• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust flat filtering DSP based control of the boost converter

    2016-05-14 06:51:57HeberttSIRARAMIREZArturoHERNaNDEZMeNDEZJesusLINARESFLORESAlbertoLUVIANOJUaREZ
    Control Theory and Technology 2016年3期

    Hebertt SIRA-RAM′IREZ ,Arturo HERNaNDEZ-MeNDEZ ,Jes′us LINARES-FLORES ?,Alberto LUVIANO-JUaREZ

    1.Department of Electrical Engineering,Mechatronics Section,CINVESTAV-IPN,Av.IPN No.2508,Col.San Pedro Zacatenco 07360,D.F.Mexico,Mexico;

    2.Universidad Tecnol′ogica de la Mixteca,Carretera a Acatlima Km.2.5,Huajuapan de Le′on,Oaxaca,Mexico;3.UPIITA-IPN,D.F.Mexico,Mexico

    1 Introduction

    In spite of its low-order and its bi-linear nature,the boost converter is a nonlinear DC-to-DC power conversion circuit with several challenging features:1)The output voltage,which is the variable to be regulated,is a non-minimum phase variable.2)System variables exhibit stringent physical constraints:The control input is binary-valued and its average magnitude value is uniformly bounded.Additionally,the output voltage values must operate above the constant input battery voltage.3)The most common exogenous disturbances(battery voltage fluctuations and load current disturbances)fail to comply with the celebrated matching conditions.4)The load resistance is,generally speaking,of unknown nature.The control input is,necessarily,discontinuous as represented by a switch position function(See Sira-Ram′?rez and Silva-Ortigoza[1]).The boost converter is,however,differentially flat(See Fliess et al.[2],Sira-Ram′?rez and Aggrawal[3]and J.Levine[4]).This important feature generally alleviates and trivializes the control design problem in several aspects(exact linearization,trajectory planning,etc.),provided all endogenous nonlinearities are perfectly known.Our purpose is to propose a method which handles those cases of exogenously perturbed nature where the acting endogenous non-linearities are largely unknown or disregarded.

    Flat filtering constitutes a reinterpretation of GPIC(See Fliess et al.[5])in the form of classical compensation networks(CCN).Roughly speaking,any linear controllable system whose output is the Brunovski’s output can be output regulated with the help of a well tuned proper linear filter and a suitable linear combination of the available internal states of such filter.Here,it is shown that such classical tool is also capable of efficiently handling control tasks on perturbed linearizable nonlinear systems(i.e.,flat systems),such as the boost converter,including unknown,or neglected,nonlinearities,exogenous disturbances,and un-modeled dynamics;in a fashion similar as these uncertainties are handled in ADRC schemes(See Han[6],Zheng et al.[7,8],and Guo et al.[9–11],and a recent survey by Madonski and Herman[12]).

    ADRC was first initiated by Han[6],as a robust design technique for disturbance rejection in nonlinear system with parameteruncertainties and significantexternaldisturbances.The uncertainties are to be canceled by a nonlinear control law[13].ADRC has found remarkable applications in industry,such as in power filter design[14,15],a series,LC,filtered active damper[16],actuators[17],rotatory speed regulation[18],flywheel energy storage system[19],power plant control[20],and so on.Recently,Sira-Ram′?rez proposed an ADRCapproach from the perspective of differential flatness[21].Gao[22]proposed a simplified linear version of the original ADRC approach in 2003,where all the poles of the ESO and the closed-loop characteristic equation are placed in the same location,and thus there is only one parameter to be tuned.

    Sun and Gao[23]present a DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC powerconverter.They implementthe active disturbance rejection control into a digital control board based on the TMS320C6711 digital signal processor chip,where they show the advantages and flexibilities of the control method.Due to flexibility and autonomy that offers a digital signal processor chip,we propose a robust flat filtering DSP-based control of the boost converter,which does not use an Extended State Observer,and has the characteristic of taking into consideration the original system order in a time-varying simplified model while avoiding algebraic estimation techniques.Thus,the contributions of this paper are:1)the design of a robust flat filtering control for the highly perturbed switched boost converter circuit,and 2)implementation of the robust flat filtering control,together with the trajectory desired reference of the flat output onTMS320F28335 DSP board(See Fig.1).

    The paper is organized as follows.Section 2 describes the main features of the switch controlled boost converter system.It presents its state average model and establishes its flatness property.This section also formulates the output voltage reference trajectory tracking problem to be solved in an indirectmannervia the use of the flatness property enjoyed by the total average stored energy[24].A flat filter based controller is first proposed for the trajectory tracking in the ideally unperturbed but uncertain boost case.

    Fig.1 Flat filtering DSP based control of the boost converter.

    Section 3 considers the fully exogenously perturbed uncertain boost converter case and shows that exactly the same flat filter based controller designed for the unperturbed case,also efficiently regulates the highly perturbed uncertain converter thus demonstrating the remarkable robustness of the method.Section 4 describes the experimental setup,and discusses the simulation and experimental results.Section 5 is devoted to some conclusions and presents suggestions for further research.An appendix at the end of the article contains,via an illustrative example,an intuitive justification of the proposed approach.

    2 The boost converter

    2.1 Generalities about the boost converter circuit

    A simplified,unperturbed,model of the boost converter(See Fig.1)is described by

    wherevis the output capacitor voltage,iis the inductor current,Eis the constant voltage value of the battery,Ris the load resistor whileLandCare the inductance and capacitance parameters.The control inputuis a binary-valued switch position functionu∈{0,1}.

    Astate average modelof the circuit,described in(1),is obtained by replacing the control inputuby a smooth input variable μ∈[0,1](See[1]).For simplicity,we retain,in the state average model of the circuit,the same notation for the current and voltage variables,iandv,in an evident abuse of notation.

    The equilibria,for constant values of the input μ=ˉμ,can be obtained in a parameterized form in terms of the corresponding output voltage equilibrium valueˉv.

    The factthat,necessarily,ˉμ∈[0,1]implies thatˉv?E.Thus,the boost converter circuit amplifies,at the outputv,the battery voltage,E,and the corresponding steady state restriction must not be violated.

    The zero dynamics corresponding to the sustained voltage equilibrium:v=ˉv,is given by the unstable differential equation for the average inductor current:

    thus,the output voltage is a non-minimum phase variable.The average boost converter model is locally differentially flat,with flat output given by the average total stored energy,

    Indeed,the following set of coordinate transformations

    constitutes a local diffeomorphism(which is singular along the lines:v=0 andi=RCE/(2L)in the average state space).The outputWis,as it is easily verified,relative degree 2.The inverse transformation is simply:

    where the positive sign in the root is taken to comply with the physically meaningfulrestrictions.The previous state coordinate transformation exactly locally linearizes the total average stored energy dynamics after rendering it in Isidori’s canonical form([25]):

    with rather involved expressions for the nonlinearities,ψ and φ not presented,or used,here.

