• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust flat filtering DSP based control of the boost converter

    2016-05-14 06:51:57HeberttSIRARAMIREZArturoHERNaNDEZMeNDEZJesusLINARESFLORESAlbertoLUVIANOJUaREZ
    Control Theory and Technology 2016年3期

    Hebertt SIRA-RAM′IREZ ,Arturo HERNaNDEZ-MeNDEZ ,Jes′us LINARES-FLORES ?,Alberto LUVIANO-JUaREZ

    1.Department of Electrical Engineering,Mechatronics Section,CINVESTAV-IPN,Av.IPN No.2508,Col.San Pedro Zacatenco 07360,D.F.Mexico,Mexico;

    2.Universidad Tecnol′ogica de la Mixteca,Carretera a Acatlima Km.2.5,Huajuapan de Le′on,Oaxaca,Mexico;3.UPIITA-IPN,D.F.Mexico,Mexico

    1 Introduction

    In spite of its low-order and its bi-linear nature,the boost converter is a nonlinear DC-to-DC power conversion circuit with several challenging features:1)The output voltage,which is the variable to be regulated,is a non-minimum phase variable.2)System variables exhibit stringent physical constraints:The control input is binary-valued and its average magnitude value is uniformly bounded.Additionally,the output voltage values must operate above the constant input battery voltage.3)The most common exogenous disturbances(battery voltage fluctuations and load current disturbances)fail to comply with the celebrated matching conditions.4)The load resistance is,generally speaking,of unknown nature.The control input is,necessarily,discontinuous as represented by a switch position function(See Sira-Ram′?rez and Silva-Ortigoza[1]).The boost converter is,however,differentially flat(See Fliess et al.[2],Sira-Ram′?rez and Aggrawal[3]and J.Levine[4]).This important feature generally alleviates and trivializes the control design problem in several aspects(exact linearization,trajectory planning,etc.),provided all endogenous nonlinearities are perfectly known.Our purpose is to propose a method which handles those cases of exogenously perturbed nature where the acting endogenous non-linearities are largely unknown or disregarded.

    Flat filtering constitutes a reinterpretation of GPIC(See Fliess et al.[5])in the form of classical compensation networks(CCN).Roughly speaking,any linear controllable system whose output is the Brunovski’s output can be output regulated with the help of a well tuned proper linear filter and a suitable linear combination of the available internal states of such filter.Here,it is shown that such classical tool is also capable of efficiently handling control tasks on perturbed linearizable nonlinear systems(i.e.,flat systems),such as the boost converter,including unknown,or neglected,nonlinearities,exogenous disturbances,and un-modeled dynamics;in a fashion similar as these uncertainties are handled in ADRC schemes(See Han[6],Zheng et al.[7,8],and Guo et al.[9–11],and a recent survey by Madonski and Herman[12]).

    ADRC was first initiated by Han[6],as a robust design technique for disturbance rejection in nonlinear system with parameteruncertainties and significantexternaldisturbances.The uncertainties are to be canceled by a nonlinear control law[13].ADRC has found remarkable applications in industry,such as in power filter design[14,15],a series,LC,filtered active damper[16],actuators[17],rotatory speed regulation[18],flywheel energy storage system[19],power plant control[20],and so on.Recently,Sira-Ram′?rez proposed an ADRCapproach from the perspective of differential flatness[21].Gao[22]proposed a simplified linear version of the original ADRC approach in 2003,where all the poles of the ESO and the closed-loop characteristic equation are placed in the same location,and thus there is only one parameter to be tuned.

    Sun and Gao[23]present a DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC powerconverter.They implementthe active disturbance rejection control into a digital control board based on the TMS320C6711 digital signal processor chip,where they show the advantages and flexibilities of the control method.Due to flexibility and autonomy that offers a digital signal processor chip,we propose a robust flat filtering DSP-based control of the boost converter,which does not use an Extended State Observer,and has the characteristic of taking into consideration the original system order in a time-varying simplified model while avoiding algebraic estimation techniques.Thus,the contributions of this paper are:1)the design of a robust flat filtering control for the highly perturbed switched boost converter circuit,and 2)implementation of the robust flat filtering control,together with the trajectory desired reference of the flat output onTMS320F28335 DSP board(See Fig.1).

    The paper is organized as follows.Section 2 describes the main features of the switch controlled boost converter system.It presents its state average model and establishes its flatness property.This section also formulates the output voltage reference trajectory tracking problem to be solved in an indirectmannervia the use of the flatness property enjoyed by the total average stored energy[24].A flat filter based controller is first proposed for the trajectory tracking in the ideally unperturbed but uncertain boost case.

    Fig.1 Flat filtering DSP based control of the boost converter.

    Section 3 considers the fully exogenously perturbed uncertain boost converter case and shows that exactly the same flat filter based controller designed for the unperturbed case,also efficiently regulates the highly perturbed uncertain converter thus demonstrating the remarkable robustness of the method.Section 4 describes the experimental setup,and discusses the simulation and experimental results.Section 5 is devoted to some conclusions and presents suggestions for further research.An appendix at the end of the article contains,via an illustrative example,an intuitive justification of the proposed approach.

    2 The boost converter

    2.1 Generalities about the boost converter circuit

    A simplified,unperturbed,model of the boost converter(See Fig.1)is described by

    wherevis the output capacitor voltage,iis the inductor current,Eis the constant voltage value of the battery,Ris the load resistor whileLandCare the inductance and capacitance parameters.The control inputuis a binary-valued switch position functionu∈{0,1}.

    Astate average modelof the circuit,described in(1),is obtained by replacing the control inputuby a smooth input variable μ∈[0,1](See[1]).For simplicity,we retain,in the state average model of the circuit,the same notation for the current and voltage variables,iandv,in an evident abuse of notation.

    The equilibria,for constant values of the input μ=ˉμ,can be obtained in a parameterized form in terms of the corresponding output voltage equilibrium valueˉv.

    The factthat,necessarily,ˉμ∈[0,1]implies thatˉv?E.Thus,the boost converter circuit amplifies,at the outputv,the battery voltage,E,and the corresponding steady state restriction must not be violated.

    The zero dynamics corresponding to the sustained voltage equilibrium:v=ˉv,is given by the unstable differential equation for the average inductor current:

    thus,the output voltage is a non-minimum phase variable.The average boost converter model is locally differentially flat,with flat output given by the average total stored energy,

    Indeed,the following set of coordinate transformations

    constitutes a local diffeomorphism(which is singular along the lines:v=0 andi=RCE/(2L)in the average state space).The outputWis,as it is easily verified,relative degree 2.The inverse transformation is simply:

    where the positive sign in the root is taken to comply with the physically meaningfulrestrictions.The previous state coordinate transformation exactly locally linearizes the total average stored energy dynamics after rendering it in Isidori’s canonical form([25]):

    with rather involved expressions for the nonlinearities,ψ and φ not presented,or used,here.

