• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Load-noise of a Highly-skewed Propeller behind Subm arine

    2016-05-15 13:24:21ZHANGMingyuLINRuilinWANGYongshengFUJianWEIYingsan
    船舶力學 2016年9期
    關(guān)鍵詞:工程學院螺旋槳軸向

    ZHANG Ming-yu,LIN Rui-lin,WANG Yong-sheng,FU Jian,WEI Ying-san

    (College of Marine Power Engineering,Naval University of Engineering,Wuhan 430033,China)

    Numerical Analysis of Load-noise of a Highly-skewed Propeller behind Subm arine

    ZHANG Ming-yu,LIN Rui-lin,WANG Yong-sheng,FU Jian,WEI Ying-san

    (College of Marine Power Engineering,Naval University of Engineering,Wuhan 430033,China)

    This investigation combined the Computational Fluid Dynamics(CFD)with Boundary Element Method(BEM)to predict the load noise of a highly-skewed propellers behind submarine(SUBOFF)with full appendages.The credibility of CFD was validated by comparing the results derived from steady simulation of the open water propeller with experiment data.The unsteady loading(dipole sound source)on blade surface was calculated by transient simulation of the same propeller fixed after submarine and then was transferred to the sound grid.The integration of the noise source was performed over the true blade surface,which was used to predict the propeller’s low-order blade frequency noise below 1 kHz.The BEM method was used to solve the FW-H equation to get the sound pressure directivity characteristics on the 3D spherical surface enclosed the propeller as well as two planes in the surface of the propeller disc and its perpendicular surface based on theory of acoustic fan source, total sound pressure level on the downstream axial measured points were also calculated.Study shows that the sound pressure directivity on both the propeller disc and its perpendicular plane presented as‘8’,but the directivity is not unique because of the existence of rotation and skew angle of the propeller.The 3D spherical field showed that the radiant surface in the direction of the propeller disc was smaller and radiated weaker than its perpendicular plane.The results of the typical points showed that the 1st order blade frequency SPL exceeded the high-order blade frequency SPL obviously, which accorded well with fact.A good consistency had gotten after comparing with the published literature and reasonable explanation was also given to the difference.Thus,this paper introduced a new method to measure the propeller noise behind submarine in the ship effectively.

    submarine;highly-skewed propeller;CFD;BEM;Acoustic Fan Source

    0 Introduction

    Submarine has been welcomed by navies of all ages because of its good concealment,aggressive characteristics.Submarine underwater radiated noise is one of the key factors affecting the submarine concealment in nature,which includes mechanical vibration noise,propeller noise,fluid induced noise.Propeller noise is the main source of noise,which was first foundby underwater monitor during World War II[1].Propeller cavitation noise is mainly concentrated in the high frequency band and has got improved synchronously under the medium-low speed.However,no-cavitation noise concentrated in the low frequency band performed very obviously.Currently,people began to pay attention to study this kind of noise.Both the submarine’s velocity and the propeller’s rotating speed are small,thus propeller no-cavitation noise brings greater harm.Sound field radiated by propeller mainly consists of the dipole sound noise(load noise)generated by unsteady loads[2-3]in the non-uniform flow without cavitation, so the study on no-cavitation noise of propeller fixed after submarine has a very important significance.

    Zhu,Tang et al[4]had combined the unsteady lifting surface theory and acoustic methods to calculate the low-frequency discrete spectrum-line of non-cavitation noise of different propeller while effect of propellers’geometry parameters(such as propeller diameter,pitch, number of leaves,skewed,arch)to sound pressure level brought in consideration.Zhu and Wu[5]researched a propeller’s load noise characteristics based on unsteady lifting surface theory method and Goldstein theory,a brief introduction to the theoretical results and the numerical analysis method was illuminated.Seol et al[2]made a further exploration on the calculation method for calculating propeller underwater no-cavitation noise of far fields by combining the surface element method and boundary element.Analysis of unsteady propeller forces changing over time was made out and then input the forces to FW-H equation to predict the far-field sound radiation of propeller via plane element method in Ref.[3].Pantle et al[6]calculated the time-domain solution of unsteady flow field of propeller using large eddy simulation and computed its radiated noise under no-cavitation conditions through FW-H integral model.Refs. [7-8]introduced hybrid calculation method,the mutual coupling of the flow field and the sound field using the drop-coupling treatment.Sound source was the unsteady pressure resulting from the large eddy simulation,propeller noise spectrum was derived from the FW-H integral model.

    This paper used large eddy simulations(LES)on the unsteady three-dimensional numerical calculations of‘submarine+propeller’through software CFX and used the boundary element method to calculate the frequency-domain load noise of a highly skewed propeller in the non-uniform flow behind the submarine based on theory for acoustic fan source,its noise distribution was analyzed and the results of the same feature points were taken out,which coincided better with the Ref.[9],the differences were also reasonably explained,studies show that Acoustic Fan Source is a new way to predict propeller noise effectively.