    The equilibrium of the average total stored energy,corresponding to an operating point(ˉi,ˉv),is given,in terms of the voltage equilibrium value,ˉv,by,

    2.2 Problem formulation for the unperturbed case

    Clearly,a desired rest-to-rest maneuver between two given equilibrium values,ˉvinit,ˉvfinal,for the average output voltagev,finds a unique pair of corresponding equilibrium values,ˉWinit,ˉWfinal,for the average stored energyW.As a consequence,a reference trajectory tracking problem,defined on the unperturbed model,(2),that seeks to force the average output voltagevfrom an initial equilibrium value to a desired final equilibrium value may be(indirectly)solved in terms of a corresponding trajectory tracking problem for the linearizing(flat)outputW(See Fliess et al.[26]).

    Instead of using the transformed canonical dynamics(8)in terms of(x1,x2)=(W,˙W),for the total average stored energy dynamics,we examine the relation between the second-order time derivative ofWand the average control input μ in terms of the original average model state variablesiandv.

    Suppose it is desired to achieve a rest-to-rest transfer between a given initial and a desired final average equilibrium value forthe average outputvoltagev.Borrowing concepts from ADRC,which are intimately related also to MFC,we intend to largely ignore the nonlinearities appearing in the total stored energy second derivative expression¨W.We simplify the model to a completely unstructured model.Consider the input channel modified dynamics with a state an input dependent total perturbation term:

    The next crucial and controversial step,has been recently rigorously justified in([9–11])in the context of ADRC and in the work of Fliess and Join[27]in the context of MFC.This consists in replacing the endogenous nonlinearity ξ(i,v,μ)=z1by a low degree,unstructured time polynomial model,represented as a local internal disturbance model(described by a corresponding low-order homogeneous linear state model)in the simplified dynamics.This is achieved by either letting:˙z1=0 in the zeroth degree polynomial model case,or ˙z1=z2,˙z2=0,in the first degree polynomial case,and so on.This step is performed totally disregarding the state and control input dependance of the additive nonlinearities in the additive term:ξ(i,v,μ).The choice of the nonzero constant,a,replacing the nonlinear,state and input-dependent gain,turns out to be,more surprisingly,quite arbitrary(see[6]);although educated guesses,or,alternatively,local algebraically based parameter identification procedures,may prove to be substantially effective(See Sira-Ram′?rez et al.[28]).

    The model to be controlled,using a third-order local homogeneous state model for the state and input dependent nonlinearities,ξ(i,v,μ)=z1,is thus given by

    The tracking erroreW=W-W*(t)evolves governed by

    The original system,being second-order,requires a first-order(lead)compensation network(see the appendix).However,the second degree local internal time polynomial model of the additive disturbance may be ideally annihilated,according to the internal model principle[29],by a third-order integration term appearing in the denominator of the controller transfer function.This leads to the following compensation scheme1Note that the internal model of the state and input dependent additive perturbation may even be proposed to be represented by a first-order homogeneous system.This simply means that the perturbation is ultra-locally([27]and[31])approximated by a piece-wise constant function of time instead of a piece-wise linear time function(see the appendix).:

    A state space realization of the CCN,as a flat filter,is readily obtained as follows:

    eWfis the flat output of the classical compensation network.The characteristic polynomial of the normalized closed-loop system,ignoring the attenuated effects of the nonlinearities and disturbances,is given by

    2.3 The perturbed case

    Considerthe following nonlinearmodelofa perturbed boost converter(See Fig.2)

    whereiis the inductor current,vis the output capacitor voltage,E(t)is a time-varying disturbance voltage value of the power supply.Ris the known value of the load resistor,v/R||Rprepresents an unknown time-varying load disturbance drain current(I(t)L).Pis a digital signal which controls a bidirectional switch.The control inputuis,as before,the binary-valued switch position functionu∈{0,1}.

    Fig.2 A perturbed boost converter.

    It is desired,in spite of the effects of the total disturbance,affecting the system,to transfer the total stored energy,

    from an initial equilibrium valueˉWinittowards a final desired equilibrium value,ˉWfinal,in a pre-specified amount of time,while tracking a given smooth reference trajectoryW*(t)satisfying the initial and final restrictions.This stored energy maneuver is motivated by the desire to smoothly transfer the nominal output voltage level from a corresponding initial equilibrium value towards a final desired equilibrium value.The tracking error,eW=W-W*(t),willbe assumed to evolve governed by the perturbed dynamics,

    A local first degree polynomial model is adopted for the unknown disturbance ξ,represented by a secondorder homogeneous pure integration subsystem.

    3 Experimental setup

    The experimental setup,shown in Fig.3,is composed of a boost converter designed to operate in continuous conduction mode at a 20 kHz switching frequency,a pair of sensors,one to measure the inductor current,and the other to measure the output capacitor voltage.An additional circuit is used to enable/disable a disturbance resistive load triggered by means of an output digital signalp(DSP).The nominal values of the components and manufacturer information about the sensors are shown in Fig.3.

    Fig.3 General scheme of the experimental platform(DC/DC boost converter).

    The algorithm of the control and the desired reference trajectory were implemented using aTMS320F28335 DSP board,where,the complete scheme operates at a fixed sampling rate of 1 MHz.The DSP clock frequency is adjusted to 150 MHz.Two ADCs,a PWM generator and a digital output are required.The program takes up 23%of the available RAM(7.821 KB).The elements of the control system shown in Fig.4 and these are described below.

    Fig.4 General scheme of the experimental platform(DSP board).

