• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On ADRC for non-minimum phase systems:canonical form selection and stability conditions

    2016-05-14 06:51:51WenchaoXUEYiHUANGZhiqiangGAO
    Control Theory and Technology 2016年3期

    Wenchao XUE ,Yi HUANG ,Zhiqiang GAO

    1.Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;

    2.Department of Electrical and Computer Engineering,Cleveland State University,Cleveland,Ohio 44115,U.S.A.

    1 Introduction

    As is well known,uncertainties rejection is one of the fundamental issues in automatic control.The controllerrejector pair,proposed by[1],presents a generic principle for control structure with two degrees of freedom(TDOF),i.e.,the controller is designed for the canonical form of plant;the difference between the actual model and the canonical form,deemed as disturbance,is to be estimated and cancelled by the rejector.Also,the novel definition of rejector greatly helps to reorient many observers/estimators to estimate the uncertainties,such as unknown input observer(UIO)[2],proportional integral observer(PIO)[3],disturbance observer(DOB)[4,5],nonlinear disturbance observer(NDOB)[6,7],extended state observer(ESO)[8,9],etc.(see[10–12]).

    This paper pays particular attention to the rejector in terms of ESO,which is strikingly featured with estimating the “total disturbance”or the total effect of unmodelled dynamics and disturbance[9,13].In the last two decades,the active disturbance rejection control(ADRC),which suggests to use ESO as a powerful rejector,has been successfully applied to many industrial processes[14]and embedded in the chips of Texas Instrument[15].To effectively deal with multifarious control problems,many modifications on ADRC have also been constructed by combining ESO and other control methods,such as optimalcontrol[16,17],back-stepping control[18],sliding model control[19],adaptive control[20,21],predictive control[22],feedforward controller[23],etc.Nevertheless,they usually share the following TDOF:one designs feedforward/feedback law based on the canonical form of plant to achieve desired outputresponse and the otherone cancels the“totaldisturbance”via the estimation which is timely provided by ESO,as shown in Fig.1.

    Fig.1 ADRC:ESO based TDOF.

    Although the two degrees in ADRC approach have independent tasks,their operations depend on the canonical form which essentially stands for the necessary information of the system to be known.In particular,both desired output and ESO are constructed based on the canonical form selected.Therefore,canonical form is crucial for ADRC.

    The canonical form of the systems with no zero dynamics(or zeros for LTI systems)has been well studied for ADRC design[25,26].Moreover,similar canonical form is proven to be effective forsystems with minimum phase which means that the systems have stable zero dynamics[20,27,28].In addition,severaleffective methods have been proposed for ADRC to tackle certain kinds of non-minimum phase systems with the information of zeros being fully known[24,29].However,canonical form selection for the systems which have uncertain and unstable zeros is still an open problem.This paper aims to study the canonical form as well as the corresponding ADRC design for uncertain non-minimum phase systems.Our contributions include that:

    ?The uncertainties of the systems are shown to be equivalently divided into the two terms in the control channel and the output channel.Correspondingly,the canonical form and the resulting ADRC for the uncertain systems,which could be non-minimum phase,is presented.

    ?The necessary and sufficient condition for the stability of the closed-loop system with some uncertainties is rigorously studied.Also,the necessity of the detectability of the extended system and certain information ofthe system’s“zeros”,indicates the fundamental guideline in designing and tuning ADRC.

    The paper is organized as follows.We introduce the basic idea of ADRC in Section 2.In Section 3,we present the canonical form as well as the ADRC controller for a class of uncertain systems.In Section 4,the stability condition of the closed-loop system is rigorously studied.Section 5 is the simulation study and the last section is devoted to conclusions.

    2 Basic idea of ADRC

    First,the following class of uncertain systems with the form of cascade of integrators is used to present the basic idea of ADRC,

    wherex∈Rnis the state vector,y∈R is the output to be regulated,u∈R is the control input to be designed,b(t)is a known and nonzero function,(AI,BI,CI)satisfies

    and δ(·)is the “total disturbance”or the total effect of the unknown nonlinear dynamics and external disturbance.

    The canonicalform of(1)isusually setasthe following cascade of integrators[25]

    Let the control object be forcingyto approach the desired outputy*generated by

    where the function ψ(·)is used to shape the trajectory ofy*according to practical requirements and conditions,such as the requirements on overshoot,rising time,maximal control input value,etc.

    The difference between(1)and(3)implies that bothxand δ(·)are timely needed foryto tracky*by designingu.ESO suggests to treat δ(·)as an extended state to be estimated,and the linear ESO usually has the form of

    is stable and has desired eigenvalues1In this paper,the matrix or transfer function is stable means that all its roots or poles have negative real part..Consequently,the control input becomes

    It is straightforward to understand the TDOF in ADRC(4)–(6)for tracky*,i.e.,

    It seems that the controller and the the rejector have independent tasks in(4)–(6).However,both of their structures heavily depend on the canonical form(2).In particular,the control law ψ(·)is constructed based on(2),and the form of ESO(4)also stems from(2).Therefore,canonical form is a critical issue to be addressed for ADRC.Existing literatures have shown that the the canonical form of cascade of integrators is effective for the minimal phase systems[20,26–28].In this paper,we will discuss the canonical form selection for ADRC to deal with the uncertain systems which could be nonminimal phase.

