• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On ADRC for non-minimum phase systems:canonical form selection and stability conditions

    2016-05-14 06:51:51WenchaoXUEYiHUANGZhiqiangGAO
    Control Theory and Technology 2016年3期

    Wenchao XUE ,Yi HUANG ,Zhiqiang GAO

    1.Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;

    2.Department of Electrical and Computer Engineering,Cleveland State University,Cleveland,Ohio 44115,U.S.A.

    1 Introduction

    As is well known,uncertainties rejection is one of the fundamental issues in automatic control.The controllerrejector pair,proposed by[1],presents a generic principle for control structure with two degrees of freedom(TDOF),i.e.,the controller is designed for the canonical form of plant;the difference between the actual model and the canonical form,deemed as disturbance,is to be estimated and cancelled by the rejector.Also,the novel definition of rejector greatly helps to reorient many observers/estimators to estimate the uncertainties,such as unknown input observer(UIO)[2],proportional integral observer(PIO)[3],disturbance observer(DOB)[4,5],nonlinear disturbance observer(NDOB)[6,7],extended state observer(ESO)[8,9],etc.(see[10–12]).

    This paper pays particular attention to the rejector in terms of ESO,which is strikingly featured with estimating the “total disturbance”or the total effect of unmodelled dynamics and disturbance[9,13].In the last two decades,the active disturbance rejection control(ADRC),which suggests to use ESO as a powerful rejector,has been successfully applied to many industrial processes[14]and embedded in the chips of Texas Instrument[15].To effectively deal with multifarious control problems,many modifications on ADRC have also been constructed by combining ESO and other control methods,such as optimalcontrol[16,17],back-stepping control[18],sliding model control[19],adaptive control[20,21],predictive control[22],feedforward controller[23],etc.Nevertheless,they usually share the following TDOF:one designs feedforward/feedback law based on the canonical form of plant to achieve desired outputresponse and the otherone cancels the“totaldisturbance”via the estimation which is timely provided by ESO,as shown in Fig.1.

    Fig.1 ADRC:ESO based TDOF.

    Although the two degrees in ADRC approach have independent tasks,their operations depend on the canonical form which essentially stands for the necessary information of the system to be known.In particular,both desired output and ESO are constructed based on the canonical form selected.Therefore,canonical form is crucial for ADRC.

    The canonical form of the systems with no zero dynamics(or zeros for LTI systems)has been well studied for ADRC design[25,26].Moreover,similar canonical form is proven to be effective forsystems with minimum phase which means that the systems have stable zero dynamics[20,27,28].In addition,severaleffective methods have been proposed for ADRC to tackle certain kinds of non-minimum phase systems with the information of zeros being fully known[24,29].However,canonical form selection for the systems which have uncertain and unstable zeros is still an open problem.This paper aims to study the canonical form as well as the corresponding ADRC design for uncertain non-minimum phase systems.Our contributions include that:

    ?The uncertainties of the systems are shown to be equivalently divided into the two terms in the control channel and the output channel.Correspondingly,the canonical form and the resulting ADRC for the uncertain systems,which could be non-minimum phase,is presented.

    ?The necessary and sufficient condition for the stability of the closed-loop system with some uncertainties is rigorously studied.Also,the necessity of the detectability of the extended system and certain information ofthe system’s“zeros”,indicates the fundamental guideline in designing and tuning ADRC.

    The paper is organized as follows.We introduce the basic idea of ADRC in Section 2.In Section 3,we present the canonical form as well as the ADRC controller for a class of uncertain systems.In Section 4,the stability condition of the closed-loop system is rigorously studied.Section 5 is the simulation study and the last section is devoted to conclusions.

    2 Basic idea of ADRC

    First,the following class of uncertain systems with the form of cascade of integrators is used to present the basic idea of ADRC,

    wherex∈Rnis the state vector,y∈R is the output to be regulated,u∈R is the control input to be designed,b(t)is a known and nonzero function,(AI,BI,CI)satisfies

    and δ(·)is the “total disturbance”or the total effect of the unknown nonlinear dynamics and external disturbance.

    The canonicalform of(1)isusually setasthe following cascade of integrators[25]

    Let the control object be forcingyto approach the desired outputy*generated by

    where the function ψ(·)is used to shape the trajectory ofy*according to practical requirements and conditions,such as the requirements on overshoot,rising time,maximal control input value,etc.

    The difference between(1)and(3)implies that bothxand δ(·)are timely needed foryto tracky*by designingu.ESO suggests to treat δ(·)as an extended state to be estimated,and the linear ESO usually has the form of

    is stable and has desired eigenvalues1In this paper,the matrix or transfer function is stable means that all its roots or poles have negative real part..Consequently,the control input becomes

    It is straightforward to understand the TDOF in ADRC(4)–(6)for tracky*,i.e.,

    It seems that the controller and the the rejector have independent tasks in(4)–(6).However,both of their structures heavily depend on the canonical form(2).In particular,the control law ψ(·)is constructed based on(2),and the form of ESO(4)also stems from(2).Therefore,canonical form is a critical issue to be addressed for ADRC.Existing literatures have shown that the the canonical form of cascade of integrators is effective for the minimal phase systems[20,26–28].In this paper,we will discuss the canonical form selection for ADRC to deal with the uncertain systems which could be nonminimal phase.