    1 Theoretic analysis

    1.1 Equation and tools

    In 1969,Ffowcs Williams and Hawkings extended Curle equation to bring the impact of the moving solid boundary into consideration via generalized function,which considered prob-lems of objects moving in the fluid,such as propeller’s non-cavitation noise at work,which made the FW-H equation used more commonly[10]and laid the theoretical foundation of flow noise.

    where Maris the projection of Mach number on the observer direction,S(ζ)is the acreage of moving solid.The first item on the right of equation is thickness noise,which is the noise resulting from the drain caused by blade rotation.The second term is the dipole sound source which is also known as the load noise,and is brought in by the pulse on a solid wall,the pulse can be considered only generated by fluid.Load noise plays a major role at low Mach number, this study considered the dipole sound source as the main propeller noise.The third term on the right of above equation is the quadrupole sound source generated by turbulent fluctuations in the fluid and the interaction of shear layers,which is prominent in the high Marand can be ignored when the value is low[11].

    1.2 Theory for Acoustic Fan Source

    There is only rotor with no stator for propeller;the expression for this acoustic field for different fan configurations is summarized as below.

    Axial and tangential contributions of the radiated pressure at frequency mBΩ:

    where m is the harmonic number,B is the number of rotor blades,Ω is the rotation speed,R is the distance from the observer,c0is the speed of sounds,is the Fourier series of the total force on a compact blade segment,M is the rotational Mach number,θ,φ and γ are defined in Fig.1,γ is the number of stator vanes.

    Radial contribution:

    Fig.1 Acoustic fan source

    In the above expressions,the pressure field is computed from the loading force on a reference rotor blade.This force can be computed from the pressure fluctuations in time domain obtained from a CFD(computational fluid dynamic)computation.The computation of this force is done in a new analysis case.

    The resulting loading force is applied at one point of the blade.The representation of thefan by a single fan source is a good approximation when the size of the blades is small compared to the wavelength(compact source approximation).When the size of the blade is very large and the fan cannot be considered as a compact source,the blade can be subdivided into a set of segments where each segment can be replaced by an equivalent source.

    The computation of centers of gravity of segments base nodes is expressed as follows:

    where xikis the k th coordinate of the i th node.The forces acting on the different segments are calculated by using the following equations:

    k th component of the total force on j th segment at the i th time.Pimis the pressure at the i th time step at m th node,nodal_area_vectormkis the k th component of the nodal area vector at m th node.

    2 Com puting model and numerical sim ulation

    This paper used RANs method to carry out CFD calculations.Steady simulation of flow field of open water propeller was executed through solving the control equations based on SST turbulence model.Firstly,SST model combines the advantages of both k-ε model and k-ω model,k-ε model has good convergence for simulating flow in the near wall region while k-ω model has higher computational efficiency where region turbulence is fully developed[12].The three-dimensional unsteady calculations using large eddy(LES)method of the highly skewed propeller fixed behind the submarine was developed after verifying the credibility of numerical calculation,the large eddy simulation’s accuracy and resource requirements are just between DNS and RANS,the application of large-eddy simulation method has gradually expanded along with a continuous improvement of LES theory and the gradual accumulation of experience in application.We can get the propeller’s frequency-domain sound field based on theory for acoustic fan source after calculated the acoustic dipole distribution on propeller surface.

    2.1 Steady state calculation and verification of open water propeller

    Using software ICEM to mesh the 3D geometry of highly skewed propeller with 7 blades drew out by software Ug.The total grid number was 1 360 000,which was specifically shown in Fig.2,settings of the boundary conditions were shown in Fig.3,the number of computational domain grids was 2 100 000 while grid thickness of the first layer near the surface is 0.1 mm,the value of y+satisfied the requirement of the boundary layer turbulence required for simulation.6 working conditions at the speed 20 r/s with J=0.4~0.9 were calculated and axialthrust T and torque Q of propeller were derived through integration on the wall,which were converted into thrust coefficient,torque coefficient and efficiency as follows:

    Fig.2 Geometry and structured grid of the highly skewed propeller

    where D is the propeller diameter,n is the rotational speed,J is the feed ratio.

    Values of thrust coefficient and torque coefficient at 20 r/s with J=0.4~0.9 were made out and curves of both the CFD values and experimental data were shown in Fig.4,the CFD values consisted with the experimental well and the error was less than 3%.

    Fig.3 Computational domain and boundary conditions

    Fig.4 Compared with experimental data

    2.2 Unsteady three-dimensional numerical simulation of the propeller fixed behind submarine SUBOFF

    The length of SUBOFF is 4.356 m,the maximum diameter is 0.508 m,podium length is 0.368 m,four empennages are arranged symmetrically in NACA0020 airfoil.The distance from the bow to propeller plane is 4.26 m.The distance on inflow direction takes a captain while twice on the out flow direction for the entire flow field computational domain whose diameter decuple the maximum boat diameter.All the mesh is hexahedral and the total number is 20 100 000.The velocity of flow was 6 kt,the outlet was set as atmospheric pressure,rotational speed of propeller was 750 r/min,steady-state time step take 0.012 s based on expression 30/(nπ),n is the rotational speed rpm.Transient calculation started on the result of steadystate.The higher sampling frequency obtained higher time resolving power of the data,pulsation amplitude may be underestimated if the sampling frequency is too low[13].This paper takes every time step from rotation time of 1°synthetically,1/(6n)=0.000 022 s.Computational domain and boundary conditions of‘boat+ propeller’were shown in Fig.5,here L is captain,D sub is the maximum diameter of the hull,and the stream lines were shown in Fig.6.