    The equilibrium of the average total stored energy,corresponding to an operating point(ˉi,ˉv),is given,in terms of the voltage equilibrium value,ˉv,by,

    2.2 Problem formulation for the unperturbed case

    Clearly,a desired rest-to-rest maneuver between two given equilibrium values,ˉvinit,ˉvfinal,for the average output voltagev,finds a unique pair of corresponding equilibrium values,ˉWinit,ˉWfinal,for the average stored energyW.As a consequence,a reference trajectory tracking problem,defined on the unperturbed model,(2),that seeks to force the average output voltagevfrom an initial equilibrium value to a desired final equilibrium value may be(indirectly)solved in terms of a corresponding trajectory tracking problem for the linearizing(flat)outputW(See Fliess et al.[26]).

    Instead of using the transformed canonical dynamics(8)in terms of(x1,x2)=(W,˙W),for the total average stored energy dynamics,we examine the relation between the second-order time derivative ofWand the average control input μ in terms of the original average model state variablesiandv.

    Suppose it is desired to achieve a rest-to-rest transfer between a given initial and a desired final average equilibrium value forthe average outputvoltagev.Borrowing concepts from ADRC,which are intimately related also to MFC,we intend to largely ignore the nonlinearities appearing in the total stored energy second derivative expression¨W.We simplify the model to a completely unstructured model.Consider the input channel modified dynamics with a state an input dependent total perturbation term:

    The next crucial and controversial step,has been recently rigorously justified in([9–11])in the context of ADRC and in the work of Fliess and Join[27]in the context of MFC.This consists in replacing the endogenous nonlinearity ξ(i,v,μ)=z1by a low degree,unstructured time polynomial model,represented as a local internal disturbance model(described by a corresponding low-order homogeneous linear state model)in the simplified dynamics.This is achieved by either letting:˙z1=0 in the zeroth degree polynomial model case,or ˙z1=z2,˙z2=0,in the first degree polynomial case,and so on.This step is performed totally disregarding the state and control input dependance of the additive nonlinearities in the additive term:ξ(i,v,μ).The choice of the nonzero constant,a,replacing the nonlinear,state and input-dependent gain,turns out to be,more surprisingly,quite arbitrary(see[6]);although educated guesses,or,alternatively,local algebraically based parameter identification procedures,may prove to be substantially effective(See Sira-Ram′?rez et al.[28]).

    The model to be controlled,using a third-order local homogeneous state model for the state and input dependent nonlinearities,ξ(i,v,μ)=z1,is thus given by

    The tracking erroreW=W-W*(t)evolves governed by

    The original system,being second-order,requires a first-order(lead)compensation network(see the appendix).However,the second degree local internal time polynomial model of the additive disturbance may be ideally annihilated,according to the internal model principle[29],by a third-order integration term appearing in the denominator of the controller transfer function.This leads to the following compensation scheme1Note that the internal model of the state and input dependent additive perturbation may even be proposed to be represented by a first-order homogeneous system.This simply means that the perturbation is ultra-locally([27]and[31])approximated by a piece-wise constant function of time instead of a piece-wise linear time function(see the appendix).:

    A state space realization of the CCN,as a flat filter,is readily obtained as follows:

    eWfis the flat output of the classical compensation network.The characteristic polynomial of the normalized closed-loop system,ignoring the attenuated effects of the nonlinearities and disturbances,is given by

    2.3 The perturbed case

    Considerthe following nonlinearmodelofa perturbed boost converter(See Fig.2)

    whereiis the inductor current,vis the output capacitor voltage,E(t)is a time-varying disturbance voltage value of the power supply.Ris the known value of the load resistor,v/R||Rprepresents an unknown time-varying load disturbance drain current(I(t)L).Pis a digital signal which controls a bidirectional switch.The control inputuis,as before,the binary-valued switch position functionu∈{0,1}.

    Fig.2 A perturbed boost converter.

    It is desired,in spite of the effects of the total disturbance,affecting the system,to transfer the total stored energy,

    from an initial equilibrium valueˉWinittowards a final desired equilibrium value,ˉWfinal,in a pre-specified amount of time,while tracking a given smooth reference trajectoryW*(t)satisfying the initial and final restrictions.This stored energy maneuver is motivated by the desire to smoothly transfer the nominal output voltage level from a corresponding initial equilibrium value towards a final desired equilibrium value.The tracking error,eW=W-W*(t),willbe assumed to evolve governed by the perturbed dynamics,

    A local first degree polynomial model is adopted for the unknown disturbance ξ,represented by a secondorder homogeneous pure integration subsystem.

    3 Experimental setup

    The experimental setup,shown in Fig.3,is composed of a boost converter designed to operate in continuous conduction mode at a 20 kHz switching frequency,a pair of sensors,one to measure the inductor current,and the other to measure the output capacitor voltage.An additional circuit is used to enable/disable a disturbance resistive load triggered by means of an output digital signalp(DSP).The nominal values of the components and manufacturer information about the sensors are shown in Fig.3.

    Fig.3 General scheme of the experimental platform(DC/DC boost converter).

    The algorithm of the control and the desired reference trajectory were implemented using aTMS320F28335 DSP board,where,the complete scheme operates at a fixed sampling rate of 1 MHz.The DSP clock frequency is adjusted to 150 MHz.Two ADCs,a PWM generator and a digital output are required.The program takes up 23%of the available RAM(7.821 KB).The elements of the control system shown in Fig.4 and these are described below.

    Fig.4 General scheme of the experimental platform(DSP board).