    3 Canonical form selection for ADRC

    Consider the following class of nonlinear uncertain systems

    wherex∈Rnis the state vector,y,uandb(t)have the same meanings as those in(1).The matricesA∈ Rn×n,B∈ Rn×1andC∈ Rn×1are assumed to have uncertainties and satisfy the follow typical assumption,

    Assumption 1The pair(A,B)is controllable and the pair(A,C)is observable.

    Since(A,B,C)has general form,the model(7)can describe both non-minimal phase and minimal phase systems.Next,we will analyze the uncertainties in(7)to present its canonical form.

    According to the knowledge of linear system[30],Assumption 1 means that there exists a nonsingular matrixT∈ Rn×nsuch that

    whereaiandci,i=1,...,nare uncertain parameters due to the uncertainties in(A,B,C).The exact form ofTis probably unavailable due to the uncertainties in(A,B,C).Fortunately,from the structure of(T-1AT,T-1B,TTC),both the uncertainties in(A,B,C)and inTcan be included into(ai,ci),i=1,...,n.Next,we assume thatˉaiandˉciare the nominal value or known information ofaiandci,respectively.Consequently,

    are the unknown parts of the parameters.Furthermore,letˉx?[ˉx1ˉx2···ˉxn]T=Tx,then system(7)can be equivalently written as

    include all the uncertainties in system(7)or(8).

    Remark 2In the case ofˉδ(ˉx,t)=0 andCδ=0,it can be verified that the transfer function from the input(b(t)u(t))to the outputy(t)satisfies

    where L is the Laplace operator.Thus,aδ,iandcδ,iactually stand forthe uncertaintiesin the“poles”and“zeros”for system(8),respectively.It is evident that these two groups of uncertainties are contained inˉδ(·)andCδ.Therefore,we will use the form of system(8)instead of(7)in the following analysis such that the physical meanings of uncertain terms are transparent.

    Also,consider the desired outputˉy*generated by

    whereL∈Rnandle∈R are parameters to be designed such that(Ae-LeCTe)is stable,where

    It can be verified that the ADRC based closed-loop system constituted of(8)and(13)satisfies

    4 Stability conditions for the closed-loop system

    First,the assumption for the initial valueˉx0is given.

    Assumption 2?ˉx(t0)??ρ0,where ρ0is positive.Define

    then the closed-loop system(14)equals to

    Theorem 1Let Assumptions 1 and 2 be satisfied.There exist nonegatives αi,i=1,2,3 such that

    for any|ˉδ(ˉx,t)|?α1?ˉx?+α2and any?Cδ??α3if and only if every root of

    is stable.

    Theorem 1 essentially reflects the necessary and sufficient condition for the stability of the ADRC based closed-loop system despite some uncertainties in bothˉδ(·)andCδ.Therefore,the applicability of the proposed ADRC(13)can be specified by checking that whether the selected parameters in controller ensure the stability of the roots of(18)and(19).Also,the condition of Theorem 1 indicates the fundamental guideline in designing and tuning ADRC.

    Note that Theorem 1 shows the necessary and sufficient condition for the system with the uncertain functionˉδ(ˉx,t)being bounded by certain linear function,i.e.,|ˉδ(ˉx,t)|?α1?ˉx?+α2,then this condition is also necessary for the system with more general uncertain functions.

    Since the gain of ESO,i.e.,Leis a tunable parameter vector,the existence ofLeto ensure the condition given in Theorem 1 needs to be addressed.

    Lemma 1There existsLesuch that every root ofg1(s)is stable if and only if the pair(Ae,Ce)is detectable.In addition,(Ae,Ce)is always detectable in the case ofˉc1?0.

    According to Lemma 1,the detectability of the pair(Ae,Ce)is necessary for the validation of the canonical form(11).We also remark that checking this detectability is straightforward since the matrices(Ae,Ce)are exactly known.Note that system(1)implies thatˉc1=1,then the nominal model(11)always makes sense for the systems with cascade of integrators.

    We proceed to the discussion for theg2(s)which depends onCδ.SinceCδrepresents the uncertainty in the“zeros”of system(7),the stability of the roots ofg2(s)is used to show how much uncertainty in the “zeros”can be tolerated by the proposed canonical form based ADRC(13).Although the solution for the size ofCδto ensure the stability of the roots ofg2(s)cannot be explicitly obtained,it can be numerically solved under any given(Le,K),as illustrated by the example in Section 5.

    Proof of Theorem 1First,the necessary condition for(18)will be proven.Consider the particular case ofCδ=0,δ(·)≡ α2,then there is

    Note that?Be??0,then one of the roots ofg1(s)being unstable means that

    Therefore,the stability of all roots ofg1(s)is necessary.Define

    equals to the stability of the roots of

    Evidently,the roots of(24)are those ofg1(s)and

    According to the exact form ofˉA,ˉB,CTδandK,there is

    Similar to(20)–(21),the stability of all roots ofg2(s)is also necessary for(17).

