• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sampled-data extended state observer for uncertain nonlinear systems

    2016-05-14 06:51:49ChuanTIANPengYANZhenZHANG
    Control Theory and Technology 2016年3期

    Chuan TIAN ,Peng YAN ,2?,Zhen ZHANG

    1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;

    2.Key Laboratory of High-efficiency and Clean Mechanical Manufacturing,Ministry of Education,School of Mechanical Engineering,Shandong University,Jinan Shandong 250061,China

    3.Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China

    1 Introduction

    The existence of various disturbances and model uncertainties poses major challenges in the design of control systems,where the situation is further complicated in sophisticated control applications with demanding performance requirements such as aerospace industries and modern precision industries.There are abundantresearch results addressing challenging problems on antidisturbance control of systems with parametric variations,unmodeled dynamics and external disturbances.The readers can be referred to[1]and references therein for recent advances in control techniques for disturbance/uncertainty estimation and attenuation.

    One major category in anti-disturbance control is disturbance observer based control(DOBC)approach,where disturbance observers are introduced to estimate and compensate the uncertainties and disturbances.Based on the observation mechanism,disturbance observers in both frequency domain[2,3]and time domain[4,5]are proposed in the literature.Alternatively,the method of active disturbance rejection control(ADRC)([6,7])is also well discussed,where successful industry applications have been achieved such as MEMS gyroscopes[8],robotics[9]and high precision motion control[10].As a key part of the ADRC control structure,the extended state observer(ESO)is developed to estimate uncertainties and disturbances simultaneously by lumping them into an an extended state as the“total disturbance”for disturbance elimination purposes.

    In recent years,theoretical analysis on the linear ESO(LESO)and the nonlinear ESO(NLESO)has attracted more and more research efforts as well.In[8]and[11],the convergence of LESO is given analytically.Based on time-varying PD-eigenvalues assignmentand Kalman filter algorithms respectively,adaptive extended state observers(AESO)in the form of LESO are presented to improve the performance of ESO and cancel the peaking phenomenon[12,13].To have more design flexibility for complicated systems,[12],nonlinear extended state observer(NLESO)design and analysis are also discussed for both single-input-single-output(SISO)systems[14],and multiple-input-multiple-output(MIMO)cases[15],as well as uncertain lower triangular nonlinear systems[16].Furthermore,the NLESO method is improved by replacing constant observer gains with time-varying gains in[17].

    Although most of the results stated above,especially for NLESO,are based on continuous time,the ESO typically needs to be implemented in discrete-time in various computer-based controlapplications.The digitalimplementations of ESO have also received considerable attention,e.g.,different discrete approximation methods[18],the relationship between sampling periods and control bandwidth for LESO[19]and incremental algorithm design[20].In a similar fashion,the discrete form of NLESO is discussed in[7].Note that most of the existing works stated above are designed based on a direct discretization of the plant models.However,many complications in sampled-data systems can not be fully addressed by the design methods discussed above,e.g.,the existence ofperturbationsofsampling schedule[21],or control systems with multiple sampling rates[22].

    It is noticed that a continuous-discrete observer method was discussed in[21],where an inter-sample output predictor was used to predict the inter-sample dynamics in sampled-data nonlinear observer design.This design has a hybrid structure because the states are estimated in continuous time and the predictor is updated discontinuously only at the sampling time to correct the estimated state trajectory.Such sampleddata observer design has been widely investigated recently,e.g.,sampled-data high gain observers for networked control systems[23]where sampling periods are nonuniform,and sampled-data extended high gain observers with multi-rate control applications in electrohydraulic actuator systems[22].

    Inspired by this line of research on continuousdiscrete observer design,we propose a sampled-data extended state observerdesign with nonlineargain function,where the convergence of the proposed observer is analyzed by a Lyapunov function based method.Meanwhile,the relationship between the observer error bound and the observer gain parameters is also derived.The present work is an extension of[14],which is capable of generating continuous state estimation based on sampled-data system measurement.For applications requiring multiple sampling rates,the proposed design offers the opportunity to compensating high frequency disturbances using an up-sampling compensator,while using the original sampling rate for the rest of control system.For example,when the proposed ESO is employed in an multi-rate ADRC controlframework as illustrated in Fig.1,the inter-sample information(by prediction)can be used to handle high frequency disturbances by up-sampling the observer output,while the feedback controller is still running in the original sampling rate to handle low frequency disturbances.Multi-rate control systems have been successfully implemented in various industry applications such as Hard Disk Drive servo systems[24].

