• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended state observer for uncertain lower triangular nonlinear systems subject to stochastic disturbance

    2016-05-14 06:51:47ZehaoWUBaozhuGUO
    Control Theory and Technology 2016年3期

    Zehao WU,Baozhu GUO

    Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    The extended state observer(ESO)is the most important component of active disturbance rejection control(ADRC),an emerging control technology proposed by Han in his pioneer work[1].ADRC is now acknowledged to be an effective control strategy in dealing with systematically so called “total disturbance”which can include the coupling between unknown system dynamics,external disturbance,and the superadded unknown part of control input,in a large scale.The most remarkable feature of ADRC lies in its estimation/cancellation nature,where the total disturbance is considered as an extended state and is estimated,in real time,through ESO.The total disturbance is finally cancelled(compensated)in the feedback loop by its estimation.This estimation/cancellation nature of ADRC makes it capable of eliminating the uncertainty before it causes negative effect to control plant and the control energy can therefore be saved significantly in engineering applications.The idea of ADRC has been attracting more attention by the industry practitioners as presented in an up-to-date survey paper[2].The numerous concrete applications in different fields include flexible joint manipulator control[3],control of a model-scale helicopter[4],omnidirectional mobile robot control[5],vibrational control in MEMS gyroscopes[6],or control system in superconducting RF cavities[7],as reviewed,among many others,in[8].On the other hand,some progresses have also been made in theoretical foundations,see[9–16],name just a few.

    The first ESO is designed in[17]as follows:

    for the followingn-dimensional single input and single output(SISO)nonlinear system

    wheref:[0,∞)×Rn→ R is possibly an unknown function,w(t)the external disturbance,y(t)the measured output,andu(t)is the control input.

    The ESO(3)(with linear gain functions)is thus said to be linear ESO(LESO).The convergence of LESO(3)for SISO systems is presented in[19,20].

    As a special case of ESO(1)and a nonlinear generalization of LESO(3),a nonlinear ESO(NLESO in short)of the following:

    is proposed in[9],where convergence of NLESO(4)for SISO systems is concluded.Shortly afterwards,a series of convergence results on NLESO for more general deterministic systems are developed,see,for instance,[10–13].

    Although great progress has been achieved,most of the literatures including the aforementioned ones,however,are focused mainly on deterministic systems,and little attention is paid to stochastic counterparts.This motivates us,in this paper,to consider ESO for a class of uncertain stochastic nonlinear systems where the external stochastic disturbance satisfying an Ito-type stochastic differential equation.A typical example of such kind of exogenous disturbance is the “colored noise”whose fundamental noise sources through various feedback mechanisms may be regarded as white so that it can be produced by passing the white noise through a filter,described by an Ito-type stochastic differential equation,see,for instance,[21,22].Actually,“colored noise”exists in many practical systems such as physical model systems[23,24]and chemical model systems[25].The paper[16]focuses on the filtering problem of general discrete nonlinear uncertain systems with nonlinear un-known dynamics,stochastic process and measurement noises,where the extended state filter(ESF)is constructed to estimate timely the uncertainties of the system.In this paper,however,the bounded continuous time noise,considered as part of the stochastic total disturbance,is estimated by ESO.Precisely,the system that we consider is an uncertain lower triangular nonlinear system with external stochastic disturbance as

    wherex(t)=(x1(t),...,xn(t))T∈Rn,u(t)∈Rm,andy(t)=x1(t)∈R are the state,control(input),and output(measurement)of system,respectively;The functionshi:Rm+i→R(i=1,2,...,n)are known,whereasf:[0,∞)×Rn+1→ R is possible unknown measurable;Thew(t)∈R is used to describe the external stochastic disturbance which is assumed to satisfy the following uncertain stochastic differential equation:

    wherew(0)=w0and{Bt}t?0is an one-dimensional standard Brownian motion defined on a complete probability space(Ω,F,{Ft}t?0,P)with Ω being a sample space,F a σ-field,{Ft}t?0a filtration,andPthe probability measure;The functions φ :[0,∞)× R → R,ψ:[0,∞)×R→ R are unknown measurable functions.