    Next,the sufficiency condition of(18)–(19)will be proven.According to the analysis between(23)and(26),the stability of(18)–(19)indicates that the matrix?Ais Hurwitz.Thus,there exists a positive matrix?Psuch that

    for any given α3.Furthermore,it can be verified that there exist positives α1,α2and αsuch that for any|ˉδ(ˉx,t)|?α1?ˉx?+α2,there is

    which implies(17). ?

    Proof of Lemma 1According to the definition of detectability,detectability of the pair(Ae,Ce)is necessary and sufficient for the existence ofLesuch that every root ofg1(s)is stable.Moreover,there is

    which has full rank in case ofˉc1?0.Thus,ˉc1?0 implies(Ae,Ce)is observable as well as detectable. ?

    5 Simulation study

    5.1 Example 1

    Consider the following 2nd order nonlinear system

    where the uncertain termˉδ(ˉx,t)is assumed to satisfy

    wherel1,l2andleare tuned by the following popular law[31]:

    where ωeis the bandwidth of the ESO in(33)and is set by ωe=5.

    Fig.2 shows the responses of the corresponding ADRC based closed-loop system with the following cases of the system’s “zero”

    It is evident that the proposed canonical form(31)based ADRC controller(33)can stabilize the closed-loop system with C1 and C2,but it fails with C3.Actually,this can be rigorously explained by Theorem 1 which shows that the stability of the roots of

    is necessary for the applicability of ADRC(33).Moreover,the minimalcδ,2to ensure the stability ofallroots ofg2(s)can be numerically computed under(ωc=1,ωe=5),as shown in Table 1.It is evident that the minimalcδ,2forthe stability ofallrootsofg2(s)under(ωc=1,ωe=5)is-0.2,which is accordance with the results in Fig.2.

    Fig.2 The responses of the closed-loop system with(ωc=1,ωe=5)and ADRC(33).

    Remark 3From Table 1,larger ωcor ωeleads to larger positive “zero”or smaller size of the uncertaintycδ,2tolerated by ADRC.Note that large ωcor ωeis usually used for fast tracking reference signal or estimating uncertainties,then smaller uncertainties in the unstable zero is required to achieve better performance of the ADRC based control system.

    Table 1 The minimalall roots of g2(s).

    Table 1 The minimalall roots of g2(s).

    ωe 0.2 0.4 0.6 0.8 1.0 1.5 2 ωc 0.5 0.63 0.87 1.05 1.18 1.25 1.33 1 1.0 0.87 1.25 1.53 1.81 2.0 2.22 2.0.43.5 2.0 1.25 1.81 2.22 2.5 2.86 4.0 4.0 5.0 2.5 2.86 3.33 4.0 5.0 6.67 6.67 10.0 5.0 5.0 6.67 6.67 6.67 10.0 10.0 15.0 6.67 6.67 10.0 10.0 10.0 10.0 20.0 20.0 10.0 10.0 10.0 10.0 10.0 20.0 20.0

    Theorem 1 actually presents the limitation of the ADRC(33)in dealing with the uncertainty in zero.Moreover,it is necessary to known more information of the system’s zero if its location is far more its estimation.In particular,if we known more precise information for the zero of system(29)such that the system is

    Fig.3 illustrates that the proposed new ADRC controller(39)can stabilize the closed-loop system with the system’s “zero”being

    Fig.3 The responses of the closed-loop system with(ωc=1,ωe=5)and ADRC(39).

    5.2 Example 2

    Consider the following non-minimal phase system in the form of transfer function:

    Obviously,cδ,2decides the unknown partofthe system’s zero.Therefore,the nominal model of(41)is

    Consequently,the canonical form of system(41)in the state space can be

    then(13)means that the ESO for system(41)is

    where ωe> 0 is the only parameter to be chosen.

    Let the desired outputˉy*satisfy

    By the results of Theorem 1,the necessary condition for the stability of the closed-loop system with(41),(45)and(47)is that all roots of are stable for?cδ,2∈ [-0.1,0.1].Actually,this condition requires that ωecannot be set to an arbitrary value,as shown in Fig.4.Also,the numerical computation shows that ωeshould satisfy ωe< 14.In Fig.5,the responses of the corresponding closed-loop system are presented under

    It is obvious that the stability of the closed-loop system is ensured by choosing the ωewhich satisfies ωe< 14,and well estimation of the uncertainty is obtained by the proposed ESO.

    Fig.4 The maximal real part of the roots of(48)for different ωe.

    Fig.5 (a)The responses of the corresponding closed-loop system(41),(45)and(47).(b)The estimation of the total disturbance.

    Remark 4By the discussion on Examples 1 and 2,the tuning method of ωefor the non-minimum phase system can be presented as follows:obtaining the maximal ωeby the stability of the roots of(19);increasing ωefrom a small value to its maximal value until the actual response meets practical requirements.