    The measured signalsiandvare digitized with two 12-bitADC with a gain calibration of2.021 and 22.59 respectively.The control input μ adjusts the duty cycle of a PWM module,which is set to a frequency of 20 kHz.The disturbance signalp,use a digital output port of the DSP board,which has a voltage level of 3.3 V whenp=1.Therefore,a pre-amplification step is required to activate the relay RAS-0910.The algorithm of control is composed of four modules,as shown in Fig.4.TheFlat outputmodule obtains the total energy stored in the systemW(t)from(8)and requires the signalsi(t),v(t),and the nominal values ofLandC.TheTrajectory&perturbationmodule generates the reference pathW*(t),as follows:under equilibrium conditions,the average values ofthe boostconvertervariables,(1),written in terms of the desired constant average output voltageˉv=Vd,are given by

    withf(t,tinit,tfinal)∈[0,1],?t∈[tinit,tfinal]being a 10th-order Bezier polynomial(See[30])given by

    The initial and final values of the average output voltagevand the average inductor current,iare given by

    The system parameters:RandE,are assumed to be continuously time varying in an unknown manner.These parameters are required to calculate the rest to rest reference trajectory for the flat output and the gains in the feedback control law.For theControl lawmodule,equations(15),corresponding to the flat filter controller are used.To generate the code of this module,we use the implicit Euler method to pass the equations to their discrete form.That is to say,for a time function ν(t):

    where ν(k)is the current sample,and ν(k-1)is the previous sample andTis the sampling period(1μs).The evolution ofeμ(t)will asymptotically exponentially converge to zero if and only if the coefficients of the linear feedback tracking controller are chosen in such a manner that the characteristic polynomial of the closedloop system isHurwitz,i.e.,all roots of the polynomialp(s)(16),in the complex variables∈C,lie in the left half of the complex plane.With ζ=0.707 and ω=15,the poles placement in closed-loop system are:p1,2=-0.35514-14.793j,p3,4=-0.36268+15.201j,p5=-3.856,andp6=-58.338.Therefore,the tracking erroreμ(t)in closed is asymptotically exponentially converge to zero.

    3.1 Simulation results for the unperturbed case

    A boost converter,with parametersL=488×10-6H,C=470×10-6F,andR=95.8Ω,is required to transfer its output equilibrium voltageˉvinitial=30 V towards a final desired equilibriumˉvfinal=45 V.The battery nominal value isE=20 V.

    In order to achieve a smooth rest-to-rest maneuver of the output voltagev,from the initial equilibrium value ofˉvinitial=30 V,towards the final desired equilibrium value ofˉvfinal=45 V,in a prescribed time interval of 1 s,a corresponding smooth trajectory,W*(t),of the total stored energyWwasprescribed from the corresponding initial valueˉWinitial=0.2149 J towards the final desired value,ˉWfinal=0.4835 J,also in a time intervalof1 s starting att=2 s,then the reference trajectory is repeated in the opposite direction after 8 s.The desired rest-torest stored energy trajectory,W*(t),was prescribed using a classical Bezier time-polynomial of 10th degree smoothly interpolating between the required initial and final values forW.

    Fig.5 depicts the PSIM2PSIM is a simulation software specifically designed for power electronics and motor drives.With fast simulation and friendly user interface,PSIM provides a powerful simulation environment for power electronics,analog and digital control,magnetics,and motor drive system studies.simulations results of the performance of the linear flat filtering based controller for the boost converter in a desired average total stored energy transfer from an initial operating equilibrium towards a final,desired,equilibrium,indirectly achieving a smooth voltage increase between corresponding equilibrium values.In Fig.6,the average controlinputis seen to comply with the uniform boundedness requirement μ(t)∈ [0,1]during the required maneuver.

    Fig.5 Performance of flat-filter based controller for a boost converter,on a unperturbed case.(a)Capacitor voltage responses.(b)Total stored energy responses.(c)Inductor current response.

    Fig.6 Switched control input and average control input produced by the flat filter based controller.

    3.2 Simulation and experimentalresults forthe perturbed case

    We apply the same flat filtering based controller previously designed for the unperturbed case and adopt the same output voltage rest-to-rest maneuver.For this test,we programme the unknown time-varying function of the batteryE(t)V,as follows:

    Also,we change the outputresistance valueRthrough the connection with other perturbation parallel resistanceRp,the connection and disconnection of the perturbation resistance is controlled by means of an output digital signalp,the equivalent resistance of the boost power converter system,is given by

    Through the variations of the power source and output resistance,we test the performance of the proposed control.In the first place,we obtain the PSIM simulations results of the performance flat-filter control under variations of power source,and under sudden output resistance change.In the second place,we obtain the experimental results of the performance flat-filter control with these same variations.

    3.2.1 PSIM simulations results

    Fig.7 shows on the top graph the output voltage response of boost converter,while the upper graph shows the flat output response of the boost converter system,under the variations of power source and output load resistance,which are shown on Fig.8.The ISTE(integral square tracking error)of output voltage performance index shows a good performance in spite of the variations of power source and output load resistance.Thus,we observe that the linear flat filtering based controller achieves the robustness on thenon-minimum phasevariableof the boost converter system for the perturbed case(See Fig.9).Fig.10 shows the inductor and output resistance current responses under the power source and output resistance variations,we observe that the amplitude ofthe currents is incremented when the nominal value of output resistance is reduced in the intervals given by(20).

    Fig.8 shows on the top graph the comparison between the flatfiltercontroland robustnonlinearadaptive control[24]of the output voltage,where we see that the flat filter response do not present a voltage overshoot in the initial condition,while the robust adaptive response present a voltage overshoot.Additionally,we see that the responses in steady-state,the flat filter controller response has a light damping,and the robust adaptive controller response has nothing of damping.The same occurs for the flat output responses of both controllers,this is shown on the upper graph of Fig.8.

    Fig.7 PSIM simulation results:Output voltage response and flat output response for a stored energy trajectory tracking task,with power source and output resistance variations.(a)Capacitor voltages.(b)Total stored energy responses.

    Fig.8 PSIM simulation results:Output voltage responses and flat output responses for a stored energy trajectory tracking task,with power source and output resistance variations.(a)Capacitor voltages.(b)Total stored energy responses.

    Fig.9 PSIM simulations results:Average flat filter control and integral square tracking error of the output voltage of boost power converter.(a)Average control input.(b)ISTE index.

    Fig.10 PSIM simulations results:Inductor current response and output load current response for a stored energy trajectory tracking task,with power source and output resistance variations.(a)Inductor current response.(b)Load current disturbance.

    3.2.2 Experimental results

    Fig.11 shows the experimental results of the output voltage and flat output of the boost power converter.We observe that the output voltage and output flat responses of the system in steady-state present a light damping due to damping coefficientofthe flat-filtercontroller,which was tuned with a value of ζ=0.707,this produces responses of under-damped type(See Section 3).

    Fig.11 Experimental results:Output voltage response and flat output response for a stored energy trajectory tracking task,with power source and output resistance variations.(a)Capacitor voltages.(b)Total stored energy responses.

    Fig.13 Experimental results:Inductor current response and load current response.(a)Inductor current response.(b)Load current disturbance.