    The rest of the paper is organized as follows:In Section 2,some definitions and notations which will be used in this paper are given.The system and continuous time ESO formulation are described in Section 3.The sampled-data nonlinearextended state observerfornonlinear uncertain systems with sampled measurements is proposed in Section 4,where the exponential convergence of the observer is also given by using Lyapunov approach.In Section 5,simulation results are presented to show the effectiveness of the design,followed by conclusions in Section 6.

    Fig.1 The diagram of sampled-data control system with NLESO.

    2 Notations and de finitions

    In this section,some mathematical notations used in this paper are introduced.R=(-∞,+∞)is the set of real numbers and Rndenotes the set of real vectors of n-dimension.Cis the continuous function.?·?presents the euclidian norm on Rn.Some countable set

    3 Problem formulation

    Consider ann-dimensional SISO nonlinear system

    wherey∈R is the system output,f∈C(Rn,R)represents a possibly unknown nonlinear dynamics of the system,u∈C(R,R)is the input,bis a given constant,andd∈C(R,R)is the external disturbance.Then system(1)can be presented in the following form:

    wheref+d,the total disturbance,is set as an extended state of the system,and leth=f˙+d˙,x=[x1x2···xn]T∈ Rnis the state of the system,whose initial values can be set asxi(t0)fori=1,2,...,n.Inspired by the work of[14],a nonlinear extended state observer can be designed for system(2),

    The above observer is a special form of ESO proposed in[6],wherex=[x1···xn+1]∈Rn+1is the estimated state of ESO,the initial condition can be set asxi(t0),the gain ε describes a small positive constant,gi,i=1,2,...,n+1 denote chosen nonlinear functions.According to[14],the error dynamics of the ESO are expected to exponentially converge to 0,namelyx-x→0,as ε → 0 andt→ ∞.

    Although the above plant system,as well as the ESO design,can be discretized directly for computerbased digital implementations,some complications(e.g.,nonuniform sampling systems,or multi-rate sam-pling systems)cannot be well addressed.Recall the multi-rate ADRC control architecture depicted in Fig.1,we would like to investigate the sampled-date NLESO design based on discrete time system output and generate continuous observer output,such that the ESO output can be up-sampled to handle high frequency disturbances out of the control bandwidth using original sample rate.For such purposes,we would like to investigate the sampled-data case of NLESO(3)by applying the continuous-discrete observer design technique similar to[21].

    Fig.2 The diagram of sampled-data system with NLESO.

    4 Sampled-data NLESO design

    In this section,we consider the sampled-data NLESO design problem.As depicted in the block diagram in Fig.1,the sampled-data NLESO is composed of an intersample output predictor and a NLESO,where the measurement of the system output is only available at each sampling time.Besides the control inputu,the prediction of outputwis the other input of the NLESO instead of the real system outputy,and some information of state estimations is used in the inter-sample output predictor.The observer is designed in continuous time and the states of the observer can be potentially sampled digitally,even with a sampling time different from that of the output measurement when discretization,thus facilitates multi-rate control system design.

    First,we consider system(1)with the sampled-data output measurement as

    where the output data can be measured at each sampling time τk.Then a sampled-data NLESO with output predictor can be designed as

    wherexdenotes contious-time estimate state ofx.w(t)is the prediction of outputybetween two consecutive sampling instants,which is updated at the start of each sampling interval.Moreover,the outputpredictorforthe time interval between two consecutive measurements can be shown as

    Then,according to systems(4)and(5)we set

    In what follows,we will give the main results of this paper.First of all,some assumptions are made for the sampled-data NLESO.

    Assumption 1The unknown functionsf,dare continuously differentiable with respect to their variables,for some positive constantscj,j=0,1,...,nand posi-tive integerq,such that

    Assumption 2The solutionsxito system(2)and disturbancedsatisfy|d|+|xi(t)|?m1for some constantm1>0;i=1,2,...,nandt?0.

    Assumption 3For?η =[η1η2···ηn+1]T∈ Rn+1,there exist constants λi,fori=1,...,4 and positive definite radially unbounded and continuous differentiable functionsV1,W1:Rn+1→R such that

    Assumption 4Functionsgi(·)∈C(R,R)are globally Lipschitz on a compact set ζ ofz,namely for(z1,z2)∈R×R,there exists γ > 0 such that

    Theorem 1Consider the sampled-data system(4).If Assumptions 1–4 hold,then the states of the sampleddata NLESO(5)exponentially converge to the states and extended state of system(4),namely for σ>0,there exists a sufficiently small ε,a ε-dependentTand a positive boundedrmaxsuch that

    ProofUnder Assumptions 1 and 2 and the dynamic of extended state(9),there exists a constantM>0,such that|?(t)|?M.