    The measured signalsiandvare digitized with two 12-bitADC with a gain calibration of2.021 and 22.59 respectively.The control input μ adjusts the duty cycle of a PWM module,which is set to a frequency of 20 kHz.The disturbance signalp,use a digital output port of the DSP board,which has a voltage level of 3.3 V whenp=1.Therefore,a pre-amplification step is required to activate the relay RAS-0910.The algorithm of control is composed of four modules,as shown in Fig.4.TheFlat outputmodule obtains the total energy stored in the systemW(t)from(8)and requires the signalsi(t),v(t),and the nominal values ofLandC.TheTrajectory&perturbationmodule generates the reference pathW*(t),as follows:under equilibrium conditions,the average values ofthe boostconvertervariables,(1),written in terms of the desired constant average output voltageˉv=Vd,are given by

    withf(t,tinit,tfinal)∈[0,1],?t∈[tinit,tfinal]being a 10th-order Bezier polynomial(See[30])given by

    The initial and final values of the average output voltagevand the average inductor current,iare given by

    The system parameters:RandE,are assumed to be continuously time varying in an unknown manner.These parameters are required to calculate the rest to rest reference trajectory for the flat output and the gains in the feedback control law.For theControl lawmodule,equations(15),corresponding to the flat filter controller are used.To generate the code of this module,we use the implicit Euler method to pass the equations to their discrete form.That is to say,for a time function ν(t):

    where ν(k)is the current sample,and ν(k-1)is the previous sample andTis the sampling period(1μs).The evolution ofeμ(t)will asymptotically exponentially converge to zero if and only if the coefficients of the linear feedback tracking controller are chosen in such a manner that the characteristic polynomial of the closedloop system isHurwitz,i.e.,all roots of the polynomialp(s)(16),in the complex variables∈C,lie in the left half of the complex plane.With ζ=0.707 and ω=15,the poles placement in closed-loop system are:p1,2=-0.35514-14.793j,p3,4=-0.36268+15.201j,p5=-3.856,andp6=-58.338.Therefore,the tracking erroreμ(t)in closed is asymptotically exponentially converge to zero.

    3.1 Simulation results for the unperturbed case

    A boost converter,with parametersL=488×10-6H,C=470×10-6F,andR=95.8Ω,is required to transfer its output equilibrium voltageˉvinitial=30 V towards a final desired equilibriumˉvfinal=45 V.The battery nominal value isE=20 V.

    In order to achieve a smooth rest-to-rest maneuver of the output voltagev,from the initial equilibrium value ofˉvinitial=30 V,towards the final desired equilibrium value ofˉvfinal=45 V,in a prescribed time interval of 1 s,a corresponding smooth trajectory,W*(t),of the total stored energyWwasprescribed from the corresponding initial valueˉWinitial=0.2149 J towards the final desired value,ˉWfinal=0.4835 J,also in a time intervalof1 s starting att=2 s,then the reference trajectory is repeated in the opposite direction after 8 s.The desired rest-torest stored energy trajectory,W*(t),was prescribed using a classical Bezier time-polynomial of 10th degree smoothly interpolating between the required initial and final values forW.

    Fig.5 depicts the PSIM2PSIM is a simulation software specifically designed for power electronics and motor drives.With fast simulation and friendly user interface,PSIM provides a powerful simulation environment for power electronics,analog and digital control,magnetics,and motor drive system studies.simulations results of the performance of the linear flat filtering based controller for the boost converter in a desired average total stored energy transfer from an initial operating equilibrium towards a final,desired,equilibrium,indirectly achieving a smooth voltage increase between corresponding equilibrium values.In Fig.6,the average controlinputis seen to comply with the uniform boundedness requirement μ(t)∈ [0,1]during the required maneuver.

    Fig.5 Performance of flat-filter based controller for a boost converter,on a unperturbed case.(a)Capacitor voltage responses.(b)Total stored energy responses.(c)Inductor current response.

    Fig.6 Switched control input and average control input produced by the flat filter based controller.

    3.2 Simulation and experimentalresults forthe perturbed case

    We apply the same flat filtering based controller previously designed for the unperturbed case and adopt the same output voltage rest-to-rest maneuver.For this test,we programme the unknown time-varying function of the batteryE(t)V,as follows:

    Also,we change the outputresistance valueRthrough the connection with other perturbation parallel resistanceRp,the connection and disconnection of the perturbation resistance is controlled by means of an output digital signalp,the equivalent resistance of the boost power converter system,is given by

    Through the variations of the power source and output resistance,we test the performance of the proposed control.In the first place,we obtain the PSIM simulations results of the performance flat-filter control under variations of power source,and under sudden output resistance change.In the second place,we obtain the experimental results of the performance flat-filter control with these same variations.

    3.2.1 PSIM simulations results

    Fig.7 shows on the top graph the output voltage response of boost converter,while the upper graph shows the flat output response of the boost converter system,under the variations of power source and output load resistance,which are shown on Fig.8.The ISTE(integral square tracking error)of output voltage performance index shows a good performance in spite of the variations of power source and output load resistance.Thus,we observe that the linear flat filtering based controller achieves the robustness on thenon-minimum phasevariableof the boost converter system for the perturbed case(See Fig.9).Fig.10 shows the inductor and output resistance current responses under the power source and output resistance variations,we observe that the amplitude ofthe currents is incremented when the nominal value of output resistance is reduced in the intervals given by(20).

    Fig.8 shows on the top graph the comparison between the flatfiltercontroland robustnonlinearadaptive control[24]of the output voltage,where we see that the flat filter response do not present a voltage overshoot in the initial condition,while the robust adaptive response present a voltage overshoot.Additionally,we see that the responses in steady-state,the flat filter controller response has a light damping,and the robust adaptive controller response has nothing of damping.The same occurs for the flat output responses of both controllers,this is shown on the upper graph of Fig.8.

    Fig.7 PSIM simulation results:Output voltage response and flat output response for a stored energy trajectory tracking task,with power source and output resistance variations.(a)Capacitor voltages.(b)Total stored energy responses.

    Fig.8 PSIM simulation results:Output voltage responses and flat output responses for a stored energy trajectory tracking task,with power source and output resistance variations.(a)Capacitor voltages.(b)Total stored energy responses.

    Fig.9 PSIM simulations results:Average flat filter control and integral square tracking error of the output voltage of boost power converter.(a)Average control input.(b)ISTE index.

    Fig.10 PSIM simulations results:Inductor current response and output load current response for a stored energy trajectory tracking task,with power source and output resistance variations.(a)Inductor current response.(b)Load current disturbance.

    3.2.2 Experimental results

    Fig.11 shows the experimental results of the output voltage and flat output of the boost power converter.We observe that the output voltage and output flat responses of the system in steady-state present a light damping due to damping coefficientofthe flat-filtercontroller,which was tuned with a value of ζ=0.707,this produces responses of under-damped type(See Section 3).

    Fig.11 Experimental results:Output voltage response and flat output response for a stored energy trajectory tracking task,with power source and output resistance variations.(a)Capacitor voltages.(b)Total stored energy responses.

    Fig.13 Experimental results:Inductor current response and load current response.(a)Inductor current response.(b)Load current disturbance.