    Fig.5‘Boat+propeller’boundary conditions and computational domain

    3 Sound field calculation of the highly skewed propeller behind submarine

    Fig.6 Streamline

    3.1 Data transfer

    Extracting the propeller surface pressure after the above three-dimensional unsteady calculation was convergent and mapped it onto the sound grid through distance-weighted method. This paper imported the pressure datum of 360 time steps,namely 1 circuit of propeller.λ=c/ f,f≤1 kHz,the wavelength is at least 1.5 m so that there were enough units to describe the sound field within each wavelength even though the size of acoustic grid cell was a little larger.Acoustic Fan Source just takes one blade to calculate sound field and then describe the work of the propeller blades by defining the number of blades and rotational speed.The sound pressure information of a skewed propeller blades to a corresponding sound field grid was transferred by nodes scale 4:1,grids and pressure distribution were shown in Figs.7 and 8.

    Fig.7 Fluid mesh

    sound grid

    Fig.8 Pressure extracted from CFD mapped pressure

    3.2 Acoustic Fan Source settings and number verification of dipole segments

    Dividing the blade into segments after defining the rotating coordinate, each block will be treated as an equivalent dipole sound source.The results of 13 and 34 segments under 1BPF (Blade Passing Frequency)showed that the sound directivity overlapped substantially on both propeller disk and its vertical surface,which verified theindependence of the number of dipole segments.The segments and corresponding results of sound directivity were shown in Fig.9.Rotational speed of propeller is 12.5 r/s,the number of blades is 7,the time domain information is transformed into the frequency domain though Fast Fourier Transform.

    Fig.9 Segments and results

    4 Sound field analyses

    Two panel sound fields,which were on propeller disc and the axial longitudinal section of the highly skewed propeller,and a spherical sound field were established respectively,all of whose center were the geometric center of the propeller and all their diameters were the 10 times of the propeller diameter.This paper analyzed all the sound fields in detail based on fact and corresponding theory.Results of the same feature point with Ref.[9]were calculated and consisted well with Ref.[9].

    4.1 Sound directivity analysis

    Sound directivity is an important item on analyzing the characterization of sound field, this paper analyzed two panel sound field respectively on propeller disc and the axial longitudinal section of the highly skewed propeller.The sound pressure level(SPL)in blade passing frequency and its harmonics were shown in Figs.10 and 11.As can be seen,both the surface sound fields can be observed two strong and weak radiation directions in the shape of‘8’, which was determined by the dipole sound source,but the directivity is not unique because of the existence of rotation and skew angle of propeller.We can also see that the SPL is slightly lower on propeller disc than that of the axial longitudinal section.

    Fig.11 Axial longitudinal section of the sound field directivity

    4.2 Spherical field analysis

    Analysis to the sound field distribution of the spherical field at different frequencies was shown in Fig.12.The SPL is the highest in axial direction of the propeller and gradually decreases along with the increase of axial angle.Sound source area perpendicular to the propagation direction is smaller in the radial direction,which is contrary to the axial direction.So the propeller load noise radiates strongly in the axial direction and weakly on the radial direction,which is consistent with the mechanism of the propeller load noise.

    Fig.12 SPL distributions on spherical field

    4.3 Analysis of feature points

    Three feature points were arranged on a circle,whose distance to the geometric center of the propeller is 10R(R is the radius of the propeller).Their specific position and spectrogram were shown in Fig.13,the point 3 is in the axial direction of propeller,which is the same with the feature point of Ref.[9]. The sound spectrum of feature points also incarnated that SPL is the highest in axial direction of the propeller.

    Fig.13 Feature points’arrangement and sound pressure spectrum

    Tab.1 Results contrast of feature point 3

    Fig.14 Results of feature point3

    5 Conclusions

    The credibility of CFD was validated firstly by comparing the results derived from steady simulation of the open water propeller with experiment data.The unsteady loading(dipole source)on blade surface was calculated by transient simulation of the same propeller fixed after submarine and then was transferred to the acoustical mesh nodes.The BEM method based on Acoustic Fan Source theory was used to solve the FW-H equation to get the sound directivity characteristics on three sound fields.Studies show that:

    (1)Both the surface sound fields can be observed by two strong and two weak radiation directions in the shape of 8,which are determined by the dipole sound source,but the directivity is not unique because of the existence of rotation and skew angle of propeller.We can alsosee that the SPL is slightly lower on propeller disc than that of the axial longitudinal section.

    (2)Sound source area perpendicular to the propagation direction is smaller in the radial direction,which is contrary to the axial direction,so the propeller load noise radiates strongly in the axial direction and weakly in radial direction,which is consistent with the mechanism of the propeller load noise.

    (3)The results of the feature points showed that the SPL value at 1st order blade frequency exceeded SPL value at high-order blade frequency obviously,The SPL value of feature point 3 below 1 kHz is 99.7 dB under J=0.88,rotational speed=12.5 r/s,which consisted well with Ref.[9].