    3 Canonical form selection for ADRC

    Consider the following class of nonlinear uncertain systems

    wherex∈Rnis the state vector,y,uandb(t)have the same meanings as those in(1).The matricesA∈ Rn×n,B∈ Rn×1andC∈ Rn×1are assumed to have uncertainties and satisfy the follow typical assumption,

    Assumption 1The pair(A,B)is controllable and the pair(A,C)is observable.

    Since(A,B,C)has general form,the model(7)can describe both non-minimal phase and minimal phase systems.Next,we will analyze the uncertainties in(7)to present its canonical form.

    According to the knowledge of linear system[30],Assumption 1 means that there exists a nonsingular matrixT∈ Rn×nsuch that

    whereaiandci,i=1,...,nare uncertain parameters due to the uncertainties in(A,B,C).The exact form ofTis probably unavailable due to the uncertainties in(A,B,C).Fortunately,from the structure of(T-1AT,T-1B,TTC),both the uncertainties in(A,B,C)and inTcan be included into(ai,ci),i=1,...,n.Next,we assume thatˉaiandˉciare the nominal value or known information ofaiandci,respectively.Consequently,

    are the unknown parts of the parameters.Furthermore,letˉx?[ˉx1ˉx2···ˉxn]T=Tx,then system(7)can be equivalently written as

    include all the uncertainties in system(7)or(8).

    Remark 2In the case ofˉδ(ˉx,t)=0 andCδ=0,it can be verified that the transfer function from the input(b(t)u(t))to the outputy(t)satisfies

    where L is the Laplace operator.Thus,aδ,iandcδ,iactually stand forthe uncertaintiesin the“poles”and“zeros”for system(8),respectively.It is evident that these two groups of uncertainties are contained inˉδ(·)andCδ.Therefore,we will use the form of system(8)instead of(7)in the following analysis such that the physical meanings of uncertain terms are transparent.

    Also,consider the desired outputˉy*generated by

    whereL∈Rnandle∈R are parameters to be designed such that(Ae-LeCTe)is stable,where

    It can be verified that the ADRC based closed-loop system constituted of(8)and(13)satisfies

    4 Stability conditions for the closed-loop system

    First,the assumption for the initial valueˉx0is given.

    Assumption 2?ˉx(t0)??ρ0,where ρ0is positive.Define

    then the closed-loop system(14)equals to

    Theorem 1Let Assumptions 1 and 2 be satisfied.There exist nonegatives αi,i=1,2,3 such that

    for any|ˉδ(ˉx,t)|?α1?ˉx?+α2and any?Cδ??α3if and only if every root of

    is stable.

    Theorem 1 essentially reflects the necessary and sufficient condition for the stability of the ADRC based closed-loop system despite some uncertainties in bothˉδ(·)andCδ.Therefore,the applicability of the proposed ADRC(13)can be specified by checking that whether the selected parameters in controller ensure the stability of the roots of(18)and(19).Also,the condition of Theorem 1 indicates the fundamental guideline in designing and tuning ADRC.

    Note that Theorem 1 shows the necessary and sufficient condition for the system with the uncertain functionˉδ(ˉx,t)being bounded by certain linear function,i.e.,|ˉδ(ˉx,t)|?α1?ˉx?+α2,then this condition is also necessary for the system with more general uncertain functions.

    Since the gain of ESO,i.e.,Leis a tunable parameter vector,the existence ofLeto ensure the condition given in Theorem 1 needs to be addressed.

    Lemma 1There existsLesuch that every root ofg1(s)is stable if and only if the pair(Ae,Ce)is detectable.In addition,(Ae,Ce)is always detectable in the case ofˉc1?0.

    According to Lemma 1,the detectability of the pair(Ae,Ce)is necessary for the validation of the canonical form(11).We also remark that checking this detectability is straightforward since the matrices(Ae,Ce)are exactly known.Note that system(1)implies thatˉc1=1,then the nominal model(11)always makes sense for the systems with cascade of integrators.

    We proceed to the discussion for theg2(s)which depends onCδ.SinceCδrepresents the uncertainty in the“zeros”of system(7),the stability of the roots ofg2(s)is used to show how much uncertainty in the “zeros”can be tolerated by the proposed canonical form based ADRC(13).Although the solution for the size ofCδto ensure the stability of the roots ofg2(s)cannot be explicitly obtained,it can be numerically solved under any given(Le,K),as illustrated by the example in Section 5.

    Proof of Theorem 1First,the necessary condition for(18)will be proven.Consider the particular case ofCδ=0,δ(·)≡ α2,then there is

    Note that?Be??0,then one of the roots ofg1(s)being unstable means that

    Therefore,the stability of all roots ofg1(s)is necessary.Define

    equals to the stability of the roots of

    Evidently,the roots of(24)are those ofg1(s)and

    According to the exact form ofˉA,ˉB,CTδandK,there is

    Similar to(20)–(21),the stability of all roots ofg2(s)is also necessary for(17).