    We proceed as follows.In the next section,Section 2,we design a NLESO to estimate both state and stochastic total disturbance.The mean-square convergence is proved.As a direct consequence,we conclude convergence for LESO.In Section 3,a special kind of ESO is applied to system(5)where the stochastic total disturbance includes external stochastic disturbance only.The corresponding convergence is developed.In Section 4,some numerical experiments are carried out to illustrate effectiveness of the proposed approach.

    2 Convergence of extended state observer

    Motivated from deterministic case[13],we introduce a NLESOproposed in[13]with constanthigh gain tuning parameter for system(5)as follows:

    wheregi∈C(R;R)(i=1,2,...,n+1)are designed functions to be specified later,ε> 0 is the tuning parameter,andxn+1(t)is used to estimate the stochastic total disturbancexn+1(t)?f(t,x(t),w(t)).Here and throughout the paper,we always drop ε for the solution to(7)by abuse of notation without confusion.

    To obtain convergence of NLESO(7)for system(5),we need some assumptions.

    Assumption 1 is a prior assumption about the functionshi(·),f(·),φ(·),and ψ(·).

    Assumption 1f(·)is twice continuously differentiable with respect to its arguments,and there exist(known)constantsCi>0(i=1,2)and non-negative functionsζ1∈C(Rm;R),ζ2∈C(Rn;R),ζ3,ζ4∈C(R;R)such that for allt?0,x∈Rn,w∈R,

    Assumption 2 is a prior assumption about the control inputu(t)and the external stochastic disturbancew(t).

    Assumption 2There exists a(known)constantM?0 such that|u(t)|+|w(t)|?Malmost surely for allt?0.

    Remark 1Since the stochastic disturbancew(t)is regarded as part of an extended state variable of system(5)to be estimated by ESO,it is reasonable to assume that thew(t)itself and its“variation”(or differential)are bounded.It is also easy to verify that many practical deterministic disturbances such as “cos(a+bt)”,“sin(a+bt)”and stochastic disturbances such as “cos(at+bBt)”,“sin(at+bBt)”satisfy the assumption,wherea,bare con-stants and the deterministic disturbances are covered by letting ψ(·)≡ 0 and φ(·)be independent ofwin(6).

    Assumption 3 is on the designed functionsgi(·)’s in ESO(7).

    Assumption 3There exist constants λi(i=1,...,4)and twice continuously differentiable functionV:Rn+1→R which is positive definite and radially unbounded such that

    for some nonnegative continuous functionW:Rn+1→R and constants α,β > 0.

    Assumption 3 guarantees that the zero equilibrium of the following system:

    is asymptotically stable.

    where Γ > 0 is an ε-independent constant.

    ProofSet

    By Assumptions 1 and 2,we suppose without loss of

    By Assumptions 1 and 2,there exists a constantC4>0 such that

    A straightforward computation shows that η(t)satisfies

    We apply Ito’s formula toV(η(t))with respect totalong the solution η(t)of system(19)to obtain

    By(15),(17),(20),and Assumption 3,it follows that dEV(η(t))

    Since both the first term and the second one of the righthand side of(23)are bounded by ε multiplied by an ε-independent constant,there exists an ε-independent constant γ > 0 such that for allt∈ [a,∞),

    The simplest ESO is certainly the LESO which is a special case of(7):

    wheregi(·)?s(i=1,...,n+1)in ESO(7)are linear functions:gi(r)=air,r∈R.Define the matrix as follows:

    where Γ > 0 is an ε-independent constant.

    ProofLetQbe the unique positive definite matrix solution to the Lyapunov equationQE+ETQ=-I(n+1)×(n+1)for(n+1)-dimensional identity matrixI(n+1)×(n+1).Define the Lyapunov functionsV,W:Rn+1→R byV(y)=yTQy,W(y)=yTyfory∈Rn+1.It is easy to verify that all conditions of Assumption 3 are satisfied.The result then follows directly from Theorem 1. ?