    Studies show that Acoustic Fan Source is a new way of predicting propeller noise effectively.

    [1]Zhong Xiaonan.Propeller noise of vessel[M].Shanghai:Shanghai Jiao Tong University Press,2011:23-27.

    [2]Seol H,Jung B,Suh J C.Prediction of non-cavitation underwater propeller noise[J].Journal of Sound and Vibration 2002, 257(1):131-156.

    [3]Seol H,Suh J C,Lee S.Development of hybrid method for the prediction of underwater propeller noise[J].Journal of Sound and Vibration,2005,288:345-360.

    [4]Zhu Xiqing,Tang Denghai,Sun Hongxing.Study of The low-frequency propeller noise[J].Journal of Ship Mechanics, 2000,4(1):50-55.

    [5]Zhu Xiqing,Wu Wusheng.Prediction of marine propeller loading noise[J].Acta Acustic,1999,24(3):259-268.

    [6]Pantle I,Magagnato F,Gabi M.Numerical noise prediction in fluid machinery[J].Journal of Thermal Science,2005,14 (3):230-235.

    [7]Kato C,Yamade Y,Wang H.Numerical prediction of sound generated from flows with a low mach number[J].Computers&Fluids,2007,36:53-68.

    [8]Wang M,Freund J B,Lele S K.Computation prediction of flow-generated sound[R].New York:Annual Review of Fluid Mech,2006,38:483-512.

    [9]Yang Qiongfang,Wang Yongsheng,Zeng Wende.Calculation of highly-skewed propeller’s load noise using BEM numerical acoustics method in frequency domain[J].Acta Armamentarll,2011,32(9):1118-1125.

    [10]Ffowcs W J E,Hawkinns D L.Sound generation by turbulence and surfaces in arbitrary motion[C]//Proc.Rov.Soc.London:Roy.Soc.1969,264A:321-342.

    [11]ANSYS CFX User’s Guide.Aerodynamic noise analysis[K].ANSYS Inc,2006.

    [12]Jin Shuanbao,Wang yongsheng,Yang Qiongfang.Integrative design of waterjet axial pump based on numerical experimentation[J].Shipbuilding of China,2010,51(3):39-45.

    [13]Shi Weidong,Yao Jie,Zhang Desheng.Influence of sampling frequency and time on pressure fluctuation characteristics of axial-flow pump[J].Journal of Drainage and Irrigation Machinery Engineering,2013,31(3):190-195.

    [14]Ye Jinm ing,Xiong Ying,Gao Xiaopeng.Prediction method of low-order blade frequency noise of non-cavitation propeller in time domain[J].Journal of Harbin Engineering University,2013,34(1):1-6.

    艇后大側(cè)斜螺旋槳負載噪聲數(shù)值分析

    張明宇,林瑞霖,王永生,付建,魏應三

    (海軍工程大學動力工程學院,武漢430033)

    為研究艇后非均勻流場中大側(cè)斜螺旋槳無空泡負載噪聲的分布規(guī)律,文章采用“CFD+BEM”法,以SUBOFF潛艇后某大側(cè)斜槳為研究對象,首先穩(wěn)態(tài)計算均勻進流下螺旋槳敞水特性,模擬系數(shù)值與實驗誤差在3%以內(nèi),驗證了CFD數(shù)值計算的可信性。然后采用大渦(LES)模擬,對“艇+槳”進行三維非定常數(shù)值模擬,計算得到槳表面聲偶極子數(shù)據(jù)后,通過距離加權(quán)平均法映射到聲網(wǎng)格節(jié)點上,將噪聲源直接分布在槳葉表面上進行積分來預報螺旋槳的低頻線譜噪聲。采用邊界元法基于扇聲源理論通過FW-H聲類比方程分別在1 kHz以內(nèi)對槳盤面、軸向縱剖面及10倍槳半徑球場的噪聲進行頻域求解。研究表明:槳盤面和軸向縱剖面上聲指向均呈8字形,但受螺旋槳自身旋轉(zhuǎn)及大側(cè)斜的存在,指向性不唯一;球場聲場顯示,軸向聲輻射面較大,聲輻射強,徑向輻射面小且輻射較弱;特征點的計算結(jié)果顯示,高階葉頻聲壓級明顯比一階葉頻低,這與物理現(xiàn)象相符,將特征點處結(jié)果與已發(fā)表文獻進行對比,吻合性良好,并對存在的差異作出了合理的物理解釋。該文為螺旋槳噪聲預報介紹了一種可行的新方法。

    潛艇;大側(cè)斜螺旋槳;計算流體力學;邊界元法;扇聲源理論

    U664.33

    A

    國家自然科學基金資助項目(51009144)

    張明宇(1989-),男,海軍工程大學動力工程學院博士研究生,E-mail:yijianmingyu@163.com;林瑞霖(1955-),男,博士,海軍工程大學動力工程學院教授,博士生導師;王永生(1955-),男,海軍工程大學動力工程學院教授,博士生導師;付建(1985-),男,海軍工程大學動力工程學院博士;魏應三(1984-),男,海軍工程大學動力工程學院講師。

    U664.33

    A

    10.3969/j.issn.1007-7294.2016.09.010

    1007-7294(2016)09-1190-11

    Received date:2016-01-17

    Foundation item:Supported by National Nature Science Foundation of China(51009144)

    Biography:Zhang Ming-yu(1989-),male,Ph.D.candidate,E-mail:yijianmingyu@163.com; LIN Rui-lin(1957-),male,professor/tutor.