    Inspired by[23],we consider the following candidate Lyapunov function:

    where we introduce an additional termV2(t)with respect to the output predictor,θ is a positive constant which can be computed as follows and κ(t)is a positive and bounded function.This function satisfies the following conditions:

    First,under Assumptions 3 and 4,we consider the time derivative ofV1(η(t))along the solution η(t)to system(4),and obtain

    The following bound regarded to(15)can be derived by recalling the Young inequality:

    Combining(17)with(18),we can obtain

    By Assumption 3 again,integrating(24)on the interval[τk,t]yields

    Consider(12)–(14)and the fact that ?(τk)=0,η(τk)=η(τ-k)at the time instantt= τk,then we will have

    It means that the observer error is ultimately bounded and we can choose ε small enough to reduce the bound of error.Moreover,the right hand side of(30)converges exponentially to 0,as ε→ 0.In addition,we can compute the value ofrmaxas

    5 Numerical simulations

    In this section,a numerical example is given to illustrate the effectiveness of the proposed observer.Inspired by[14]and[17],consider the following nonlinear

    We take the system inputu(t),external disturbanced(t),and nonlinear functionf(t,x)in the above system respectively as

    By following the design procedure in the above section,We can design the following sampled-data nonlinear extended state observer

    where the nonlinear function ? :R → R is defined as

    In this case,the global Lipschitz nonlinear functionsgiin the ESO in(5)can be specified as

    Note that Assumptions 1–4 are all satisfied.Thus,(36)is a well-defined sampled-data NLESO for system(35)according to Theorem 1.Now we can define the Lyapunov function as

    The positive definite matrixPcan be chosen according to[14],and the convergence can be guaranteed by the method presented in Section 4.

    The initial states of the plant(30)and the ESO(31)are set as(1,1)Tand(0,0,0)T,respectively.The time step for calculation is 0.005 s,and the sampling time of the output measurement isr=0.01 s.

    Fig.3 Numerical simulations for system(32)by sampled-data NLESO y and w.

    Fig.4 Numerical simulations for system(32)by sampled-data y and w.

    6 Conclusions

    In this paper,a sampled-data nonlinear extended state observer for uncertain nonlinear systems subject to discrete time measurement was developed,where the inter-sample dynamics and sampling schedule were considered.The exponential convergence of the observer was analyzed by introducing a Lyapunov function chosen for hybrid systems.The relations between the observer error bound and the observer parameters were explicitly given.The numerical simulation results demonstrated the convergence ofthe proposed observer and inter-sample output predictor.Future works,along this line of research,include sampled-data ADRC or sampled-data output feedback control based on the proposed observer,as well as their industrial applications.

    [1]W.-H.Chen,J.Yang,L.Guo,et al.Disturbance observer-based control and related methods:An overview.IEEE Transactions on Industrial Electronics,2015,63(2):1083–1095.

    [2]K.Ohishi,M.Nakao,K.Ohnishi,et al.Microprocessor controlled DC motor for load-insensitive position servo system.IEEE Transactions on Industrial Electronics,1987,34(1):44–49.

    [3]E.Sariyildiz,K.Ohnishi.Stability and robustness of disturbanceobserver-based motion control systems.IEEE Transactions on Industrial Electronics,2015,62(1):414–422.

    [4]L.Guo,W.-H.Chen.Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach.International Journal of Robust and Nonlinear Control,2005,15(3):109–125.

    [5]J.Yang,S.Li,X.Yu.Sliding-mode control for systems with mismatched uncertainties via a disturbance observer.IEEE Transactions on Industrial Electronics,2013,60(1):160–169.

    [6]J.Han.A class of extended state observers for uncertain systems.Control and Decision,1995,10(1):85–88(in Chinese).

    [7]J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [8]Q.Zheng,L.Dong,D.H.Lee,et al.Active disturbance rejection control for MEMS gyroscopes.IEEE Transactions on Control Systems Technology,2009,17(6):1432–1438.

    [9]S.E.Talole,J.P.Kolhe,S.B.Phadke.Extended-stateobserver-based control of flexible-joint system with experimental validation.IEEE Transactions on Industrial Electronics,2010,57(4):1411–1419.