    6 Conclusions

    It is shown that the canonical form selection is crucial for ADRC based control systems,especially for nonminimal phase systems.The paper presents the canonical form for a class of uncertain systems which could have uncertain unstable “zeros”.Also,the necessary and sufficient condition for the stability of the closed-loop system with the proposed canonical form and ADRC is proven under some uncertainties.In particular,we demonstrate that the detectability of the extended system and certain information of the system’s “zeros”are necessary.Additionally,the methods of checking these necessary conditions are discussed via simulation study.We believe that the theoretical results of this paper can provide some fundamental guidelines for designing the canonical form as well as the corresponding ADRC for non-minimal phase systems.

    [1]Z.Gao.On the centrality of disturbance rejection in automatic control.ISA Transactions,2014,53(4):850–857.

    [2]M.Hou,P.C.Muller.Design of observers for linear systems with unknown inputs.IEEE Transactions on Automatic Control,1993,37(6):871–874.

    [3]D.Soffker,T.J.Yu,P.C.Mullter.State estimation of dynamical systems with nonlinearities by using proportionalintegral observer.International Journal of Systems Science,1995,26(9):1571–1582.

    [4]M.Nakao,K.Ohnishi,K.Miyachi.A robust decentralized joint control based on interference estimation.IEEE International Conference on Robotics and Automation,Raleigh:IEEE,1987:326–331.

    [5]H.Shim,N.H.Jo.An almostnecessary and sufficientcondition for robuststability ofclosed-loop systems with disturbance observer.Automatica,2009,45(1):296–299.

    [6]W.-H.Chen,D.J.Ballance,P.J.Gawthrop,et al.A nonlinear disturbance observer for robotic manipulators.IEEE Transactions on Industrial Electronics,2000,47(4):932–938.

    [7]L.Guo,S.Cao.Anti-disturbance control theory for systems with multiple disturbances:A survey.ISA Transactions,2014,53(4):846–849.

    [8]J.Han.The “extended state observer”of a class of uncertain systems.Journal of Control and Decision,1995,10(1):85–88(in Chinese).

    [9] J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [10]C.D.Johnson.Real-time disturbance-observers;origin and evolution of the idea–Part 1:The early years.Proceedings of the 40th Southeastern Symposium on System Theory,New Orleans:IEEE,2008:88–91.

    [11]S.Li,J.Yang,W.-H.Chen,et al.Disturbance Observer-based Control:MethodsandApplicaitons.Boca Raton:CRCPress,2013.

    [12]A.Radke,Z.Gao.A survey of state and disturbance observers for practitioners.Proceedings of the American Control Conference,Minnesota:IEEE,2006:5183–5188.

    [13]Z.Gao.Scaling and bandwidth-parameterization based controller tuning.ProceedingsoftheAmericanControlConference,Colorado:IEEE,2003:4989–4996.

    [14]Q.Zheng,Z.Gao.On practical applications of active disturbance rejection control.Proceedings of the 29th Chinese Control Conference,Beijing:IEEE,2010:6095–6100.

    [15]R.Schoenberger.Linestream technologies signs licensing deal with Texas instruments.2011:blog.cleveland.com/business_impact/print.html?entry=/2011/07/linestream_technologies_signs.html.

    [16]G.Cheng,J.Hu.An observer-based mode switching control scheme for improved position regulation in servomotors.IEEE Transactions on Control Systems Technology,2014,22(5):1883–1891.

    [17]H.Liu,S.Li.Speed control for PMSM servo system using predictive functional control and extended state observer.IEEE Transactions on Industrial Electronics,2012,59(2):1171–1183.

    [18]J.Linares-Flores,C.Garcia-Rodriguez,H.Sira-Ramirez,et al.Robust backstepping tracking controller for low-speed pmsm positioning system:Design,analysis,and implementation.IEEE Transactions on Industrial Informatics,2015,11(5):1130–1141.

    [19]Y.Xia,Z.Zhu,M.Fu,et al.Attitude tracking of rigid spacecraft with bounded disturbances.IEEE Transactions on Industrial Electronics,2011,58(2):647–659.

    [20]T.Jiang,C.Huang,L.Guo.Controlofuncertain nonlinearsystems based on observers and estimators.Automatica,2015,59:35–47.

    [21]G.Sun,X.Ren,D.Li.Neural active disturbance rejection output control of multimotor servomechanism.IEEE Transactions on Control Systems Technology,2015,23(2):746–753.

    [22]Q.Li,D.Li,W.Tan.Performance robustness comparison ofADRC and GPC.Proceedings of the Chinese Control Conference,Hefei,China:IEEE,2012:4586–4590.

    [23]H.Xie,K.Song,L.Li,et al.A comprehensive decoupling control method for gasoline hcci combustion.Proceedings of the Chinese Control Conference,Xi’an:IEEE,2013:7681 – 7691.

    [24]L.Sun,D.Li,Z.Gao,et al.Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system.ISA Transactions,2016:DOI 10.1016/j.isatra.2016.04.020.

    [25]Y.Huang,W.Xue.Active disturbance rejection control:Methodology and theoretical analysis.ISA Transaction,2014,53:963–976.

    [26]Q.Zheng,Z.Chen,Z.Gao.A practical approach to disturbance decoupling control.Control Engineering Practice,2009,17(9):1016–1025.