    猜你喜歡
    工程學院螺旋槳軸向
    福建工程學院
    福建工程學院
    大型立式單級引黃離心泵軸向力平衡的研究
    基于CFD的螺旋槳拉力確定方法
    福建工程學院
    荒銑加工軸向切深識別方法
    福建工程學院
    微小型薄底零件的軸向車銑實驗研究
    3800DWT加油船螺旋槳諧鳴分析及消除方法
    廣東造船(2015年6期)2015-02-27 10:52:46
    螺旋槳轂帽鰭節(jié)能性能的數(shù)值模擬
    淫秽高清视频在线观看| 99热全是精品| 久久人妻av系列| 亚洲av二区三区四区| 婷婷色综合大香蕉| 深爱激情五月婷婷| 日本黄色片子视频| 欧美人与善性xxx| 大型黄色视频在线免费观看| 国产黄a三级三级三级人| 免费观看的影片在线观看| 午夜精品国产一区二区电影 | 国产在视频线在精品| 国内精品一区二区在线观看| 2021天堂中文幕一二区在线观| 日韩欧美一区二区三区在线观看| 99热6这里只有精品| 男插女下体视频免费在线播放| 在现免费观看毛片| 久久人人爽人人片av| 亚洲av一区综合| 成人漫画全彩无遮挡| 精品久久久久久久末码| 国产精品久久视频播放| 国产成人aa在线观看| 蜜桃久久精品国产亚洲av| 国产色婷婷99| 两性午夜刺激爽爽歪歪视频在线观看| 成人特级黄色片久久久久久久| 午夜福利在线在线| 搡女人真爽免费视频火全软件 | 卡戴珊不雅视频在线播放| 可以在线观看的亚洲视频| 人妻久久中文字幕网| 成人综合一区亚洲| 日韩在线高清观看一区二区三区| 久久亚洲国产成人精品v| 一级黄色大片毛片| 午夜福利在线在线| 香蕉av资源在线| 国产精品三级大全| 精品免费久久久久久久清纯| 俄罗斯特黄特色一大片| 欧美在线一区亚洲| 最近在线观看免费完整版| 在现免费观看毛片| 久久久色成人| 插阴视频在线观看视频| 可以在线观看的亚洲视频| 精品久久久久久成人av| av福利片在线观看| 精品午夜福利在线看| 国产亚洲av嫩草精品影院| 国产大屁股一区二区在线视频| av天堂中文字幕网| 国产高清激情床上av| 久久久精品欧美日韩精品| 久久久精品94久久精品| 国产一区二区在线av高清观看| 听说在线观看完整版免费高清| 99国产精品一区二区蜜桃av| 日本欧美国产在线视频| 人妻少妇偷人精品九色| 欧美色欧美亚洲另类二区| 久久久欧美国产精品| 大型黄色视频在线免费观看| 偷拍熟女少妇极品色| 成年免费大片在线观看| 大香蕉久久网| 免费av毛片视频| 亚洲va在线va天堂va国产| 国产综合懂色| 亚洲一区二区三区色噜噜| 国产亚洲91精品色在线| 免费在线观看成人毛片| 亚洲欧美日韩东京热| 婷婷色综合大香蕉| 久久午夜福利片| 国产在视频线在精品| 亚洲中文字幕日韩| 亚洲无线在线观看| 女的被弄到高潮叫床怎么办| 国产精品久久久久久久电影| АⅤ资源中文在线天堂| 久久精品国产亚洲网站| 网址你懂的国产日韩在线| 亚洲美女视频黄频| 午夜福利视频1000在线观看| 午夜日韩欧美国产| 色噜噜av男人的天堂激情| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| 亚洲成人av在线免费| 亚洲一级一片aⅴ在线观看| 给我免费播放毛片高清在线观看| 亚洲精华国产精华液的使用体验 | 色综合站精品国产| 成熟少妇高潮喷水视频| 国产一级毛片七仙女欲春2| 国产亚洲91精品色在线| 国产单亲对白刺激| 日本黄色视频三级网站网址| 精品久久久久久久久av| 久久人人爽人人片av| 特级一级黄色大片| 热99在线观看视频| 男插女下体视频免费在线播放| 人妻丰满熟妇av一区二区三区| ponron亚洲| 中文字幕熟女人妻在线| 一卡2卡三卡四卡精品乱码亚洲| 黄色日韩在线| 五月玫瑰六月丁香| 成人鲁丝片一二三区免费| 国内精品一区二区在线观看| 精品午夜福利在线看| 亚洲人与动物交配视频| 99久久九九国产精品国产免费| 久久久成人免费电影| 午夜精品在线福利| 亚洲欧美成人精品一区二区| 国产伦精品一区二区三区视频9| 美女cb高潮喷水在线观看| 可以在线观看毛片的网站| 日韩精品青青久久久久久| 国产精品女同一区二区软件| 午夜久久久久精精品| av在线蜜桃| 日韩强制内射视频| 晚上一个人看的免费电影| 婷婷精品国产亚洲av| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 日韩国内少妇激情av| 99久久精品热视频| 国产麻豆成人av免费视频| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄 | 亚洲av熟女| 亚洲天堂国产精品一区在线| 日产精品乱码卡一卡2卡三| 一区二区三区四区激情视频 | av天堂中文字幕网| 国产国拍精品亚洲av在线观看| 久久99热6这里只有精品| 少妇高潮的动态图| 欧美精品国产亚洲| 亚洲性久久影院| av国产免费在线观看| 欧美激情在线99| 又黄又爽又刺激的免费视频.