    [10]T.Leng,P.Liu,P.Yan,et al.Modeling and active disturbance rejection control for a piezoelectric-actuator driven nanopositioner.Proceedingsofthe33rdChineseControl Conference,Nanjing:IEEE,2014:5910–5915.

    [11]Q.Zheng,L.Dong,Z.Gao.On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknow dynamics.Proceedings of the IEEE Conference on Decision and Control,New Orleans:IEEE,2007:3501–3506.

    [12]Z.Pu,R.Yuan,J.Yi,et al.A class of adaptive extended state observers for nonlinear disturbed systems.IEEE Transactions on Industrial Electronics,2015,62(9):5858–5869.

    [13]W.Xue,W.Bai,S.Yang,et al.ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines.IEEE Transactions on Industrial Electronics,2015,62(9):5847–5857.

    [14]B.Guo,Z.Zhao.On the convergence of an extended state observer for nonlinear systems with uncertainty.Systems&Control Letters,2011,60(6):420–430.

    [15]B.Guo,Z.Zhao.On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty.IET Control Theory&Applications,2012,6(15):2357–2386.

    [16]B.Guo,Z.Zhao.Extended state observer for uncertain lower triangular nonlinear systems.Systems&Control Letters,2015,85:100–108.

    [17]B.Guo,Z.Zhao.On active disturbance rejection control for nonlinear systems using time-varying gain.European Journal of Control,2015,23:62–70.

    [18]R.Miklosovic,A.Radke,Z.Gao.Discrete implementation and generalization of the extended state observer.Proceedings of the American control conference,Minneapolis:IEEE,2006:2209–2214.

    [19]S.Shi,J.Li,S.Zhao.On design analysis oflinearactive disturbance rejection control for uncertain system.International Journal of Control and Automation,2014,7(3):225–236.

    [20]G.Herbst.Practical active disturbance rejection control:Bumpless transfer,rate limitation and incrementalalgorithm.IEEE Transactions on Industrial Electronics,2016,63(3):1754–1762.

    [21]I.Karafyllis,C.Kravaris.From continuous-time design to sampled-data design ofobservers.IEEETransactionsonAutomatic Control,2009,54(9):2169–2174.

    [22]A.A.Sofiane.Sampled data observer based inter-sample output predictor for electro-hydraulic actuators.ISA transactions,2015,58:421–433.

    [23]T.Ahmed-Ali,F.Lamnabhi-Lagarrigue.High gain observer design for some networked control systems.IEEE Transactions on Automatic Control,2012,57(4):995–1000.

    [24]H.Fujimoto,Y.Hori.High-performance servo systems based on multirate sampling control.Control Engineering Practice,2002,10(7):773–781.

