• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sampled-data extended state observer for uncertain nonlinear systems

    2016-05-14 06:51:49ChuanTIANPengYANZhenZHANG
    Control Theory and Technology 2016年3期

    Chuan TIAN ,Peng YAN ,2?,Zhen ZHANG

    1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;

    2.Key Laboratory of High-efficiency and Clean Mechanical Manufacturing,Ministry of Education,School of Mechanical Engineering,Shandong University,Jinan Shandong 250061,China

    3.Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China

    1 Introduction

    The existence of various disturbances and model uncertainties poses major challenges in the design of control systems,where the situation is further complicated in sophisticated control applications with demanding performance requirements such as aerospace industries and modern precision industries.There are abundantresearch results addressing challenging problems on antidisturbance control of systems with parametric variations,unmodeled dynamics and external disturbances.The readers can be referred to[1]and references therein for recent advances in control techniques for disturbance/uncertainty estimation and attenuation.

    One major category in anti-disturbance control is disturbance observer based control(DOBC)approach,where disturbance observers are introduced to estimate and compensate the uncertainties and disturbances.Based on the observation mechanism,disturbance observers in both frequency domain[2,3]and time domain[4,5]are proposed in the literature.Alternatively,the method of active disturbance rejection control(ADRC)([6,7])is also well discussed,where successful industry applications have been achieved such as MEMS gyroscopes[8],robotics[9]and high precision motion control[10].As a key part of the ADRC control structure,the extended state observer(ESO)is developed to estimate uncertainties and disturbances simultaneously by lumping them into an an extended state as the“total disturbance”for disturbance elimination purposes.

    In recent years,theoretical analysis on the linear ESO(LESO)and the nonlinear ESO(NLESO)has attracted more and more research efforts as well.In[8]and[11],the convergence of LESO is given analytically.Based on time-varying PD-eigenvalues assignmentand Kalman filter algorithms respectively,adaptive extended state observers(AESO)in the form of LESO are presented to improve the performance of ESO and cancel the peaking phenomenon[12,13].To have more design flexibility for complicated systems,[12],nonlinear extended state observer(NLESO)design and analysis are also discussed for both single-input-single-output(SISO)systems[14],and multiple-input-multiple-output(MIMO)cases[15],as well as uncertain lower triangular nonlinear systems[16].Furthermore,the NLESO method is improved by replacing constant observer gains with time-varying gains in[17].

    Although most of the results stated above,especially for NLESO,are based on continuous time,the ESO typically needs to be implemented in discrete-time in various computer-based controlapplications.The digitalimplementations of ESO have also received considerable attention,e.g.,different discrete approximation methods[18],the relationship between sampling periods and control bandwidth for LESO[19]and incremental algorithm design[20].In a similar fashion,the discrete form of NLESO is discussed in[7].Note that most of the existing works stated above are designed based on a direct discretization of the plant models.However,many complications in sampled-data systems can not be fully addressed by the design methods discussed above,e.g.,the existence ofperturbationsofsampling schedule[21],or control systems with multiple sampling rates[22].

    It is noticed that a continuous-discrete observer method was discussed in[21],where an inter-sample output predictor was used to predict the inter-sample dynamics in sampled-data nonlinear observer design.This design has a hybrid structure because the states are estimated in continuous time and the predictor is updated discontinuously only at the sampling time to correct the estimated state trajectory.Such sampleddata observer design has been widely investigated recently,e.g.,sampled-data high gain observers for networked control systems[23]where sampling periods are nonuniform,and sampled-data extended high gain observers with multi-rate control applications in electrohydraulic actuator systems[22].

    Inspired by this line of research on continuousdiscrete observer design,we propose a sampled-data extended state observerdesign with nonlineargain function,where the convergence of the proposed observer is analyzed by a Lyapunov function based method.Meanwhile,the relationship between the observer error bound and the observer gain parameters is also derived.The present work is an extension of[14],which is capable of generating continuous state estimation based on sampled-data system measurement.For applications requiring multiple sampling rates,the proposed design offers the opportunity to compensating high frequency disturbances using an up-sampling compensator,while using the original sampling rate for the rest of control system.For example,when the proposed ESO is employed in an multi-rate ADRC controlframework as illustrated in Fig.1,the inter-sample information(by prediction)can be used to handle high frequency disturbances by up-sampling the observer output,while the feedback controller is still running in the original sampling rate to handle low frequency disturbances.Multi-rate control systems have been successfully implemented in various industry applications such as Hard Disk Drive servo systems[24].