    4 Conclusions

    In this article,we have introduced an application of a remarkable new property of flatness,summarized as follows:any linear controllable system whose flat output(or Brunovski output)coincides with the system output,may be controlled,in stabilization or trajectory tracking tasks,by means of a linear,well tuned,stable linear filter alone.The filter processes,respectively,the system output,or the system output trajectory tracking error.A linear combination of the internal states of the linear filter conform the required stabilizing feedback law.The coefficients of the linear filter,which turns out to be also flat in a filtering context,are uniquely deter-mined in a rather trivial manner involving only an overall pole placement effort for the closed-loop stability of the system.The flat filter constitutes a reinterpretation of the classical compensation networks for linear systems.The classical compensation networks are shown to be totally equivalent to the well known GPIC’s based on integral reconstructors.GPIC efficiently evade the need for asymptotic state observers.The striking fact,coincident in a dual manner,and without need for extended observers,with ADRC schemes is that the above linear resultmay be easily extended to the approximate control ofnonlinearuncertain,and exogenously perturbed,nonlineardifferentially flatsystems.As in ADRC,we also use a controlinputchanneltrivialization in the form ofa constant gain.The proposed robust flat filtering based controller also shares a philosophical viewpoint with MFC schemes.The fundamental idea of MFC,in high dimensional input-output systems,is that of viewing additive endogenous and exogenous total disturbances,as well as unknown nonlinear control input gains,as on-line piece-wise algebraically identifiable time signals.These are ascribed to a first,or,at most,second order,reference model system on which a P,PD or PID controller is readily designed while periodical updating of the local on-line identifications is performed.The synthesized control input is then shared with the actual plant.In robust flat filtering controls we only respect the system order,treat nonlinearities as unknown time signals that can be significantly attenuated by a linear classical compensation network including a suitable pure integration internal model for the effects of the total unknown disturbances.The nonlinear control input gain is arbitrarily replaced by a constant gain.

    [1]H.Sira-Ram′?rez,R.Silva-Ortigoza.Control Design Techniques in Power Electronics Devices.London:Springer,2006.

    [2]M.Fliess,J.Levine,Ph.Mart′?n,et al.Flatness and defect of nonlinear systems:Introductory theory and examples.International Journal of Control,1992,61(6):1327–1361.

    [3]H.Sira-Ram′?rez,S.K.Aggrawal.Differentially Flat Systems.New York:Marcel Dekker Inc.,2004.

    [4]J.Levine.Analysis and Control of Nonlinear Systems:A Flatness Based Approach.Berlin:Springer,2009.

    [5]M.Fliess,R.Marquez,E.Delaleau,et al.Correcteurs proportionnels-int`egraux generalises.ESAIM,Control,Optimization and Calculus of Variations,2002,7(2):23–41.

    [6]J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [7]Q.Zheng,Z.Chen,Z.Gao.A practical approach to disturbance decoupling control.Control Engineering Practice,2009,17(9):1016–1025.

    [8]Q.Zheng,L.Gao,Z.Gao.On validation of extended state observer through analysis and experimentation.ASME Journal of Dynamic Systems,Measurement and Control,2012,134(2):1–6.

    [9]B.Guo,Z.Zhao.Weak convergence of nonlinear high-gain tracking differentiator.IEEE Transactions on Automatic Control,2013,58(4):1074–1080.

    [10]B.Guo,Z.Zhao.On the convergence of an extended state observer for nonlinear systems with uncertainty.Systems&Control Letters,2011,60(6):420–430.

    [11]B.Guo,Z.Zhao.On the convergence of the nonlinear active disturbance rejection control for MIMO systems.SIAM Journal of Control and Optimization,2013,51(2):1727–1757.

    [12]R.Madonski,P.Herman.Survey on methods of increasing the efficiency of extended state disturbance observers.ISA Transactions,2014,56:18–27.

    [13]W.Chen,J.Yang,L.Guo,et al.Disturbance observer-based control and related methods–an overview.IEEE Transactions on Industrial Electronics,2015,63(2):1083–1095.

    [14]G.A.Ramos Fuentes,J.A.Cortes-Romero,Z.Zou,et al.Power active filter control based on a resonant disturbance observer.IET Power Electronics,2015,8(4):554–564.

    [15]Q.Zhong,Y.Zhang,J.Yang,et al.Non-linear auto-disturbance rejection controlofparallelactive powerfilters.IETControlTheory&Applications,2009,3(7):907–916.

    [16]X.Wang,Y.Pang,P.C.Loh,et al.A series-LC-filtered active damperwith grid disturbance rejection for AC power-electronicsbased power systems.IEEE Transaction on Power Electronics,2015,30(8):4037–4041.

    [17]S.Li,J.Li,Y.Mo.Piezoelectric multimode vibration control for stiffened plate using ADRC-based acceleration compensation.IEEE Transactions on Industrial Electronics,2014,61(12):6892–6902.

    [18]H.Sira-Ramirez,J.Linares-Flores,C.Garc′?a-Rodr′?guez,et al.On the control of the permanent magnet synchronous motor:an active disturbance rejection control approach.IEEE Transactions on Control System Technology,2014,22(5):2056–2063.

    [19]X.Chang,Y.Li,W.Zhang,et al.Active disturbance rejection control for a flywheel energy storage system.IEEE Transactions on Industrial Electronics,2015,62(2):991–1001.

    [20]H.Hwang,L.Wu,J.Han,et al.A new synthesis method for unit coordinated controlsystem in thermalpowerplant-ADRC control scheme.International Conference on Power System Technology,Singapore:IEEE,2004:133–138.

    [21]H.Sira-Ram′?rez,A.Oliver-Salazar.On the robust control of buckconverter DC-motor combinations.IEEE Transactions on Power Electronics,2013,28(8):3912–3922.

    [22]Z.Gao.Scaling and bandwidth-parameterization based controller tuning.Proceedings of the American Control Conference,Denver,Colorado:IEEE,2003:4989–4996.

    [23]B.Sun,Z.Gao.A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter.IEEE Transactions on Industrial Electronics,2005,52(5):1271–1277.

    [24]J.Linares-Flores,A.Hernandez-Mendez,C.Garc′?a-Rodr′?guez,et al.Robust nonlinear adaptive control of a boost converter via algebraic parameter identification.IEEE Transactions on Industrial Electronics,2014,61(8):4105–4114.

    [25]A.Isidori.Nonlinear Control Systems.New York:Springer,1995.

    [26]M.Fliess,H.Sira-Ram′?rez,R.Marquez-Contreras.Regulation of non-minimum phase outputs:a flatness based approach.Perspectives in Control,London:Springer,1998:143–163.

    [27]M.Fliess,C.Join.Model-free control.International Journal of Control,2013,86(12):2228–2252.