    久久99热这里只有精品18| 色综合站精品国产| 久久人人爽人人爽人人片va| 色综合站精品国产| 天美传媒精品一区二区| 丝袜美腿在线中文| 亚洲欧美清纯卡通| 国产人妻一区二区三区在| 午夜激情欧美在线| 成人一区二区视频在线观看| 悠悠久久av| 日韩三级伦理在线观看| 午夜精品在线福利| 青春草视频在线免费观看| 亚洲成人av在线免费| 亚洲精品日韩av片在线观看| 有码 亚洲区| 久久6这里有精品| 最新在线观看一区二区三区| 亚洲国产精品合色在线| 亚洲国产精品sss在线观看| 国产精品日韩av在线免费观看| 国产亚洲精品久久久com| 午夜久久久久精精品| 久久久久国产网址| 久久婷婷人人爽人人干人人爱| 亚洲七黄色美女视频| 成年免费大片在线观看| 欧美高清成人免费视频www| 国产乱人视频| 国产一区二区激情短视频| 一本一本综合久久| 日韩大尺度精品在线看网址| 欧美一区二区精品小视频在线| 色吧在线观看| 有码 亚洲区| 男人和女人高潮做爰伦理| av女优亚洲男人天堂| 日本三级黄在线观看| 少妇熟女aⅴ在线视频| 久久人人精品亚洲av| 欧美性感艳星| 亚洲欧美精品综合久久99| a级毛片a级免费在线| 欧美色视频一区免费| 99热这里只有是精品50| 悠悠久久av| 亚洲熟妇熟女久久| 可以在线观看的亚洲视频| 日韩大尺度精品在线看网址| 亚洲精品在线观看二区| 搡老妇女老女人老熟妇| 九九爱精品视频在线观看| 不卡视频在线观看欧美| 亚洲乱码一区二区免费版| av在线天堂中文字幕| 99热这里只有是精品在线观看| 看片在线看免费视频| 天天躁夜夜躁狠狠久久av| 国产一区二区亚洲精品在线观看| 久久九九热精品免费| 直男gayav资源| 91狼人影院| 2021天堂中文幕一二区在线观| 舔av片在线| 免费在线观看成人毛片| 亚洲无线观看免费| 久久精品久久久久久噜噜老黄 | 日本黄色视频三级网站网址| 99在线人妻在线中文字幕| 最近在线观看免费完整版| 精品一区二区三区av网在线观看| 国内精品美女久久久久久| 五月玫瑰六月丁香| 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 国产高潮美女av| 国产一区二区激情短视频| 三级毛片av免费| 麻豆一二三区av精品| ponron亚洲| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 91狼人影院| 97人妻精品一区二区三区麻豆| 天美传媒精品一区二区| 国产 一区 欧美 日韩| 日本黄色视频三级网站网址| 丰满乱子伦码专区| 一级av片app| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 麻豆成人午夜福利视频| 91在线观看av| 日韩欧美一区二区三区在线观看| 亚洲四区av| 亚洲三级黄色毛片| 久久国产乱子免费精品| 亚洲精品国产av成人精品 | 精品久久国产蜜桃| 99热6这里只有精品| 中文资源天堂在线| 久久精品国产亚洲av香蕉五月| 国产成人影院久久av| 国内精品久久久久精免费| 12—13女人毛片做爰片一| 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 国产精品不卡视频一区二区| 亚洲国产精品sss在线观看| 亚洲国产精品成人综合色| 国产av一区在线观看免费| 九九在线视频观看精品| 亚洲无线在线观看| 男人狂女人下面高潮的视频| 在线天堂最新版资源| 国产高清视频在线观看网站| 又爽又黄无遮挡网站| 欧美绝顶高潮抽搐喷水| 此物有八面人人有两片| 精品人妻偷拍中文字幕| 在线天堂最新版资源| 亚洲美女黄片视频| 18禁在线播放成人免费| 99热6这里只有精品| 久久久久久久亚洲中文字幕| 国产精品不卡视频一区二区| 国内精品美女久久久久久| 国产精品久久久久久精品电影| 香蕉av资源在线| 欧美一区二区国产精品久久精品| 免费观看人在逋| 国模一区二区三区四区视频| 国产在视频线在精品| 特级一级黄色大片| 精品一区二区三区人妻视频| 99国产极品粉嫩在线观看| 亚洲精品日韩av片在线观看| 亚洲一级一片aⅴ在线观看| 男人的好看免费观看在线视频| 大又大粗又爽又黄少妇毛片口| 亚洲激情五月婷婷啪啪| 天天躁日日操中文字幕| 国产av麻豆久久久久久久| 日产精品乱码卡一卡2卡三| 校园人妻丝袜中文字幕| 99热这里只有是精品50| 美女免费视频网站| 久久久久国内视频| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| 国产黄色视频一区二区在线观看 | 在线播放国产精品三级| 亚洲av中文av极速乱| 校园人妻丝袜中文字幕| 