• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active disturbance rejection control:between the formulation in time and the understanding in frequency

    2016-05-14 06:52:03QingZHENGZhiqiangGAO
    Control Theory and Technology 2016年3期
    關(guān)鍵詞:大偉小鵬塑料瓶

    Qing ZHENG ,Zhiqiang GAO

    1.Department of Electrical and Computer Engineering,Gannon University,Erie,PA 16541,U.S.A.;

    2.Center for Advanced Control Technologies,Department of Electrical and Computer Engineering,Cleveland State University,Cleveland,OH 44115,U.S.A.

    1 Introduction

    As the object to be controlled,physical plants in real world are not just nonlinear and time-varying but also highly uncertain.As the well-known control theorist Roger Brockett puts it:“If there is no uncertainty in the system,the control,or the environment,feedback control is largely unnecessary”[1].For much of its history,however,mathematical control theory has been developed largely based on the premise that a physical plant behaves rather closely as its mathematical model describes.Serving as the point of departure in control system design,this assumption does not reflect either the necessity of feedback control,nor the physical reality.The premise of model has stimulated in the last few decades lively debates and rapid new developments,such as those under the umbrella of robust,adaptive,and nonlinearcontrol.Butthe dependence on the model proves difficultto shake loose even though the engineering practice of automatic control has taught us that PID,with over a hundred years of history,is still the king,and that engineers by and large have little use of design techniques premised on a detailed mathematical model of the physical process to be controlled.

    The practicality of a model-based design can be problematic in two regards:1)it could be rather expensive to obtain a detailed mathematical model;2)even if such a model is obtained,the uncertainties in the process,particularly the changes in the system dynamics,could easily render such model obsolete during operation.Such problems prove to be hard to overcome even with the most advanced techniques such as those known as robustcontrol,where the controlleris made tolerantofuncertainties to some degree but still requires nonetheless a fairly detailed and accurate mathematical model of the plant.For example,the robust control design methodology based on the small gain theorem does allow a small amount of uncertainties in plant dynamics,but not anywhere near the magnitude often encountered in practice.The problem of controlling a process of a large amount of dynamic uncertainties remains unsolved until a new paradigm,namely active disturbance rejection control(ADRC),came to the scence.

    The ADRC resonates with practical minded researchers from the very beginning when Han argued that there must be a way to control a process independent of its mathematical model.The framework and conceptual underpining gradually took shape in the span of two decades between 1989 and 2009,as explained in[2–11].They fundamentally differ from other disturbance-centric design methods in the very concept of disturbance,which has been widely taken as forces external to the process to be controlled.Han inherited the notion of disturbance from H.S.Tsien that is more general and inclusive,including both the internal as well as the external disturbance.Tsien coined the term internal disturbance but Han took it to the next level,namely the total disturbance,which could very well be a function of the states of the process.In doing so,Han found a way to deal with the problem of large amount of dynamic uncertainties and to escape from the suffercating hold of the model-based design methodology.

    The solution turns out to be a simple one:treat the process dynamics and external disturbance alike;lump them into a whole called the total disturbance;and then find a way to estimate and cancelit,reducing the process dynamics to an ideal,disturbance-free form.It is therefore obvious that whole enterprise comes down to the question of if such disturbance can be indeed estimated and cancelled.To this end Han left us with the extended state observer(ESO)[4],in a manner of experimental science:daring hypothesis followed by two decades of meticulously constructed tests,both in simulation and experimentations.In fact,Han pioneered the method of investigation in search of effective control mechanisms using computer simulation as the main tool[11].

    To be sure,disturbance estimation and cancellation has been studied by many researchers over the years and many solutions have been offered,such as the unknown input observer(UIO)[12–19],the disturbance observer(DOB)[20–27],and the perturbation observer(POB)[28–31].Two recent surveys can be found in[32,33].The key difference from ADRC is that they are intended to compliment the existing model-based paradigm rather than replacing with a new one.The new ADRC paradigm started slowly but picked up speed recently,largely propelled by its large scale adoption as a viable industrial solution,threatening the dominance of the PID solution.What was for a long time an experimental solution all the sudden acquired the attention of researchers intending to grasp its stability properties.This paper summarizes some recent results in the analysis of linear ADRC(LADRC)and offers explanations in the frequency response language with which practicing engineers are familiar.

    Ais Hurwitz for the αi,i=1,2,...,n+1,chosen above.

    The paper is organized as follows.The time domain formulation of the ADRC is presented in Section 2.The engineering insight from frequency responses is discussed in Section 3.The time domain and frequency domain connection is given in Section 4.The time domain validation is shown in Section 5.The paper ends with a few concluding remarks in Section 6.

    2 Time domain formulation of the ADRC

    The ADRC was originally proposed as a combinatin of a tracking differentiator(TD)plus an ESO with a nonlinearform[3].The key ofthe ADRC is the ESO.In[41],the ADRC was proposed to be realized with a PD controller and a linear extended state oberser(LESO),formulating a LADRC.In this paper,the presented ADRC approach refers to LADRC.

    伴隨就業(yè)問題的凸顯,大學生在就業(yè)中的焦慮問題越越來越普遍。就業(yè)焦慮按照在就業(yè)問題上的具體表現(xiàn)分為:沖動型(高焦慮階段高效能)、無助型(低焦慮階段、效能低)、穩(wěn)健型(低焦慮階段 高效能)、冷漠型(低焦慮階段、低效能)

    First the ESO design is presented.Consider a generally nonlinear time-varying dynamic system with singleinput,u,and single-outputy,

    wherewis the external disturbance andbis a given constant.Heref(y(n-1)(t),y(n-2)(t),...,y(t),w(t)),or simply denoted asf,represents the nonlinear time-varying dynamics of the plant that is unknown.That is,for this plant,only the order and the parameterbare given.The ADRC is a unique method designed to tackle this problem.It is centered around estimation of,and compensation for,f.To this end,assumingfis differentiable and leth= ˙

    f,(1)can be written in an augmented state space form

    wherex=[x1x2···xn+1]T∈Rn+1,u∈R andy∈R are the state,input and output of the system,respectively.Any state observer of(2),will estimate the derivatives ofyandfsince the latter is now a state in the extended state model.Such observers are known as ESO.

    本文試圖從Github開源社區(qū)軟件開發(fā)演進過程的數(shù)據(jù)入手,通過存儲庫數(shù)據(jù)挖掘的方法找到一種能夠?qū)﹂_源軟件的成功度進行客觀量化度量的、簡單易行的新方法,從而使能開源軟件開發(fā)團隊快速了解所開發(fā)軟件的成功程度和團隊狀況,明確影響開源軟件成功的關(guān)鍵因素,指導開源軟件的領(lǐng)導者采取合適的行動.

