統(tǒng)的聲振數(shù)值計(jì)算模型,經(jīng)實(shí)船試驗(yàn)表明計(jì)算結(jié)果與試驗(yàn)結(jié)果吻合較好。采用該模型計(jì)算分析了槳—軸—船體耦合系統(tǒng)的振動(dòng)特性。作用在螺旋槳上的激勵(lì)力傳遞到船體時(shí),受到軸系子系統(tǒng)的調(diào)制作用及推力軸承基座結(jié)構(gòu)的剛度影響,在軸系一階和二階縱向振動(dòng)模態(tài)處出現(xiàn)動(dòng)力放大;考慮螺旋槳的彈性變形時(shí),激勵(lì)力在螺旋槳的槳葉若干縱向振動(dòng)模態(tài)頻率上也出現(xiàn)了明顯的放大。在這些低頻段的振動(dòng)模態(tài)頻率上,船體結(jié)構(gòu)受放大的激勵(lì)力作用,容易產(chǎn)生共振及聲輻射。

    小水線面雙體船螺旋槳激勵(lì)船體振動(dòng)研究

    熊晨熙,殷學(xué)文,段勇

    (中國船舶科學(xué)研究中心船舶振動(dòng)與噪聲重點(diǎn)實(shí)驗(yàn)室,江蘇無錫214082)

    小水線面雙體船;螺旋槳軸系船體耦合振動(dòng);聲固耦合分析;聲學(xué)無限元

    O327

    A

    熊晨熙(1987-),男,中國船舶科學(xué)研究中心博士研究生,工程師;殷學(xué)文(1974-),男,博士,中國船舶科學(xué)研究中心高級(jí)工程師;段勇(1981-),男,博士,中國船舶科學(xué)研究中心高級(jí)工程師。

    O327

    A

    10.3969/j.issn.1007-7294.2016.09.008

    1007-7294(2016)09-1171-10

    Received date:2016-05-09

    Biography:XIONG Chen-xi(1987-),male,Ph.D.student,E-mail:XIONGCXCSSRC@163.com YIN Xue-wen(1974-),male,Ph.D.,senior engineer.