    4 Conclusions

    In this article,we have introduced an application of a remarkable new property of flatness,summarized as follows:any linear controllable system whose flat output(or Brunovski output)coincides with the system output,may be controlled,in stabilization or trajectory tracking tasks,by means of a linear,well tuned,stable linear filter alone.The filter processes,respectively,the system output,or the system output trajectory tracking error.A linear combination of the internal states of the linear filter conform the required stabilizing feedback law.The coefficients of the linear filter,which turns out to be also flat in a filtering context,are uniquely deter-mined in a rather trivial manner involving only an overall pole placement effort for the closed-loop stability of the system.The flat filter constitutes a reinterpretation of the classical compensation networks for linear systems.The classical compensation networks are shown to be totally equivalent to the well known GPIC’s based on integral reconstructors.GPIC efficiently evade the need for asymptotic state observers.The striking fact,coincident in a dual manner,and without need for extended observers,with ADRC schemes is that the above linear resultmay be easily extended to the approximate control ofnonlinearuncertain,and exogenously perturbed,nonlineardifferentially flatsystems.As in ADRC,we also use a controlinputchanneltrivialization in the form ofa constant gain.The proposed robust flat filtering based controller also shares a philosophical viewpoint with MFC schemes.The fundamental idea of MFC,in high dimensional input-output systems,is that of viewing additive endogenous and exogenous total disturbances,as well as unknown nonlinear control input gains,as on-line piece-wise algebraically identifiable time signals.These are ascribed to a first,or,at most,second order,reference model system on which a P,PD or PID controller is readily designed while periodical updating of the local on-line identifications is performed.The synthesized control input is then shared with the actual plant.In robust flat filtering controls we only respect the system order,treat nonlinearities as unknown time signals that can be significantly attenuated by a linear classical compensation network including a suitable pure integration internal model for the effects of the total unknown disturbances.The nonlinear control input gain is arbitrarily replaced by a constant gain.

    [1]H.Sira-Ram′?rez,R.Silva-Ortigoza.Control Design Techniques in Power Electronics Devices.London:Springer,2006.

    [2]M.Fliess,J.Levine,Ph.Mart′?n,et al.Flatness and defect of nonlinear systems:Introductory theory and examples.International Journal of Control,1992,61(6):1327–1361.

    [3]H.Sira-Ram′?rez,S.K.Aggrawal.Differentially Flat Systems.New York:Marcel Dekker Inc.,2004.

    [4]J.Levine.Analysis and Control of Nonlinear Systems:A Flatness Based Approach.Berlin:Springer,2009.

    [5]M.Fliess,R.Marquez,E.Delaleau,et al.Correcteurs proportionnels-int`egraux generalises.ESAIM,Control,Optimization and Calculus of Variations,2002,7(2):23–41.

    [6]J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [7]Q.Zheng,Z.Chen,Z.Gao.A practical approach to disturbance decoupling control.Control Engineering Practice,2009,17(9):1016–1025.

    [8]Q.Zheng,L.Gao,Z.Gao.On validation of extended state observer through analysis and experimentation.ASME Journal of Dynamic Systems,Measurement and Control,2012,134(2):1–6.

    [9]B.Guo,Z.Zhao.Weak convergence of nonlinear high-gain tracking differentiator.IEEE Transactions on Automatic Control,2013,58(4):1074–1080.

    [10]B.Guo,Z.Zhao.On the convergence of an extended state observer for nonlinear systems with uncertainty.Systems&Control Letters,2011,60(6):420–430.

    [11]B.Guo,Z.Zhao.On the convergence of the nonlinear active disturbance rejection control for MIMO systems.SIAM Journal of Control and Optimization,2013,51(2):1727–1757.

    [12]R.Madonski,P.Herman.Survey on methods of increasing the efficiency of extended state disturbance observers.ISA Transactions,2014,56:18–27.

    [13]W.Chen,J.Yang,L.Guo,et al.Disturbance observer-based control and related methods–an overview.IEEE Transactions on Industrial Electronics,2015,63(2):1083–1095.

    [14]G.A.Ramos Fuentes,J.A.Cortes-Romero,Z.Zou,et al.Power active filter control based on a resonant disturbance observer.IET Power Electronics,2015,8(4):554–564.

    [15]Q.Zhong,Y.Zhang,J.Yang,et al.Non-linear auto-disturbance rejection controlofparallelactive powerfilters.IETControlTheory&Applications,2009,3(7):907–916.

    [16]X.Wang,Y.Pang,P.C.Loh,et al.A series-LC-filtered active damperwith grid disturbance rejection for AC power-electronicsbased power systems.IEEE Transaction on Power Electronics,2015,30(8):4037–4041.

    [17]S.Li,J.Li,Y.Mo.Piezoelectric multimode vibration control for stiffened plate using ADRC-based acceleration compensation.IEEE Transactions on Industrial Electronics,2014,61(12):6892–6902.

    [18]H.Sira-Ramirez,J.Linares-Flores,C.Garc′?a-Rodr′?guez,et al.On the control of the permanent magnet synchronous motor:an active disturbance rejection control approach.IEEE Transactions on Control System Technology,2014,22(5):2056–2063.

    [19]X.Chang,Y.Li,W.Zhang,et al.Active disturbance rejection control for a flywheel energy storage system.IEEE Transactions on Industrial Electronics,2015,62(2):991–1001.

    [20]H.Hwang,L.Wu,J.Han,et al.A new synthesis method for unit coordinated controlsystem in thermalpowerplant-ADRC control scheme.International Conference on Power System Technology,Singapore:IEEE,2004:133–138.

    [21]H.Sira-Ram′?rez,A.Oliver-Salazar.On the robust control of buckconverter DC-motor combinations.IEEE Transactions on Power Electronics,2013,28(8):3912–3922.

    [22]Z.Gao.Scaling and bandwidth-parameterization based controller tuning.Proceedings of the American Control Conference,Denver,Colorado:IEEE,2003:4989–4996.

    [23]B.Sun,Z.Gao.A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter.IEEE Transactions on Industrial Electronics,2005,52(5):1271–1277.

    [24]J.Linares-Flores,A.Hernandez-Mendez,C.Garc′?a-Rodr′?guez,et al.Robust nonlinear adaptive control of a boost converter via algebraic parameter identification.IEEE Transactions on Industrial Electronics,2014,61(8):4105–4114.

    [25]A.Isidori.Nonlinear Control Systems.New York:Springer,1995.

    [26]M.Fliess,H.Sira-Ram′?rez,R.Marquez-Contreras.Regulation of non-minimum phase outputs:a flatness based approach.Perspectives in Control,London:Springer,1998:143–163.