    [27]B.Guo,Z.Zhao.On convergence of the nonlinear active disturbance rejection control for MIMO systems.SIAM Journal of Control and Optimization,2013,51(2):1727–1757.

    [28]W.Xue,Y.Huang.Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems.ISA Transaction,2015,58:133–54.

    [29]S.Zhao,L.Sun,D.Li,et al.Tracking and disturbance rejection in non-minimum phase systems.ProceedingsoftheChineseControl Conference,Nanjing:IEEE,2014:3834–2839.

    [30]C.-T.Chen.Linear System Theory and Design.3rd ed.New York:Oxford University Press,1999.

    [31]D.Yoo,S.S.-T.Yau,Z.Gao.Optimal fast tracking observer bandwidth of the linear extended state observer.International Journal of Control,2007,80(1):102–111.

    尾随美女入室| 极品教师在线视频| 伦精品一区二区三区| 亚洲av电影不卡..在线观看| 久久久久性生活片| 午夜激情欧美在线| 夜夜夜夜夜久久久久| 日本撒尿小便嘘嘘汇集6| 99热全是精品| 欧美极品一区二区三区四区| 在线播放国产精品三级| 色尼玛亚洲综合影院| 午夜精品国产一区二区电影 | 午夜激情欧美在线| 三级毛片av免费| 如何舔出高潮| 啦啦啦韩国在线观看视频| 国产精品国产高清国产av| 成人毛片60女人毛片免费| 天堂中文最新版在线下载 | a级毛色黄片| 青春草视频在线免费观看| 亚洲国产高清在线一区二区三| 九九久久精品国产亚洲av麻豆| 岛国在线免费视频观看| 成人亚洲精品av一区二区| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 中文精品一卡2卡3卡4更新| a级毛片免费高清观看在线播放| 亚洲av男天堂| 最近手机中文字幕大全| 日本爱情动作片www.在线观看| 久久久精品94久久精品| 狠狠狠狠99中文字幕| 春色校园在线视频观看| 国产真实乱freesex| 亚洲av熟女| 淫秽高清视频在线观看| 有码 亚洲区| 国产精品三级大全| 亚洲欧洲日产国产| 成人特级av手机在线观看| 亚洲精品乱码久久久久久按摩| av.在线天堂| 麻豆久久精品国产亚洲av| 欧美精品一区二区大全| 亚洲国产精品sss在线观看| av免费观看日本| 色吧在线观看| 在线观看一区二区三区| 亚洲一级一片aⅴ在线观看| 国模一区二区三区四区视频| 国产成人精品一,二区 | 久久韩国三级中文字幕| 国产亚洲av片在线观看秒播厂 | 久久久a久久爽久久v久久| 美女脱内裤让男人舔精品视频 | 日本黄色片子视频| 老熟妇乱子伦视频在线观看| 久久中文看片网| 性色avwww在线观看| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 亚州av有码| 久久国内精品自在自线图片| 国产激情偷乱视频一区二区| 国产极品天堂在线| 午夜亚洲福利在线播放| 久久精品国产亚洲av天美| 国产精品1区2区在线观看.| 国产伦精品一区二区三区视频9| 免费搜索国产男女视频| 99久久成人亚洲精品观看| 国产精品一区二区在线观看99 | av天堂中文字幕网| 国产男人的电影天堂91| 中文字幕精品亚洲无线码一区| 午夜免费男女啪啪视频观看| 2022亚洲国产成人精品| 青春草亚洲视频在线观看| 国产视频内射| 色综合色国产| 国产伦精品一区二区三区视频9| 18禁在线无遮挡免费观看视频| 国内久久婷婷六月综合欲色啪| 九九在线视频观看精品| 色哟哟·www| 日韩 亚洲 欧美在线| 精品久久久久久久人妻蜜臀av| 神马国产精品三级电影在线观看| 亚洲欧美日韩卡通动漫| 最近最新中文字幕大全电影3| 高清午夜精品一区二区三区 | 久久久欧美国产精品| 日日啪夜夜撸| av卡一久久| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 国产成人福利小说| 麻豆av噜噜一区二区三区| 亚洲,欧美,日韩| 精华霜和精华液先用哪个| 亚洲aⅴ乱码一区二区在线播放| 亚洲不卡免费看| 在线观看免费视频日本深夜| 成人特级av手机在线观看| 美女高潮的动态| 亚洲国产精品合色在线| 草草在线视频免费看| 午夜老司机福利剧场| 亚洲av成人精品一区久久| 1000部很黄的大片| 