    猜你喜歡
    雙體船水線軸系
    臥式異步電機(jī)軸系支撐載荷研究
    基于STAR-CCM+的雙體船阻力預(yù)報(bào)
    雙機(jī)、雙槳軸系下水前的安裝工藝
    628客位珠江雙體游船的設(shè)計(jì)
    水線光纜
    水線光纜
    規(guī)?;怆u養(yǎng)殖場水線管理
    軸系校中參數(shù)與軸系振動(dòng)特性相關(guān)性仿真研究
    基于ANSYS的高速艇艉軸架軸系振動(dòng)響應(yīng)分析
    船海工程(2015年4期)2016-01-05 15:53:26
    中船重工704所研制穩(wěn)定鰭填補(bǔ)國內(nèi)減搖技術(shù)空白
    1024香蕉在线观看| 女同久久另类99精品国产91| 日韩国内少妇激情av| 精品久久久精品久久久| 一边摸一边抽搐一进一出视频| 国产亚洲精品av在线| 91九色精品人成在线观看| 中文字幕高清在线视频| 国内精品久久久久精免费| 超碰成人久久| 女同久久另类99精品国产91| 黄色 视频免费看| 欧美亚洲日本最大视频资源| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧美网| 看片在线看免费视频| 欧美乱色亚洲激情| 纯流量卡能插随身wifi吗| 黄色成人免费大全| 日本 av在线| 午夜免费鲁丝| 母亲3免费完整高清在线观看| 九色国产91popny在线| 18禁裸乳无遮挡免费网站照片 | 午夜免费成人在线视频| 国产精品香港三级国产av潘金莲| 亚洲狠狠婷婷综合久久图片| 久久香蕉激情| 亚洲欧洲精品一区二区精品久久久| 久久精品亚洲熟妇少妇任你| 国产av在哪里看| 国产精品二区激情视频| 欧美乱妇无乱码| 欧洲精品卡2卡3卡4卡5卡区| 午夜日韩欧美国产| 波多野结衣高清无吗| 国产精品免费一区二区三区在线| 国产成人影院久久av| 精品日产1卡2卡| 国产精品野战在线观看| 身体一侧抽搐| 免费高清视频大片| 国产精华一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产伦一二天堂av在线观看| 国产精品久久久久久亚洲av鲁大| 精品国产美女av久久久久小说| 日日干狠狠操夜夜爽| 极品人妻少妇av视频| 人人澡人人妻人| 97人妻天天添夜夜摸| 欧美日本亚洲视频在线播放| 男女之事视频高清在线观看| 校园春色视频在线观看| 手机成人av网站| 97碰自拍视频| 久久久国产精品麻豆| 禁无遮挡网站| 免费观看精品视频网站| 国产欧美日韩一区二区三区在线| 久久精品人人爽人人爽视色| 夜夜夜夜夜久久久久| 99国产精品99久久久久| 久久人人97超碰香蕉20202| 中文字幕人妻丝袜一区二区| 别揉我奶头~嗯~啊~动态视频| 久久热在线av| 黄色女人牲交| 国产一区二区激情短视频| 国产野战对白在线观看| 国产高清videossex| 99国产极品粉嫩在线观看| 热re99久久国产66热| 男人操女人黄网站| 高清黄色对白视频在线免费看| 亚洲中文av在线| 午夜福利一区二区在线看| 午夜福利18| 日韩免费av在线播放| 亚洲电影在线观看av| 一级a爱视频在线免费观看| 国产精品乱码一区二三区的特点 | 欧美老熟妇乱子伦牲交| 91麻豆精品激情在线观看国产| 国产91精品成人一区二区三区| 欧美在线一区亚洲| 国产人伦9x9x在线观看| 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 国产麻豆成人av免费视频| 香蕉国产在线看| 老熟妇乱子伦视频在线观看| 国产成人av教育| 国产亚洲av嫩草精品影院| 无人区码免费观看不卡| 日韩大码丰满熟妇| 久久久久九九精品影院| 大陆偷拍与自拍| 