亚洲丝袜综合中文字幕| 一区福利在线观看| 热99re8久久精品国产| 国产精品乱码一区二三区的特点| 亚洲av免费在线观看| 一进一出抽搐动态| 99视频精品全部免费 在线| 久久精品综合一区二区三区| 色av中文字幕| 波多野结衣高清无吗| 国产高清有码在线观看视频| 真实男女啪啪啪动态图| 精品人妻视频免费看| videossex国产| 国内精品久久久久精免费| 人人妻人人澡欧美一区二区| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 一级a爱片免费观看的视频| 欧美成人一区二区免费高清观看| 麻豆一二三区av精品| 一a级毛片在线观看| 久久九九热精品免费| 丝袜美腿在线中文| 看片在线看免费视频| 看非洲黑人一级黄片| 午夜福利视频1000在线观看| 日韩国内少妇激情av| 亚洲一级一片aⅴ在线观看| 久久人人爽人人片av| 国产黄片美女视频| 亚洲最大成人av| 成人亚洲精品av一区二区| 免费av不卡在线播放| 变态另类丝袜制服| 久久草成人影院| 熟女电影av网| 狂野欧美激情性xxxx在线观看| 亚洲av不卡在线观看| 永久网站在线| 性插视频无遮挡在线免费观看| 亚洲欧美日韩高清在线视频| 午夜影院日韩av| 午夜福利在线观看吧| 啦啦啦观看免费观看视频高清| 亚洲真实伦在线观看| 午夜福利在线观看吧| 在线国产一区二区在线| 国产一区亚洲一区在线观看| 韩国av在线不卡| 久久久久国产网址| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 最好的美女福利视频网| 午夜精品在线福利| 在线观看66精品国产| 亚洲精品国产成人久久av| 欧美成人精品欧美一级黄| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 97人妻精品一区二区三区麻豆| 男人的好看免费观看在线视频| 国产伦在线观看视频一区| 此物有八面人人有两片| 国产亚洲精品久久久com| 欧美绝顶高潮抽搐喷水| 国产欧美日韩精品亚洲av| 啦啦啦啦在线视频资源| 日韩欧美 国产精品| 69人妻影院| 亚洲欧美日韩高清在线视频| 国产伦精品一区二区三区视频9| 亚洲人与动物交配视频| 人人妻人人澡人人爽人人夜夜 | 少妇熟女欧美另类| 在线a可以看的网站| 国产一区二区在线av高清观看| 精品99又大又爽又粗少妇毛片| 亚洲成人久久性| 欧美zozozo另类| 国产激情偷乱视频一区二区| 男女做爰动态图高潮gif福利片| 简卡轻食公司| 女同久久另类99精品国产91| 黄色视频,在线免费观看| 级片在线观看| 色在线成人网| 一级黄片播放器| 在线观看免费视频日本深夜| 一个人观看的视频www高清免费观看| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 美女 人体艺术 gogo| 国产亚洲精品久久久久久毛片| 狂野欧美激情性xxxx在线观看| av在线老鸭窝| 久久精品久久久久久噜噜老黄 | 国产精华一区二区三区| 少妇高潮的动态图| 中国国产av一级| 淫妇啪啪啪对白视频| 久久精品国产自在天天线| 午夜激情欧美在线| 国产极品精品免费视频能看的| а√天堂www在线а√下载| 国产精品电影一区二区三区| 色吧在线观看| 日本三级黄在线观看| 国产精品福利在线免费观看| 国产成人aa在线观看| 亚洲经典国产精华液单| 观看美女的网站| 可以在线观看毛片的网站| 男人舔女人下体高潮全视频| 如何舔出高潮| 午夜影院日韩av| 一级毛片我不卡| 一个人看视频在线观看www免费| 有码 亚洲区| 中文在线观看免费www的网站| 亚洲成人中文字幕在线播放| 精品无人区乱码1区二区| 国产熟女欧美一区二区| 国产欧美日韩精品亚洲av| 国产成人aa在线观看| 91在线观看av| 香蕉av资源在线| a级毛色黄片| 国产亚洲精品av在线| www日本黄色视频网| 日本爱情动作片www.在线观看 | 伦理电影大哥的女人| www日本黄色视频网| 亚洲五月天丁香| 成人亚洲精品av一区二区| 久久精品91蜜桃| 3wmmmm亚洲av在线观看| 99在线视频只有这里精品首页| 一个人看视频在线观看www免费| 男女边吃奶边做爰视频| 中文字幕人妻熟人妻熟丝袜美| 精品人妻视频免费看| 少妇人妻精品综合一区二区 | 亚洲真实伦在线观看| 在线免费十八禁| 国产精品久久久久久久电影| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 成人漫画全彩无遮挡| 免费一级毛片在线播放高清视频| 国产av不卡久久| 久久久久精品国产欧美久久久| 3wmmmm亚洲av在线观看| 