    綜上所述,安列克聯(lián)合縮宮素和益母草比單獨縮宮素聯(lián)合益母草預防前置胎盤產(chǎn)后出血的療效好并且安全,值得臨床推廣。

    Withuandyas inputs,the ESO of(2)is given as

    ⑥后期維護便利性。治理工程后期維護要方便簡捷,工程不需要頻繁維護,工程在遭到簡單破壞后能完成自我修復。

    wherex=[x1x2···xn+1]T∈Rn+1,andli,i=1,2,...,n+1,are the observer gain parameters to be chosen.In particular,let us consider a special case where the gains are chosen as

    The first attempt at the rigorous study of stability of the ADRC solution can be found in[34],where,for the sake of ease,the nonlinear gain structure of the original ADRC is replaced with a linear one.For the first time the convergence of the ESO and the bound on the tracking error in the ADRC were established,which lent support to the engineering success ofthe ADRCand furtherstimulated research interests on the subject.The research has grown more intensely and fruitfully since then,as can be seen in the more recent publications in[35–40].But there is one nagging problem that refuses to go away:the more rigorous study of ADRC has done little to provide guidance to its engineering applications.This paper intends to address this issue,as one of the languages.In particular,we believe that the language of the time domain analysis based on solving differential equations must be intimately connected with the language of frequency responses with which engineers are familiar.This can be done,as shown earlier in[34],by solving the differential equation and examining the properties of the solutions directly,instead of using the Lyapunov type of methods that tend to be rather conservative and cubersome.

    and ωo,the observer bandwidth,becomes the only tuning parameter of the observer.

    When a system model is known,then with the given functionh,the ESO of(2)now takes the form of

    蘭江大橋高高地矗立著。蔣大偉把車開到路邊,兩人仰頭看著大橋。橋上,車輛在不停地穿梭流動。蔣大偉低聲地:這就是蘭江大橋!鄭馨默默看著大橋,沒有說話。蔣大偉繼續(xù)說道:我沒說錯吧,蘭江大橋很有氣勢,很美。鄭馨還是沒說話,她打開車門,蔣大偉:就這么下車了,不想再說點什么嗎?鄭馨仍然沒說話,蔣大偉急了:等等!臨死之前,還有什么未了之事,或許我能再幫你個忙。鄭馨皺緊眉頭,像竭力想著什么。蔣大偉說:反正是快死的人了,沒什么不好說的。鄭馨想了想,咬牙切齒地:我想等陳曉來,讓他看看我是怎么死的!

    Assume that the control design objective is to make the outputofthe plantin(1)follow a given,bounded,reference signalr,whose derivatives,˙r,¨r,...,r(n),are also bounded.Let[r1r2...rnrn+1]T=[r˙r1···˙rn-1˙rn]T.Employing the ESO of(2)in the form of(3)or(6),the ADRC control law is given as

    whereki,i=1,2,...,n,are the controller gain parameters selected to makesn+knsn-1+...+k1Hurwitz.The closed-loop system becomes

    Note that with a well-designed ESO,the first term in the right hand side(RHS)of(8)is negligible and the rest of the terms in the RHS of(8)constitutes a generalized PD controller with a feedforward term.It generally works very well in applications but the issues to be addressed are:1)the stability of the closed-loop system(8);and 2)the bound of the tracking error.Note that the separation principal does not apply here because of the first term in the RHS of(8).

    3 Engineering insight from frequency responses

    Most of the development and analysis of the ADRC have only been shown in time domain.In[42],frequency-domain analysis of the ADRC is performed to quantify its performance and stability characteristics.In[43],it is shown that the amount of uncertainties can be reduced by way of active disturbance rejection,implemented in an inner loop to produce a well-behaved plant,which is then regulated by another controller in the outer loop.In[44],the ESO is brought into the frequency domain to show to what degree it forces the plant to behave like cascaded integrators and what can be done to improve the performance when the ESO is bandwidth limited.Some rigorous analysis for the frequency domain properties of ADRC has been given in[45].

    3.1 Frequency response analysis

    Consider a linear time-invariant second-order plant:

    witha0anda1unknown,f=-a1˙y-a0yin this particular case.Since both the plant and the controller are linear,the robustness of the control system can be evaluated using frequency response.If ADRC indeed estimatesfand cancels it out,then we should see very little change in bandwidth and stability margins whena0anda1vary.

    The Bode plots of the loop gain transfer function are shown in Fig.1.With ωc= ωo=100 rad/s,b=206.25,a1=3.085,anda0=[0 0.1 1 10 100],Fig.1(left)shows that,remarkably,gain margin,phase margin and cross-over frequency are almost immune to changes ina0.Similarly,with ωc= ωo=100 rad/s,b=206.25,a0=0,anda1=[0.1 1 3.085 10 100],Fig.1(right)demonstrates that gain margin,phase margin and crossover frequency are just as insensitive to changes ina1as to those ina0.

    從對落實基礎(chǔ)知識調(diào)查的問卷調(diào)查數(shù)據(jù)發(fā)現(xiàn),有24.78%的學生需要老師對基礎(chǔ)知識講的更詳細,這部分學生基礎(chǔ)知識落實較差,需要另外采取措施去落實和鞏固,不然沒有扎實的基礎(chǔ)知識的學生談何提升能力,談何培養(yǎng)學生的地理核心素養(yǎng)。針對學生反映的課前預習效果偏低的問題,可從教師和學生兩方面共同解決。教師采取課堂檢查和督促課后鞏固相結(jié)合。

    Fig.1 Loop gain Bode plots at different a0 and a1.(a)and(c):a0=0,0.1,1,10,100.(b)and(d):a1=0.1,1,3.085,10,100.

    First,consider the ESO with the given model of the plant.Let?xi=xi-xi,i=1,2,...,n+1.From(2)and(6),the observer estimation error for the system with a given model can be shown as

    3.2 Uncertainty reduction through active disturbance rejection

    The theme ofmodern controlis how to getaround the unknowns,i.e.,model uncertainties and disturbances,so that they do not degrade what is valued:stability and performance.In[43],it is demonstrated that the uncertainty stemming from both the external disturbance and the unknown internal dynamics,which is the subject of intense research efforts in the last few decades,can be greatly reduced through active disturbance rejection.Accordingly,it is demonstrated that control of uncertain system can be carried out in two steps:1)reducing the uncertain plant,via active disturbance rejection,to a class of cascaded integral plants;and 2)design the front end controller for these compensated plants.