| 久久精品人妻少妇| 久久午夜福利片| 青春草视频在线免费观看| av中文乱码字幕在线| 卡戴珊不雅视频在线播放| 精品久久久噜噜| 欧美又色又爽又黄视频| 俺也久久电影网| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 午夜老司机福利剧场| 成人欧美大片| 国产精品av视频在线免费观看| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜添av毛片| 国产成人91sexporn| 精品人妻熟女av久视频| 欧美激情久久久久久爽电影| 国产一区二区激情短视频| 亚洲精品456在线播放app| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 国产精品永久免费网站| 蜜臀久久99精品久久宅男| 亚洲国产精品成人综合色| 天堂网av新在线| 无遮挡黄片免费观看| 在线观看午夜福利视频| 国产免费男女视频| 国产av不卡久久| 干丝袜人妻中文字幕| 熟女电影av网| а√天堂www在线а√下载| 国产在线精品亚洲第一网站| 午夜福利18| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| 亚洲一级一片aⅴ在线观看| 在线看三级毛片| 免费av不卡在线播放| 精品久久国产蜜桃| 一本精品99久久精品77| 精品人妻视频免费看| 日本一二三区视频观看| 人妻制服诱惑在线中文字幕| 亚洲av成人av| 久久久国产成人精品二区| 欧美区成人在线视频| a级毛片a级免费在线| 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| 欧美激情在线99| 成人综合一区亚洲| 色综合亚洲欧美另类图片| 午夜激情福利司机影院| 国内精品美女久久久久久| 午夜亚洲福利在线播放| 天堂av国产一区二区熟女人妻| 国产一区二区三区av在线 | 亚洲欧美日韩卡通动漫| 欧美色视频一区免费| 国产大屁股一区二区在线视频| 黄色日韩在线| eeuss影院久久| 18禁在线播放成人免费| 男插女下体视频免费在线播放| 十八禁国产超污无遮挡网站| 精品熟女少妇av免费看| 草草在线视频免费看| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久丰满| 在线观看66精品国产| 亚洲成人中文字幕在线播放| 亚洲国产欧美人成| 久久午夜亚洲精品久久| 久久人妻av系列| 欧美日韩一区二区视频在线观看视频在线 | 亚洲自偷自拍三级| 日韩亚洲欧美综合| 一级毛片aaaaaa免费看小| 老熟妇仑乱视频hdxx| 日韩强制内射视频| 日本黄色片子视频| 欧美+日韩+精品| 搡老岳熟女国产| 性插视频无遮挡在线免费观看| 久久人妻av系列| ponron亚洲| 中国国产av一级| 国产高清三级在线| 男女下面进入的视频免费午夜| 亚洲精品影视一区二区三区av| 亚洲第一电影网av| 日韩,欧美,国产一区二区三区 | 一本精品99久久精品77| 日韩精品中文字幕看吧| 国产高潮美女av| 亚洲欧美日韩无卡精品| 国产私拍福利视频在线观看| 色综合站精品国产| 卡戴珊不雅视频在线播放| 久久久国产成人免费| 成年女人毛片免费观看观看9| 又爽又黄a免费视频| 在线国产一区二区在线| 少妇高潮的动态图| 国产女主播在线喷水免费视频网站 | 插逼视频在线观看| 国产成人a∨麻豆精品| 看黄色毛片网站| 色吧在线观看| 校园春色视频在线观看| 少妇人妻一区二区三区视频| 精品无人区乱码1区二区| 国产熟女欧美一区二区| av视频在线观看入口| 亚洲精华国产精华液的使用体验 | 禁无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 最近视频中文字幕2019在线8| 日韩欧美国产在线观看| 少妇丰满av| 亚洲成人久久爱视频| 在线观看66精品国产| 一个人免费在线观看电影| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 欧美3d第一页| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 人妻制服诱惑在线中文字幕| 亚洲无线在线观看| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 麻豆av噜噜一区二区三区| 亚洲成人av在线免费| 欧美精品国产亚洲| videossex国产| 级片在线观看| 国产三级中文精品| 