    The rest of the paper is organized as follows:In Section 2,some definitions and notations which will be used in this paper are given.The system and continuous time ESO formulation are described in Section 3.The sampled-data nonlinearextended state observerfornonlinear uncertain systems with sampled measurements is proposed in Section 4,where the exponential convergence of the observer is also given by using Lyapunov approach.In Section 5,simulation results are presented to show the effectiveness of the design,followed by conclusions in Section 6.

    Fig.1 The diagram of sampled-data control system with NLESO.

    2 Notations and de finitions

    In this section,some mathematical notations used in this paper are introduced.R=(-∞,+∞)is the set of real numbers and Rndenotes the set of real vectors of n-dimension.Cis the continuous function.?·?presents the euclidian norm on Rn.Some countable set

    3 Problem formulation

    Consider ann-dimensional SISO nonlinear system

    wherey∈R is the system output,f∈C(Rn,R)represents a possibly unknown nonlinear dynamics of the system,u∈C(R,R)is the input,bis a given constant,andd∈C(R,R)is the external disturbance.Then system(1)can be presented in the following form:

    wheref+d,the total disturbance,is set as an extended state of the system,and leth=f˙+d˙,x=[x1x2···xn]T∈ Rnis the state of the system,whose initial values can be set asxi(t0)fori=1,2,...,n.Inspired by the work of[14],a nonlinear extended state observer can be designed for system(2),

    The above observer is a special form of ESO proposed in[6],wherex=[x1···xn+1]∈Rn+1is the estimated state of ESO,the initial condition can be set asxi(t0),the gain ε describes a small positive constant,gi,i=1,2,...,n+1 denote chosen nonlinear functions.According to[14],the error dynamics of the ESO are expected to exponentially converge to 0,namelyx-x→0,as ε → 0 andt→ ∞.

    Although the above plant system,as well as the ESO design,can be discretized directly for computerbased digital implementations,some complications(e.g.,nonuniform sampling systems,or multi-rate sam-pling systems)cannot be well addressed.Recall the multi-rate ADRC control architecture depicted in Fig.1,we would like to investigate the sampled-date NLESO design based on discrete time system output and generate continuous observer output,such that the ESO output can be up-sampled to handle high frequency disturbances out of the control bandwidth using original sample rate.For such purposes,we would like to investigate the sampled-data case of NLESO(3)by applying the continuous-discrete observer design technique similar to[21].

    Fig.2 The diagram of sampled-data system with NLESO.

    4 Sampled-data NLESO design

    In this section,we consider the sampled-data NLESO design problem.As depicted in the block diagram in Fig.1,the sampled-data NLESO is composed of an intersample output predictor and a NLESO,where the measurement of the system output is only available at each sampling time.Besides the control inputu,the prediction of outputwis the other input of the NLESO instead of the real system outputy,and some information of state estimations is used in the inter-sample output predictor.The observer is designed in continuous time and the states of the observer can be potentially sampled digitally,even with a sampling time different from that of the output measurement when discretization,thus facilitates multi-rate control system design.

    First,we consider system(1)with the sampled-data output measurement as

    where the output data can be measured at each sampling time τk.Then a sampled-data NLESO with output predictor can be designed as

    wherexdenotes contious-time estimate state ofx.w(t)is the prediction of outputybetween two consecutive sampling instants,which is updated at the start of each sampling interval.Moreover,the outputpredictorforthe time interval between two consecutive measurements can be shown as

    Then,according to systems(4)and(5)we set

    In what follows,we will give the main results of this paper.First of all,some assumptions are made for the sampled-data NLESO.

    Assumption 1The unknown functionsf,dare continuously differentiable with respect to their variables,for some positive constantscj,j=0,1,...,nand posi-tive integerq,such that

    Assumption 2The solutionsxito system(2)and disturbancedsatisfy|d|+|xi(t)|?m1for some constantm1>0;i=1,2,...,nandt?0.

    Assumption 3For?η =[η1η2···ηn+1]T∈ Rn+1,there exist constants λi,fori=1,...,4 and positive definite radially unbounded and continuous differentiable functionsV1,W1:Rn+1→R such that

    Assumption 4Functionsgi(·)∈C(R,R)are globally Lipschitz on a compact set ζ ofz,namely for(z1,z2)∈R×R,there exists γ > 0 such that

    Theorem 1Consider the sampled-data system(4).If Assumptions 1–4 hold,then the states of the sampleddata NLESO(5)exponentially converge to the states and extended state of system(4),namely for σ>0,there exists a sufficiently small ε,a ε-dependentTand a positive boundedrmaxsuch that

    ProofUnder Assumptions 1 and 2 and the dynamic of extended state(9),there exists a constantM>0,such that|?(t)|?M.