    得到老師的表揚后,越來越多的孩子開始幫助小鵬。一天,我看到教室地上有個塑料瓶和一張廢紙片,就在我準備彎腰的一剎那,一個學生搶先一步撿走了塑料瓶,然后對著小鵬喊:“小鵬,給你一個塑料瓶。”而地上的紙片卻一直無人問津。頓時,我眼前一亮:如果紙片也能像塑料瓶一樣有人收集利用、變廢為寶的話,那些躺在地上的廢紙就不會無人理睬了,是不是也會像塑料瓶那樣被孩子們搶著撿呢?

    某高速公路設(shè)計速度為100km/h,路基寬度28m,路面結(jié)構(gòu)形式為半剛性基層瀝青路面,基層設(shè)計為34cm水泥穩(wěn)定碎石,考慮到開放交通后,交通量較大,可能有大量重型運輸車輛通行,研究決定在試驗路使用異步連續(xù)攤鋪技術(shù)進行半剛性基層施工,以提高基層整體性與承載能力,為該技術(shù)在全線展開打下基礎(chǔ)。

    To demonstrate the effectiveness of the ESO in uncertainty reduction,consider a second order plant with wherer0is the modeling error in steady state,r∞is an uncertainty scalar at high frequency,and τ-1is the frequency at which the system is completely unknown.Herer0=1,τ-1=0.2π,andr∞=5.The perturbed plant is of the form:

    If the ESO can fairly estimate the total disturbance,then the purtubed plant(10)can be reduced to¨y=u0.Bode plots of the transfer function for the plant¨y=u0fromu0toyare shown for different observer bandwidths in Fig.2.It demonstrates the amount of uncertainty reduction by the ESO.Clearly,the quality of uncertainty reduction is directly correlated to the bandwidth:the higher the ωo,the closer the compensated plant is to the ideal double integral plant.From Fig.2 it is concluded that the plant fromu0toyis reduced to a pure double integrator with very small error up to the frequency of 0.1ωo.That is,the control design problem is reduced to dealing with a pure double integral plant at or below the frequency of 0.1ωo.

    走進柳州,郁郁蔥蔥的城市綠化和優(yōu)美宜人的生態(tài)環(huán)境,映入眼簾。一如廣西許多地方一樣,山清水秀,鳥語花香。然而在保持這樣的生態(tài)環(huán)境之下,柳州被冠以“西南工業(yè)重鎮(zhèn)”的名號。工業(yè)化與生態(tài)環(huán)境建設(shè),不可多見地在柳州和睦相處。

    Fig.2 Magnitude plot of the compensated plant.

    3.3 The enhanced ADRC design with a low observer bandwidth

    Fig.3 Single integral plant acting as double integral.

    By assigning allpoles ofthe observertoωo,denoted as the observer bandwidth,the process of selecting gains in ESO becomes one of simply tuning ωo.The modified plant,i.e.,the transfer function fromu0toy,can be shown as

    Note that the denominator contains a low-pass filter of ordern+1 with a corner frequency of ωo.If this is imagined as an ideal filter,where it acts as unity gain at and below the corner frequency but zero gain above it,the frequency response of(11)can be expressed as

    It can be seen from(12)that the modified plant acts as perfect integrators of ordernwithin the bandwidth of the observer.At high frequencies,it will instead follow the response of the plant.It can be assumed that if an infinite bandwidth could be selected in an ideal world without noise or sampling,then the plant would indeed act as a perfect integral of ordernregardless ofGp.By rearranging(11)as(13),the transition from the desired integral form at low frequency to the original plant at the high frequency can be captured by the transfer function ofˉGp(s)in the form of(13),where a low-pass filter shapes the plant into the integral form at low frequency and a high-pass filter shapes the plant at high frequency.

    從表2可以看出,實驗組學生在出科考核中的理論知識、操作技能、臨床思維方面均優(yōu)于對照組學生,由此得出結(jié)論,采用虛擬技術(shù)輔助教學模式的實驗組教學效果明顯優(yōu)于采用傳統(tǒng)教學方法的對照組。從表3 可以看出,在教學滿意評價調(diào)查問卷中,實驗組的各項滿意度評價均高于對照組。

    Fig.4 Closed-loop poles for the 1st order plant as ωo varies.

    This pattern is the same for any stable first-order plant.By monitoring how the poles ofthe modified plant move,it can be better understood how ADRC forces the plant to behave like cascaded integrators.The information about the imperfection can be used in the control design to better accommodate the remaining dynamics beyond the cascaded integrators.

    4 Time domain and frequency domain connection

    In[41],the ESOand the associated controllerwere parameterized,thusly LESO and LADRC were formulated.In that paper,the observer bandwidth and controller bandwidth,which engineers are familiar with,were first connected to ESO and ADRC as the tuning paramters.The parameterization of ESO and ADRC makes the concept very easy to understand and implement by engineers,therefore widely used in practice[46–48].Critical to the connection between time domain formulation and frequency domain insights is established through the use of bandwidth in time domain analysis.

    In many real world scenarios,the plant dynamics represented byfis mostly unknown.The ESO design for a system with dynamics largely unknown is shown below.

    With the parameterized ADRC,the first attempt at the rigorous study of stability of the ADRC solution can be found in[34].For the first time the convergence of the ESO and the bound on the tracking error in the ADRC were established by solving differential equations.The detailed derivations are given in[49].

    4.1 Convergence of the ESO error dynamics

    The results show that the active disturbance rejection based control system possesses a level of robustness that is rarely seen.The bandwidth and stability margins,in particular,are kept almost unchanged as the plant parameters vary significantly.

    加強學習提升素質(zhì)。每月組織1-2次學習會,集中學習《中國共產(chǎn)黨紀律處分條例》、《中國共產(chǎn)黨問責條例》等黨規(guī)黨紀、中央最新精神以及業(yè)務(wù)工作知識,加強平時自學,注重理論聯(lián)系實際,不斷提升隊伍素質(zhì)、能力,夯實監(jiān)督執(zhí)紀工作基礎(chǔ)。

    此方法需要把各方面變動所形成的差距聯(lián)系到一起,然后再逐一進行分析,整個過程的關(guān)鍵點在于需要確定“虧損邊界點”,然后在對其展開工作,需要注意的是,動態(tài)上所出現(xiàn)的變動因素與單位的盈虧是存在一定關(guān)聯(lián)的,而這對單位從經(jīng)營決策中采取相應(yīng)措施有很大的幫助。

    The proof of this theorem has been given in[50].

    When the plantdynamics is largely unknown,the ESO is designed as shown in(3).Consequently,the observer estimation error becomes

    The proof of this theorem has been given in[49].