    Remark 2Whenhi(·)≡ 0(i=1,2,...,n),system(5)is of the form:

    We thus conclude the results of[26]by Theorem1 and Corollary 1.

    3 Extended state observer utilizing known part

    Although theoretically,ESO spans the concept of disturbance which can include even the parts which are hardly to be treated by practitioner,ESO should utilizes the known information of the plant as much as possible to improves its performance.In this section,a special ESO is considered,where the system functionf(t,x,w)=f1(t,x)+f2(w),withf1(·)being known.In other words,the total disturbance comes from external stochastic disturbance only.In this case,the NLESO in this case can be modified as

    wherexn+1(t)is again used to estimate the stochastic total disturbancexn+1(t)?f2(w(t)).

    To have convergence of NLESO(30),we replace Assumption 1 by Assumption 1*.

    Assumption 1*f2(·)is twice continuously differentiable with respect to its argument and there exist(known)constantsDi>0(i=1,...,5)and nonnegative functions ζ5,ζ6∈C(R;R)such that for allt?0,x∈Rn,w∈R,

    By Assumptions 1*and 2,there exists a constantD6> 0 such that

    A straightforward computation shows that η(t)satisfies

    where ηi(t)(i=1,2,...,n+1)and Δi(t)(i=1,2,...,n)are defined as that in(14).By Assumption 3,we apply Ito’s formula toV(η(t))with respect totalong the solution η(t)of system(40)to obtain

    Then it follows from(15),(36),(39),and Assumption 3 that

    Since both the first term and the second one of the righthand side of(44)are bounded by ε multiplied by an ε-independent constant,there exists an ε-independent constant ξ > 0 such that for allt∈ [a,∞),

    Similarly,the corresponding LESO of(30)is as follows:

    Similarly to the proof of Corollary 1,we have immediately Corollary 2.

    where Γ > 0 is an ε-independent constant.

    4 Numerical simulation

    In this section,we present an example to illustrate the effectiveness ofthe proposed ESOto estimate both state and stochastic total disturbance.Consider the following second order uncertain lower triangular nonlinear system with exogenous stochastic disturbance:

    are known functions,whereas the stochastic total disturbancex3?f(t,x1,x2,w)is completely unknown.We suppose without loss of generality that the bounded inputu(t)is also disturbed by stochastic noise:

    First,we notice that the corresponding matrix in(27)for the linear part of(52)

    is Hurwitz with all eigenvalues being identical to-1.In this case,gi(·)in(7)can be specified as

    is the positive definite solution to the Lyapunov equationPE+ETP=-IforEgiven by(54).Similar to[9],Assumption 3 in(11)is satisfied for this example.Hence(52)serves as a well-defined NLESO for(49)from Theorem 1.The Milstein approximation method[27]is used to discretize systems(49)and(52).Figs.1–3 display the numerical results for(49)and(52)where we take

    and the time discrete step as

    is also Hurwitz.In addition,since the control input and external stochastic disturbance are uniformly bounded almost surely,the solution to system(49)is also uniformly bounded almost surely.Therefore,all the Assumptions in Theorem 1 are satisfied.It is seen from Figs.1–3 that the NLESO(52)is very effective in tracking system(49)not only for the state(x1(t),x2(t))but also for the extended state(total disturbance)x3(t)defined by

    It is observed from Fig.1 that the tracking effect forx1(t)is the best,andx2(t)the second from Fig.2,andx3(t)the third from Fig.3.These are coincident with theoretical estimation(13)that the estimation errors forx1(t),x2(t),andx3(t)are bounded by O(ε5),O(ε3),and O(ε)in practical mean square sense,respectively.In addition,the peaking values near the initial stages are observed in both Figs.2 and 3,which can be reduced by time-varying gain approach presented in the recent paper[28].

    Fig.1 The tracking effect for state x1.

    Fig.2 The tracking effect for state x2.

    Fig.3 The tracking effect for stochastic total disturbance x3.