    Next,the sufficiency condition of(18)–(19)will be proven.According to the analysis between(23)and(26),the stability of(18)–(19)indicates that the matrix?Ais Hurwitz.Thus,there exists a positive matrix?Psuch that

    for any given α3.Furthermore,it can be verified that there exist positives α1,α2and αsuch that for any|ˉδ(ˉx,t)|?α1?ˉx?+α2,there is

    which implies(17). ?

    Proof of Lemma 1According to the definition of detectability,detectability of the pair(Ae,Ce)is necessary and sufficient for the existence ofLesuch that every root ofg1(s)is stable.Moreover,there is

    which has full rank in case ofˉc1?0.Thus,ˉc1?0 implies(Ae,Ce)is observable as well as detectable. ?

    5 Simulation study

    5.1 Example 1

    Consider the following 2nd order nonlinear system

    where the uncertain termˉδ(ˉx,t)is assumed to satisfy

    wherel1,l2andleare tuned by the following popular law[31]:

    where ωeis the bandwidth of the ESO in(33)and is set by ωe=5.

    Fig.2 shows the responses of the corresponding ADRC based closed-loop system with the following cases of the system’s “zero”

    It is evident that the proposed canonical form(31)based ADRC controller(33)can stabilize the closed-loop system with C1 and C2,but it fails with C3.Actually,this can be rigorously explained by Theorem 1 which shows that the stability of the roots of

    is necessary for the applicability of ADRC(33).Moreover,the minimalcδ,2to ensure the stability ofallroots ofg2(s)can be numerically computed under(ωc=1,ωe=5),as shown in Table 1.It is evident that the minimalcδ,2forthe stability ofallrootsofg2(s)under(ωc=1,ωe=5)is-0.2,which is accordance with the results in Fig.2.

    Fig.2 The responses of the closed-loop system with(ωc=1,ωe=5)and ADRC(33).

    Remark 3From Table 1,larger ωcor ωeleads to larger positive “zero”or smaller size of the uncertaintycδ,2tolerated by ADRC.Note that large ωcor ωeis usually used for fast tracking reference signal or estimating uncertainties,then smaller uncertainties in the unstable zero is required to achieve better performance of the ADRC based control system.

    Table 1 The minimalall roots of g2(s).

    Table 1 The minimalall roots of g2(s).

    ωe 0.2 0.4 0.6 0.8 1.0 1.5 2 ωc 0.5 0.63 0.87 1.05 1.18 1.25 1.33 1 1.0 0.87 1.25 1.53 1.81 2.0 2.22 2.0.43.5 2.0 1.25 1.81 2.22 2.5 2.86 4.0 4.0 5.0 2.5 2.86 3.33 4.0 5.0 6.67 6.67 10.0 5.0 5.0 6.67 6.67 6.67 10.0 10.0 15.0 6.67 6.67 10.0 10.0 10.0 10.0 20.0 20.0 10.0 10.0 10.0 10.0 10.0 20.0 20.0

    Theorem 1 actually presents the limitation of the ADRC(33)in dealing with the uncertainty in zero.Moreover,it is necessary to known more information of the system’s zero if its location is far more its estimation.In particular,if we known more precise information for the zero of system(29)such that the system is

    Fig.3 illustrates that the proposed new ADRC controller(39)can stabilize the closed-loop system with the system’s “zero”being

    Fig.3 The responses of the closed-loop system with(ωc=1,ωe=5)and ADRC(39).

    5.2 Example 2

    Consider the following non-minimal phase system in the form of transfer function:

    Obviously,cδ,2decides the unknown partofthe system’s zero.Therefore,the nominal model of(41)is

    Consequently,the canonical form of system(41)in the state space can be

    then(13)means that the ESO for system(41)is

    where ωe> 0 is the only parameter to be chosen.

    Let the desired outputˉy*satisfy

    By the results of Theorem 1,the necessary condition for the stability of the closed-loop system with(41),(45)and(47)is that all roots of are stable for?cδ,2∈ [-0.1,0.1].Actually,this condition requires that ωecannot be set to an arbitrary value,as shown in Fig.4.Also,the numerical computation shows that ωeshould satisfy ωe< 14.In Fig.5,the responses of the corresponding closed-loop system are presented under

    It is obvious that the stability of the closed-loop system is ensured by choosing the ωewhich satisfies ωe< 14,and well estimation of the uncertainty is obtained by the proposed ESO.

    Fig.4 The maximal real part of the roots of(48)for different ωe.

    Fig.5 (a)The responses of the corresponding closed-loop system(41),(45)and(47).(b)The estimation of the total disturbance.

    Remark 4By the discussion on Examples 1 and 2,the tuning method of ωefor the non-minimum phase system can be presented as follows:obtaining the maximal ωeby the stability of the roots of(19);increasing ωefrom a small value to its maximal value until the actual response meets practical requirements.

    6 Conclusions

    It is shown that the canonical form selection is crucial for ADRC based control systems,especially for nonminimal phase systems.The paper presents the canonical form for a class of uncertain systems which could have uncertain unstable “zeros”.Also,the necessary and sufficient condition for the stability of the closed-loop system with the proposed canonical form and ADRC is proven under some uncertainties.In particular,we demonstrate that the detectability of the extended system and certain information of the system’s “zeros”are necessary.Additionally,the methods of checking these necessary conditions are discussed via simulation study.We believe that the theoretical results of this paper can provide some fundamental guidelines for designing the canonical form as well as the corresponding ADRC for non-minimal phase systems.