亚洲中文字幕日韩| 女人爽到高潮嗷嗷叫在线视频| 日日夜夜操网爽| 91老司机精品| 午夜成年电影在线免费观看| 女警被强在线播放| 好男人在线观看高清免费视频 | 露出奶头的视频| 人人妻人人爽人人添夜夜欢视频| 国产国语露脸激情在线看| 一级毛片高清免费大全| 亚洲国产毛片av蜜桃av| 亚洲黑人精品在线| 天堂影院成人在线观看| 欧美一区二区精品小视频在线| 女性生殖器流出的白浆| 中出人妻视频一区二区| 亚洲熟女毛片儿| 欧美老熟妇乱子伦牲交| x7x7x7水蜜桃| 亚洲一区中文字幕在线| 久久天堂一区二区三区四区| 18禁黄网站禁片午夜丰满| 我的亚洲天堂| 亚洲全国av大片| 久久久国产精品麻豆| e午夜精品久久久久久久| 丝袜美足系列| 97人妻精品一区二区三区麻豆 | 夜夜爽天天搞| 淫妇啪啪啪对白视频| 精品国产亚洲在线| 亚洲精品美女久久av网站| 欧美日韩一级在线毛片| 亚洲最大成人中文| 亚洲,欧美精品.| 两性夫妻黄色片| 久久人人爽av亚洲精品天堂| 国产精品久久久久久亚洲av鲁大| 母亲3免费完整高清在线观看| 天堂影院成人在线观看| 日韩精品青青久久久久久| 黑丝袜美女国产一区| 成人国语在线视频| 久热爱精品视频在线9| 国产精品,欧美在线| 欧美乱妇无乱码| 看片在线看免费视频| 亚洲伊人色综图| 性色av乱码一区二区三区2| 婷婷丁香在线五月| 身体一侧抽搐| 亚洲精品中文字幕一二三四区| 校园春色视频在线观看| 一区二区三区高清视频在线| 亚洲九九香蕉| 欧美大码av| 国产一区二区三区视频了| 啦啦啦 在线观看视频| 精品无人区乱码1区二区| 香蕉久久夜色| 深夜精品福利| 可以免费在线观看a视频的电影网站| 免费无遮挡裸体视频| 久久中文看片网| 在线观看免费午夜福利视频| 老熟妇乱子伦视频在线观看| 琪琪午夜伦伦电影理论片6080| 日本vs欧美在线观看视频| 少妇熟女aⅴ在线视频| 国产精品,欧美在线| 美女 人体艺术 gogo| 99国产精品一区二区三区| 国产精品久久久人人做人人爽| 波多野结衣一区麻豆| 国产熟女xx| 国产高清激情床上av| 成年人黄色毛片网站| 国产成人精品久久二区二区免费| 又紧又爽又黄一区二区| 1024香蕉在线观看| 亚洲一区高清亚洲精品| 日本黄色视频三级网站网址| 欧美日韩亚洲综合一区二区三区_| 亚洲国产中文字幕在线视频| 亚洲成av片中文字幕在线观看| 可以在线观看的亚洲视频| 99国产精品一区二区三区| 日韩欧美三级三区| 少妇的丰满在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲全国av大片| 丝袜在线中文字幕| 亚洲精品av麻豆狂野| 超碰成人久久| 91字幕亚洲| 亚洲熟妇熟女久久| 如日韩欧美国产精品一区二区三区| 国产av一区在线观看免费| 亚洲自偷自拍图片 自拍| 亚洲少妇的诱惑av| 一个人免费在线观看的高清视频| 欧美色视频一区免费| 黑人欧美特级aaaaaa片| 亚洲中文字幕日韩| 午夜福利,免费看| 午夜免费激情av| 国产高清videossex| 黑人巨大精品欧美一区二区mp4| 午夜福利欧美成人| 亚洲五月天丁香| 91精品国产国语对白视频| 欧美在线黄色| 国产精品秋霞免费鲁丝片| 免费无遮挡裸体视频| av有码第一页| 亚洲天堂国产精品一区在线| 国产野战对白在线观看| 国产欧美日韩综合在线一区二区| 国产精品亚洲一级av第二区| 免费观看人在逋| 久久国产精品人妻蜜桃| 免费少妇av软件| 十八禁人妻一区二区| 国产亚洲精品综合一区在线观看 | 亚洲专区字幕在线| 亚洲中文av在线| 久久伊人香网站| 日韩免费av在线播放| 一级片免费观看大全| 在线国产一区二区在线| 天堂动漫精品| 成人18禁在线播放| 中文字幕人成人乱码亚洲影| 国产成人一区二区三区免费视频网站| 