    5 Conclusions

    In this paper,an extended state observer(ESO)is designed for a class of lower triangular nonlinear systems with large stochastic total disturbance which comes from both internal unknown dynamics and external stochastic disturbance.The ESO is used to estimate,in real time,not only the state but also the stochastic total disturbance by the measured output.The meansquare convergence of both nonlinear ESO and linear ESO are presented.In addition,a special kind of ESO is constructed for a class of lower triangular nonlinear systems where the stochastic total disturbance includes external stochastic disturbance only.The corresponding mean-square convergence is also concluded.The numerical simulations validate the theoretical results.

    [1]J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [2] Z.Gao.On the centrality of disturbance rejection in automatic control.ISA Transactions,2014,53(4):850–857.

    [3]R.Madonski,M.Kordasz,P.Sauer.Application of a disturbance rejection controller for robotic-enhanced limbre habilitation trainings.ISA Transactions,2014,53(4):899–908.

    [4]F.Leonard,A.Martini,G.Abba.Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts.IEEE Transactions on Control Systems Technology,2012,20(1):154–163.

    [5]H.Sira-Ram′?rez,C.L′opez-Uribe,M.Velasco-Villa.Linear observer-based active disturbance rejection control of the omnidirectional mobile robot.Asian Journal of Control,2012,15(1):51–63.

    [6]L.Dong,D.Avanesian.Drive-mode control for vibrational MEMS gyroscopes.IEEE Transactions on Industrial Electronics,2009,56(4):956–963.

    [7]J.Vincent,D.Morris,N.Usher,et al.On active disturbance rejection based control design for superconducting RF cavities.Nuclear Instruments and Methods in Physics Research–Section A,2011,643(1):11–16.

    [8]R.Madonski,P.Herman.Survey on methods of increasing the efficiency of extended state disturbance observers.ISA Transactions,2015,56:18–27.

    [9]B.Guo,Z.Zhao.On the convergence of extended state observer fornonlinearsystems with uncertainty.Systems&ControlLetters,2011,60(6):420–430.

    [10]B.Guo,Z.Zhao.On convergence of the nonlinear active disturbance rejection control for MIMO systems.SIAM Journal on Control and Optimization,2013,51(2):1727–1757.

    [11]B.Guo,Z.Zhao.On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty.IET Control Theory&Applications,2012,6(15):2375–2386.

    [12]Z.Zhao,B.Guo.Active disturbance rejection control approach to stabilization of lower triangular systems with uncertainty.International Journal of Robust and Nonlinear Control,2016,26(11):2314–2337.

    [13]Z.Zhao,B.Guo.Extended state observer for uncertain lower triangular nonlinear systems.Systems&Control Letters,2015,85:100–108.

    [14]Y.Huang,W.Xue.Active disturbance rejection control:methodology and theoretical analysis.ISA Transactions,2014,53(4):963–976.

    [15]W.Xue,Y.Huang.On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems.ISA Transactions,2014,53(4):955–962.

    [16]W.Bai,W.Xue,Y.Huang,et al.Extended state filter design for general nonlinear uncertain systems.Proceedings of the 54th Annual Conference of the Society of Instrument and Control Engineers of Japan(SICE),Hangzhou:IEEE,2015:712–717.

    [17]J.Han.A class of extended state observers for uncertain systems.Control and Decision,1995,10(1):85–88(in Chinese).

    [18]Z.Gao.Scaling and bandwith-parameterization based controller tuning.Proceedings of the American Control Conference,New York:IEEE,2006:4989–4996.

    [19]X.Yang,Y.Huang.Capability of extended state observer for estimating uncertainties.Proceedings of the American Control Conference,New York:IEEE,2009:3700–3705.

    [20]Q.Zheng,L.Gao,Z.Gao.On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics.Proceedingsofthe46thIEEEConference on Decision and Control,2007:4090–4095.

    [21]S.Faetti,P.Grigolini.Unitary point of view on the puzzling problem of nonlinear systems driven by colored noise.Physical Review A,1987,36(1):441–444.