亚洲av一区综合| 特大巨黑吊av在线直播| 婷婷亚洲欧美| 亚州av有码| 国产成人aa在线观看| 欧美极品一区二区三区四区| kizo精华| 一级毛片久久久久久久久女| 国产一区二区在线av高清观看| av在线天堂中文字幕| 精品免费久久久久久久清纯| 一级毛片我不卡| 成熟少妇高潮喷水视频| 97超碰精品成人国产| 日韩一本色道免费dvd| 波多野结衣高清作品| 欧美成人一区二区免费高清观看| 熟女人妻精品中文字幕| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 亚洲av中文av极速乱| 国产成人福利小说| 两个人视频免费观看高清| 中文字幕精品亚洲无线码一区| 国产色婷婷99| 99视频精品全部免费 在线| 国产精品久久久久久精品电影| 亚洲av成人av| 日日摸夜夜添夜夜爱| 精品日产1卡2卡| 成人永久免费在线观看视频| 成年女人看的毛片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 女人十人毛片免费观看3o分钟| 女的被弄到高潮叫床怎么办| 欧美变态另类bdsm刘玥| 日韩,欧美,国产一区二区三区 | 一区二区三区高清视频在线| 三级国产精品欧美在线观看| 国产一区二区在线观看日韩| 欧美性猛交黑人性爽| 亚洲精品国产av成人精品| 亚洲av不卡在线观看| 日韩欧美在线乱码| 亚洲第一区二区三区不卡| 男人舔女人下体高潮全视频| 成年女人永久免费观看视频| 高清毛片免费观看视频网站| 欧美另类亚洲清纯唯美| 免费av观看视频| 亚洲欧美精品自产自拍| 熟女人妻精品中文字幕| 美女高潮的动态| kizo精华| 神马国产精品三级电影在线观看| 国产成人a∨麻豆精品| 午夜精品一区二区三区免费看| 男女啪啪激烈高潮av片| 精品久久久久久久末码| 波多野结衣巨乳人妻| 婷婷色综合大香蕉| 国产麻豆成人av免费视频| 国产成人freesex在线| av免费在线看不卡| 久久草成人影院| 欧美三级亚洲精品| 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 人人妻人人澡欧美一区二区| 久久国内精品自在自线图片| 91狼人影院| 国产蜜桃级精品一区二区三区| 久99久视频精品免费| 久久精品国产亚洲av涩爱 | 天堂网av新在线| 国产极品天堂在线| 日韩亚洲欧美综合| 国产精品乱码一区二三区的特点| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 99久久久亚洲精品蜜臀av| 天美传媒精品一区二区| 午夜福利成人在线免费观看| 免费无遮挡裸体视频| 国产成人精品婷婷| 国产中年淑女户外野战色| 国产av麻豆久久久久久久| 黄片wwwwww| 精品欧美国产一区二区三| 国产免费男女视频| 国产精品三级大全| 又黄又爽又刺激的免费视频.| 1000部很黄的大片| 99热只有精品国产| 日产精品乱码卡一卡2卡三| 免费无遮挡裸体视频| 亚洲自拍偷在线| 国产av不卡久久| 美女cb高潮喷水在线观看| 久久久a久久爽久久v久久| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| 日韩强制内射视频| 亚洲人与动物交配视频| 中文字幕久久专区| 在线观看免费视频日本深夜| 国产成人91sexporn| 日韩高清综合在线| 精品久久久久久久久久久久久| 色综合色国产| 热99在线观看视频| 国产精品久久视频播放| 亚洲国产精品国产精品| 波野结衣二区三区在线| 99久久中文字幕三级久久日本| 一级毛片我不卡| 观看免费一级毛片| 免费观看在线日韩| 亚洲国产欧美在线一区| 毛片女人毛片| av天堂中文字幕网| 亚洲aⅴ乱码一区二区在线播放| a级一级毛片免费在线观看| 国产伦精品一区二区三区视频9| 99热全是精品| 22中文网久久字幕| 国产精华一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产一区二区三区在线臀色熟女| 国产在线精品亚洲第一网站| 26uuu在线亚洲综合色| 能在线免费观看的黄片| 国产午夜福利久久久久久| а√天堂www在线а√下载| 亚洲三级黄色毛片| 美女黄网站色视频| 99久久人妻综合| 村上凉子中文字幕在线| 国产中年淑女户外野战色| 夜夜看夜夜爽夜夜摸| 我要搜黄色片| 人人妻人人看人人澡| 亚洲av男天堂| 国产v大片淫在线免费观看| 日本-黄色视频高清免费观看| 日日干狠狠操夜夜爽| 赤兔流量卡办理| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 男女啪啪激烈高潮av片| 久久久久网色| 日本黄大片高清| 欧美成人a在线观看| 97超碰精品成人国产| 国产一区亚洲一区在线观看| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩无卡精品| 韩国av在线不卡| 三级国产精品欧美在线观看| 美女cb高潮喷水在线观看| 国产精品国产高清国产av| 