国产午夜福利久久久久久| 18禁美女被吸乳视频| 国产精品电影一区二区三区| 欧美黑人精品巨大| 国产精品亚洲av一区麻豆| 麻豆久久精品国产亚洲av| 国产成人精品久久二区二区91| 免费一级毛片在线播放高清视频 | 久久 成人 亚洲| 午夜福利一区二区在线看| 日本撒尿小便嘘嘘汇集6| 激情视频va一区二区三区| 精品国产乱码久久久久久男人| 欧美一级a爱片免费观看看 | 国产男靠女视频免费网站| 黄片大片在线免费观看| 国产精品一区二区精品视频观看| 亚洲九九香蕉| 丝袜美足系列| av有码第一页| 黄色a级毛片大全视频| 亚洲国产精品sss在线观看| 午夜精品在线福利| 黄色成人免费大全| 亚洲一码二码三码区别大吗| 熟妇人妻久久中文字幕3abv| videosex国产| 人妻丰满熟妇av一区二区三区| 亚洲片人在线观看| 91麻豆av在线| 人人妻人人澡欧美一区二区 | 欧美日本亚洲视频在线播放| 国产成人一区二区三区免费视频网站| 国产精品综合久久久久久久免费 | 一本大道久久a久久精品| 在线天堂中文资源库| 亚洲第一电影网av| 久久亚洲精品不卡| 欧美成人免费av一区二区三区| 日韩欧美国产一区二区入口| 免费在线观看黄色视频的| 亚洲成人免费电影在线观看| 麻豆av在线久日| 欧美国产精品va在线观看不卡| 久久精品人人爽人人爽视色| 免费一级毛片在线播放高清视频 | 欧美日本视频| 久久精品人人爽人人爽视色| 午夜免费鲁丝| 1024香蕉在线观看| 国产激情久久老熟女| 国产野战对白在线观看| 亚洲成a人片在线一区二区| 亚洲精品国产区一区二| 国产成人影院久久av| 色老头精品视频在线观看| 一个人免费在线观看的高清视频| 波多野结衣巨乳人妻| 国产精品免费一区二区三区在线| 国产高清videossex| 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| 丝袜在线中文字幕| 久9热在线精品视频| 一级a爱视频在线免费观看| 男女之事视频高清在线观看| 国产免费男女视频| 性色av乱码一区二区三区2| 国产亚洲精品综合一区在线观看 | 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 日韩精品青青久久久久久| 波多野结衣一区麻豆| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 免费高清视频大片| 脱女人内裤的视频| 91精品三级在线观看| 国产精品一区二区在线不卡| av欧美777| 狂野欧美激情性xxxx| 男人舔女人的私密视频| bbb黄色大片| 国产99白浆流出| 高清毛片免费观看视频网站| 精品不卡国产一区二区三区| 久久精品91无色码中文字幕| 国产精品99久久99久久久不卡| 制服丝袜大香蕉在线| 一区二区三区国产精品乱码| 国产三级黄色录像| 亚洲中文日韩欧美视频| 国产精品日韩av在线免费观看 | 一夜夜www| 亚洲国产欧美网| 亚洲熟妇熟女久久| 久久 成人 亚洲| 国产一区二区三区综合在线观看| 窝窝影院91人妻| www.999成人在线观看| 日韩欧美国产在线观看| 欧美午夜高清在线| 午夜久久久久精精品| av欧美777| 欧美成人免费av一区二区三区| 色在线成人网| 婷婷丁香在线五月| 男女下面进入的视频免费午夜 | 中文字幕人妻熟女乱码| 亚洲 欧美 日韩 在线 免费| 十八禁人妻一区二区| 亚洲欧美日韩另类电影网站| 中国美女看黄片| 国产亚洲精品一区二区www| 久久天堂一区二区三区四区| 老司机午夜十八禁免费视频| 免费在线观看日本一区| 神马国产精品三级电影在线观看 | 99国产精品一区二区三区| 黄色女人牲交| 在线观看日韩欧美| 757午夜福利合集在线观看| 99国产精品免费福利视频| 性欧美人与动物交配| 