偷拍熟女少妇极品色| 人妻少妇偷人精品九色| 中文字幕av在线有码专区| 国内揄拍国产精品人妻在线| 禁无遮挡网站| 国产 一区 欧美 日韩| ponron亚洲| 美女xxoo啪啪120秒动态图| 少妇人妻精品综合一区二区 | 又爽又黄a免费视频| 精品久久久久久久久亚洲| 美女 人体艺术 gogo| 国产午夜福利久久久久久| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 露出奶头的视频| 免费观看精品视频网站| 天堂√8在线中文| 老师上课跳d突然被开到最大视频| 黄片wwwwww| 99热6这里只有精品| 国内精品美女久久久久久| 最后的刺客免费高清国语| 国产白丝娇喘喷水9色精品| 国产精品爽爽va在线观看网站| 国内久久婷婷六月综合欲色啪| 又粗又爽又猛毛片免费看| videossex国产| 日本爱情动作片www.在线观看 | 欧美人与善性xxx| 无遮挡黄片免费观看| 亚洲四区av| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久大av| 日本欧美国产在线视频| 美女被艹到高潮喷水动态| 久久久久久久久大av| 成人鲁丝片一二三区免费| 成年女人看的毛片在线观看| 免费看美女性在线毛片视频| 99久久成人亚洲精品观看| 国产三级中文精品| 亚洲婷婷狠狠爱综合网| 成人精品一区二区免费| 美女免费视频网站| 日韩亚洲欧美综合| 国内精品一区二区在线观看| 亚洲熟妇熟女久久| 精品久久久久久成人av| 欧美+亚洲+日韩+国产| 国产成人a∨麻豆精品| 成人精品一区二区免费| 久久99热这里只有精品18| 欧美色欧美亚洲另类二区| 你懂的网址亚洲精品在线观看 | 亚洲美女黄片视频| videossex国产| 国产精品一区二区三区四区免费观看 | 国产麻豆成人av免费视频| 免费人成在线观看视频色| 欧美+亚洲+日韩+国产| 国产一区二区三区在线臀色熟女| 欧美色欧美亚洲另类二区| 亚洲专区国产一区二区| 亚洲熟妇中文字幕五十中出| 老司机影院成人| 精品99又大又爽又粗少妇毛片| 亚洲最大成人中文| 国产精品免费一区二区三区在线| 春色校园在线视频观看| 99精品在免费线老司机午夜| 美女大奶头视频| 免费搜索国产男女视频| 久久久久精品国产欧美久久久| 男人舔奶头视频| 欧美成人a在线观看| 日韩成人伦理影院| 一a级毛片在线观看| 在现免费观看毛片| 久久久精品大字幕| 国产女主播在线喷水免费视频网站 | 亚洲性夜色夜夜综合| 欧美3d第一页| 91在线观看av| 日本精品一区二区三区蜜桃| 久久99热6这里只有精品| 日韩在线高清观看一区二区三区| 国产蜜桃级精品一区二区三区| 久久久国产成人免费| 99久久九九国产精品国产免费| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 亚洲激情五月婷婷啪啪| av在线播放精品| 人妻丰满熟妇av一区二区三区| 日本 av在线| 一进一出抽搐动态| 一个人看的www免费观看视频| 嫩草影院精品99| 精品人妻一区二区三区麻豆 | 91久久精品国产一区二区成人| 欧美另类亚洲清纯唯美| 国产av在哪里看| 久久九九热精品免费| 日韩国内少妇激情av| 一区福利在线观看| 91久久精品国产一区二区成人| 97超碰精品成人国产| 亚洲av.av天堂| 亚洲国产精品成人久久小说 | 在线a可以看的网站| 俄罗斯特黄特色一大片| 老女人水多毛片| 一进一出抽搐gif免费好疼| 最近中文字幕高清免费大全6| 天堂影院成人在线观看| 亚洲真实伦在线观看| 一本一本综合久久| 人人妻人人看人人澡| 欧美精品国产亚洲| 老司机福利观看| 久久鲁丝午夜福利片| 国产精品日韩av在线免费观看| 麻豆精品久久久久久蜜桃| 国产精品国产高清国产av| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 你懂的网址亚洲精品在线观看 | 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 欧美最新免费一区二区三区| 久久久久久久午夜电影| 久久人妻av系列| 日韩精品有码人妻一区| 别揉我奶头~嗯~啊~动态视频| 亚洲精品一卡2卡三卡4卡5卡| 哪里可以看免费的av片| 亚洲第一电影网av| 悠悠久久av| а√天堂www在线а√下载| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 老司机影院成人| 高清午夜精品一区二区三区 | 一级毛片我不卡| 久久久久国产精品人妻aⅴ院| 欧美日韩乱码在线| 99热精品在线国产| 婷婷六月久久综合丁香| 中出人妻视频一区二区| 99国产极品粉嫩在线观看| 给我免费播放毛片高清在线观看| 