    她爸爸是誰?大家不約而同地在心中畫了個問號。馬縣長走到何副書記面前說:“老何,殊書是吳軍同志的女兒,望你們在生活上多照顧點兒?!?/p>

    In summary,when the plant model is given and used in the ESO,the dynamic system describing the ESO estimation error is asymptotically stable;and in the absence of such model,the ESO estimation error is bounded and its upper bound monotonously decreases with the observer bandwidth.The stability characteristics of the ADRC,where the ESO is employed,is presented next.

    4.2 Stability characteristics of the ADR C

    In[49],the stability characteristics of the ADRC are presented for both the cases of the plant model given and plant dynamics largely unknow.

    For the case of the plant model given,one has the following theorem.

    Theorem 3Assumingh(x,u,w,˙w)is globally Lipschitz with respect tox,there exist constants ωo> 0 and ωc> 0,such that the closed-loop system(8)is asymptotically stable.

    Now we consider the case that the plant dynamics is unknown and the ESO in the form of(3)is used instead.

    The proofofTheorems 3 and 4 can be found in[49].In summary,with the given model of the plant,the closedloop system(8)is asymptotically stable;and with plant dynamics largely unknown,the tracking error and its up to(n-1)th order derivatives of the ADRC are bounded and their upper bounds monotonously decrease with the observer and controller bandwidths.

    The above analyses show thatthe observerbandwidth and control loop bandwidth are associated in the time domain stability analysis with the upper bounds of the observer error and the tracking error,respectively.This makes such analysis relevant to the common design considerations and concerns shared by practicing engineers.

    5 Time domain validation

    With the convergence ofthe ESOand the ADRC established,a simulation study of nonlinear plant with partial model information is presented below.

    Consider the following nonlinear system

    wherefrepresents the summation of the plant dynamics˙y3+yand the external disturbanced.

    Note that for a second order plant,the LESO in(6)and(3)is of the third order,wherex3is an estimate off.With a well-tuned observer,the control law is given

    wherek1= ω2c,andk2=2ωc.

    The LADRC tracking performance is shown in Fig.5 under three different scenarios:1)fis completely unknown;2)only partial internal dynamics information of the plantis given,i.e.,fpartial=˙y3;3)the internaldynamics of the plantfinis completely known,i.e.,fin=˙y3+yis given.In this simulation,the tuning parameters are ωc=4.5 rad/s and ωo=20 rad/s.Fig.5 shows the tracking errors between the reference and the output for three cases using a step input att=1 s as the excitation and a pulse disturbance with the amplitude of±20,the period of 4 s,the pulse width 5%of the period,and the phase delay of 4 s.From Fig.5,it can be observed that the tracking error of the control loop decreases as more model information is incorporated into the LADRC.

    Fig.5 The LADRC performance with different LESOs for the nonlinear system(LESO1:without plant information;LESO2:with partial plant information,i.e.,f partial=˙y3;LESO3:with complete plant information,i.e.,f in=˙y3+y is given).

    Note that the system(18)is a nonlinear system.The above simulation demonstrates that ADRC can control the nonlinear system with large uncertainties very well although the ADRC itself is linear.Many other approaches can deal with uncertainties,however,most of them can only handle small uncertainties.ADRC is a very simple and straightforward approach.It is easy to understand by engineers and easy to implement in real applications.From the above simulation,even˙f,i.e.,htends to∞,the ESO gain is still low.Therefore,the ESO is not a high gain observer.

    6 Conclusions

    In this paper,the time domain formulation and frequency domain understanding of the ADRC are connected.It is shown that the formulation of the ADRC in time domain can be easily understood by engineers with insights in the language of frequency responses,such as the bandwidth and stability margins.From both the frequency responses and the time domain validation,it is clear that the ADRC is unique in its ability of disturbance rejection and in its robustness to large uncertainties in process dynamics.It also shows that the stability characteistics of the ESO and the ADRC can be analyzed directly by solving the differential equations,instead of indirectly by using the standard techniques such as the Lyapunov methods.In doing so,the relationship between the error bounds and the ADRC bandwidth is disclosed.In the ADRC analysis and validation,one can see that the ADRC can handle nonlinear systems with large uncertainties and disturbances without the need of accurate mathematical model of the plant.Partial model information,if given,can and should be incoporated into the ESO for better performance,less noise sensitivity and the reduced bandwidth.

    [1] R.Brockett.New issues in the mathematics of control.Mathematics Unlimited–2001 and Beyond.B.Engquist,W.Schimid(eds).Berlin:Springer,2001:189–220.

    [2] J.Han.Is it control theory or model theory?Systems Science and Mathematical Sciences,1989,9(4):328–335(in Chinese).

    [3] J.Han.A class of extended state observers for uncertain systems.Control and Decision,1995,10(1):85–88(in Chinese).

    [4]J.Han.Nonlinear state error feedback control.Control and Decision,1995,10(3):221–225(in Chinese).

    [5] J.Han.Auto-disturbance rejection control and its applicationss.Control and Decision,1998,13(1):19–23(in Chinese).

    [6]J.Han.Nonlinear design methods for control systems.Proceedings of the 14th IFAC World Congress,Beijing,1999:521–526.

    [7]Z.Gao,Y.Huang,J.Han.An alternative paradigm for control system design.Proceedings of the IEEE Conference on Decision and Control,New York:IEEE,2001:4578–4585.

    [8] Z.Gao.Active disturbance rejection control:a paradigm shift in feedback control system design.Proceedings of the American Control Conference,New York:IEEE,2006:2399–2405.

    [9]Z.Gao.On the centrality of disturbance rejection in automatic control.ISA Transactions,2014,53(4):850–857.

    [10]Z.Gao.Active disturbance rejection control:from an enduring idea to an emerging technology.Proceedings of the 10th International Workshop on Robot Motion and Control,Poznan:IEEE,2015:269–282.

    [11]J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [12]G.Basile,G.Marro.On the observability of linear,time-invariant systems with unknown inputs.Journal of Optimization Theory and Applications,1969,2(6):410–415.

    [13]C.Johnson.Accommodation of external disturbances in linear regulator and servomechanism problems.IEEE Transactions on Automatic Control,1971,16(6):635–644.

    [14]G.Hostetter,J.Meditch.On the generalization of observers to systems with unmeasurable,unknown inputs.Automatica,1973,9(6):721–724.

    [15]C.Johnson.Theory of disturbance-accommodating controllers.Control and Dynamic Systems,1976,12:387–489.

    [16]V.Gourishangkar,P.Kudva,K.Ramar.Reduced-order observers for multivariable systems with inaccessible disturbance inputs.International Journal of Control,1977,25(2):311–319.

    [17]P.C.Muller.Indirect measurements of nonlinear effects by state observers.Nonlinear Dynamics in Engineering Systems,Berlin:Springer,1990:205–215.