欧美亚洲日本最大视频资源| 午夜亚洲福利在线播放| 制服人妻中文乱码| 午夜精品国产一区二区电影| 久久亚洲真实| 丝袜美足系列| 久久婷婷人人爽人人干人人爱 | 日韩免费av在线播放| cao死你这个sao货| 看黄色毛片网站| 长腿黑丝高跟| 国产精品电影一区二区三区| 久久久久久国产a免费观看| 精品国内亚洲2022精品成人| 久久久久久大精品| 久久精品国产综合久久久| 黄色视频,在线免费观看| 亚洲中文日韩欧美视频| 欧美日韩亚洲综合一区二区三区_| 在线观看舔阴道视频| av在线天堂中文字幕| 女人爽到高潮嗷嗷叫在线视频| 国产精品av久久久久免费| 国产伦一二天堂av在线观看| 一夜夜www| 女性被躁到高潮视频| 亚洲一码二码三码区别大吗| 侵犯人妻中文字幕一二三四区| av视频在线观看入口| 色老头精品视频在线观看| 日韩av在线大香蕉| 黄色成人免费大全| 99riav亚洲国产免费| 一区二区三区激情视频| 后天国语完整版免费观看| 国产一级毛片七仙女欲春2 | 男男h啪啪无遮挡| 成人免费观看视频高清| 国产成+人综合+亚洲专区| 国产亚洲精品久久久久5区| 少妇熟女aⅴ在线视频| 69av精品久久久久久| 成人国产综合亚洲| 18禁裸乳无遮挡免费网站照片 | 村上凉子中文字幕在线| 可以免费在线观看a视频的电影网站| 美女午夜性视频免费| 午夜福利成人在线免费观看| 两个人免费观看高清视频| √禁漫天堂资源中文www| 久久精品国产亚洲av香蕉五月| 日本在线视频免费播放| 国产精品,欧美在线| 黄色a级毛片大全视频| 国产一区二区在线av高清观看| 国产99久久九九免费精品| videosex国产| 天天一区二区日本电影三级 | 国产精品综合久久久久久久免费 | 麻豆久久精品国产亚洲av| 日本一区二区免费在线视频| 国产av在哪里看| 精品久久蜜臀av无| 免费av毛片视频| 久久人人爽av亚洲精品天堂| 成人亚洲精品一区在线观看| 亚洲最大成人中文| 国产成人影院久久av| 国产成人欧美| 日本vs欧美在线观看视频| 97人妻精品一区二区三区麻豆 | 丁香六月欧美| 露出奶头的视频| 熟妇人妻久久中文字幕3abv| 国产精品久久视频播放| 免费在线观看影片大全网站| aaaaa片日本免费| 亚洲国产毛片av蜜桃av| 伦理电影免费视频| 国产一区二区在线av高清观看| 欧美日本视频| 一个人观看的视频www高清免费观看 | 亚洲国产欧美网| 搡老妇女老女人老熟妇| 亚洲五月色婷婷综合| 麻豆国产av国片精品| 午夜福利高清视频| 欧美黄色淫秽网站| 国产av一区二区精品久久| 最新美女视频免费是黄的| АⅤ资源中文在线天堂| 国产成+人综合+亚洲专区| 久久久久久久久久久久大奶| 老汉色∧v一级毛片| 亚洲欧美激情综合另类| 美女午夜性视频免费| 久久午夜综合久久蜜桃| 久久精品人人爽人人爽视色| 一本久久中文字幕| 老熟妇仑乱视频hdxx| 美女 人体艺术 gogo| 国产精品久久久av美女十八| 日韩欧美国产在线观看| 亚洲精品粉嫩美女一区| 欧美 亚洲 国产 日韩一| 欧美成人一区二区免费高清观看 | 首页视频小说图片口味搜索| 在线永久观看黄色视频| 啦啦啦韩国在线观看视频| 叶爱在线成人免费视频播放| 成年版毛片免费区| 后天国语完整版免费观看| 精品人妻1区二区| 欧美中文日本在线观看视频| 午夜福利一区二区在线看| 一级毛片女人18水好多| 欧美激情高清一区二区三区| 国产精品亚洲一级av第二区| 美女 人体艺术 gogo| 亚洲国产看品久久| 久久热在线av| 亚洲九九香蕉| 一边摸一边做爽爽视频免费| 精品国产一区二区久久| 一区二区日韩欧美中文字幕| 日日爽夜夜爽网站| 欧美成人性av电影在线观看| 成人特级黄色片久久久久久久| 精品国产一区二区久久| 一区二区日韩欧美中文字幕| 成人欧美大片| 大型av网站在线播放| 