    [27]M.Fliess,C.Join.Model-free control.International Journal of Control,2013,86(12):2228–2252.

    [28]H.Sira-Ram′?rez,C.Garc′?a-Rodr′?guez,J.Cortes-Romero,et al.Algebraic Identification and Estimation Methods in Feedback Control Systems.Chichester:John Wiley&Sons Ltd.,2014.

    [29]B.Francis,W.M.Wohnam.The internalmodelprinciple forlinear multivariable regulators.Applied Mathematics and Optimization,1975,2(2):170–194.

    [30]J.Linares-Flores,C.Garc′?a-Rodriguez,H.Sira-Ram′?rez,et al.Robust backstepping tracking controller for low speed PMSM positioning system:design,analysis,and implementation.IEEE Transactions on Industrial Informatics,2015,11(5):1130–1141.

    [31]H.Sira-Ram′?rez,J.Linares-Flores,A.Luviano-Juarez,et al.Global ultramodels and active disturbance rejection control of nonlinear differentially flat systems.Revista Iberoamericana de Automatica e Informatica Industrial,2015,12(2):133–144.

    [32]M.Fliess,C.Join.Stability margins and model-free control:A first look.Proceedings of the 13th European Control Conference.Strasbourg:IEEE,2014:454–459.

    [33]H.Sira-Ram′?rez.Sliding Mode Control:The Delta-Sigma Modulation Approach.Heidelberg:Birkhauser,2015.

    Appendix

    In this appendix we expose,in a tutorial fashion,the validity of flat filters,or robust GPIC,to handle simplified models of perturbed controllable systems.We briefly illustrate this in the context of an output stabilization task for a,pure integration,third-order system.

    Consider the linear time-invariant system:

    Integrating the system expression once,and then once again,while purposefully neglecting the effects of the unknown initial conditions,one obtains two expressions for the unknowns˙yand¨y,which we respectively address,henceforth,as the structural estimates:˙yand ¨yof those variables.These two variables,in terms of iterated integrals of inputs,is just given by

    The use of these faulty estimates,in any stabilizing linear feedback scheme,demands additive integral output compensation;including up to a double integral of the available output signal.

    A stabilizing controller is then proposed to be

    After substitution of the expressions of the integral reconstructors for˙yand¨y,one obtains the following implicit expression for the controller

    Simple association of the iterated integrals leads to the following equivalent expressions which fully explain the controller representation depicted in Fig.a1.

    Fig.a1 GPIC stabilizing scheme,for a third-order system,using integral reconstructors.

    Taking Laplace transforms in the last expression and after rearrangement it yields:

    The characteristic polynomial of the closed-loop system is clearly given by

    with freely assignable parameters for stability achievement.It is tedious but not difficult to show that the classical requirements for stable roots ofp(s)in equation(a7),imply,both,the stable locations of poles and zeroes of the filter in(a6).

    In frequency domain terms,the integral reconstructorbased controller yields a dynamical classical compensation network of the form(a6).This subsystem can be regarded as a combination of a stable filter,smoothing the available output of the system,and a feed-forward term synthesizing the required plant input in terms of a linear combination of the internal states of such a filter.We address the above classical controller as theflat-filterbased controller.The reasons for this terminology are:1)Regarding the controller as a dynamical system with“input"represented by the output of the systemy,and with “output"represented by the system’s control input,u,the filtered outputyfqualifies as a flat output for such a linear dynamical system.Indeed,all variables in the dynamic compensator can be expressed in terms of the flat outputyfand a finite number of its time derivatives.2)A crucial property of flat linear time-invariant systems is that their transfer functions exhibit no zero dynamics.Such is the case of the transfer function of the filtered outputyfconsideringyas an input.The flat filtered output is defined as

    The state space representation of the flat filtering controller follows immediately from the controller expression written in compensation network form and expressed back in the time domain.Defining,yf=ζ1and˙yf=ζ2,one has

    A1.The robustness issue

    Suppose it is desired to control the same system(a1)in a perturbed version of the form:

    where ξ(t)is only known to be an absolutely bounded signal.A compensator would try to overcome the unknown disturbance with as many integrations in the compensator as reasonably possible in the hope offacing a classicaldisturbance of polynomial type.Notice,however,that any smooth,bounded,time-varying perturbation is ultra-locally efficiently approximated by a time polynomial of arbitrary degree(piecewise constant,piecewise linear,parabolic,etc.).Any finite degree time polynomial perturbation,taken as internal model of the unstructured additive perturbation,may then be also locally approximately cancelled by a sufficient number of differentiations.These differentiations are easily realized as iterated integrations in the denominator of the compensation network.

    Recallthatin extended state observers and in GPIobservers,respectively,a single extra integrator,or,a finite number of integrations extending the observer’s state space,suffices to have an arbitrarily close estimation to the actual disturbance.Similarly,and dually,in GPIC based flat filters,the suitable addition of one or a finite number of integrators in the compensation network denominator will result,under closed-loop conditions,in at least the same number of time differentiations ofthe additive disturbance.This simple duality is atthe heartof regarding non-linear state dependent,and even input dependent,disturbances as unstructured time polynomialmodels[6]whose effects can be on-line identified[27],estimated[31],or cancelled,in an approximate manner.That this philosophy works even for nonlinear state and input dependent additive nonlinearities rests on the fact that,ultimately,while the system is operating on line,such disturbances are,indeed,time varying signals.Efforts to generally assess closed-loop stability of the existing control schemes adopting this modeling philosophy for disturbances may be found in[8,10,18,27,32].See also the excellent survey by Madonski and Herman[12].