    [1]Z.Gao.On the centrality of disturbance rejection in automatic control.ISA Transactions,2014,53(4):850–857.

    [2]M.Hou,P.C.Muller.Design of observers for linear systems with unknown inputs.IEEE Transactions on Automatic Control,1993,37(6):871–874.

    [3]D.Soffker,T.J.Yu,P.C.Mullter.State estimation of dynamical systems with nonlinearities by using proportionalintegral observer.International Journal of Systems Science,1995,26(9):1571–1582.

    [4]M.Nakao,K.Ohnishi,K.Miyachi.A robust decentralized joint control based on interference estimation.IEEE International Conference on Robotics and Automation,Raleigh:IEEE,1987:326–331.

    [5]H.Shim,N.H.Jo.An almostnecessary and sufficientcondition for robuststability ofclosed-loop systems with disturbance observer.Automatica,2009,45(1):296–299.

    [6]W.-H.Chen,D.J.Ballance,P.J.Gawthrop,et al.A nonlinear disturbance observer for robotic manipulators.IEEE Transactions on Industrial Electronics,2000,47(4):932–938.

    [7]L.Guo,S.Cao.Anti-disturbance control theory for systems with multiple disturbances:A survey.ISA Transactions,2014,53(4):846–849.

    [8]J.Han.The “extended state observer”of a class of uncertain systems.Journal of Control and Decision,1995,10(1):85–88(in Chinese).

    [9] J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [10]C.D.Johnson.Real-time disturbance-observers;origin and evolution of the idea–Part 1:The early years.Proceedings of the 40th Southeastern Symposium on System Theory,New Orleans:IEEE,2008:88–91.

    [11]S.Li,J.Yang,W.-H.Chen,et al.Disturbance Observer-based Control:MethodsandApplicaitons.Boca Raton:CRCPress,2013.

    [12]A.Radke,Z.Gao.A survey of state and disturbance observers for practitioners.Proceedings of the American Control Conference,Minnesota:IEEE,2006:5183–5188.

    [13]Z.Gao.Scaling and bandwidth-parameterization based controller tuning.ProceedingsoftheAmericanControlConference,Colorado:IEEE,2003:4989–4996.

    [14]Q.Zheng,Z.Gao.On practical applications of active disturbance rejection control.Proceedings of the 29th Chinese Control Conference,Beijing:IEEE,2010:6095–6100.

    [15]R.Schoenberger.Linestream technologies signs licensing deal with Texas instruments.2011:blog.cleveland.com/business_impact/print.html?entry=/2011/07/linestream_technologies_signs.html.

    [16]G.Cheng,J.Hu.An observer-based mode switching control scheme for improved position regulation in servomotors.IEEE Transactions on Control Systems Technology,2014,22(5):1883–1891.

    [17]H.Liu,S.Li.Speed control for PMSM servo system using predictive functional control and extended state observer.IEEE Transactions on Industrial Electronics,2012,59(2):1171–1183.

    [18]J.Linares-Flores,C.Garcia-Rodriguez,H.Sira-Ramirez,et al.Robust backstepping tracking controller for low-speed pmsm positioning system:Design,analysis,and implementation.IEEE Transactions on Industrial Informatics,2015,11(5):1130–1141.

    [19]Y.Xia,Z.Zhu,M.Fu,et al.Attitude tracking of rigid spacecraft with bounded disturbances.IEEE Transactions on Industrial Electronics,2011,58(2):647–659.

    [20]T.Jiang,C.Huang,L.Guo.Controlofuncertain nonlinearsystems based on observers and estimators.Automatica,2015,59:35–47.

    [21]G.Sun,X.Ren,D.Li.Neural active disturbance rejection output control of multimotor servomechanism.IEEE Transactions on Control Systems Technology,2015,23(2):746–753.

    [22]Q.Li,D.Li,W.Tan.Performance robustness comparison ofADRC and GPC.Proceedings of the Chinese Control Conference,Hefei,China:IEEE,2012:4586–4590.

    [23]H.Xie,K.Song,L.Li,et al.A comprehensive decoupling control method for gasoline hcci combustion.Proceedings of the Chinese Control Conference,Xi’an:IEEE,2013:7681 – 7691.

    [24]L.Sun,D.Li,Z.Gao,et al.Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system.ISA Transactions,2016:DOI 10.1016/j.isatra.2016.04.020.

    [25]Y.Huang,W.Xue.Active disturbance rejection control:Methodology and theoretical analysis.ISA Transaction,2014,53:963–976.

    [26]Q.Zheng,Z.Chen,Z.Gao.A practical approach to disturbance decoupling control.Control Engineering Practice,2009,17(9):1016–1025.

    [27]B.Guo,Z.Zhao.On convergence of the nonlinear active disturbance rejection control for MIMO systems.SIAM Journal of Control and Optimization,2013,51(2):1727–1757.

    [28]W.Xue,Y.Huang.Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems.ISA Transaction,2015,58:133–54.