不卡一级毛片| 国产亚洲欧美98| 色综合亚洲欧美另类图片| 日日爽夜夜爽网站| 69av精品久久久久久| 亚洲精品国产区一区二| www国产在线视频色| 一级a爱片免费观看的视频| 最新在线观看一区二区三区| 亚洲 欧美一区二区三区| 国产成人欧美| 高清毛片免费观看视频网站| 女性被躁到高潮视频| 啪啪无遮挡十八禁网站| 欧美日韩精品网址| av超薄肉色丝袜交足视频| 老熟妇乱子伦视频在线观看| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 亚洲精华国产精华精| 亚洲欧美日韩另类电影网站| 桃红色精品国产亚洲av| 久久精品91蜜桃| 欧美人与性动交α欧美精品济南到| 午夜福利高清视频| 身体一侧抽搐| 制服诱惑二区| 少妇粗大呻吟视频| 午夜老司机福利片| av天堂在线播放| e午夜精品久久久久久久| 美女大奶头视频| 欧美日韩亚洲国产一区二区在线观看| 精品人妻在线不人妻| 黄色丝袜av网址大全| 美女高潮喷水抽搐中文字幕| 欧美大码av| 他把我摸到了高潮在线观看| 国产日韩一区二区三区精品不卡| 日韩 欧美 亚洲 中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 免费av毛片视频| 91老司机精品| 久久精品人人爽人人爽视色| 好看av亚洲va欧美ⅴa在| 成在线人永久免费视频| 一区二区三区国产精品乱码| 亚洲熟妇熟女久久| 国内精品久久久久精免费| 国产精品久久久久久精品电影 | 一级作爱视频免费观看| 老汉色∧v一级毛片| 给我免费播放毛片高清在线观看| 不卡一级毛片| 精品熟女少妇八av免费久了| 好男人电影高清在线观看| 日本撒尿小便嘘嘘汇集6| 久久久国产欧美日韩av| 精品午夜福利视频在线观看一区| 国产主播在线观看一区二区| 久久午夜综合久久蜜桃| 一二三四社区在线视频社区8| 看片在线看免费视频| 丝袜美腿诱惑在线| 又黄又爽又免费观看的视频| a级毛片在线看网站| 亚洲电影在线观看av| 亚洲人成电影免费在线| 18禁观看日本| 日韩一卡2卡3卡4卡2021年| 欧美av亚洲av综合av国产av| www.精华液| 1024香蕉在线观看| 午夜免费鲁丝| 中文字幕另类日韩欧美亚洲嫩草| 久久精品91蜜桃| 亚洲欧美精品综合久久99| 国产一区二区在线av高清观看| 国语自产精品视频在线第100页| 国产麻豆69| 日韩欧美三级三区| 色婷婷久久久亚洲欧美| 69精品国产乱码久久久| 精品人妻在线不人妻| 欧美日本视频| 亚洲色图 男人天堂 中文字幕| 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区蜜桃| 91大片在线观看| 亚洲精品中文字幕一二三四区| 午夜福利高清视频| 国产人伦9x9x在线观看| 国产伦人伦偷精品视频| 丝袜在线中文字幕| 亚洲第一电影网av| 少妇裸体淫交视频免费看高清 | 国产成人免费无遮挡视频| 一边摸一边抽搐一进一小说| 天天躁狠狠躁夜夜躁狠狠躁| 啦啦啦观看免费观看视频高清 | 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久成人av| 黑丝袜美女国产一区| 色哟哟哟哟哟哟| 多毛熟女@视频| 久久人妻福利社区极品人妻图片| 丝袜在线中文字幕| 亚洲第一电影网av| 男女之事视频高清在线观看| 91字幕亚洲| 欧美久久黑人一区二区| 人成视频在线观看免费观看| 日韩精品青青久久久久久| 久久久久久久久免费视频了| 人成视频在线观看免费观看| 999精品在线视频| 十分钟在线观看高清视频www| 久久精品国产亚洲av香蕉五月| 亚洲色图综合在线观看| 999精品在线视频| 精品乱码久久久久久99久播| 亚洲国产日韩欧美精品在线观看 | 午夜视频精品福利|