    Inspired by[23],we consider the following candidate Lyapunov function:

    where we introduce an additional termV2(t)with respect to the output predictor,θ is a positive constant which can be computed as follows and κ(t)is a positive and bounded function.This function satisfies the following conditions:

    First,under Assumptions 3 and 4,we consider the time derivative ofV1(η(t))along the solution η(t)to system(4),and obtain

    The following bound regarded to(15)can be derived by recalling the Young inequality:

    Combining(17)with(18),we can obtain

    By Assumption 3 again,integrating(24)on the interval[τk,t]yields

    Consider(12)–(14)and the fact that ?(τk)=0,η(τk)=η(τ-k)at the time instantt= τk,then we will have

    It means that the observer error is ultimately bounded and we can choose ε small enough to reduce the bound of error.Moreover,the right hand side of(30)converges exponentially to 0,as ε→ 0.In addition,we can compute the value ofrmaxas

    5 Numerical simulations

    In this section,a numerical example is given to illustrate the effectiveness of the proposed observer.Inspired by[14]and[17],consider the following nonlinear

    We take the system inputu(t),external disturbanced(t),and nonlinear functionf(t,x)in the above system respectively as

    By following the design procedure in the above section,We can design the following sampled-data nonlinear extended state observer

    where the nonlinear function ? :R → R is defined as

    In this case,the global Lipschitz nonlinear functionsgiin the ESO in(5)can be specified as

    Note that Assumptions 1–4 are all satisfied.Thus,(36)is a well-defined sampled-data NLESO for system(35)according to Theorem 1.Now we can define the Lyapunov function as

    The positive definite matrixPcan be chosen according to[14],and the convergence can be guaranteed by the method presented in Section 4.

    The initial states of the plant(30)and the ESO(31)are set as(1,1)Tand(0,0,0)T,respectively.The time step for calculation is 0.005 s,and the sampling time of the output measurement isr=0.01 s.

    Fig.3 Numerical simulations for system(32)by sampled-data NLESO y and w.

    Fig.4 Numerical simulations for system(32)by sampled-data y and w.

    6 Conclusions

    In this paper,a sampled-data nonlinear extended state observer for uncertain nonlinear systems subject to discrete time measurement was developed,where the inter-sample dynamics and sampling schedule were considered.The exponential convergence of the observer was analyzed by introducing a Lyapunov function chosen for hybrid systems.The relations between the observer error bound and the observer parameters were explicitly given.The numerical simulation results demonstrated the convergence ofthe proposed observer and inter-sample output predictor.Future works,along this line of research,include sampled-data ADRC or sampled-data output feedback control based on the proposed observer,as well as their industrial applications.

    [1]W.-H.Chen,J.Yang,L.Guo,et al.Disturbance observer-based control and related methods:An overview.IEEE Transactions on Industrial Electronics,2015,63(2):1083–1095.

    [2]K.Ohishi,M.Nakao,K.Ohnishi,et al.Microprocessor controlled DC motor for load-insensitive position servo system.IEEE Transactions on Industrial Electronics,1987,34(1):44–49.

    [3]E.Sariyildiz,K.Ohnishi.Stability and robustness of disturbanceobserver-based motion control systems.IEEE Transactions on Industrial Electronics,2015,62(1):414–422.

    [4]L.Guo,W.-H.Chen.Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach.International Journal of Robust and Nonlinear Control,2005,15(3):109–125.

    [5]J.Yang,S.Li,X.Yu.Sliding-mode control for systems with mismatched uncertainties via a disturbance observer.IEEE Transactions on Industrial Electronics,2013,60(1):160–169.

    [6]J.Han.A class of extended state observers for uncertain systems.Control and Decision,1995,10(1):85–88(in Chinese).

    [7]J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [8]Q.Zheng,L.Dong,D.H.Lee,et al.Active disturbance rejection control for MEMS gyroscopes.IEEE Transactions on Control Systems Technology,2009,17(6):1432–1438.

    [9]S.E.Talole,J.P.Kolhe,S.B.Phadke.Extended-stateobserver-based control of flexible-joint system with experimental validation.IEEE Transactions on Industrial Electronics,2010,57(4):1411–1419.

    [10]T.Leng,P.Liu,P.Yan,et al.Modeling and active disturbance rejection control for a piezoelectric-actuator driven nanopositioner.Proceedingsofthe33rdChineseControl Conference,Nanjing:IEEE,2014:5910–5915.