    [29]S.Zhao,L.Sun,D.Li,et al.Tracking and disturbance rejection in non-minimum phase systems.ProceedingsoftheChineseControl Conference,Nanjing:IEEE,2014:3834–2839.

    [30]C.-T.Chen.Linear System Theory and Design.3rd ed.New York:Oxford University Press,1999.

    [31]D.Yoo,S.S.-T.Yau,Z.Gao.Optimal fast tracking observer bandwidth of the linear extended state observer.International Journal of Control,2007,80(1):102–111.

    日韩精品中文字幕看吧| 一进一出抽搐动态| 欧美一级毛片孕妇| 午夜日韩欧美国产| 成人特级黄色片久久久久久久| 最好的美女福利视频网| 波多野结衣高清作品| 欧美日韩亚洲综合一区二区三区_| 久久久久国内视频| 91麻豆av在线| 国产亚洲精品一区二区www| 亚洲中文字幕一区二区三区有码在线看 | 久久天堂一区二区三区四区| 国产高清有码在线观看视频 | 欧美中文日本在线观看视频| 啦啦啦韩国在线观看视频| 国产乱人伦免费视频| 最好的美女福利视频网| 俄罗斯特黄特色一大片| 午夜激情福利司机影院| 中文在线观看免费www的网站 | 18禁黄网站禁片免费观看直播| 亚洲熟妇熟女久久| tocl精华| 亚洲在线自拍视频| 国语自产精品视频在线第100页| 精品人妻1区二区| 免费高清视频大片| 亚洲色图 男人天堂 中文字幕| www.精华液| 黑人操中国人逼视频| 黑人巨大精品欧美一区二区mp4| 久久国产乱子伦精品免费另类| 欧美激情极品国产一区二区三区| 后天国语完整版免费观看| 日韩欧美在线二视频| 一本综合久久免费| 日韩成人在线观看一区二区三区| 精品久久久久久久毛片微露脸| a在线观看视频网站| 国产av一区在线观看免费| 脱女人内裤的视频| 国产区一区二久久| 久久久久亚洲av毛片大全| 欧美亚洲日本最大视频资源| 身体一侧抽搐| 美女国产高潮福利片在线看| 男女那种视频在线观看| 最近最新中文字幕大全电影3 | 国产1区2区3区精品| 久久精品国产综合久久久| 女性被躁到高潮视频| 亚洲 欧美 日韩 在线 免费| 老司机靠b影院| 男女午夜视频在线观看| 18禁黄网站禁片免费观看直播| 深夜精品福利| av有码第一页| 男女之事视频高清在线观看| 欧美乱妇无乱码| 中文字幕精品亚洲无线码一区 | 欧美一区二区精品小视频在线| 亚洲专区中文字幕在线| 亚洲久久久国产精品| 丝袜人妻中文字幕| www.精华液| 成人18禁高潮啪啪吃奶动态图| 97超级碰碰碰精品色视频在线观看| 12—13女人毛片做爰片一| 少妇 在线观看| 成人特级黄色片久久久久久久| www.自偷自拍.com| 搡老岳熟女国产| 精品国产美女av久久久久小说| 国产av不卡久久| 成在线人永久免费视频| 性色av乱码一区二区三区2| 亚洲av熟女| 国产精品久久久久久人妻精品电影| 午夜福利视频1000在线观看| 桃色一区二区三区在线观看| 淫妇啪啪啪对白视频| 在线观看www视频免费| 18禁国产床啪视频网站| 欧美成狂野欧美在线观看| 制服人妻中文乱码| 老汉色∧v一级毛片| 88av欧美| 真人一进一出gif抽搐免费| 亚洲av电影不卡..在线观看| 欧美精品亚洲一区二区| 国产私拍福利视频在线观看| 大香蕉久久成人网| 91大片在线观看| 亚洲午夜精品一区,二区,三区| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯| 成人18禁在线播放| 国产精品国产高清国产av| 岛国在线观看网站| 亚洲av熟女| 少妇裸体淫交视频免费看高清 | 午夜福利在线在线| 日韩精品免费视频一区二区三区| 午夜免费观看网址| 老汉色av国产亚洲站长工具| 久久中文字幕一级| 啪啪无遮挡十八禁网站| 一进一出抽搐动态| 性欧美人与动物交配| 国产在线精品亚洲第一网站| 人妻丰满熟妇av一区二区三区| 亚洲在线自拍视频| 少妇 在线观看| 午夜影院日韩av| 视频区欧美日本亚洲| 在线观看午夜福利视频| av片东京热男人的天堂| 精品一区二区三区av网在线观看| 757午夜福利合集在线观看| 欧美一区二区精品小视频在线| 免费在线观看完整版高清| 亚洲无线在线观看| 丝袜美腿诱惑在线| 久久九九热精品免费| 久久草成人影院| 伦理电影免费视频| 精品国内亚洲2022精品成人| 美国免费a级毛片| 欧美亚洲日本最大视频资源| www日本黄色视频网| 美女高潮到喷水免费观看| a级毛片在线看网站| 