    [28]H.Sira-Ram′?rez,C.Garc′?a-Rodr′?guez,J.Cortes-Romero,et al.Algebraic Identification and Estimation Methods in Feedback Control Systems.Chichester:John Wiley&Sons Ltd.,2014.

    [29]B.Francis,W.M.Wohnam.The internalmodelprinciple forlinear multivariable regulators.Applied Mathematics and Optimization,1975,2(2):170–194.

    [30]J.Linares-Flores,C.Garc′?a-Rodriguez,H.Sira-Ram′?rez,et al.Robust backstepping tracking controller for low speed PMSM positioning system:design,analysis,and implementation.IEEE Transactions on Industrial Informatics,2015,11(5):1130–1141.

    [31]H.Sira-Ram′?rez,J.Linares-Flores,A.Luviano-Juarez,et al.Global ultramodels and active disturbance rejection control of nonlinear differentially flat systems.Revista Iberoamericana de Automatica e Informatica Industrial,2015,12(2):133–144.

    [32]M.Fliess,C.Join.Stability margins and model-free control:A first look.Proceedings of the 13th European Control Conference.Strasbourg:IEEE,2014:454–459.

    [33]H.Sira-Ram′?rez.Sliding Mode Control:The Delta-Sigma Modulation Approach.Heidelberg:Birkhauser,2015.

    Appendix

    In this appendix we expose,in a tutorial fashion,the validity of flat filters,or robust GPIC,to handle simplified models of perturbed controllable systems.We briefly illustrate this in the context of an output stabilization task for a,pure integration,third-order system.

    Consider the linear time-invariant system:

    Integrating the system expression once,and then once again,while purposefully neglecting the effects of the unknown initial conditions,one obtains two expressions for the unknowns˙yand¨y,which we respectively address,henceforth,as the structural estimates:˙yand ¨yof those variables.These two variables,in terms of iterated integrals of inputs,is just given by

    The use of these faulty estimates,in any stabilizing linear feedback scheme,demands additive integral output compensation;including up to a double integral of the available output signal.

    A stabilizing controller is then proposed to be

    After substitution of the expressions of the integral reconstructors for˙yand¨y,one obtains the following implicit expression for the controller

    Simple association of the iterated integrals leads to the following equivalent expressions which fully explain the controller representation depicted in Fig.a1.

    Fig.a1 GPIC stabilizing scheme,for a third-order system,using integral reconstructors.

    Taking Laplace transforms in the last expression and after rearrangement it yields:

    The characteristic polynomial of the closed-loop system is clearly given by

    with freely assignable parameters for stability achievement.It is tedious but not difficult to show that the classical requirements for stable roots ofp(s)in equation(a7),imply,both,the stable locations of poles and zeroes of the filter in(a6).

    In frequency domain terms,the integral reconstructorbased controller yields a dynamical classical compensation network of the form(a6).This subsystem can be regarded as a combination of a stable filter,smoothing the available output of the system,and a feed-forward term synthesizing the required plant input in terms of a linear combination of the internal states of such a filter.We address the above classical controller as theflat-filterbased controller.The reasons for this terminology are:1)Regarding the controller as a dynamical system with“input"represented by the output of the systemy,and with “output"represented by the system’s control input,u,the filtered outputyfqualifies as a flat output for such a linear dynamical system.Indeed,all variables in the dynamic compensator can be expressed in terms of the flat outputyfand a finite number of its time derivatives.2)A crucial property of flat linear time-invariant systems is that their transfer functions exhibit no zero dynamics.Such is the case of the transfer function of the filtered outputyfconsideringyas an input.The flat filtered output is defined as

    The state space representation of the flat filtering controller follows immediately from the controller expression written in compensation network form and expressed back in the time domain.Defining,yf=ζ1and˙yf=ζ2,one has

    A1.The robustness issue

    Suppose it is desired to control the same system(a1)in a perturbed version of the form:

    where ξ(t)is only known to be an absolutely bounded signal.A compensator would try to overcome the unknown disturbance with as many integrations in the compensator as reasonably possible in the hope offacing a classicaldisturbance of polynomial type.Notice,however,that any smooth,bounded,time-varying perturbation is ultra-locally efficiently approximated by a time polynomial of arbitrary degree(piecewise constant,piecewise linear,parabolic,etc.).Any finite degree time polynomial perturbation,taken as internal model of the unstructured additive perturbation,may then be also locally approximately cancelled by a sufficient number of differentiations.These differentiations are easily realized as iterated integrations in the denominator of the compensation network.

    Recallthatin extended state observers and in GPIobservers,respectively,a single extra integrator,or,a finite number of integrations extending the observer’s state space,suffices to have an arbitrarily close estimation to the actual disturbance.Similarly,and dually,in GPIC based flat filters,the suitable addition of one or a finite number of integrators in the compensation network denominator will result,under closed-loop conditions,in at least the same number of time differentiations ofthe additive disturbance.This simple duality is atthe heartof regarding non-linear state dependent,and even input dependent,disturbances as unstructured time polynomialmodels[6]whose effects can be on-line identified[27],estimated[31],or cancelled,in an approximate manner.That this philosophy works even for nonlinear state and input dependent additive nonlinearities rests on the fact that,ultimately,while the system is operating on line,such disturbances are,indeed,time varying signals.Efforts to generally assess closed-loop stability of the existing control schemes adopting this modeling philosophy for disturbances may be found in[8,10,18,27,32].See also the excellent survey by Madonski and Herman[12].

    The preceding paragraph justifies the use of a robust flat filter based compensator for the perturbed third-order pure integration system.Here a first degree time polynomial internal model is adopted for the additive perturbation(hence,m=2 is needed).A stabilizing task,to a trivial reference output equilibriumˉy=0,is imposed on the system.We propose then,

    The closed-loop system evolves in accordance with

    The disturbance,ultra-locally modeled(see Fliess and Join[27]and,also,[31])by a first degree time polynomial,is differentiated at least twice in the closed-loop system.