    [22]Y.Jia,X.Zheng,X.Hu,et al.Effects of colored noise on stochastic resonance in a bistable system subjectto multiplicative and additive noise.Physical Review E,2001,63(3):DOI 10.1103/PhysRevE.63.031107.

    [23]Z.Huang,W.Zhu,Y.Ni,et al.Stochastic averaging of strongly non-linear oscillators under bounded noise excitation.Journal of Sound and Vibration,2002,254(2):245–267.

    [24]M.Misono,T.Kohmoto,Y.Fukuda,et al.Stochastic resonance in an optical bistable system driven by colored noise.Optics Communications,1998,152(4/6):255–258.

    [25]S.Zhong,H.Xin.Effects of colored noise on internal stochastic resonance in a chemical model system.Chemical Physics Letters,2001,333(1/2):133–138.

    [26]B.Guo,Z.Wu,H.Zhou.Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance.IEEE Transactions on Automatic Control,2016,61(6):1613–1618.

    [27]D.J.Higham.An algorithmic introduction to numericalsimulation of stochastic differential equations.SIAM Review,2001,43(3):525–546.

    [28]Z.Zhao,B.Guo.On active disturbance rejection control for nonlinear systems using time-varying gain.European Journal of Control,2015,23:62–70.

    亚洲精品在线观看二区| 亚洲一区中文字幕在线| 亚洲人成伊人成综合网2020| 国产精品一区二区在线观看99| 亚洲精品中文字幕在线视频| 老司机亚洲免费影院| 亚洲中文日韩欧美视频| 日日爽夜夜爽网站| 日韩免费高清中文字幕av| 国产免费男女视频| 精品国内亚洲2022精品成人 | 国产亚洲精品一区二区www | 1024香蕉在线观看| 九色亚洲精品在线播放| 国产aⅴ精品一区二区三区波| 亚洲七黄色美女视频| 免费在线观看完整版高清| 午夜精品国产一区二区电影| 少妇猛男粗大的猛烈进出视频| 丁香六月欧美| 91精品国产国语对白视频| 777米奇影视久久| 成年人黄色毛片网站| а√天堂www在线а√下载 | 久久精品亚洲av国产电影网| 久久人妻熟女aⅴ| 国产免费av片在线观看野外av| 不卡一级毛片| 亚洲欧美日韩另类电影网站| 天天躁日日躁夜夜躁夜夜| 欧美大码av| 在线av久久热| 一区二区三区精品91| 黄色视频,在线免费观看| 在线免费观看的www视频| 午夜影院日韩av| 成年版毛片免费区| 亚洲中文日韩欧美视频| 免费久久久久久久精品成人欧美视频| 国产不卡av网站在线观看| 女人爽到高潮嗷嗷叫在线视频| 色婷婷av一区二区三区视频| 男女之事视频高清在线观看| 美女午夜性视频免费| 女人被躁到高潮嗷嗷叫费观| 国产免费男女视频| xxxhd国产人妻xxx| 