久久午夜亚洲精品久久| 热99re8久久精品国产| 亚洲成人久久爱视频| 国产麻豆成人av免费视频| 国产精品美女特级片免费视频播放器 | 欧美不卡视频在线免费观看 | 久久人人精品亚洲av| 欧美av亚洲av综合av国产av| 午夜a级毛片| 久久天堂一区二区三区四区| 欧美日韩乱码在线| 99精品久久久久人妻精品| 国产高清videossex| 免费搜索国产男女视频| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 黄色视频不卡| 国产精品 国内视频| 精品日产1卡2卡| 欧美不卡视频在线免费观看 | 18美女黄网站色大片免费观看| 久久午夜综合久久蜜桃| 神马国产精品三级电影在线观看 | 久久精品国产99精品国产亚洲性色| 老司机深夜福利视频在线观看| 巨乳人妻的诱惑在线观看| 两个人视频免费观看高清| 欧洲精品卡2卡3卡4卡5卡区| 国产一级毛片七仙女欲春2 | 岛国在线观看网站| 免费av毛片视频| 午夜福利在线观看吧| 久久热在线av| 国产三级在线视频| 免费看十八禁软件| 91大片在线观看| 日韩精品中文字幕看吧| 国产区一区二久久| 亚洲av电影在线进入| 亚洲狠狠婷婷综合久久图片| 99riav亚洲国产免费| 可以免费在线观看a视频的电影网站| 久久青草综合色| 国产精品免费视频内射| 日本五十路高清| 亚洲av美国av| 国产精品 国内视频| 欧美中文日本在线观看视频| 免费一级毛片在线播放高清视频| 一二三四在线观看免费中文在| 亚洲真实伦在线观看| 19禁男女啪啪无遮挡网站| 午夜精品在线福利| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 18禁国产床啪视频网站| aaaaa片日本免费| 亚洲最大成人中文| 亚洲熟妇中文字幕五十中出| 色综合欧美亚洲国产小说| 久热爱精品视频在线9| 亚洲av成人av| 久久久国产成人精品二区| 欧美精品亚洲一区二区| 国产三级黄色录像| 十分钟在线观看高清视频www| 中文字幕高清在线视频| 男女下面进入的视频免费午夜 | 淫妇啪啪啪对白视频| 久久欧美精品欧美久久欧美| 18禁美女被吸乳视频| 天堂影院成人在线观看| 亚洲真实伦在线观看| 久久亚洲真实| 怎么达到女性高潮| 91成人精品电影| 18美女黄网站色大片免费观看| 日日夜夜操网爽| 美女大奶头视频| 18禁裸乳无遮挡免费网站照片 | 国产激情欧美一区二区| 国产男靠女视频免费网站| 欧美zozozo另类| 欧美久久黑人一区二区| 在线视频色国产色| av福利片在线| 亚洲av五月六月丁香网| 亚洲无线在线观看| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看 | 可以在线观看的亚洲视频| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| av福利片在线| 精品少妇一区二区三区视频日本电影| 91成年电影在线观看| www.精华液| 久久久久久九九精品二区国产 | 婷婷丁香在线五月| 成人av一区二区三区在线看| 性色av乱码一区二区三区2| 成人亚洲精品av一区二区| 久久婷婷成人综合色麻豆| 国产精品av久久久久免费| 亚洲国产精品久久男人天堂| 国产男靠女视频免费网站| 18美女黄网站色大片免费观看| 国产激情偷乱视频一区二区| 国产91精品成人一区二区三区| 美女 人体艺术 gogo| 日韩精品中文字幕看吧| 亚洲狠狠婷婷综合久久图片| 我的亚洲天堂| 国产免费av片在线观看野外av| 国产真实乱freesex| www日本在线高清视频| 日本精品一区二区三区蜜桃| 在线av久久热| 久久久久久九九精品二区国产 | 丰满人妻熟妇乱又伦精品不卡| 天天躁夜夜躁狠狠躁躁| 夜夜爽天天搞| 一本综合久久免费| 深夜精品福利| 日本在线视频免费播放| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻熟女乱码| 一级黄色大片毛片| 国产精品av久久久久免费| 观看免费一级毛片| 在线观看一区二区三区| 国产区一区二久久| 亚洲精品中文字幕在线视频| 精品久久久久久久末码| 久久精品亚洲精品国产色婷小说| 岛国视频午夜一区免费看| 性欧美人与动物交配| 精品少妇一区二区三区视频日本电影| 亚洲性夜色夜夜综合| 亚洲国产精品久久男人天堂| 美女大奶头视频| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| 日韩欧美免费精品| 亚洲av中文字字幕乱码综合 | 亚洲精品av麻豆狂野| 亚洲成人久久爱视频| 9191精品国产免费久久| 中文字幕人妻丝袜一区二区| 久久久久国产一级毛片高清牌| 丝袜在线中文字幕| 在线观看午夜福利视频| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| 