    丝袜美足系列| 春色校园在线视频观看| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品| 人妻少妇偷人精品九色| 日韩伦理黄色片| 成年女人在线观看亚洲视频| 色视频在线一区二区三区| 国产xxxxx性猛交| 久久国产亚洲av麻豆专区| 各种免费的搞黄视频| 纵有疾风起免费观看全集完整版| 欧美av亚洲av综合av国产av | 国产日韩欧美视频二区| 中文精品一卡2卡3卡4更新| 99精国产麻豆久久婷婷| 精品亚洲成a人片在线观看| 亚洲一区中文字幕在线| 久久影院123| 亚洲成国产人片在线观看| 亚洲精品乱久久久久久| 欧美精品人与动牲交sv欧美| 久久久久久久久久久免费av| 妹子高潮喷水视频| 最近手机中文字幕大全| 国产一区二区 视频在线| 国产 一区精品| 国产精品 国内视频| 成人免费观看视频高清| 看免费成人av毛片| 亚洲三级黄色毛片| 男人舔女人的私密视频| 中文乱码字字幕精品一区二区三区| 欧美国产精品一级二级三级| 两性夫妻黄色片| 成人手机av| 免费观看在线日韩| 精品亚洲成国产av| 黄色视频在线播放观看不卡| 国产亚洲一区二区精品| 18禁动态无遮挡网站| 99久久人妻综合| 日日啪夜夜爽| 国产在视频线精品| 99九九在线精品视频| 欧美国产精品va在线观看不卡| 久久久久精品性色| 少妇人妻精品综合一区二区| 丝袜脚勾引网站| 男人舔女人的私密视频| 国产精品久久久久成人av| 在线观看免费日韩欧美大片| 日本av免费视频播放| 国产成人精品久久二区二区91 | 精品久久蜜臀av无| 国产片内射在线| www.熟女人妻精品国产| 亚洲精品av麻豆狂野| 国语对白做爰xxxⅹ性视频网站| 91在线精品国自产拍蜜月| 国产成人aa在线观看| 国产免费又黄又爽又色| 欧美人与性动交α欧美精品济南到 | 80岁老熟妇乱子伦牲交| 国产av精品麻豆| 国产免费福利视频在线观看| 亚洲精品久久午夜乱码| 亚洲精品美女久久久久99蜜臀 | 啦啦啦在线免费观看视频4| 久久久国产欧美日韩av| 国产亚洲精品第一综合不卡| 国产日韩欧美在线精品| 精品久久蜜臀av无| 亚洲av.av天堂| 热99久久久久精品小说推荐| 日韩av在线免费看完整版不卡| 精品久久久精品久久久| 国产免费福利视频在线观看| 美女福利国产在线| 中文字幕人妻丝袜一区二区 | 国产精品免费视频内射| 最近最新中文字幕大全免费视频 | 亚洲一码二码三码区别大吗| 欧美日韩成人在线一区二区| xxxhd国产人妻xxx| 黑丝袜美女国产一区| 超碰成人久久| 伊人亚洲综合成人网| 水蜜桃什么品种好| 人人妻人人澡人人看| 天天躁夜夜躁狠狠躁躁| 成年女人在线观看亚洲视频| 国产精品无大码| 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 丝袜在线中文字幕| 在线永久观看黄色视频| 中国美女看黄片| 亚洲五月天丁香| 少妇 在线观看| 制服诱惑二区| 日韩免费av在线播放| 首页视频小说图片口味搜索| 一边摸一边做爽爽视频免费| 琪琪午夜伦伦电影理论片6080| 美国免费a级毛片| 欧美在线一区亚洲| 午夜激情av网站| 99热只有精品国产| 久99久视频精品免费| 亚洲欧美精品综合一区二区三区| 午夜福利在线观看吧| 嫩草影视91久久| 啦啦啦在线免费观看视频4| 国产免费现黄频在线看| 中出人妻视频一区二区| 国产精品国产av在线观看| 免费不卡黄色视频| 女生性感内裤真人,穿戴方法视频| 制服人妻中文乱码| a在线观看视频网站| 色老头精品视频在线观看| 大型av网站在线播放| 欧美乱色亚洲激情| 人成视频在线观看免费观看| 老司机靠b影院| 午夜久久久在线观看| 黄片小视频在线播放| 在线av久久热| 亚洲成人精品中文字幕电影 | 国产aⅴ精品一区二区三区波| 人人妻,人人澡人人爽秒播| 99精品久久久久人妻精品| 啦啦啦免费观看视频1| 级片在线观看| 老鸭窝网址在线观看| 91大片在线观看| 国产不卡一卡二| 亚洲一区中文字幕在线| 免费av毛片视频| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区视频了| 成人亚洲精品av一区二区 | 99久久99久久久精品蜜桃| 精品国产美女av久久久久小说| 长腿黑丝高跟| 色综合欧美亚洲国产小说| 亚洲成人国产一区在线观看| 搡老乐熟女国产| 大陆偷拍与自拍| 久久久国产欧美日韩av| 在线观看免费高清a一片| 国产成人精品久久二区二区91| 一进一出抽搐gif免费好疼 | 中国美女看黄片| 亚洲av熟女| 欧美激情高清一区二区三区| 99re在线观看精品视频| 国产精品国产av在线观看| 美女国产高潮福利片在线看| 桃色一区二区三区在线观看| 真人一进一出gif抽搐免费| 国产极品粉嫩免费观看在线| 亚洲七黄色美女视频| 久久中文看片网| 午夜影院日韩av| 在线观看一区二区三区激情| 最好的美女福利视频网| 久久精品91蜜桃| 成人精品一区二区免费| 免费不卡黄色视频| 精品无人区乱码1区二区| 成年人免费黄色播放视频| www.自偷自拍.com| 老熟妇乱子伦视频在线观看| 午夜激情av网站| 国产成+人综合+亚洲专区| 久久久久国产一级毛片高清牌| 亚洲av美国av| 在线观看一区二区三区激情| av免费在线观看网站| 国产1区2区3区精品| 亚洲成国产人片在线观看| 久久亚洲真实| 国产又色又爽无遮挡免费看| 变态另类成人亚洲欧美熟女 | 50天的宝宝边吃奶边哭怎么回事| av在线天堂中文字幕 | 丁香六月欧美| www.