    [11]Q.Zheng,L.Dong,Z.Gao.On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknow dynamics.Proceedings of the IEEE Conference on Decision and Control,New Orleans:IEEE,2007:3501–3506.

    [12]Z.Pu,R.Yuan,J.Yi,et al.A class of adaptive extended state observers for nonlinear disturbed systems.IEEE Transactions on Industrial Electronics,2015,62(9):5858–5869.

    [13]W.Xue,W.Bai,S.Yang,et al.ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines.IEEE Transactions on Industrial Electronics,2015,62(9):5847–5857.

    [14]B.Guo,Z.Zhao.On the convergence of an extended state observer for nonlinear systems with uncertainty.Systems&Control Letters,2011,60(6):420–430.

    [15]B.Guo,Z.Zhao.On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty.IET Control Theory&Applications,2012,6(15):2357–2386.

    [16]B.Guo,Z.Zhao.Extended state observer for uncertain lower triangular nonlinear systems.Systems&Control Letters,2015,85:100–108.

    [17]B.Guo,Z.Zhao.On active disturbance rejection control for nonlinear systems using time-varying gain.European Journal of Control,2015,23:62–70.

    [18]R.Miklosovic,A.Radke,Z.Gao.Discrete implementation and generalization of the extended state observer.Proceedings of the American control conference,Minneapolis:IEEE,2006:2209–2214.

    [19]S.Shi,J.Li,S.Zhao.On design analysis oflinearactive disturbance rejection control for uncertain system.International Journal of Control and Automation,2014,7(3):225–236.

    [20]G.Herbst.Practical active disturbance rejection control:Bumpless transfer,rate limitation and incrementalalgorithm.IEEE Transactions on Industrial Electronics,2016,63(3):1754–1762.

    [21]I.Karafyllis,C.Kravaris.From continuous-time design to sampled-data design ofobservers.IEEETransactionsonAutomatic Control,2009,54(9):2169–2174.

    [22]A.A.Sofiane.Sampled data observer based inter-sample output predictor for electro-hydraulic actuators.ISA transactions,2015,58:421–433.

    [23]T.Ahmed-Ali,F.Lamnabhi-Lagarrigue.High gain observer design for some networked control systems.IEEE Transactions on Automatic Control,2012,57(4):995–1000.

    [24]H.Fujimoto,Y.Hori.High-performance servo systems based on multirate sampling control.Control Engineering Practice,2002,10(7):773–781.