亚洲第一电影网av| 啦啦啦免费观看视频1| 中文字幕人妻熟女乱码| 亚洲专区国产一区二区| 最近最新中文字幕大全免费视频| 日日摸夜夜添夜夜添小说| avwww免费| 久久久精品国产亚洲av高清涩受| 999久久久精品免费观看国产| av在线天堂中文字幕| 日韩欧美国产在线观看| 亚洲国产看品久久| 在线av久久热| 国内少妇人妻偷人精品xxx网站 | 久久亚洲真实| 天天一区二区日本电影三级| 亚洲av日韩精品久久久久久密| 国产人伦9x9x在线观看| 在线观看一区二区三区| 狂野欧美激情性xxxx| 久久久久久人人人人人| 国产av又大| 国产精品免费视频内射| 人成视频在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区三区四区久久 | 国产亚洲精品av在线| 一级a爱视频在线免费观看| 男人舔女人下体高潮全视频| 日韩欧美免费精品| 老司机午夜福利在线观看视频| 色老头精品视频在线观看| 国产高清激情床上av| 一本久久中文字幕| 观看免费一级毛片| 亚洲 国产 在线| 精品国产乱码久久久久久男人| 一a级毛片在线观看| 日韩av在线大香蕉| 久久人妻av系列| 12—13女人毛片做爰片一| 淫秽高清视频在线观看| 精品一区二区三区av网在线观看| 欧美午夜高清在线| 国产精品久久电影中文字幕| 国产精品久久久av美女十八| 午夜老司机福利片| 国内少妇人妻偷人精品xxx网站 | 免费人成视频x8x8入口观看| 欧美乱色亚洲激情| 天天添夜夜摸| 成人一区二区视频在线观看| 男女做爰动态图高潮gif福利片| 老司机午夜十八禁免费视频| 身体一侧抽搐| 在线观看免费日韩欧美大片| 国产亚洲av高清不卡| 51午夜福利影视在线观看| 99国产精品99久久久久| 波多野结衣高清作品| 久久伊人香网站| 国产av在哪里看| tocl精华| 黄网站色视频无遮挡免费观看| 欧美zozozo另类| 香蕉久久夜色| 99精品欧美一区二区三区四区| 国产单亲对白刺激| 此物有八面人人有两片| 欧美人与性动交α欧美精品济南到| 欧美精品亚洲一区二区| 啪啪无遮挡十八禁网站| 激情在线观看视频在线高清| 亚洲性夜色夜夜综合| 亚洲精品av麻豆狂野| 久久久久久久久久黄片| 日本三级黄在线观看| 成人三级黄色视频| 在线av久久热| 久久久国产欧美日韩av| 久久这里只有精品19| 亚洲中文字幕一区二区三区有码在线看 | 国产在线观看jvid| 亚洲成国产人片在线观看| 久久精品人妻少妇| 精品欧美国产一区二区三| 又紧又爽又黄一区二区| 色精品久久人妻99蜜桃| 亚洲色图av天堂| 黄频高清免费视频| 欧美性长视频在线观看| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 一个人免费在线观看的高清视频| 热re99久久国产66热| 久久精品影院6| 中文在线观看免费www的网站 | 黄频高清免费视频| 精品卡一卡二卡四卡免费| 色综合站精品国产| 亚洲国产欧美网| 国产精品九九99| 夜夜躁狠狠躁天天躁| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频| 国产真人三级小视频在线观看| 久久天躁狠狠躁夜夜2o2o| 人妻久久中文字幕网| ponron亚洲| 99国产综合亚洲精品| 精品第一国产精品| 2021天堂中文幕一二区在线观 | 国产亚洲精品一区二区www| www.999成人在线观看| 午夜福利成人在线免费观看| 男人舔女人的私密视频| 老鸭窝网址在线观看| 制服人妻中文乱码| 巨乳人妻的诱惑在线观看| 成在线人永久免费视频| 亚洲第一电影网av| 最好的美女福利视频网| 亚洲五月婷婷丁香| 亚洲午夜精品一区,二区,三区| 90打野战视频偷拍视频| 日韩欧美国产在线观看| 亚洲国产精品999在线| 久9热在线精品视频| 精品福利观看| 亚洲狠狠婷婷综合久久图片| 黄片播放在线免费| 中文字幕人成人乱码亚洲影| 久久久精品国产亚洲av高清涩受| 国语自产精品视频在线第100页| av在线天堂中文字幕| 久久热在线av| 精华霜和精华液先用哪个| 国产熟女午夜一区二区三区| 欧美性长视频在线观看| 久久久水蜜桃国产精品网| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址| 日本 欧美在线| 国产精品 欧美亚洲| 一区二区三区高清视频在线| 午夜免费激情av| 国产精品98久久久久久宅男小说| 精品国产乱码久久久久久男人| 一级毛片女人18水好多| 美女免费视频网站| 日本一区二区免费在线视频| 亚洲三区欧美一区| 欧美黑人巨大hd| 天天一区二区日本电影三级| 一个人免费在线观看的高清视频| 亚洲欧美日韩高清在线视频| 久久狼人影院| 国产亚洲欧美98| ponron亚洲| 久久久久久久精品吃奶| 国产精品一区二区免费欧美| 