熟女人妻精品国产| 制服诱惑二区| 成在线人永久免费视频| 久久久久久久午夜电影 | 国产亚洲精品久久久久久毛片| 老司机午夜十八禁免费视频| 成人亚洲精品一区在线观看| 亚洲激情在线av| 黑人巨大精品欧美一区二区蜜桃| 在线观看66精品国产| 我的亚洲天堂| 精品久久久久久久久久免费视频 | 午夜福利在线观看吧| 久久午夜亚洲精品久久| 国产精品永久免费网站| 色播在线永久视频| 亚洲精品国产区一区二| 亚洲国产精品999在线| 久久香蕉国产精品| 日韩欧美免费精品| 中文字幕人妻熟女乱码| 后天国语完整版免费观看| 成年人黄色毛片网站| 成人手机av| 俄罗斯特黄特色一大片| 久久人妻熟女aⅴ| 欧美日韩亚洲综合一区二区三区_| 女性生殖器流出的白浆| videosex国产| 在线十欧美十亚洲十日本专区| 搡老熟女国产l中国老女人| 国产成人免费无遮挡视频| 美女扒开内裤让男人捅视频| 可以免费在线观看a视频的电影网站| 男人的好看免费观看在线视频 | 国产黄a三级三级三级人| 亚洲精品一二三| av在线播放免费不卡| 欧美午夜高清在线| 国产一区二区三区综合在线观看| 亚洲国产精品sss在线观看 | 亚洲一区中文字幕在线| 国产精品99久久99久久久不卡| 在线观看舔阴道视频| 淫妇啪啪啪对白视频| 看黄色毛片网站| 黑人操中国人逼视频| 精品国产国语对白av| 成人精品一区二区免费| 国产亚洲欧美精品永久| 99久久综合精品五月天人人| 免费av中文字幕在线| 老司机福利观看| 18美女黄网站色大片免费观看| 亚洲国产欧美一区二区综合| 国产精品久久视频播放| 日韩人妻精品一区2区三区| 18美女黄网站色大片免费观看| 亚洲欧美一区二区三区黑人| 国产成人精品在线电影| 19禁男女啪啪无遮挡网站| 久久午夜亚洲精品久久| 热99re8久久精品国产| 自拍欧美九色日韩亚洲蝌蚪91| 性少妇av在线| 久久影院123| av国产精品久久久久影院| 久久青草综合色| 麻豆一二三区av精品| 美女扒开内裤让男人捅视频| 日本撒尿小便嘘嘘汇集6| 69精品国产乱码久久久| 老司机午夜十八禁免费视频| 中文字幕色久视频| 人人澡人人妻人| av国产精品久久久久影院| 色尼玛亚洲综合影院| 国产精品一区二区在线不卡| 国产亚洲欧美精品永久| www.熟女人妻精品国产| 久久人妻av系列| 一进一出抽搐动态| 性欧美人与动物交配| 色综合欧美亚洲国产小说| 国产aⅴ精品一区二区三区波| 在线播放国产精品三级| 在线国产一区二区在线| 亚洲五月色婷婷综合| 动漫黄色视频在线观看| 制服人妻中文乱码| 制服人妻中文乱码| 久久久久久久久免费视频了| 日韩大尺度精品在线看网址 | 91成年电影在线观看| 中文字幕人妻丝袜一区二区| 久久久国产精品麻豆| 精品国产乱码久久久久久男人| 天堂动漫精品| 极品教师在线免费播放| 青草久久国产| 人人妻人人澡人人看| 18禁黄网站禁片午夜丰满| 精品久久蜜臀av无| 亚洲免费av在线视频| 久久久久精品国产欧美久久久| 一级,二级,三级黄色视频| 国产乱人伦免费视频| 国产日韩一区二区三区精品不卡| 在线播放国产精品三级| 国产激情欧美一区二区| 香蕉久久夜色| 精品国内亚洲2022精品成人| 日韩免费高清中文字幕av| 人妻丰满熟妇av一区二区三区| 欧美中文综合在线视频| 久久午夜综合久久蜜桃| 国产免费男女视频| 欧美 亚洲 国产 日韩一| 女性被躁到高潮视频| 成人永久免费在线观看视频| 在线观看免费高清a一片| 日韩精品青青久久久久久| 在线视频色国产色| 亚洲成人国产一区在线观看| 久久精品人人爽人人爽视色| 欧美日韩福利视频一区二区| 法律面前人人平等表现在哪些方面| 亚洲欧美激情综合另类| 成人影院久久| 国产精品偷伦视频观看了| 国产蜜桃级精品一区二区三区| 露出奶头的视频| 首页视频小说图片口味搜索| 日韩精品中文字幕看吧| a级毛片黄视频| 亚洲欧美激情在线| 999久久久国产精品视频| 久久精品国产清高在天天线| 国产一区二区三区在线臀色熟女 | 国产黄a三级三级三级人| 久久久精品欧美日韩精品| 亚洲国产欧美一区二区综合| 欧美久久黑人一区二区| 亚洲av成人一区二区三| 侵犯人妻中文字幕一二三四区| 亚洲人成网站在线播放欧美日韩| 岛国在线观看网站| 亚洲欧美激情在线| 国产精品爽爽va在线观看网站 | 国产黄a三级三级三级人| 在线天堂中文资源库| 高清黄色对白视频在线免费看| 久久天躁狠狠躁夜夜2o2o| 最新在线观看一区二区三区| 国产片内射在线| 久久久久久久久久久久大奶| 久久中文字幕一级| 免费av中文字幕在线| 91老司机精品| 真人做人爱边吃奶动态| 在线观看免费视频日本深夜| 亚洲精品一区av在线观看| 日韩三级视频一区二区三区| 中文字幕人妻丝袜制服| 日韩欧美一区二区三区在线观看| 亚洲精品在线观看二区| 在线天堂中文资源库| 亚洲国产精品一区二区三区在线| 黄片大片在线免费观看| 99香蕉大伊视频| √禁漫天堂资源中文www| 久久久久国产精品人妻aⅴ院| e午夜精品久久久久久久| 黄片播放在线免费| 黄色怎么调成土黄色| 热re99久久国产66热| 老司机亚洲免费影院| 久久婷婷成人综合色麻豆| 99久久人妻综合| 亚洲av成人av| 嫁个100分男人电影在线观看| 成人黄色视频免费在线看| 国产精品秋霞免费鲁丝片| 日韩欧美免费精品| 日本免费a在线| 又黄又粗又硬又大视频| 精品第一国产精品| 国产区一区二久久| 亚洲精品粉嫩美女一区| 99国产精品一区二区三区| 超碰成人久久| netflix在线观看网站| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 国产成人av教育| 亚洲情色 制服丝袜| 91精品国产国语对白视频| 国产成+人综合+亚洲专区| 超碰97精品在线观看| 国产亚洲精品久久久久5区| 欧美精品一区二区免费开放| 亚洲人成77777在线视频| 亚洲精品一二三| 一级,二级,三级黄色视频| 亚洲免费av在线视频| 最新在线观看一区二区三区| 人人妻人人添人人爽欧美一区卜| 精品久久久久久电影网| 91老司机精品| 日韩中文字幕欧美一区二区| 日韩欧美一区二区三区在线观看| 亚洲精品美女久久久久99蜜臀| 黑丝袜美女国产一区| 国产成人精品在线电影| 宅男免费午夜| 露出奶头的视频| 欧美乱妇无乱码| 久久人妻av系列| 一级片免费观看大全| 久久这里只有精品19| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产欧美日韩在线播放| 无遮挡黄片免费观看| 免费女性裸体啪啪无遮挡网站| 叶爱在线成人免费视频播放| 啪啪无遮挡十八禁网站| 极品人妻少妇av视频| 