舔av片在线| 啦啦啦观看免费观看视频高清| 草草在线视频免费看| 免费看av在线观看网站| 国产爱豆传媒在线观看| 国产淫片久久久久久久久| 国语自产精品视频在线第100页| 嫩草影院精品99| 国产色婷婷99| 国产一区亚洲一区在线观看| 国产高清三级在线| 99热网站在线观看| 校园春色视频在线观看| 欧美bdsm另类| 欧美成人精品欧美一级黄| 欧美又色又爽又黄视频| 午夜激情福利司机影院| 91久久精品电影网| 成人av在线播放网站| 小说图片视频综合网站| 色播亚洲综合网| 欧美人与善性xxx| 国产一区二区在线av高清观看| av在线老鸭窝| 国产精品免费一区二区三区在线| 乱码一卡2卡4卡精品| 最新中文字幕久久久久| 成人鲁丝片一二三区免费| 亚洲激情五月婷婷啪啪| 熟女人妻精品中文字幕| 91久久精品电影网| 能在线免费观看的黄片| 国内少妇人妻偷人精品xxx网站| 久久国内精品自在自线图片| 亚洲电影在线观看av| 久久韩国三级中文字幕| 国语自产精品视频在线第100页| 一个人免费在线观看电影| 97超碰精品成人国产| 色哟哟·www| 精品久久久噜噜| 久久这里只有精品中国| 亚洲久久久久久中文字幕| 亚洲精品日韩av片在线观看| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说 | 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 久久99精品国语久久久| 少妇人妻精品综合一区二区 | 久久久久九九精品影院| 人体艺术视频欧美日本| 最近手机中文字幕大全| 永久网站在线| 男人和女人高潮做爰伦理| 在线观看66精品国产| 久久韩国三级中文字幕| 国产精品1区2区在线观看.| av视频在线观看入口| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 搞女人的毛片| 国产高清有码在线观看视频| 天天一区二区日本电影三级| 欧美激情在线99| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 国产免费男女视频| 欧美性感艳星| 不卡视频在线观看欧美| 日日干狠狠操夜夜爽| 伊人久久精品亚洲午夜| 一区二区三区四区激情视频 | 亚洲最大成人手机在线| 国产免费一级a男人的天堂| 男人和女人高潮做爰伦理| 国产极品精品免费视频能看的| 亚洲欧美清纯卡通| 久久精品91蜜桃| 最后的刺客免费高清国语| 小说图片视频综合网站| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 久久久色成人| 国产女主播在线喷水免费视频网站 | 亚洲一级一片aⅴ在线观看| 一本精品99久久精品77| 亚洲国产欧美在线一区| 国产欧美日韩精品一区二区| 久久久久久国产a免费观看| 日韩一区二区视频免费看| 亚洲内射少妇av| 日韩视频在线欧美| 成年女人永久免费观看视频| 欧美日本视频| 一个人免费在线观看电影| 精品少妇黑人巨大在线播放 | 欧美另类亚洲清纯唯美| www.色视频.com| 精品人妻一区二区三区麻豆| 亚洲自偷自拍三级| 国产日韩欧美在线精品| 男女边吃奶边做爰视频| 尾随美女入室| 女人十人毛片免费观看3o分钟| 国产精品国产高清国产av| 亚洲国产精品成人综合色| 九草在线视频观看| 男女视频在线观看网站免费| 在线观看66精品国产| 99riav亚洲国产免费| 成人特级黄色片久久久久久久| 久久国内精品自在自线图片| ponron亚洲| 国产精品美女特级片免费视频播放器| 亚洲av中文av极速乱| 人妻系列 视频| 亚洲真实伦在线观看| 青春草国产在线视频 | 成人性生交大片免费视频hd| 日日啪夜夜撸| 国产精品蜜桃在线观看 | 干丝袜人妻中文字幕| 日本色播在线视频| 99热这里只有精品一区| 美女国产视频在线观看| 精品久久久久久久久久免费视频| 国国产精品蜜臀av免费| 国产成人一区二区在线| 岛国在线免费视频观看| 九九在线视频观看精品| 成人av在线播放网站| 欧美+亚洲+日韩+国产| 99热6这里只有精品| 日本与韩国留学比较| 91精品国产九色| 热99在线观看视频| 亚洲av成人精品一区久久| 哪里可以看免费的av片| 国产精品不卡视频一区二区| 欧美激情在线99| 国产高清不卡午夜福利| 精品一区二区三区视频在线| 只有这里有精品99| 亚洲久久久久久中文字幕| 亚洲av.av天堂| 成人综合一区亚洲| 日韩强制内射视频| 欧美激情久久久久久爽电影| 国模一区二区三区四区视频| 国产女主播在线喷水免费视频网站 | 九九热线精品视视频播放| 国产精品人妻久久久久久| 观看美女的网站| 色综合色国产| 亚洲最大成人手机在线| 久久欧美精品欧美久久欧美| 91精品国产九色| 九九久久精品国产亚洲av麻豆| 丝袜喷水一区| 97在线视频观看| 中国美白少妇内射xxxbb| 69人妻影院| .