亚洲成人久久爱视频| 国产精品一区二区精品视频观看| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 国产一级毛片七仙女欲春2 | 窝窝影院91人妻| 色综合亚洲欧美另类图片| 丝袜人妻中文字幕| 色播亚洲综合网| 国产激情欧美一区二区| 国产蜜桃级精品一区二区三区| 午夜a级毛片| 久久中文字幕人妻熟女| 国产片内射在线| 成人av一区二区三区在线看| 精品国产乱码久久久久久男人| 怎么达到女性高潮| 免费av毛片视频| 久久久精品国产亚洲av高清涩受| 变态另类成人亚洲欧美熟女| 俄罗斯特黄特色一大片| 欧美中文日本在线观看视频| 欧美日韩黄片免| 麻豆av在线久日| 一本大道久久a久久精品| 久久久水蜜桃国产精品网| 国产久久久一区二区三区| 国产男靠女视频免费网站| 十八禁人妻一区二区| 国产亚洲精品一区二区www| 男人舔奶头视频| 国产av又大| 精品少妇一区二区三区视频日本电影| 黄频高清免费视频| 啦啦啦观看免费观看视频高清| 一边摸一边做爽爽视频免费| 中文字幕人妻熟女乱码| 欧美日本亚洲视频在线播放| 国产精品亚洲av一区麻豆| 亚洲成人精品中文字幕电影| 久久久久久亚洲精品国产蜜桃av| 国产三级在线视频| 亚洲精品国产一区二区精华液| 香蕉av资源在线| 成人18禁高潮啪啪吃奶动态图| 精品乱码久久久久久99久播| 一级毛片精品| 久久久久久国产a免费观看| 人人妻人人看人人澡| 午夜精品在线福利| 亚洲 欧美 日韩 在线 免费| 中文字幕精品亚洲无线码一区 | 亚洲七黄色美女视频| 欧美日韩精品网址| 午夜精品在线福利| 此物有八面人人有两片| 色av中文字幕| 国产精品二区激情视频| 韩国av一区二区三区四区| 色播亚洲综合网| 精品国产超薄肉色丝袜足j| 久久久精品国产亚洲av高清涩受| 美女午夜性视频免费| 观看免费一级毛片| 一个人免费在线观看的高清视频| 欧美激情久久久久久爽电影| 俺也久久电影网| 自线自在国产av| 亚洲成国产人片在线观看| 亚洲国产看品久久| 黄色a级毛片大全视频| 天天添夜夜摸| 黄色成人免费大全| 久99久视频精品免费| 无遮挡黄片免费观看| 亚洲第一电影网av| 国产精品九九99| 欧美性长视频在线观看| 大香蕉久久成人网| 精品人妻1区二区| 国产久久久一区二区三区| 天堂√8在线中文| 美国免费a级毛片| 中国美女看黄片| 久久久久久九九精品二区国产 | 婷婷亚洲欧美| 国产欧美日韩一区二区精品| 村上凉子中文字幕在线| 国产精品永久免费网站| 亚洲精品国产精品久久久不卡| 好看av亚洲va欧美ⅴa在| 国产精品久久视频播放| 大型黄色视频在线免费观看| 特大巨黑吊av在线直播 | 亚洲一区二区三区不卡视频| 亚洲精品久久国产高清桃花| www.自偷自拍.com| 国产精品 欧美亚洲| 国产精品九九99| 岛国在线观看网站| 制服诱惑二区| 丁香欧美五月| 国产在线精品亚洲第一网站| 久久中文字幕一级| 中文亚洲av片在线观看爽| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 国产成人av激情在线播放| 久久人妻福利社区极品人妻图片| 麻豆成人av在线观看| 午夜老司机福利片| 男女做爰动态图高潮gif福利片| 亚洲精品av麻豆狂野| 大型av网站在线播放| 悠悠久久av| 老司机午夜福利在线观看视频| 美女高潮喷水抽搐中文字幕| 欧美乱色亚洲激情| 久久九九热精品免费| 国产av在哪里看| 中文在线观看免费www的网站 | 欧美丝袜亚洲另类 | 天天躁狠狠躁夜夜躁狠狠躁| xxx96com| 性色av乱码一区二区三区2| 久久久久久免费高清国产稀缺| 女人被狂操c到高潮| 国产成年人精品一区二区| 无限看片的www在线观看| 国产亚洲av嫩草精品影院| 波多野结衣av一区二区av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久九九精品影院| 婷婷精品国产亚洲av在线| 在线播放国产精品三级| 精品久久久久久久毛片微露脸| 日本成人三级电影网站| 久久这里只有精品19| 男女午夜视频在线观看| www.熟女人妻精品国产| 国产精品自产拍在线观看55亚洲| 一级a爱视频在线免费观看| 亚洲人成伊人成综合网2020| 国产精品久久久人人做人人爽| 国产亚洲精品综合一区在线观看 | 日本三级黄在线观看| 90打野战视频偷拍视频| 精品不卡国产一区二区三区| 亚洲欧美激情综合另类| 在线免费观看的www视频| 中文字幕精品免费在线观看视频| 久久午夜亚洲精品久久| 亚洲第一av免费看| 可以在线观看毛片的网站| 欧美在线一区亚洲| 久久精品人妻少妇| 亚洲国产精品久久男人天堂| 一个人免费在线观看的高清视频| 一边摸一边做爽爽视频免费| 亚洲一区高清亚洲精品| 深夜精品福利| 日韩精品中文字幕看吧| 国产极品粉嫩免费观看在线| 黄色女人牲交|