    [18]J.Profeta,W.Vogt,M.Mickle.Disturbance estimation and compensation in linear systems.IEEE Transaction on Aerospace and Electronic Systems,1990,26(2):225–231.

    [19]J.Chen,R.J.Patton,H.Zhang.Design of unknown input observers and robust fault detection filters.International Journal of Control,1995,63(1):85–105.

    [20]T.Umeno,Y.Hori.Robust speed control of DC servo motors using modern two degrees-of-freedom controller design.IEEE Transactions on Industrial Electronics,1991,38(5):363–368.

    [21]Y.Hori,K.Shimura,M.Tomizuka.Position/force control of multiaxis manipulator based on the TDOF robust servo controller for each joint.Proceedings of the American Control Conference ACC/WM9,New York:IEEE,1992:753–757.

    [22]H.Lee,M.Tomizuka.Robust motion controller design for highaccuracy positioning systems.IEEE Transactions on Industrial Electronics,1996,43(1):48–55.

    [23]T.Mita,M.Hirata,K.Murata,et al.H∞control versus disturbance-observer-based control.IEEETransactionson Industrial Electronics,1998,45(3):488–495.

    [24]R.Bickel,M.Tomizuka.Passivity-based versus disturbance observer based robot control:equivalence and stability.ASME Journal of Dynamics Systems,Measurement,and Control,1999,121(1):41–47.

    [25]E.Schrijver,J.van Dijk.Disturbance observers for rigid mechanical systems:equivalence,stability,and design.ASME Journal of Dynamics Systems,Measurement,and Control,2002,124(4):539–548.

    [26]Y.Choi,K.Yang,W.K.Chung,et al.On the robustness and performance of disturbance observers for second-order systems.IEEE Transactions on Automatic Control,2003,48(2):315–320.

    [27]K.Yang,Y.Choi,W.Chung.On the tracking performance improvement of optical disk drive servo systems using errorbased disturbance observer.IEEE Transactions on Industrial Electronics,2005,52(1):270–279.

    [28]S.Kwon,W.K.Chung.Robust performance of the multiloop perturbation compensator.IEEE/ASME Transaction on Mechatronics,2002,7(2):190–200.

    [29]S.Kwon,W.K.Chung.A discrete-time design and analysis of perturbation observer for motion control applications.IEEE Transactions on Control Systems Technology,2003,11(3):399–407.

    [30]S.Kwon,W.K.Chung.Combined synthesis of state estimator and perturbation observer.ASME Journal of Dynamic Systems,Measurement,and Control,2003,125(1):19–26.

    [31]S.Kwon.Robust Kalman filtering with perturbation estimation process.Proceedings of the American Control Conference,New York:IEEE,2006:997–1002.

    [32]A.Radke,Z.Gao.A survey of state and disturbance observers for practitioners.Proceedings of the American Control Conference,New York:IEEE,2006:5183–5188.

    [33]W.Chen,J.Yang,L.Guo,et al.Disturbance observer-based control and related methods:an overview.IEEE Transactions on Industrial Electronics,2016,63(2):1083–1095.

    [34]Q.Zheng,L.Gao,Z.Gao.On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics.Proceedingsofthe46thIEEEConference on Decision and Control,New Orleans:IEEE,2007:3501–3506.

    [35]Z.Zhao,B.Guo.On convergence of nonlinear active disturbance rejection control for SISO nonlinear systems.Journalof Dynamical and Control Systems,2016,22(2):385–412.

    [36]Y.Huang,W.Xue.Active disturbance rejection control:methodology and theoretical analysis.ISA Transactions,2014,53(4):963–976.

    [37]B.Guo,H.Zhou.The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance.IEEE Transactions on Automatic Control,2015,60(1):143–157.

    [38]B.Guo,F.Jin.The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance.Automatica,2013,49(9):2911–2918.

    [39]B.Guo,Z.Zhao.On convergence of the nonlinear active disturbance rejection control for MIMO systems.SIAM Journal on Control and Optimization,2013,51(2):1727–1757.

    [40]B.Guo,Z.Zhao.On the convergence of extended state observer fornonlinearsystems with uncertainty.Systems&ControlLetters,2011,60(6):420–430.

    [41]Z.Gao.Scaling and parameterization based controller tuning.ProceedingsoftheAmericanControlConference,New York:IEEE,2003:4989–4996.

    [42]G.Tian,Z Gao.Frequency response analysis ofactive disturbance rejection based control system.IEEE Multi-conference on Systems and Control,New York:IEEE,2007:1167–1172.

    [43]J.Csank,Z Gao.Uncertainty reduction through active disturbance rejection.Proceedings of the American Control Conference,New York:IEEE,2008:3689–3694.

    [44]J.Tatsumi,Z Gao.On the enhanced ADRC design with a low observer bandwidth.Proceedings of the Chinese Control Conference,New York:IEEE,2013:297–302.

    [45]W.Xue,Y.Huang.Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems.ISA Transactions,2015,58:133–154.

    [46]Q.Zheng,L.Dong,D.H.Lee,et al.Active disturbance rejection control and implementation for MEMS gyroscopes.IEEE Transactions on Control Systems Technology,2009,17(6):1432–1438.

    [47]Q.Zheng,Z.Chen,Z Gao.A practical dynamic decoupling controlapproach.ControlEngineeringPractice,2009,17(9):1016–1025.

    [48]Q.Zheng,Z.Gao.An energy saving,factory-validated disturbance decoupling control design for extrusion processes.Proceedings of the 10th World Congress on Intelligent Control and Automatio,Beijing:IEEE,2012:2891–2896.

    [49]Q.Zheng.On Active Disturbance Rejection Control:Stability Analysis and Applications in Disturbance Decoupling Control.Ph.D.thesis.Cleveland:Cleveland State University,2009.

    [50]Q.Zheng,L.Gao,Z.Gao.On validation of extended state observer through analysis and experimentation.ASME Journalof Dynamic Systems,Measurement,and Control,2012,134(2):DOI 10.1115/1.4005364.