91在线观看av| 免费高清视频大片| 精品久久久久久久久久久久久| 成人av一区二区三区在线看| 亚洲欧美清纯卡通| 变态另类成人亚洲欧美熟女| 色av中文字幕| 丝袜喷水一区| 久久亚洲精品不卡| 国产乱人偷精品视频| 久久婷婷人人爽人人干人人爱| 国产精品永久免费网站| 久久99热这里只有精品18| 欧美高清性xxxxhd video| 一a级毛片在线观看| 欧美3d第一页| 久久精品人妻少妇| 国产淫片久久久久久久久| 在线天堂最新版资源| 丝袜美腿在线中文| 国产精品亚洲美女久久久| 欧美一区二区国产精品久久精品| 淫妇啪啪啪对白视频| 国产私拍福利视频在线观看| 亚洲不卡免费看| 日韩中字成人| 极品教师在线视频| av中文乱码字幕在线| 免费在线观看成人毛片| 久久热精品热| av女优亚洲男人天堂| 身体一侧抽搐| 国产精华一区二区三区| 国产老妇女一区| 国产精品久久视频播放| 白带黄色成豆腐渣| 欧美激情在线99| 大香蕉久久网| 色播亚洲综合网| 三级经典国产精品| 亚洲高清免费不卡视频| 国产毛片a区久久久久| 狠狠狠狠99中文字幕| 夜夜看夜夜爽夜夜摸| 秋霞在线观看毛片| 九九久久精品国产亚洲av麻豆| 欧美最黄视频在线播放免费| 日本a在线网址| 高清午夜精品一区二区三区 | 国产精品人妻久久久久久| 91久久精品国产一区二区成人| 精品一区二区三区人妻视频| 最新在线观看一区二区三区| 我的女老师完整版在线观看| 午夜日韩欧美国产| 一区二区三区免费毛片| 男女啪啪激烈高潮av片| 亚洲不卡免费看| 精品久久久久久久久av| 婷婷亚洲欧美| 国产精品一区www在线观看| 97人妻精品一区二区三区麻豆| 中文在线观看免费www的网站| 丰满乱子伦码专区| 网址你懂的国产日韩在线| 成人性生交大片免费视频hd| 一a级毛片在线观看| 午夜精品一区二区三区免费看| 日韩欧美免费精品| 国产精品亚洲一级av第二区| 麻豆精品久久久久久蜜桃| 日韩欧美一区二区三区在线观看| 亚洲中文日韩欧美视频| 女人十人毛片免费观看3o分钟| 国内精品美女久久久久久| 成人二区视频| 亚洲自偷自拍三级| 伊人久久精品亚洲午夜| 国产亚洲精品久久久com| 亚洲自拍偷在线| 久久久久久久亚洲中文字幕| 日韩欧美免费精品| 寂寞人妻少妇视频99o| 成年女人毛片免费观看观看9| 国产一区亚洲一区在线观看| 伊人久久精品亚洲午夜| 麻豆成人午夜福利视频| 男女下面进入的视频免费午夜| 99精品在免费线老司机午夜| 卡戴珊不雅视频在线播放| 日韩人妻高清精品专区| 国产精品永久免费网站| 听说在线观看完整版免费高清| 国产精品亚洲一级av第二区| 99热这里只有是精品在线观看| 久久中文看片网| 欧美+日韩+精品| 在现免费观看毛片| 国产一区二区在线观看日韩| 欧美潮喷喷水| 亚洲高清免费不卡视频| 国产男靠女视频免费网站| 久久人妻av系列| 综合色丁香网| 精品一区二区三区人妻视频| 色av中文字幕| 成人特级av手机在线观看| 一级黄色大片毛片| 成年免费大片在线观看| 亚洲自偷自拍三级| 黄色一级大片看看| 最近的中文字幕免费完整| 国产精品久久久久久精品电影| 欧美日本视频| 男插女下体视频免费在线播放| 深夜a级毛片| 精品国内亚洲2022精品成人| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕 | 亚洲电影在线观看av| 91精品国产九色| 哪里可以看免费的av片| h日本视频在线播放| 麻豆乱淫一区二区| 日韩三级伦理在线观看| 久久鲁丝午夜福利片| 精品人妻熟女av久视频| 免费av毛片视频| 欧美+日韩+精品| av女优亚洲男人天堂| 久久婷婷人人爽人人干人人爱| 日韩成人伦理影院| 精品欧美国产一区二区三| 国产不卡一卡二| 赤兔流量卡办理| 亚洲va在线va天堂va国产| 久久国产乱子免费精品| a级一级毛片免费在线观看| 最后的刺客免费高清国语| 国产真实伦视频高清在线观看| 免费人成在线观看视频色| 亚洲高清免费不卡视频| 亚洲乱码一区二区免费版| 青春草视频在线免费观看| 性插视频无遮挡在线免费观看| 国产男靠女视频免费网站| 亚洲欧美日韩高清在线视频| 男女视频在线观看网站免费| av在线观看视频网站免费| 亚洲在线自拍视频| 国产成人a∨麻豆精品| 最好的美女福利视频网| 联通29元200g的流量卡| videossex国产| 亚洲精品日韩av片在线观看| 日韩一区二区视频免费看| 最后的刺客免费高清国语| 午夜福利在线观看吧| 村上凉子中文字幕在线| av专区在线播放| 午夜免费激情av| 一a级毛片在线观看| 成人欧美大片| 一本久久中文字幕| 久久精品国产自在天天线| 亚洲精华国产精华液的使用体验 | 欧美潮喷喷水| 18禁裸乳无遮挡免费网站照片| eeuss影院久久| 亚洲国产日韩欧美精品在线观看|