亚洲avbb在线观看| 18禁黄网站禁片午夜丰满| 夜夜爽天天搞| 黄色视频不卡| 午夜福利欧美成人| 亚洲国产精品sss在线观看 | 嫁个100分男人电影在线观看| 国产蜜桃级精品一区二区三区 | 在线观看午夜福利视频| 十八禁网站免费在线| 999久久久国产精品视频| 亚洲国产中文字幕在线视频| 亚洲黑人精品在线| 亚洲性夜色夜夜综合| 久久久久久久午夜电影 | 妹子高潮喷水视频| 国产乱人伦免费视频| 美女国产高潮福利片在线看| 精品国产国语对白av| 啦啦啦在线免费观看视频4| 久久午夜综合久久蜜桃| 色尼玛亚洲综合影院| 一级片'在线观看视频| 美女 人体艺术 gogo| 1024视频免费在线观看| 1024视频免费在线观看| 天天添夜夜摸| 亚洲精品一二三| 亚洲精品中文字幕在线视频| 免费日韩欧美在线观看| 高清在线国产一区| 国产区一区二久久| 欧美成狂野欧美在线观看| 亚洲人成77777在线视频| av视频免费观看在线观看| 岛国毛片在线播放| 国产91精品成人一区二区三区| 女同久久另类99精品国产91| 色尼玛亚洲综合影院| 久久草成人影院| 亚洲欧美日韩高清在线视频| 国产激情久久老熟女| 18禁裸乳无遮挡动漫免费视频| 免费不卡黄色视频| 黄色视频,在线免费观看| 极品少妇高潮喷水抽搐| 国精品久久久久久国模美| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 欧美性长视频在线观看| a级毛片黄视频| 777久久人妻少妇嫩草av网站| 黑人操中国人逼视频| 两性午夜刺激爽爽歪歪视频在线观看 | 女人久久www免费人成看片| 色播在线永久视频| 国产欧美日韩一区二区精品| 亚洲av日韩精品久久久久久密| 欧美成人午夜精品| 欧美久久黑人一区二区| 高清毛片免费观看视频网站 | 高清毛片免费观看视频网站 | 人妻 亚洲 视频| 在线视频色国产色| 国产一区在线观看成人免费| 波多野结衣av一区二区av| 嫩草影视91久久| 免费看a级黄色片| 在线视频色国产色| 一a级毛片在线观看| 国产三级黄色录像| 日韩欧美一区二区三区在线观看 | 久久精品国产清高在天天线| 精品人妻1区二区| 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3 | 男女免费视频国产| 国产精品av久久久久免费| 久久人妻福利社区极品人妻图片| 久久久久久久午夜电影 | 黄片小视频在线播放| 亚洲久久久国产精品| 女人久久www免费人成看片| 久久中文字幕人妻熟女| 身体一侧抽搐| 天堂俺去俺来也www色官网| 一级毛片高清免费大全| 首页视频小说图片口味搜索| 精品无人区乱码1区二区| 日本a在线网址| 91精品三级在线观看| 天堂√8在线中文| 久久久久久久国产电影| 在线观看www视频免费| 成人av一区二区三区在线看| 中文字幕人妻丝袜一区二区| 国产成人系列免费观看| 精品一品国产午夜福利视频| 色播在线永久视频| 丰满人妻熟妇乱又伦精品不卡| 久久精品成人免费网站| 国产蜜桃级精品一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 国产成+人综合+亚洲专区| 丰满人妻熟妇乱又伦精品不卡| 精品无人区乱码1区二区| 一区二区三区精品91| 久久久久久久久久久久大奶| 久久香蕉国产精品| 日韩欧美一区二区三区在线观看 | 国产不卡av网站在线观看| 久久精品国产清高在天天线| 99热只有精品国产| 90打野战视频偷拍视频| 香蕉丝袜av| 久久人妻福利社区极品人妻图片| 欧美日韩中文字幕国产精品一区二区三区 | 久久香蕉激情| 最新的欧美精品一区二区| 欧美成狂野欧美在线观看| 午夜精品久久久久久毛片777| 成人手机av| 桃红色精品国产亚洲av| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人 | 美女 人体艺术 gogo| 久久香蕉激情| 99久久国产精品久久久| 性少妇av在线| 