免费看av在线观看网站| 久久热精品热| 午夜爱爱视频在线播放| 22中文网久久字幕| 亚洲欧美中文字幕日韩二区| 国产精品一区二区性色av| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 成人无遮挡网站| 又黄又爽又免费观看的视频| 免费看美女性在线毛片视频| 欧美日本视频| 亚洲最大成人av| 免费一级毛片在线播放高清视频| 97在线视频观看| 淫妇啪啪啪对白视频| 久久人人爽人人爽人人片va| 国产人妻一区二区三区在| 国产成人精品久久久久久| 性插视频无遮挡在线免费观看| 亚洲欧美日韩东京热| 黄色视频,在线免费观看| 午夜免费男女啪啪视频观看 | 亚洲,欧美,日韩| 久久久久久久午夜电影| 国产探花在线观看一区二区| 少妇被粗大猛烈的视频| 精品久久久噜噜| 蜜臀久久99精品久久宅男| 免费av毛片视频| 男女下面进入的视频免费午夜| 国模一区二区三区四区视频| 国产 一区 欧美 日韩| 日本免费一区二区三区高清不卡| 18禁在线播放成人免费| 精品久久久久久久久久久久久| 91久久精品电影网| 一区二区三区四区激情视频 | 国产视频内射| 久久精品91蜜桃| 免费高清视频大片| 麻豆乱淫一区二区| 国产伦在线观看视频一区| 在线观看一区二区三区| 99久国产av精品国产电影| 看黄色毛片网站| 黄片wwwwww| 国产欧美日韩一区二区精品| 啦啦啦韩国在线观看视频| 欧美bdsm另类| 亚洲人与动物交配视频| 国语自产精品视频在线第100页| 免费不卡的大黄色大毛片视频在线观看 | 亚洲成av人片在线播放无| 国产女主播在线喷水免费视频网站 | 神马国产精品三级电影在线观看| 久久天躁狠狠躁夜夜2o2o| 看黄色毛片网站| 丰满的人妻完整版| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 亚洲性夜色夜夜综合| 国产综合懂色| av国产免费在线观看| 国产人妻一区二区三区在| 免费无遮挡裸体视频| 久久久久久大精品| 久久精品国产鲁丝片午夜精品| 国产三级中文精品| videossex国产| 欧美极品一区二区三区四区| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 大香蕉久久网| 激情 狠狠 欧美| 乱码一卡2卡4卡精品| 精华霜和精华液先用哪个| av女优亚洲男人天堂| 国产亚洲精品av在线| 国产亚洲精品av在线| 菩萨蛮人人尽说江南好唐韦庄 | 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 嫩草影院入口| 九九在线视频观看精品| 99在线视频只有这里精品首页| 国产高清视频在线播放一区| 99热6这里只有精品| 自拍偷自拍亚洲精品老妇| 干丝袜人妻中文字幕| 18禁黄网站禁片免费观看直播| 欧美成人免费av一区二区三区| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 成年女人永久免费观看视频| 国产午夜精品论理片| 69人妻影院| h日本视频在线播放| 亚洲va在线va天堂va国产| 亚洲欧美精品自产自拍| 精品人妻熟女av久视频| 亚洲自拍偷在线| 成熟少妇高潮喷水视频| 色综合亚洲欧美另类图片| 尤物成人国产欧美一区二区三区| 国产欧美日韩精品亚洲av| 99久久精品一区二区三区| 久久久精品欧美日韩精品| 搞女人的毛片| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 亚洲成人久久爱视频| av在线观看视频网站免费| 国产精品久久久久久久久免| 男女做爰动态图高潮gif福利片| 乱码一卡2卡4卡精品| 欧美精品国产亚洲| 国产亚洲精品综合一区在线观看| 少妇裸体淫交视频免费看高清| 欧美绝顶高潮抽搐喷水| 97热精品久久久久久| 亚洲一区二区三区色噜噜| 别揉我奶头~嗯~啊~动态视频| 欧美又色又爽又黄视频| 欧美极品一区二区三区四区| 久久久久久久久久黄片| 99久久精品一区二区三区| 99九九线精品视频在线观看视频| 白带黄色成豆腐渣| 国产精品嫩草影院av在线观看| 国产高清视频在线播放一区| 免费看av在线观看网站| 精品一区二区免费观看| 精品久久久噜噜| 久久久久久大精品| 日韩精品中文字幕看吧| 久久国内精品自在自线图片| 国产三级中文精品| 亚洲av电影不卡..在线观看| 我的女老师完整版在线观看| 99热精品在线国产| 观看美女的网站| 免费av不卡在线播放| 老司机影院成人| 国产精品久久久久久亚洲av鲁大| 国产v大片淫在线免费观看| 国产探花极品一区二区| 国产精品久久久久久av不卡| 人妻夜夜爽99麻豆av| 国产日本99.