    久久综合国产亚洲精品| av卡一久久| 午夜老司机福利剧场| 亚洲欧美日韩高清专用| 欧美成人午夜免费资源| 亚洲国产日韩欧美精品在线观看| 午夜福利网站1000一区二区三区| 最新中文字幕久久久久| 中国国产av一级| 禁无遮挡网站| 国产av一区在线观看免费| 国产精品乱码一区二三区的特点| 边亲边吃奶的免费视频| 国产精品一及| 好男人视频免费观看在线| 一级av片app| 91精品一卡2卡3卡4卡| 成年女人看的毛片在线观看| 久久婷婷人人爽人人干人人爱| 日本免费a在线| 久久精品夜色国产| 国产免费又黄又爽又色| 你懂的网址亚洲精品在线观看 | 久久久久网色| 国产高清三级在线| 国产高清不卡午夜福利| 欧美bdsm另类| 欧美性感艳星| 人妻系列 视频| 看片在线看免费视频| 国产午夜福利久久久久久| 久久99热这里只有精品18| 69人妻影院| 久久99热6这里只有精品| 午夜视频国产福利| 22中文网久久字幕| 国产亚洲午夜精品一区二区久久 | 亚洲欧美日韩卡通动漫| 熟女人妻精品中文字幕| 晚上一个人看的免费电影| 亚洲精品国产av成人精品| 色哟哟·www| 久久久久久大精品| 一夜夜www| 午夜亚洲福利在线播放| 一个人免费在线观看电影| 国产精品女同一区二区软件| 色播亚洲综合网| 嫩草影院入口| 在线免费十八禁| 三级国产精品片| 51国产日韩欧美| 能在线免费观看的黄片| 人妻系列 视频| 亚洲人成网站在线播| 久久久久久久亚洲中文字幕| 看黄色毛片网站| 欧美激情久久久久久爽电影| 国产av码专区亚洲av| 国产女主播在线喷水免费视频网站 | 久久久色成人| 亚洲天堂国产精品一区在线| 九九在线视频观看精品| 亚州av有码| 国内精品宾馆在线| 日韩视频在线欧美| 国产爱豆传媒在线观看| 久久久久久大精品| 麻豆乱淫一区二区| 日韩成人伦理影院| 亚洲欧美日韩无卡精品| 女人十人毛片免费观看3o分钟| 18禁动态无遮挡网站| 伦理电影大哥的女人| 少妇被粗大猛烈的视频| 国产精品久久久久久av不卡| 国产 一区 欧美 日韩| 你懂的网址亚洲精品在线观看 | kizo精华| 国产一区二区三区av在线| 亚洲av一区综合| 国产视频内射| 天天一区二区日本电影三级| 男女下面进入的视频免费午夜| 男女视频在线观看网站免费| 午夜福利成人在线免费观看| 免费黄网站久久成人精品| 久久精品综合一区二区三区| 国产极品精品免费视频能看的| 亚洲精品aⅴ在线观看| 汤姆久久久久久久影院中文字幕 | 国产精品麻豆人妻色哟哟久久 | 内地一区二区视频在线| 真实男女啪啪啪动态图| 久久这里有精品视频免费| 国产免费男女视频| 插逼视频在线观看| 神马国产精品三级电影在线观看| 亚洲av成人精品一二三区| 国产成人福利小说| 两个人视频免费观看高清| 日本欧美国产在线视频| 免费在线观看成人毛片| 亚洲国产精品国产精品| 亚洲,欧美,日韩| 日本免费一区二区三区高清不卡| 美女国产视频在线观看| 亚洲av熟女| 99热6这里只有精品| 草草在线视频免费看| av免费观看日本| 我的女老师完整版在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品国产三级专区第一集| 久久亚洲精品不卡| 午夜免费激情av| 青春草视频在线免费观看| 91午夜精品亚洲一区二区三区| 欧美性猛交╳xxx乱大交人| 中文字幕精品亚洲无线码一区| kizo精华| 最新中文字幕久久久久| 久久久久九九精品影院| 午夜视频国产福利| 看非洲黑人一级黄片| 一区二区三区免费毛片| 久久精品熟女亚洲av麻豆精品 | 少妇人妻一区二区三区视频| av国产久精品久网站免费入址| 国产亚洲av片在线观看秒播厂 | 亚洲国产精品sss在线观看| 毛片一级片免费看久久久久| 久久久精品大字幕| 日韩精品青青久久久久久| 成人漫画全彩无遮挡| 男人狂女人下面高潮的视频| 一个人看的www免费观看视频| 免费电影在线观看免费观看| 国产人妻一区二区三区在| 欧美高清成人免费视频www| 91av网一区二区| 亚洲精品影视一区二区三区av| 男女那种视频在线观看| 亚洲精品久久久久久婷婷小说 | 免费人成在线观看视频色| 国产极品天堂在线| 女人十人毛片免费观看3o分钟| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 国产精品爽爽va在线观看网站| 国产一级毛片在线| 免费无遮挡裸体视频| 我的女老师完整版在线观看| 免费在线观看成人毛片| 欧美最新免费一区二区三区| 有码 亚洲区| 男人狂女人下面高潮的视频| 亚洲国产高清在线一区二区三| 国产精品三级大全| 