    猜你喜歡
    大偉小鵬塑料瓶
    小鵬G6
    車主之友(2023年2期)2023-12-28 20:47:22
    小鵬P5
    汽車觀察(2022年12期)2023-01-17 02:19:26
    神奇的氣壓
    張大偉作品
    塑料瓶回收分離粉碎一體機的設(shè)計
    云南化工(2021年6期)2021-12-21 07:31:16
    Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide?
    小鵬P5
    汽車觀察(2021年11期)2021-04-24 21:34:38
    塑料瓶的涅槃
    浪口上的小鵬
    汽車觀察(2018年9期)2018-10-23 05:46:38
    神奇的邊界線:一不留神就出國
    智慧少年(2017年8期)2018-01-10 21:39:12
    天堂网av新在线| 黑人巨大精品欧美一区二区mp4| 免费看十八禁软件| 色噜噜av男人的天堂激情| 国产亚洲精品av在线| 午夜激情欧美在线| 亚洲无线在线观看| 成人国产一区最新在线观看| 亚洲av成人一区二区三| 久久人妻av系列| 99久久综合精品五月天人人| 真人一进一出gif抽搐免费| 色综合站精品国产| 五月玫瑰六月丁香| 丰满的人妻完整版| 日韩欧美一区二区三区在线观看| 一a级毛片在线观看| av欧美777| 亚洲精品在线美女| 国产精品乱码一区二三区的特点| 国产成人欧美在线观看| 免费看美女性在线毛片视频| 一二三四社区在线视频社区8| 精品国产亚洲在线| 国产精品一区二区精品视频观看| 久久伊人香网站| 最新美女视频免费是黄的| 观看免费一级毛片| 最新美女视频免费是黄的| 两性夫妻黄色片| 国产亚洲av嫩草精品影院| 毛片女人毛片| 欧美xxxx黑人xx丫x性爽| 国产亚洲av嫩草精品影院| 午夜亚洲福利在线播放| www.999成人在线观看| 国产免费av片在线观看野外av| 午夜免费观看网址| 国产三级在线视频| 一区二区三区激情视频| 少妇熟女aⅴ在线视频| 窝窝影院91人妻| 国产 一区 欧美 日韩| 国产激情久久老熟女| 在线播放国产精品三级| 人妻丰满熟妇av一区二区三区| 蜜桃久久精品国产亚洲av| 久久久国产成人精品二区| 婷婷丁香在线五月| 精品久久久久久久久久久久久| 日韩大尺度精品在线看网址| 天堂av国产一区二区熟女人妻| 日韩国内少妇激情av| 亚洲中文字幕日韩| 18禁观看日本| 男女午夜视频在线观看| 男女做爰动态图高潮gif福利片| 久久婷婷人人爽人人干人人爱| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美人成| 亚洲一区高清亚洲精品| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| 日韩欧美免费精品| 亚洲成a人片在线一区二区| 欧美大码av| 人人妻人人看人人澡| 成人国产一区最新在线观看| 岛国在线免费视频观看| 亚洲男人的天堂狠狠| 一区二区三区国产精品乱码| 中文字幕高清在线视频| 亚洲五月天丁香| 毛片女人毛片| 欧美另类亚洲清纯唯美| 日本在线视频免费播放| 99久久精品一区二区三区| 激情在线观看视频在线高清| 最好的美女福利视频网| 18禁国产床啪视频网站| 91av网站免费观看| xxxwww97欧美| 真实男女啪啪啪动态图| 91在线观看av| 三级国产精品欧美在线观看 | 免费av毛片视频| or卡值多少钱| 亚洲精品久久国产高清桃花| 欧美日韩一级在线毛片| 老司机午夜福利在线观看视频| 国产又黄又爽又无遮挡在线| 99久久99久久久精品蜜桃| 欧美日本视频| 欧美日韩精品网址| 又紧又爽又黄一区二区| 欧美三级亚洲精品| 五月伊人婷婷丁香| 国产精品免费一区二区三区在线| 国产精品,欧美在线| 天堂√8在线中文| 国产亚洲欧美在线一区二区| 国产伦人伦偷精品视频| 国产亚洲av嫩草精品影院| 99久久精品国产亚洲精品| 久久伊人香网站| 中文资源天堂在线| 亚洲一区二区三区色噜噜| 精品人妻1区二区| 亚洲熟妇中文字幕五十中出| 99热只有精品国产| 亚洲aⅴ乱码一区二区在线播放| 成人性生交大片免费视频hd| 精品久久久久久久久久久久久| 欧美日韩精品网址| 91av网一区二区| or卡值多少钱| 久99久视频精品免费| 观看免费一级毛片| av福利片在线观看| 亚洲国产精品999在线| 亚洲欧美日韩无卡精品| 香蕉av资源在线| 亚洲精品粉嫩美女一区| cao死你这个sao货| 国产亚洲精品久久久com| 俺也久久电影网| 久久精品91无色码中文字幕| 亚洲欧美日韩高清专用| 两人在一起打扑克的视频| 久久国产精品人妻蜜桃| 婷婷亚洲欧美| 人人妻,人人澡人人爽秒播| 97超视频在线观看视频| 亚洲国产欧美人成| 51午夜福利影视在线观看| 男插女下体视频免费在线播放| 免费在线观看成人毛片| 日韩大尺度精品在线看网址| 黄色 视频免费看| 淫秽高清视频在线观看| 夜夜夜夜夜久久久久| 人妻丰满熟妇av一区二区三区| 成人永久免费在线观看视频| 精品国产超薄肉色丝袜足j| 无遮挡黄片免费观看| 国产精品久久久人人做人人爽| 天堂√8在线中文| 岛国在线免费视频观看| 精品一区二区三区四区五区乱码| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦韩国在线观看视频| 免费无遮挡裸体视频| 亚洲精品在线观看二区| 丰满的人妻完整版| 噜噜噜噜噜久久久久久91| 午夜福利视频1000在线观看| 首页视频小说图片口味搜索| 天堂网av新在线| 久久香蕉精品热| 99久久精品热视频| 国产精品自产拍在线观看55亚洲| 午夜福利视频1000在线观看| 国内久久婷婷六月综合欲色啪| 久久久久久久久免费视频了| 91麻豆av在线| 男女那种视频在线观看| 亚洲成av人片在线播放无| 国产高潮美女av| 色综合亚洲欧美另类图片| 久久精品综合一区二区三区| 好男人在线观看高清免费视频| 后天国语完整版免费观看| 麻豆国产av国片精品| 久久伊人香网站| 亚洲av片天天在线观看| 日韩中文字幕欧美一区二区| 一级黄色大片毛片| 欧美乱色亚洲激情| 成人欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 动漫黄色视频在线观看| 99re在线观看精品视频| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 