精品无人区乱码1区二区| 老司机福利观看| 国产亚洲精品一区二区www| 在线观看免费视频日本深夜| 亚洲美女黄片视频| 天堂俺去俺来也www色官网| 亚洲国产欧美日韩在线播放| 男人舔女人下体高潮全视频| 99热只有精品国产| 亚洲欧美一区二区三区黑人| 少妇的丰满在线观看| 亚洲午夜理论影院| 亚洲少妇的诱惑av| 久久久久亚洲av毛片大全| 国产一区二区在线av高清观看| 亚洲av熟女| 欧美一级毛片孕妇| 精品福利观看| 波多野结衣高清无吗| 日本精品一区二区三区蜜桃| 中国美女看黄片| 色综合婷婷激情| 可以在线观看毛片的网站| 亚洲精品在线美女| 一级a爱片免费观看的视频| 久久精品人人爽人人爽视色| 满18在线观看网站| 首页视频小说图片口味搜索| 亚洲欧美一区二区三区久久| 亚洲精品在线观看二区| 国产欧美日韩精品亚洲av| 中文字幕av电影在线播放| 婷婷精品国产亚洲av在线| 亚洲国产精品一区二区三区在线| 999久久久国产精品视频| 手机成人av网站| av在线播放免费不卡| 高清黄色对白视频在线免费看| x7x7x7水蜜桃| 人妻丰满熟妇av一区二区三区| 在线观看免费高清a一片| av中文乱码字幕在线| 91av网站免费观看| 校园春色视频在线观看| 9191精品国产免费久久| 夜夜躁狠狠躁天天躁| 欧美一区二区精品小视频在线| 91av网站免费观看| 高清av免费在线| 不卡av一区二区三区| 国产主播在线观看一区二区| 这个男人来自地球电影免费观看| 成年女人毛片免费观看观看9| 99国产精品一区二区三区| 五月开心婷婷网| 久久伊人香网站| 美女大奶头视频| 热99re8久久精品国产| 亚洲欧美激情在线| 国产成人精品在线电影| tocl精华| 亚洲精品国产一区二区精华液| 不卡av一区二区三区| 精品一区二区三卡| 99精品欧美一区二区三区四区| 91av网站免费观看| 69精品国产乱码久久久| 精品一区二区三区四区五区乱码| av网站在线播放免费| 亚洲欧美精品综合一区二区三区| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区三| 一级a爱片免费观看的视频| 亚洲国产毛片av蜜桃av| 天堂动漫精品| 18禁黄网站禁片午夜丰满| 女人爽到高潮嗷嗷叫在线视频| 一级a爱视频在线免费观看| 亚洲视频免费观看视频| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 久久久久久免费高清国产稀缺| 新久久久久国产一级毛片| 宅男免费午夜| 亚洲精华国产精华精| av片东京热男人的天堂| 成人永久免费在线观看视频| 亚洲成av片中文字幕在线观看| 午夜福利在线观看吧| 黑人欧美特级aaaaaa片| 变态另类成人亚洲欧美熟女 | 淫秽高清视频在线观看| 国产精品秋霞免费鲁丝片| 亚洲欧美精品综合一区二区三区| 一区福利在线观看| 中出人妻视频一区二区| 乱人伦中国视频| 成人手机av| 国产免费男女视频| 久久久精品欧美日韩精品| 免费一级毛片在线播放高清视频 | 亚洲美女黄片视频| 亚洲欧美激情综合另类| 亚洲av成人不卡在线观看播放网| 亚洲av熟女| 欧美激情久久久久久爽电影 | 久久久久久久午夜电影 | 久久亚洲精品不卡| 亚洲成国产人片在线观看| 国产av在哪里看| 这个男人来自地球电影免费观看| av片东京热男人的天堂| 欧美激情久久久久久爽电影 | 精品国产一区二区久久| 国产精品久久久久成人av| 一进一出抽搐gif免费好疼 | 国产午夜精品久久久久久| 老司机午夜十八禁免费视频| 香蕉久久夜色| 他把我摸到了高潮在线观看| 波多野结衣一区麻豆| 麻豆一二三区av精品| 国产xxxxx性猛交| 18美女黄网站色大片免费观看| 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 亚洲五月天丁香| 一级毛片高清免费大全| 国产亚洲精品第一综合不卡| 亚洲精华国产精华精| 精品一区二区三区av网在线观看| 亚洲熟女毛片儿| 91成年电影在线观看| 中出人妻视频一区二区| 亚洲五月色婷婷综合| 国产欧美日韩一区二区三| 黄片大片在线免费观看| 精品久久蜜臀av无| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 久久香蕉国产精品| 人妻久久中文字幕网| 午夜两性在线视频| 国产精品电影一区二区三区| 中文字幕高清在线视频| 国产xxxxx性猛交| www国产在线视频色| 夜夜看夜夜爽夜夜摸 | 亚洲精品国产色婷婷电影| 欧美不卡视频在线免费观看 | 最近最新中文字幕大全免费视频| 女人精品久久久久毛片| 亚洲一区中文字幕在线| 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 国产精品乱码一区二三区的特点 | 黑人欧美特级aaaaaa片| 欧美精品啪啪一区二区三区| 91精品三级在线观看| 在线观看免费午夜福利视频| 欧美激情久久久久久爽电影 | 女同久久另类99精品国产91| 中文亚洲av片在线观看爽| 亚洲精品一卡2卡三卡4卡5卡| 色婷婷久久久亚洲欧美| 天天影视国产精品| 一级,二级,三级黄色视频| 亚洲avbb在线观看| 亚洲熟女毛片儿| 欧美午夜高清在线| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 国产成人系列免费观看| a在线观看视频网站| 亚洲专区字幕在线| 久久狼人影院| 人成视频在线观看免费观看| 最近最新中文字幕大全电影3 | 一级,二级,三级黄色视频| 久久久国产一区二区| 在线观看www视频免费| 亚洲中文av在线| 黄色a级毛片大全视频| 国产男靠女视频免费网站| a级毛片在线看网站| 黄色毛片三级朝国网站| 久久欧美精品欧美久久欧美| 高清黄色对白视频在线免费看| 久久久久国产一级毛片高清牌| 天堂俺去俺来也www色官网| 久久久久久大精品| 法律面前人人平等表现在哪些方面| 亚洲在线自拍视频| 色在线成人网| 高清av免费在线| 自线自在国产av| 久99久视频精品免费| 国产亚洲av高清不卡|