免费观看| 少妇丰满av| 男女那种视频在线观看| 国产精品三级大全| 看免费成人av毛片| 久久国内精品自在自线图片| 日本五十路高清| 精品99又大又爽又粗少妇毛片| 丰满人妻一区二区三区视频av| 看片在线看免费视频| 搡老妇女老女人老熟妇| 欧美日韩一区二区视频在线观看视频在线 | 欧美zozozo另类| 久久精品91蜜桃| 99热6这里只有精品| 3wmmmm亚洲av在线观看| 淫妇啪啪啪对白视频| 我要看日韩黄色一级片| 国产免费男女视频| 春色校园在线视频观看| 嫩草影视91久久| 一级av片app| 国产私拍福利视频在线观看| 日韩欧美在线乱码| 男女视频在线观看网站免费| 成人毛片a级毛片在线播放| 性欧美人与动物交配| 九九久久精品国产亚洲av麻豆| 国产探花在线观看一区二区| 男女之事视频高清在线观看| 欧美区成人在线视频| 最近2019中文字幕mv第一页| 18禁黄网站禁片免费观看直播| 老女人水多毛片| 噜噜噜噜噜久久久久久91| 免费无遮挡裸体视频| 国产欧美日韩一区二区精品| 日本色播在线视频| 久久人妻av系列| 欧美一区二区国产精品久久精品| 亚洲av五月六月丁香网| 麻豆成人午夜福利视频| 少妇被粗大猛烈的视频| 欧美最黄视频在线播放免费| 一个人免费在线观看电影| 欧美最新免费一区二区三区| 欧美精品国产亚洲| 久久久久久久久久成人| 亚洲最大成人手机在线| 久久人人精品亚洲av| 一本精品99久久精品77| 欧美性猛交╳xxx乱大交人| 一级黄色大片毛片| 麻豆乱淫一区二区| 久久精品国产清高在天天线| 午夜免费男女啪啪视频观看 | 老熟妇仑乱视频hdxx| 99久国产av精品| 日本精品一区二区三区蜜桃| 搞女人的毛片| 在现免费观看毛片| 18禁黄网站禁片免费观看直播| 99久久成人亚洲精品观看| 色哟哟·www| 又黄又爽又免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 婷婷色综合大香蕉| 精品久久久噜噜| 精品免费久久久久久久清纯| 永久网站在线| 亚洲欧美精品综合久久99| 国产亚洲91精品色在线| 久久久久国产网址| 精品人妻熟女av久视频| 国产精品av视频在线免费观看| 天堂av国产一区二区熟女人妻| 女人十人毛片免费观看3o分钟| 悠悠久久av| 99久国产av精品| 色综合亚洲欧美另类图片| 国产精品一区二区免费欧美| 美女黄网站色视频| 淫秽高清视频在线观看| 成人精品一区二区免费| 国产精品三级大全| 免费人成在线观看视频色| 九色成人免费人妻av| 亚洲av中文字字幕乱码综合| 国产欧美日韩精品亚洲av| 日韩一区二区视频免费看| 天堂√8在线中文| 国产精品人妻久久久久久| 中文字幕熟女人妻在线| 久久亚洲国产成人精品v| 我要搜黄色片| 少妇高潮的动态图| 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看 | 国产三级中文精品| 成人二区视频| 婷婷六月久久综合丁香| 真实男女啪啪啪动态图| 有码 亚洲区| 日日摸夜夜添夜夜添av毛片| 亚洲av熟女| 中文亚洲av片在线观看爽| 欧美成人a在线观看| 国产极品精品免费视频能看的| 一进一出抽搐动态| 欧美日本亚洲视频在线播放| 校园春色视频在线观看| 99久久中文字幕三级久久日本| 国产探花在线观看一区二区| 国产一区二区三区在线臀色熟女| 久久精品国产亚洲av涩爱 | 精品一区二区三区视频在线| 日本与韩国留学比较| 欧美高清性xxxxhd video| 色综合亚洲欧美另类图片| 日日摸夜夜添夜夜添小说| 一区二区三区免费毛片| 色在线成人网| 国产精品电影一区二区三区| 午夜福利在线观看吧| 午夜福利18| 成人一区二区视频在线观看| 午夜福利在线观看吧| 国产精品无大码| 免费人成在线观看视频色| 久久天躁狠狠躁夜夜2o2o| 亚洲自拍偷在线| 国产欧美日韩精品一区二区| 一边摸一边抽搐一进一小说| 午夜影院日韩av| 99精品在免费线老司机午夜| 欧美xxxx黑人xx丫x性爽| 亚洲自拍偷在线| 亚洲av成人精品一区久久| 久久久精品欧美日韩精品| 国产精品一区二区三区四区免费观看 | 精品一区二区三区人妻视频| 18禁裸乳无遮挡免费网站照片| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 三级经典国产精品| 久99久视频精品免费| av国产免费在线观看| 人妻久久中文字幕网| 久久国产乱子免费精品| 国产精品永久免费网站| 国产精品日韩av在线免费观看| 天天一区二区日本电影三级| 日日干狠狠操夜夜爽| 成人特级黄色片久久久久久久| 在线免费十八禁| 18禁黄网站禁片免费观看直播| 一本精品99久久精品77|