国产精品久久| 日本欧美国产在线视频| 日产精品乱码卡一卡2卡三| 欧美成人精品欧美一级黄| 菩萨蛮人人尽说江南好唐韦庄 | 特级一级黄色大片| videossex国产| 寂寞人妻少妇视频99o| 国产美女午夜福利| 少妇人妻一区二区三区视频| 日本在线视频免费播放| 哪里可以看免费的av片| 特级一级黄色大片| 一级毛片我不卡| 欧美一区二区精品小视频在线| 麻豆乱淫一区二区| 国产高清激情床上av| 成人美女网站在线观看视频| 听说在线观看完整版免费高清| 免费看光身美女| 能在线免费看毛片的网站| 99久久久亚洲精品蜜臀av| 国产视频内射| 国产蜜桃级精品一区二区三区| 欧美+亚洲+日韩+国产| 非洲黑人性xxxx精品又粗又长| 亚洲自拍偷在线| 色尼玛亚洲综合影院| АⅤ资源中文在线天堂| 国产精品99久久久久久久久| 日韩成人av中文字幕在线观看| 亚洲av二区三区四区| 一边摸一边抽搐一进一小说| 中文字幕av成人在线电影| 蜜桃亚洲精品一区二区三区| 亚洲av男天堂| 精品久久久久久久人妻蜜臀av| 日本av手机在线免费观看| 欧美区成人在线视频| 国产精品一区www在线观看| 国产真实伦视频高清在线观看| 在线播放国产精品三级| 久久久久久久午夜电影| 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| 亚洲自拍偷在线| 又爽又黄a免费视频| 亚洲欧洲日产国产| 婷婷亚洲欧美| 国产真实乱freesex| 亚洲国产精品sss在线观看| 亚洲天堂国产精品一区在线| 噜噜噜噜噜久久久久久91| 岛国毛片在线播放| 久久久久网色| 五月伊人婷婷丁香| 日韩视频在线欧美| 国产黄片视频在线免费观看| 天堂中文最新版在线下载 | 在线观看av片永久免费下载| 中文字幕制服av| 波多野结衣高清作品| 国产成人一区二区在线| 男人的好看免费观看在线视频| 日韩一本色道免费dvd| 欧美极品一区二区三区四区| 国产国拍精品亚洲av在线观看| 亚洲无线观看免费| 99riav亚洲国产免费| 波多野结衣高清无吗| 成年av动漫网址| 亚洲国产欧美在线一区| 亚洲在久久综合| 国产亚洲av嫩草精品影院| 午夜福利在线在线| av黄色大香蕉| 亚洲精品国产成人久久av| 国产高清有码在线观看视频| 国产一级毛片七仙女欲春2| 久久精品久久久久久久性| 日日撸夜夜添| av在线亚洲专区| 久久久久九九精品影院| 久久99蜜桃精品久久| 一本精品99久久精品77| 欧美一区二区亚洲| 插逼视频在线观看| 国产亚洲欧美98| 免费电影在线观看免费观看| av在线亚洲专区| 日本一二三区视频观看| 亚洲欧美精品专区久久| 久久久久久久亚洲中文字幕| 久久综合国产亚洲精品| 亚洲欧美精品自产自拍| 亚洲欧美精品综合久久99| 天堂√8在线中文| 免费看光身美女| 麻豆国产av国片精品| 国产一区二区在线观看日韩| 日韩一区二区视频免费看| 一个人观看的视频www高清免费观看| ponron亚洲| 欧洲精品卡2卡3卡4卡5卡区| 淫秽高清视频在线观看| 国产亚洲精品久久久久久毛片| 夜夜夜夜夜久久久久| 久久久久久久久久黄片| 欧美+日韩+精品| 男人的好看免费观看在线视频| 久久人人精品亚洲av| 99热这里只有是精品50| 观看美女的网站| av在线蜜桃| 亚洲欧美精品综合久久99| 国产黄a三级三级三级人| 免费无遮挡裸体视频| 热99re8久久精品国产| 亚洲综合色惰| 国产伦一二天堂av在线观看| 久久国内精品自在自线图片| av免费观看日本| 国产av麻豆久久久久久久| 六月丁香七月| 自拍偷自拍亚洲精品老妇| 国产成人精品一,二区 | 亚洲成人久久性| 蜜桃久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 成人高潮视频无遮挡免费网站| 亚洲va在线va天堂va国产| 国内少妇人妻偷人精品xxx网站| 成人鲁丝片一二三区免费| 亚洲欧美成人综合另类久久久 | 国产亚洲精品av在线| 91久久精品国产一区二区成人| .国产精品久久| 久久久国产成人免费| 自拍偷自拍亚洲精品老妇| 亚洲人成网站在线播| 国产私拍福利视频在线观看| 青春草视频在线免费观看| 最近视频中文字幕2019在线8| 国产亚洲精品av在线| 一夜夜www| 成人特级黄色片久久久久久久| 午夜爱爱视频在线播放| 波多野结衣高清无吗| 人妻久久中文字幕网| av免费在线看不卡| 国产午夜精品一二区理论片| 69av精品久久久久久| 日本黄大片高清| 欧美色欧美亚洲另类二区| 3wmmmm亚洲av在线观看| 国产 一区 欧美 日韩| 精品久久国产蜜桃| 内射极品少妇av片p| 能在线免费看毛片的网站| 精品人妻偷拍中文字幕| 男人狂女人下面高潮的视频| 免费av毛片视频| 可以在线观看毛片的网站| 综合色丁香网| av福利片在线观看| 国产精品一区www在线观看| 日本色播在线视频| 国产 一区 欧美 日韩| 九九热线精品视视频播放| 久久鲁丝午夜福利片| 亚洲最大成人手机在线| 人人妻人人澡欧美一区二区| 久久久久久久久久久丰满| 99在线人妻在线中文字幕| 内射极品少妇av片p| 18禁裸乳无遮挡免费网站照片| 国产乱人视频| 校园春色视频在线观看|