    The preceding paragraph justifies the use of a robust flat filter based compensator for the perturbed third-order pure integration system.Here a first degree time polynomial internal model is adopted for the additive perturbation(hence,m=2 is needed).A stabilizing task,to a trivial reference output equilibriumˉy=0,is imposed on the system.We propose then,

    The closed-loop system evolves in accordance with

    The disturbance,ultra-locally modeled(see Fliess and Join[27]and,also,[31])by a first degree time polynomial,is differentiated at least twice in the closed-loop system.

    www.色视频.com| 村上凉子中文字幕在线| 久久这里有精品视频免费| 久99久视频精品免费| 美女xxoo啪啪120秒动态图| 少妇丰满av| 国产女主播在线喷水免费视频网站 | 亚洲av.av天堂| 日本黄色视频三级网站网址| 啦啦啦观看免费观看视频高清| 中文字幕精品亚洲无线码一区| 久久韩国三级中文字幕| 12—13女人毛片做爰片一| 日本三级黄在线观看| 最后的刺客免费高清国语| 国产国拍精品亚洲av在线观看| 亚洲精品亚洲一区二区| 国产精品永久免费网站| 欧美又色又爽又黄视频| 国内精品一区二区在线观看| 国产乱人偷精品视频| 好男人在线观看高清免费视频| 欧美日韩乱码在线| 国产精品一区二区三区四区久久| 国产极品天堂在线| 国产精品.久久久| 国内精品久久久久精免费| 免费看av在线观看网站| 高清毛片免费观看视频网站| 成人漫画全彩无遮挡| 波多野结衣高清作品| 精品久久久久久久久亚洲| 精品一区二区三区人妻视频| 欧美人与善性xxx| 国产 一区 欧美 日韩| 性欧美人与动物交配| 麻豆国产av国片精品| 亚洲av熟女| 国产一区二区在线av高清观看| 97在线视频观看| 欧美bdsm另类| 男的添女的下面高潮视频| av.在线天堂| 大香蕉久久网| 在线国产一区二区在线| 天堂网av新在线| 99久久人妻综合| 亚洲一区高清亚洲精品| 精品一区二区三区视频在线| 嫩草影院入口| 青春草亚洲视频在线观看| 久久久久久伊人网av| 国产真实伦视频高清在线观看| 国产一级毛片七仙女欲春2| 免费看光身美女| 青春草视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 麻豆国产av国片精品| 六月丁香七月| 乱人视频在线观看| 高清日韩中文字幕在线| 国产av不卡久久| 亚洲精品国产成人久久av| 97超视频在线观看视频| 91麻豆精品激情在线观看国产| 看非洲黑人一级黄片| 91aial.com中文字幕在线观看| 日韩欧美精品v在线| 亚洲精品日韩av片在线观看| 自拍偷自拍亚洲精品老妇| 日韩av不卡免费在线播放| 日韩一本色道免费dvd| 男女啪啪激烈高潮av片| 国产爱豆传媒在线观看| 2022亚洲国产成人精品| 亚洲乱码一区二区免费版| 欧美日韩精品成人综合77777| www.色视频.com| 亚洲美女视频黄频| 久久这里只有精品中国| www日本黄色视频网| 亚洲精品成人久久久久久| avwww免费| 久久亚洲精品不卡| 亚洲精品亚洲一区二区| 国产一级毛片七仙女欲春2| 精品一区二区三区人妻视频| 国产成人精品久久久久久| 国产白丝娇喘喷水9色精品| 人妻制服诱惑在线中文字幕| 色5月婷婷丁香| 一个人看视频在线观看www免费| 国产伦一二天堂av在线观看| 亚洲欧美成人精品一区二区| 日韩一区二区视频免费看| 国产精品麻豆人妻色哟哟久久 | 亚洲最大成人中文| 天天一区二区日本电影三级| 亚洲在久久综合| 伦精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 女同久久另类99精品国产91| 精品人妻视频免费看| 九九久久精品国产亚洲av麻豆| 自拍偷自拍亚洲精品老妇| 亚洲精品自拍成人| 亚洲精品亚洲一区二区| 午夜福利高清视频| 日日摸夜夜添夜夜添av毛片| 亚洲天堂国产精品一区在线| 国产精品久久视频播放| 99国产精品一区二区蜜桃av| 日本爱情动作片www.在线观看| 一级毛片久久久久久久久女| 偷拍熟女少妇极品色| a级毛片a级免费在线| 狂野欧美激情性xxxx在线观看| 国产精品爽爽va在线观看网站| 青青草视频在线视频观看| 国产成人a∨麻豆精品| 日本欧美国产在线视频| 久久精品夜色国产| 麻豆乱淫一区二区| 少妇熟女欧美另类| 色视频www国产| 久久久国产成人精品二区| 成年av动漫网址| 精品久久久久久久久久久久久| 免费观看精品视频网站| 不卡视频在线观看欧美| 精品熟女少妇av免费看| 边亲边吃奶的免费视频| 亚洲精品日韩在线中文字幕 | 日日撸夜夜添| 又粗又爽又猛毛片免费看| 少妇被粗大猛烈的视频| 哪里可以看免费的av片| 国产精品久久久久久av不卡| 99久国产av精品国产电影| 99久国产av精品国产电影| 亚洲欧美日韩高清专用| 亚洲最大成人手机在线| 免费看av在线观看网站| 观看免费一级毛片| 免费看光身美女| 久久久午夜欧美精品| 久久人人爽人人爽人人片va| 夜夜爽天天搞| 高清毛片免费观看视频网站| 国产片特级美女逼逼视频| 精品一区二区三区人妻视频| 久久久精品大字幕| 亚洲人成网站在线观看播放| 搞女人的毛片| 伦理电影大哥的女人| 亚洲欧美精品自产自拍| 久久久久久九九精品二区国产| 波多野结衣高清无吗| av天堂在线播放| 日韩中字成人| 久久精品影院6| 乱人视频在线观看| 日本av手机在线免费观看| 99久久无色码亚洲精品果冻| av卡一久久| 插阴视频在线观看视频| 久久精品夜色国产| 国产一级毛片在线| 99精品在免费线老司机午夜| 婷婷亚洲欧美| 又粗又爽又猛毛片免费看| 97超视频在线观看视频| 日韩欧美精品免费久久| 欧美成人免费av一区二区三区| 