亚洲国产成人一精品久久久| 日本-黄色视频高清免费观看| 国产亚洲午夜精品一区二区久久 | 最近的中文字幕免费完整| 搞女人的毛片| 久久久成人免费电影| 午夜爱爱视频在线播放| 少妇高潮的动态图| 亚洲av成人av| 久热久热在线精品观看| 国产极品精品免费视频能看的| 中国国产av一级| 日本三级黄在线观看| 三级国产精品欧美在线观看| 一夜夜www| 国产 一区 欧美 日韩| 亚洲精品自拍成人| 91精品伊人久久大香线蕉| 成人美女网站在线观看视频| 国产 一区精品| 国语对白做爰xxxⅹ性视频网站| 久久这里有精品视频免费| 亚洲精品成人久久久久久| 久久久久九九精品影院| 麻豆成人av视频| 免费电影在线观看免费观看| 欧美丝袜亚洲另类| 在线观看66精品国产| 变态另类丝袜制服| 欧美另类亚洲清纯唯美| 欧美一区二区精品小视频在线| 视频中文字幕在线观看| 日韩视频在线欧美| 久久精品国产自在天天线| 国产精品嫩草影院av在线观看| 国产伦一二天堂av在线观看| 七月丁香在线播放| 日本黄色片子视频| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站| 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 禁无遮挡网站| 日韩,欧美,国产一区二区三区 | 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 一级av片app| 亚洲中文字幕一区二区三区有码在线看| 一级二级三级毛片免费看| 国产亚洲av片在线观看秒播厂 | 亚洲av男天堂| 超碰97精品在线观看| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| 真实男女啪啪啪动态图| 国产三级在线视频| 少妇的逼好多水| 麻豆精品久久久久久蜜桃| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 国产综合懂色| 日本午夜av视频| 日韩亚洲欧美综合| 欧美不卡视频在线免费观看| 国产精品一区二区三区四区久久| 欧美丝袜亚洲另类| 亚洲av日韩在线播放| 狠狠狠狠99中文字幕| 成人综合一区亚洲| www日本黄色视频网| 国产淫片久久久久久久久| 国产午夜精品论理片| 黑人高潮一二区| 久久精品国产99精品国产亚洲性色| 天堂中文最新版在线下载 | 欧美日韩在线观看h| 最近手机中文字幕大全| 欧美日韩国产亚洲二区| 国产成人福利小说| 级片在线观看| 美女大奶头视频| 成人av在线播放网站| 国产精品一区二区三区四区免费观看| 舔av片在线| 中文在线观看免费www的网站| 黄片无遮挡物在线观看| 中文乱码字字幕精品一区二区三区 | 波野结衣二区三区在线| 青青草视频在线视频观看| 国产在视频线在精品| 你懂的网址亚洲精品在线观看 | 精品久久久久久成人av| .国产精品久久| 少妇丰满av| 好男人视频免费观看在线| 亚洲国产成人一精品久久久| 欧美不卡视频在线免费观看| 亚洲欧洲国产日韩| 色播亚洲综合网| 日韩欧美国产在线观看| 精品一区二区三区人妻视频| 一级毛片电影观看 | 2021少妇久久久久久久久久久| 内地一区二区视频在线| 亚洲国产精品合色在线| av播播在线观看一区| 日本爱情动作片www.在线观看| 日本黄色片子视频| 日本熟妇午夜| 精品久久久久久久久亚洲| 一区二区三区四区激情视频| 别揉我奶头 嗯啊视频| 最近中文字幕2019免费版| 国产私拍福利视频在线观看| 禁无遮挡网站| 成人欧美大片| 国产亚洲5aaaaa淫片| 视频中文字幕在线观看| 成年av动漫网址| 最近中文字幕2019免费版| 高清av免费在线| 国产中年淑女户外野战色| 一个人看视频在线观看www免费| www.色视频.com| 2021少妇久久久久久久久久久| 国产精品野战在线观看| 一区二区三区高清视频在线| 99视频精品全部免费 在线| 国产一区二区三区av在线| 久久精品久久精品一区二区三区| 亚洲不卡免费看| 精品国产一区二区三区久久久樱花 | 一级毛片我不卡| 精品久久久久久成人av| 中文亚洲av片在线观看爽| av又黄又爽大尺度在线免费看 | 亚洲欧美成人精品一区二区| 欧美日韩精品成人综合77777| 一边摸一边抽搐一进一小说| 啦啦啦观看免费观看视频高清| 亚洲精品亚洲一区二区| 日韩成人av中文字幕在线观看| 久久久久久久国产电影| 国产熟女欧美一区二区| 男女边吃奶边做爰视频| 国产精品国产三级国产专区5o | 男女视频在线观看网站免费| 天堂网av新在线| 亚洲自拍偷在线| 