亚洲午夜精品一区,二区,三区| 精品国产美女av久久久久小说| 麻豆av在线久日| 欧美3d第一页| 成年人黄色毛片网站| 亚洲国产精品久久男人天堂| 成年女人看的毛片在线观看| 97超视频在线观看视频| 亚洲国产色片| 国产伦精品一区二区三区四那| 手机成人av网站| 国内揄拍国产精品人妻在线| 国产午夜精品久久久久久| 日日干狠狠操夜夜爽| 日本黄色片子视频| 网址你懂的国产日韩在线| 久久精品影院6| 91麻豆av在线| 久久久久亚洲av毛片大全| 色播亚洲综合网| 天堂网av新在线| 999久久久国产精品视频| 国产成年人精品一区二区| 99国产精品一区二区蜜桃av| 日本黄色片子视频| 99热精品在线国产| 亚洲专区国产一区二区| av天堂在线播放| 日韩欧美三级三区| 国产亚洲av嫩草精品影院| 欧美色欧美亚洲另类二区| 国产欧美日韩精品一区二区| 国产亚洲精品一区二区www| 精品电影一区二区在线| 少妇丰满av| 久久久久久久久久黄片| 99在线人妻在线中文字幕| 欧美zozozo另类| 精品99又大又爽又粗少妇毛片 | 在线观看美女被高潮喷水网站 | 国产亚洲av嫩草精品影院| 久久精品亚洲精品国产色婷小说| 床上黄色一级片| 法律面前人人平等表现在哪些方面| ponron亚洲| 亚洲国产欧美一区二区综合| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品影院6| 人妻久久中文字幕网| 国产高清视频在线播放一区| 久久久久九九精品影院| 欧美日韩精品网址| 性色av乱码一区二区三区2| 久久热在线av| 国产免费男女视频| 老司机午夜福利在线观看视频| 夜夜躁狠狠躁天天躁| 亚洲色图av天堂| 无遮挡黄片免费观看| 成在线人永久免费视频| www国产在线视频色| 成人高潮视频无遮挡免费网站| avwww免费| 久久天躁狠狠躁夜夜2o2o| 欧美一级毛片孕妇| 免费一级毛片在线播放高清视频| 中文亚洲av片在线观看爽| 国产精品av视频在线免费观看| 国产成人精品无人区| 成人18禁在线播放| 成人三级黄色视频| 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 亚洲国产精品成人综合色| 久久久久久久久中文| 99热只有精品国产| 国产av一区在线观看免费| 国产野战对白在线观看| 精品无人区乱码1区二区| 动漫黄色视频在线观看| 俺也久久电影网| 岛国在线观看网站| 国产精品九九99| 国产激情久久老熟女| 人人妻人人澡欧美一区二区| 亚洲成av人片免费观看| 在线观看免费视频日本深夜| 嫩草影院入口| 成年版毛片免费区| 久久久久久久精品吃奶| 亚洲午夜理论影院| 久久久久久国产a免费观看| 中文在线观看免费www的网站| 美女大奶头视频| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 欧美在线一区亚洲| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 国产精品永久免费网站| 国产又色又爽无遮挡免费看| 欧美成人免费av一区二区三区| 国产精品影院久久| 精品一区二区三区四区五区乱码| 久久精品人妻少妇| 精品欧美国产一区二区三| 婷婷亚洲欧美| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 亚洲欧美日韩卡通动漫| 757午夜福利合集在线观看| 噜噜噜噜噜久久久久久91| 看免费av毛片| 久久精品影院6| 欧美大码av| 国产高清激情床上av| 女人被狂操c到高潮| 1000部很黄的大片| 日本一二三区视频观看| 国产视频一区二区在线看| 99国产精品一区二区蜜桃av| 亚洲va日本ⅴa欧美va伊人久久| 舔av片在线| 成人一区二区视频在线观看| 长腿黑丝高跟| 怎么达到女性高潮| 一二三四社区在线视频社区8| 久久久久精品国产欧美久久久| 搡老岳熟女国产| av片东京热男人的天堂| 欧美日本亚洲视频在线播放| 成年免费大片在线观看| 久久久久久人人人人人| 欧美激情在线99| 国产v大片淫在线免费观看| 亚洲专区国产一区二区| 哪里可以看免费的av片| 亚洲国产色片| 国产免费男女视频| 国产又色又爽无遮挡免费看| 日本 欧美在线| 国产精品久久电影中文字幕| 999久久久精品免费观看国产| 欧美黑人欧美精品刺激| 亚洲一区高清亚洲精品| 久久久久久久久中文| 他把我摸到了高潮在线观看| 特大巨黑吊av在线直播| 麻豆成人av在线观看| 天堂动漫精品| 在线看三级毛片| 成人特级黄色片久久久久久久| 宅男免费午夜| av片东京热男人的天堂| 免费无遮挡裸体视频| 99热只有精品国产| 一本一本综合久久| 国产成人精品久久二区二区免费| 国产主播在线观看一区二区| 欧美日韩亚洲国产一区二区在线观看| 久久九九热精品免费| 欧美日韩综合久久久久久 | 久久午夜综合久久蜜桃| 国产精品免费一区二区三区在线| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 高潮久久久久久久久久久不卡| 美女黄网站色视频| 国内精品久久久久精免费| 在线免费观看的www视频| 国产综合懂色| 亚洲精品色激情综合| 一卡2卡三卡四卡精品乱码亚洲| 五月伊人婷婷丁香| 日韩欧美在线二视频| 久久精品夜夜夜夜夜久久蜜豆| 99久国产av精品| 搡老岳熟女国产| 久久草成人影院| 精品久久久久久,| 女人被狂操c到高潮| 久久久国产欧美日韩av| www国产在线视频色| 97人妻精品一区二区三区麻豆| 欧美丝袜亚洲另类 | 亚洲男人的天堂狠狠| 美女免费视频网站| 99久国产av精品| 中文字幕人成人乱码亚洲影| 亚洲av电影不卡..