欧美+日韩+精品| 91午夜精品亚洲一区二区三区| 亚洲国产欧美人成| 国产人妻一区二区三区在| 久久久a久久爽久久v久久| 欧美日韩国产亚洲二区| 黄色日韩在线| 国产女主播在线喷水免费视频网站 | 欧美三级亚洲精品| 日韩精品青青久久久久久| 热99在线观看视频| 久久人人爽人人爽人人片va| 国产精品精品国产色婷婷| 丝袜美腿在线中文| 国产人妻一区二区三区在| 免费看日本二区| 亚洲国产精品国产精品| 成人午夜精彩视频在线观看| 中国美白少妇内射xxxbb| 久久久久国产网址| 熟女电影av网| 99国产极品粉嫩在线观看| 国产不卡一卡二| 久久精品国产清高在天天线| 日韩三级伦理在线观看| 一级二级三级毛片免费看| 免费搜索国产男女视频| 国内精品宾馆在线| 日韩一区二区三区影片| 亚洲人成网站在线播| 国内精品久久久久精免费| 18+在线观看网站| h日本视频在线播放| 国产爱豆传媒在线观看| 亚洲精品成人久久久久久| 黑人高潮一二区| 夜夜爽天天搞| 久久久久性生活片| 久久久a久久爽久久v久久| 国产免费男女视频| 国产高潮美女av| 国产一区二区三区av在线 | 极品教师在线视频| 青春草视频在线免费观看| 欧美人与善性xxx| 国产高清不卡午夜福利| 国产免费一级a男人的天堂| 久久人人精品亚洲av| 亚洲欧美成人综合另类久久久 | avwww免费| 中文精品一卡2卡3卡4更新| 日韩成人av中文字幕在线观看| 毛片一级片免费看久久久久| 国产亚洲精品久久久com| 桃色一区二区三区在线观看| 亚洲图色成人| 免费人成在线观看视频色| 国产成人一区二区在线| av福利片在线观看| 国产精品综合久久久久久久免费| 日日摸夜夜添夜夜添av毛片| 欧美变态另类bdsm刘玥| 婷婷精品国产亚洲av| 国产真实伦视频高清在线观看| 天堂√8在线中文| 亚洲五月天丁香| 99热全是精品| 国产 一区 欧美 日韩| 欧美+日韩+精品| 亚洲av中文av极速乱| 日韩欧美一区二区三区在线观看| 床上黄色一级片| 一本久久精品| 精品日产1卡2卡| 美女被艹到高潮喷水动态| 日日摸夜夜添夜夜添av毛片| 此物有八面人人有两片| 久久精品久久久久久噜噜老黄 | 丝袜美腿在线中文| 色视频www国产| 少妇的逼水好多| 久久久久久久久久久免费av| 久久人人精品亚洲av| 国产亚洲91精品色在线| 性插视频无遮挡在线免费观看| 乱系列少妇在线播放| 亚洲天堂国产精品一区在线| 欧美+日韩+精品| 久久精品人妻少妇| 亚洲综合色惰| 午夜亚洲福利在线播放| 麻豆乱淫一区二区| 国产日韩欧美在线精品| 伊人久久精品亚洲午夜| av在线蜜桃| 男女下面进入的视频免费午夜| 日韩强制内射视频| 国产成人影院久久av| 成人二区视频| 啦啦啦韩国在线观看视频| 国产毛片a区久久久久| 亚洲精品自拍成人| 日日撸夜夜添| 校园人妻丝袜中文字幕| 蜜桃亚洲精品一区二区三区| 亚洲精华国产精华液的使用体验 | 亚洲美女视频黄频| 成人漫画全彩无遮挡| 亚洲四区av| 日韩欧美国产在线观看| 欧美激情国产日韩精品一区| 精品一区二区三区人妻视频| 3wmmmm亚洲av在线观看| 国产成人福利小说| videossex国产| 色视频www国产| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 欧美三级亚洲精品| 男女下面进入的视频免费午夜| 日韩强制内射视频| 麻豆国产av国片精品| 老女人水多毛片| 久久精品国产亚洲av涩爱 | 69av精品久久久久久| 精品一区二区三区视频在线| 精品99又大又爽又粗少妇毛片| 少妇的逼水好多| 国产熟女欧美一区二区| 村上凉子中文字幕在线| 国产一区二区亚洲精品在线观看| 好男人视频免费观看在线| 又爽又黄无遮挡网站| 国产欧美日韩精品一区二区| av福利片在线观看| 久久国产乱子免费精品| 欧美一区二区国产精品久久精品| 国产精品久久久久久av不卡| 少妇人妻精品综合一区二区 | 在线观看美女被高潮喷水网站| 欧美色视频一区免费| 高清在线视频一区二区三区 | 一级黄片播放器| 国产高清三级在线| 在线a可以看的网站| 3wmmmm亚洲av在线观看| 青青草视频在线视频观看| 人妻系列 视频| 日日摸夜夜添夜夜添av毛片| 91aial.com中文字幕在线观看| 丝袜美腿在线中文| 校园春色视频在线观看| 伦理电影大哥的女人| 少妇人妻一区二区三区视频| 免费看美女性在线毛片视频| 美女 人体艺术 gogo| 国产午夜精品一二区理论片| 国产乱人视频| 99在线人妻在线中文字幕| 国产片特级美女逼逼视频| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 少妇被粗大猛烈的视频| 免费人成视频x8x8入口观看| 亚洲欧美精品综合久久99| 一个人看视频在线观看www免费| 久久99蜜桃精品久久| 深爱激情五月婷婷| 欧美三级亚洲精品| 久久精品影院6| 国产真实乱freesex| 欧美人与善性xxx| 免费观看a级毛片全部| 日本av手机在线免费观看| 如何舔出高潮| 夫妻性生交免费视频一级片| 丰满的人妻完整版| 欧美成人一区二区免费高清观看| 日本在线视频免费播放| 天天一区二区日本电影三级| 日韩欧美精品v在线| 淫秽高清视频在线观看| 成年免费大片在线观看| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 综合色av麻豆| 人妻系列 视频| kizo精华| 18禁黄网站禁片免费观看直播| 18禁在线播放成人免费| 欧美色欧美亚洲另类二区| 免费看光身美女| 最新中文字幕久久久久| 少妇猛男粗大的猛烈进出视频 | 精品免费久久久久久久清纯| 又爽又黄无遮挡网站| 久久亚洲国产成人精品v| 日产精品乱码卡一卡2卡三| 国产精品精品国产色婷婷| 美女 人体艺术 gogo| av在线亚洲专区| 欧美bdsm另类| 欧美zozozo另类| 亚洲av成人精品一区久久| 国产三级中文精品| 久久综合国产亚洲精品| 天堂影院成人在线观看| 国产成人精品久久久久久| 激情 狠狠 欧美| 久久草成人影院| 日本熟妇午夜| 精品人妻偷拍中文字幕| 一级毛片aaaaaa免费看小| 少妇高潮的动态图| 久久精品国产清高在天天线| 亚洲国产精品成人久久小说 | 日本色播在线视频| 夜夜爽天天搞| 午夜久久久久精精品| 亚洲欧美精品自产自拍| 亚洲内射少妇av| 在线免费观看不下载黄p国产| 精品久久久久久久人妻蜜臀av| 亚洲精品日韩在线中文字幕 | 青春草视频在线免费观看| 