亚洲五月天丁香| 亚洲人成网站高清观看| 久久欧美精品欧美久久欧美| 欧美一区二区亚洲| 国产乱人偷精品视频| 纵有疾风起免费观看全集完整版 | 久久婷婷人人爽人人干人人爱| 欧美xxxx黑人xx丫x性爽| 九九爱精品视频在线观看| 中文天堂在线官网| 一级二级三级毛片免费看| 99久国产av精品| 波野结衣二区三区在线| 亚洲av免费在线观看| 一级黄片播放器| www.av在线官网国产| 国产高清视频在线观看网站| 国产精品一二三区在线看| 亚洲经典国产精华液单| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 欧美日韩一区二区视频在线观看视频在线 | 毛片一级片免费看久久久久| 99热精品在线国产| 精品久久久久久久久亚洲| 好男人在线观看高清免费视频| 国产伦在线观看视频一区| 国产精品国产三级国产av玫瑰| 国产精品国产三级国产专区5o | 男人的好看免费观看在线视频| 啦啦啦观看免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄 | 只有这里有精品99| 少妇人妻精品综合一区二区| 天天躁夜夜躁狠狠久久av| 少妇猛男粗大的猛烈进出视频 | 亚洲精品久久久久久婷婷小说 | 国产精品永久免费网站| 欧美精品一区二区大全| 狂野欧美激情性xxxx在线观看| 亚洲美女搞黄在线观看| 亚洲精品aⅴ在线观看| av视频在线观看入口| 国产免费又黄又爽又色| 国产一区二区三区av在线| 大香蕉97超碰在线| 久久精品国产亚洲av涩爱| 亚洲av福利一区| 女人被狂操c到高潮| 国产成人精品久久久久久| 免费大片18禁| 十八禁国产超污无遮挡网站| 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 特级一级黄色大片| 亚洲国产欧美在线一区| 欧美极品一区二区三区四区| 亚洲精品自拍成人| 青春草国产在线视频| 亚洲真实伦在线观看| 国产中年淑女户外野战色| 日韩一本色道免费dvd| 熟女人妻精品中文字幕| 蜜臀久久99精品久久宅男| 99热全是精品| av播播在线观看一区| 啦啦啦啦在线视频资源| 欧美bdsm另类| 国产乱人偷精品视频| 久久久久久伊人网av| 亚洲天堂国产精品一区在线| 亚洲国产欧洲综合997久久,| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 国产精品不卡视频一区二区| 免费大片18禁| 国产精品国产高清国产av| 国产免费视频播放在线视频 | 午夜a级毛片| 蜜桃亚洲精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 九九爱精品视频在线观看| 婷婷六月久久综合丁香| 日本一本二区三区精品| 亚洲欧洲日产国产| 尾随美女入室| 欧美激情在线99| 成年版毛片免费区| 午夜老司机福利剧场| 国产精品久久久久久久电影| av女优亚洲男人天堂| 欧美精品一区二区大全| 三级毛片av免费| 男人舔奶头视频| 一级黄片播放器| 国产精品福利在线免费观看| 极品教师在线视频| 亚洲欧洲国产日韩| 又黄又爽又刺激的免费视频.| 亚洲18禁久久av| 啦啦啦观看免费观看视频高清| 麻豆国产97在线/欧美| 看黄色毛片网站| 国产精品女同一区二区软件| 国产精品.久久久| 97热精品久久久久久| 99视频精品全部免费 在线| 大香蕉97超碰在线| 在线观看av片永久免费下载| 国产成人aa在线观看| 欧美又色又爽又黄视频| 亚洲欧美精品综合久久99| 久久这里只有精品中国| 国产一区有黄有色的免费视频 | 久久99热这里只频精品6学生 | 少妇裸体淫交视频免费看高清| 少妇熟女aⅴ在线视频| 性插视频无遮挡在线免费观看| 最近中文字幕2019免费版| 在现免费观看毛片| 国产精品国产三级专区第一集| 又爽又黄无遮挡网站| 久久精品国产自在天天线| 亚洲国产精品国产精品| 99在线人妻在线中文字幕| 国产又色又爽无遮挡免| 亚洲av熟女| 国产老妇女一区| 久久久久网色| 久久99蜜桃精品久久| 欧美成人精品欧美一级黄| 99久久中文字幕三级久久日本| av在线老鸭窝| 91久久精品国产一区二区三区| 色5月婷婷丁香| 两个人视频免费观看高清| 一级黄色大片毛片| 亚洲欧美中文字幕日韩二区| 日产精品乱码卡一卡2卡三| 晚上一个人看的免费电影| 免费av毛片视频| 日韩视频在线欧美| 国产精品女同一区二区软件| 国产精品一区二区在线观看99 | 韩国高清视频一区二区三区| 热99在线观看视频| 精品国内亚洲2022精品成人| 超碰av人人做人人爽久久| 