在线观看| 国内少妇人妻偷人精品xxx网站 | 丁香六月欧美| 国产三级在线视频| 欧美zozozo另类| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 午夜精品久久久久久毛片777| 欧美日韩瑟瑟在线播放| 免费av毛片视频| 欧美丝袜亚洲另类 | 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 女生性感内裤真人,穿戴方法视频| 亚洲 欧美一区二区三区| 哪里可以看免费的av片| 日韩欧美在线乱码| 一夜夜www| 国产毛片a区久久久久| 男女视频在线观看网站免费| 夜夜看夜夜爽夜夜摸| 精品欧美国产一区二区三| 一进一出抽搐gif免费好疼| 国产真实乱freesex| 久久精品人妻少妇| 欧美中文日本在线观看视频| 热99在线观看视频| 亚洲欧洲精品一区二区精品久久久| 日韩欧美一区二区三区在线观看| 九色国产91popny在线| 亚洲国产欧洲综合997久久,| 人人妻人人看人人澡| 亚洲九九香蕉| 亚洲国产精品合色在线| 18禁裸乳无遮挡免费网站照片| 成年女人看的毛片在线观看| 黄色片一级片一级黄色片| 欧美+亚洲+日韩+国产| 桃色一区二区三区在线观看| www日本黄色视频网| 国产激情久久老熟女| 他把我摸到了高潮在线观看| 看免费av毛片| 99国产综合亚洲精品| 亚洲欧美日韩东京热| 母亲3免费完整高清在线观看| 黄色成人免费大全| 亚洲成av人片免费观看| 男人舔奶头视频| 香蕉国产在线看| 黄色日韩在线| 久久久久久国产a免费观看| 久久久国产成人精品二区| 成年版毛片免费区| 国产精品精品国产色婷婷| 日本一本二区三区精品| 最新中文字幕久久久久 | 国产精品乱码一区二三区的特点| 亚洲无线在线观看| 午夜精品一区二区三区免费看| 国产精品久久久久久精品电影| 两个人看的免费小视频| 视频区欧美日本亚洲| 久久精品国产综合久久久| 国产伦人伦偷精品视频| 欧美日韩综合久久久久久 | 女同久久另类99精品国产91| 亚洲国产色片| 精品久久久久久,| 日韩欧美在线二视频| 99热只有精品国产| 人人妻人人看人人澡| 精品免费久久久久久久清纯| 国产精品亚洲一级av第二区| 亚洲成人久久爱视频| 午夜福利18| 亚洲av电影不卡..在线观看| 亚洲av免费在线观看| 一级毛片精品| 在线观看美女被高潮喷水网站 | av黄色大香蕉| 久久久水蜜桃国产精品网| 欧美乱码精品一区二区三区| 国产高清有码在线观看视频| 欧美日韩综合久久久久久 | 亚洲中文字幕一区二区三区有码在线看 | x7x7x7水蜜桃| 巨乳人妻的诱惑在线观看| av黄色大香蕉| 九九热线精品视视频播放| 天天一区二区日本电影三级| 午夜福利视频1000在线观看| av天堂在线播放| 亚洲男人的天堂狠狠| 欧美黑人欧美精品刺激| 欧美乱码精品一区二区三区| 精品久久久久久久末码| 日本免费一区二区三区高清不卡| 欧美中文日本在线观看视频| 国产私拍福利视频在线观看| 成人精品一区二区免费| 亚洲国产精品成人综合色| 不卡一级毛片| 两人在一起打扑克的视频| 草草在线视频免费看| 亚洲av成人精品一区久久| 中文字幕熟女人妻在线| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 欧美日本亚洲视频在线播放| 黄色丝袜av网址大全| 亚洲精品美女久久av网站| 特级一级黄色大片| 亚洲五月婷婷丁香| 波多野结衣高清无吗| 欧美另类亚洲清纯唯美| 99在线人妻在线中文字幕| 欧美乱色亚洲激情| 午夜免费激情av| 亚洲 国产 在线| 欧美极品一区二区三区四区| 免费高清视频大片| 日韩国内少妇激情av| 男插女下体视频免费在线播放| 男人舔奶头视频| 国产精品久久电影中文字幕| 亚洲精品国产精品久久久不卡| 又黄又粗又硬又大视频| 午夜免费激情av| 国产av在哪里看| 成人18禁在线播放| 亚洲av日韩精品久久久久久密| 国产精品国产高清国产av| 国产亚洲av嫩草精品影院| 免费看a级黄色片| 日本在线视频免费播放| 亚洲无线在线观看| 国产精品1区2区在线观看.| 午夜精品久久久久久毛片777| 国产成人系列免费观看| 久久久精品大字幕| 免费观看人在逋| 动漫黄色视频在线观看| 性欧美人与动物交配| 97超视频在线观看视频| 久久精品亚洲精品国产色婷小说| 国产精品 国内视频| 日韩人妻高清精品专区| 亚洲国产精品久久男人天堂| 一卡2卡三卡四卡精品乱码亚洲| 美女黄网站色视频| 国产伦一二天堂av在线观看| 久久性视频一级片| 亚洲成人精品中文字幕电影| xxx96com| 露出奶头的视频| 在线a可以看的网站| bbb黄色大片| 男女下面进入的视频免费午夜| 啦啦啦韩国在线观看视频| 成人午夜高清在线视频| 麻豆久久精品国产亚洲av| 欧美一级毛片孕妇| 亚洲精品美女久久av网站| 日韩精品中文字幕看吧| 精品一区二区三区视频在线 | 免费人成视频x8x8入口观看| 日韩人妻高清精品专区| 丰满人妻熟妇乱又伦精品不卡| 90打野战视频偷拍视频| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 亚洲av成人一区二区三| 成人国产综合亚洲| 久久久久久大精品| 一区二区三区国产精品乱码| 老汉色av国产亚洲站长工具| 亚洲av成人精品一区久久| 深夜精品福利| 观看免费一级毛片| 五月玫瑰六月丁香| 一级毛片女人18水好多| 淫秽高清视频在线观看| 小蜜桃在线观看免费完整版高清| 淫秽高清视频在线观看| 麻豆一二三区av精品| 欧美日韩中文字幕国产精品一区二区三区| 99久久精品一区二区三区| 亚洲中文av在线| 亚洲中文日韩欧美视频| 中文字幕熟女人妻在线| 日韩国内少妇激情av| 嫩草影院入口| av在线蜜桃| 国产麻豆成人av免费视频| 国产精品久久久久久精品电影| 搡老熟女国产l中国老女人| 毛片女人毛片| 国产又色又爽无遮挡免费看| 中文字幕高清在线视频| а√天堂www在线а√下载| 国产乱人伦免费视频| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看吧| 亚洲欧美日韩东京热| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在 | 变态另类丝袜制服| 一区二区三区国产精品乱码| 日韩欧美免费精品| 老司机在亚洲福利影院| 日韩高清综合在线| av在线蜜桃| av片东京热男人的天堂| 日本 av在线| 99热这里只有是精品50| 淫秽高清视频在线观看| 久久久久国产精品人妻aⅴ院| 麻豆av在线久日| 日本免费一区二区三区高清不卡| 又爽又黄无遮挡网站| 国产精品久久久久久精品电影| 精品国内亚洲2022精品成人| 免费大片18禁| 黄色日韩在线| 又爽又黄无遮挡网站| 国产一区二区激情短视频| 国产亚洲av高清不卡| 婷婷丁香在线五月| 一个人免费在线观看的高清视频| 全区人妻精品视频| 亚洲av电影不卡..在线观看| 一个人免费在线观看的高清视频| 国产99白浆流出| 国产精品 欧美亚洲| 制服丝袜大香蕉在线| 国产乱人视频| 99热这里只有是精品50| 夜夜爽天天搞| 久久国产乱子伦精品免费另类| 99久久精品一区二区三区| 美女cb高潮喷水在线观看 |