日韩av不卡免费在线播放| 欧美性猛交╳xxx乱大交人| 免费看av在线观看网站| 人体艺术视频欧美日本| 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| 麻豆成人av视频| 久久99热这里只有精品18| 午夜激情欧美在线| 亚洲无线观看免费| 精品一区二区免费观看| 在现免费观看毛片| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 午夜精品在线福利| 亚洲成av人片在线播放无| 看非洲黑人一级黄片| 乱系列少妇在线播放| 夫妻性生交免费视频一级片| 激情 狠狠 欧美| 成年av动漫网址| 亚洲国产高清在线一区二区三| a级毛片a级免费在线| 国产91av在线免费观看| 熟女电影av网| 久久久精品欧美日韩精品| 亚洲不卡免费看| 日产精品乱码卡一卡2卡三| 卡戴珊不雅视频在线播放| 亚洲天堂国产精品一区在线| 日韩欧美 国产精品| 欧美性猛交黑人性爽| 中出人妻视频一区二区| h日本视频在线播放| 哪里可以看免费的av片| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 精品久久久久久久久av| 免费看日本二区| 在线天堂最新版资源| 久久久精品94久久精品| 欧美成人免费av一区二区三区| 亚洲人成网站在线播放欧美日韩| 色哟哟·www| 极品教师在线视频| 你懂的网址亚洲精品在线观看 | 黄片wwwwww| 亚洲四区av| 亚洲欧美成人精品一区二区| 男人舔女人下体高潮全视频| 久久九九热精品免费| 欧美激情国产日韩精品一区| 日韩制服骚丝袜av| 国产黄色视频一区二区在线观看 | 大香蕉久久网| 国产一区二区在线av高清观看| 干丝袜人妻中文字幕| 国产精品久久久久久久电影| 69人妻影院| 日韩一区二区视频免费看| 搡女人真爽免费视频火全软件| 久久精品夜色国产| 永久网站在线| 综合色丁香网| 99精品在免费线老司机午夜| 国产精品av视频在线免费观看| 国产真实乱freesex| 少妇熟女aⅴ在线视频| 又粗又硬又长又爽又黄的视频 | 国产精品蜜桃在线观看 | 日韩,欧美,国产一区二区三区 | 日韩制服骚丝袜av| 成年免费大片在线观看| 在线a可以看的网站| 深爱激情五月婷婷| 最近最新中文字幕大全电影3| 五月伊人婷婷丁香| 国产精品美女特级片免费视频播放器| 国产精品一区二区在线观看99 | 美女 人体艺术 gogo| 日本黄大片高清| 天天躁日日操中文字幕| 日韩成人伦理影院| 97超视频在线观看视频| 男人狂女人下面高潮的视频| 亚洲精品日韩在线中文字幕 | 麻豆成人av视频| 97在线视频观看| 精品久久久久久久久久久久久| 亚洲自偷自拍三级| eeuss影院久久| 久久久色成人| 色综合色国产| 国产精品日韩av在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 久久99精品国语久久久| 乱系列少妇在线播放| 悠悠久久av| 国产亚洲av嫩草精品影院| 色综合色国产| 国产黄a三级三级三级人| 九九爱精品视频在线观看| 国产三级中文精品| 99riav亚洲国产免费| 内射极品少妇av片p| 国产高清视频在线观看网站| 晚上一个人看的免费电影| 精品人妻偷拍中文字幕| 中国美女看黄片| 久久久久免费精品人妻一区二区| 爱豆传媒免费全集在线观看| 特大巨黑吊av在线直播| 此物有八面人人有两片| 春色校园在线视频观看| 国语自产精品视频在线第100页| 最近中文字幕高清免费大全6| 日韩成人伦理影院| 国产精品日韩av在线免费观看| 在线播放国产精品三级| 国产精品无大码| 国产亚洲av嫩草精品影院| 在线观看66精品国产| 久久韩国三级中文字幕| 亚洲无线观看免费| 丰满乱子伦码专区| 日韩大尺度精品在线看网址| 免费av毛片视频| 人妻久久中文字幕网| av在线观看视频网站免费| 国产真实乱freesex| 久久精品91蜜桃| 国产精品久久视频播放| 欧美激情久久久久久爽电影| 美女xxoo啪啪120秒动态图| a级一级毛片免费在线观看| 五月玫瑰六月丁香| 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 亚洲国产精品sss在线观看| 亚洲精品456在线播放app| 少妇人妻一区二区三区视频| 女的被弄到高潮叫床怎么办| 成人国产麻豆网| 高清毛片免费看| 色吧在线观看| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区久久| 精品久久久久久久久久久久久| 欧美日韩精品成人综合77777| 久久精品国产99精品国产亚洲性色| 亚洲精品久久久久久婷婷小说 | 村上凉子中文字幕在线| 久99久视频精品免费| 午夜福利在线观看免费完整高清在 | 亚洲精品国产av成人精品| 免费av不卡在线播放| 岛国在线免费视频观看| 伊人久久精品亚洲午夜| 18禁在线播放成人免费| 国产伦在线观看视频一区| 免费看美女性在线毛片视频| 久久久久久久久久成人| 美女xxoo啪啪120秒动态图| 国产在线男女| 床上黄色一级片| 国产探花在线观看一区二区| 久久久久久久久久黄片| 中文字幕人妻熟人妻熟丝袜美| 国产不卡一卡二| 亚洲精品456在线播放app| 国产精品福利在线免费观看| 简卡轻食公司| 国产爱豆传媒在线观看| 人妻少妇偷人精品九色| 91久久精品电影网| av女优亚洲男人天堂| 边亲边吃奶的免费视频| 99久国产av精品国产电影| 国产精品一区二区性色av| 在线免费十八禁| 91午夜精品亚洲一区二区三区| 国产人妻一区二区三区在| 亚洲精品亚洲一区二区| 欧美丝袜亚洲另类| 欧美日本亚洲视频在线播放| 干丝袜人妻中文字幕| 日韩中字成人| 欧美成人精品欧美一级黄| 18禁黄网站禁片免费观看直播| 日本黄色片子视频| 成人三级黄色视频| 老司机福利观看| 草草在线视频免费看| 别揉我奶头 嗯啊视频| 搡女人真爽免费视频火全软件| 日本在线视频免费播放| 久久久成人免费电影| 国产在视频线在精品| 我的女老师完整版在线观看| 十八禁国产超污无遮挡网站| 国产精品人妻久久久影院| 99精品在免费线老司机午夜| 九色成人免费人妻av| 天堂av国产一区二区熟女人妻| 中文字幕熟女人妻在线| 国产精品99久久久久久久久| 不卡视频在线观看欧美| 免费看美女性在线毛片视频| 特级一级黄色大片| 嫩草影院新地址| 欧美激情久久久久久爽电影| 日韩av在线大香蕉| .国产精品久久|