99久久九九国产精品国产免费| 国产在视频线精品| 国内少妇人妻偷人精品xxx网站| 美女高潮的动态| 亚洲欧美成人综合另类久久久 | 久久久精品欧美日韩精品| 看免费成人av毛片| 免费观看的影片在线观看| 91午夜精品亚洲一区二区三区| 男人狂女人下面高潮的视频| 99久久中文字幕三级久久日本| 国产欧美日韩精品一区二区| 天美传媒精品一区二区| 成人亚洲欧美一区二区av| 国产人妻一区二区三区在| 欧美日韩在线观看h| 别揉我奶头 嗯啊视频| 国产成人精品婷婷| 国产伦一二天堂av在线观看| 一边摸一边抽搐一进一小说| 久久精品人妻少妇| 精品99又大又爽又粗少妇毛片| 亚洲精品色激情综合| 欧美高清成人免费视频www| 亚洲aⅴ乱码一区二区在线播放| 亚洲电影在线观看av| 51国产日韩欧美| eeuss影院久久| 国产亚洲av片在线观看秒播厂 | 亚洲aⅴ乱码一区二区在线播放| 久久精品91蜜桃| 免费在线观看成人毛片| 日韩制服骚丝袜av| 亚洲丝袜综合中文字幕| 69人妻影院| 免费观看在线日韩| 成年免费大片在线观看| 国产精品一及| 91精品一卡2卡3卡4卡| 天天躁日日操中文字幕| 一区二区三区高清视频在线| 晚上一个人看的免费电影| 免费不卡的大黄色大毛片视频在线观看 | 91狼人影院| 成人无遮挡网站| 男的添女的下面高潮视频| 99久国产av精品| 国产一区亚洲一区在线观看| 国产午夜精品论理片| 午夜老司机福利剧场| 亚洲精品自拍成人| 色尼玛亚洲综合影院| 成年女人永久免费观看视频| 国内精品一区二区在线观看| 国产老妇伦熟女老妇高清| 久久国产乱子免费精品| 国产成人精品一,二区| 免费看美女性在线毛片视频| 国产熟女欧美一区二区| 桃色一区二区三区在线观看| 久久久久久伊人网av| 18+在线观看网站| 久久午夜福利片| 国产乱人视频| 国产久久久一区二区三区| 一边亲一边摸免费视频| 黄色一级大片看看| 亚洲国产精品成人久久小说| av免费观看日本| 夜夜爽夜夜爽视频| 岛国在线免费视频观看| 国产免费一级a男人的天堂| 国产精品久久久久久久久免| 国产精品一区二区三区四区久久| 内射极品少妇av片p| 亚洲四区av| 成人三级黄色视频| 午夜精品一区二区三区免费看| 一个人免费在线观看电影| 全区人妻精品视频| 婷婷色av中文字幕| 国产一区亚洲一区在线观看| 不卡视频在线观看欧美| 麻豆成人午夜福利视频| 日韩精品有码人妻一区| 精品久久久久久久人妻蜜臀av| 丝袜美腿在线中文| 国产精品伦人一区二区| 少妇人妻一区二区三区视频| 国产91av在线免费观看| 色综合站精品国产| 国语自产精品视频在线第100页| 国产麻豆成人av免费视频| 九九久久精品国产亚洲av麻豆| 看黄色毛片网站| 午夜福利在线观看吧| 神马国产精品三级电影在线观看| 乱码一卡2卡4卡精品| 我要看日韩黄色一级片| 全区人妻精品视频| 蜜桃亚洲精品一区二区三区| 国产黄a三级三级三级人| 国产白丝娇喘喷水9色精品| 国产麻豆成人av免费视频| www.色视频.com| 中文资源天堂在线| 亚洲最大成人手机在线| 五月伊人婷婷丁香| 国产激情偷乱视频一区二区| 亚洲婷婷狠狠爱综合网| 亚洲精品,欧美精品| 十八禁国产超污无遮挡网站| 最近中文字幕高清免费大全6| 91久久精品电影网| 直男gayav资源| 成人漫画全彩无遮挡| 永久网站在线| 一卡2卡三卡四卡精品乱码亚洲| 欧美一区二区国产精品久久精品| 国产老妇女一区| 久久久国产成人精品二区| 国产亚洲91精品色在线| 网址你懂的国产日韩在线| 中文字幕精品亚洲无线码一区| 国产精品一及| 日本熟妇午夜| 国产麻豆成人av免费视频| 七月丁香在线播放| 国产成人freesex在线| 在线免费十八禁| 日韩制服骚丝袜av| 亚洲,欧美,日韩| 国产精品久久久久久精品电影小说 | 麻豆乱淫一区二区| 国产一区亚洲一区在线观看| 国产精品一区二区三区四区免费观看| 中文字幕精品亚洲无线码一区| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩东京热| 久99久视频精品免费| 色综合亚洲欧美另类图片| 国产成人一区二区在线| 亚洲欧美中文字幕日韩二区| 免费av毛片视频| 国产成人freesex在线| 狂野欧美白嫩少妇大欣赏| 国产精品,欧美在线| 精品少妇黑人巨大在线播放 | 国产一区二区在线观看日韩| 久久久久久久久中文| 日本欧美国产在线视频| 搡女人真爽免费视频火全软件| 亚洲精华国产精华液的使用体验| 男人和女人高潮做爰伦理| 日韩中字成人| 亚洲成av人片在线播放无| 欧美色视频一区免费| 草草在线视频免费看| 国产免费男女视频|