极品人妻少妇av视频| 精品欧美一区二区三区在线| 欧美黄色淫秽网站| 99香蕉大伊视频| 69精品国产乱码久久久| 精品熟女少妇八av免费久了| 老司机午夜十八禁免费视频| 大片电影免费在线观看免费| 久久人妻av系列| 精品高清国产在线一区| 午夜福利影视在线免费观看| 香蕉久久夜色| 岛国在线观看网站| 成年人午夜在线观看视频| 国产精品免费视频内射| 久久久久久人人人人人| 飞空精品影院首页| 婷婷精品国产亚洲av在线 | 久久精品91无色码中文字幕| 夜夜爽天天搞| 中亚洲国语对白在线视频| 亚洲熟女精品中文字幕| 精品一区二区三区四区五区乱码| 日韩免费av在线播放| 777久久人妻少妇嫩草av网站| 一本大道久久a久久精品| 精品福利观看| 午夜两性在线视频| 一进一出抽搐gif免费好疼 | 好看av亚洲va欧美ⅴa在| 中亚洲国语对白在线视频| 亚洲色图 男人天堂 中文字幕| 欧美日韩成人在线一区二区| bbb黄色大片| 日韩欧美在线二视频 | 一a级毛片在线观看| 午夜福利,免费看| videosex国产| 久久久久久久精品吃奶| 嫁个100分男人电影在线观看| cao死你这个sao货| 这个男人来自地球电影免费观看| 国产精品久久视频播放| 99精品久久久久人妻精品| 国产区一区二久久| 最近最新中文字幕大全电影3 | 桃红色精品国产亚洲av| 性少妇av在线| 国产在线精品亚洲第一网站| 欧美人与性动交α欧美软件| 在线观看免费视频日本深夜| 在线观看免费视频日本深夜| av天堂在线播放| 黄色 视频免费看| 91大片在线观看| 最近最新中文字幕大全电影3 | 免费看十八禁软件| 成人黄色视频免费在线看| 久久久国产成人精品二区 | 多毛熟女@视频| 精品卡一卡二卡四卡免费| 又紧又爽又黄一区二区| 日韩欧美国产一区二区入口| 另类亚洲欧美激情| 叶爱在线成人免费视频播放| 男人操女人黄网站| 老司机福利观看| 久久青草综合色| 亚洲中文日韩欧美视频| 精品少妇久久久久久888优播| 久久久精品国产亚洲av高清涩受| 一区在线观看完整版| 婷婷丁香在线五月| 国产人伦9x9x在线观看| 久久国产亚洲av麻豆专区| 午夜激情av网站| 欧美+亚洲+日韩+国产| 一区二区日韩欧美中文字幕| 亚洲性夜色夜夜综合| 国产精品久久久av美女十八| 啦啦啦免费观看视频1| 久久精品人人爽人人爽视色| 老鸭窝网址在线观看| 夜夜夜夜夜久久久久| 中文字幕最新亚洲高清| 男男h啪啪无遮挡| 精品国产亚洲在线| 婷婷精品国产亚洲av在线 | 国产精品久久久久久人妻精品电影| 电影成人av| aaaaa片日本免费| 久久影院123| 好看av亚洲va欧美ⅴa在| 国产无遮挡羞羞视频在线观看| 亚洲美女黄片视频| 亚洲中文av在线| 欧美亚洲 丝袜 人妻 在线| 精品午夜福利视频在线观看一区| 国产aⅴ精品一区二区三区波| 99国产精品99久久久久| 成年版毛片免费区| 国产单亲对白刺激| 中文字幕高清在线视频| 国产亚洲av高清不卡| 男人舔女人的私密视频| 美女高潮喷水抽搐中文字幕| 高清黄色对白视频在线免费看| 青草久久国产| 日本vs欧美在线观看视频| 亚洲精品久久午夜乱码| 成年人午夜在线观看视频| 91成人精品电影| 亚洲熟妇熟女久久| 亚洲aⅴ乱码一区二区在线播放 | 在线观看免费高清a一片| 一区二区三区国产精品乱码| 精品少妇一区二区三区视频日本电影| 日韩欧美国产一区二区入口| 久久中文看片网| 久久精品国产亚洲av高清一级| 国产成人精品久久二区二区91| 国产黄色免费在线视频| x7x7x7水蜜桃| 精品一区二区三区av网在线观看| 天天躁日日躁夜夜躁夜夜| 日韩中文字幕欧美一区二区| av天堂在线播放| 久久久久精品人妻al黑| 母亲3免费完整高清在线观看| 制服诱惑二区| 国产精品欧美亚洲77777| 好看av亚洲va欧美ⅴa在| 国产精品一区二区精品视频观看| 国产亚洲av高清不卡| videos熟女内射| 久久香蕉国产精品| 欧美乱妇无乱码| 国产精品欧美亚洲77777| 又紧又爽又黄一区二区| 啦啦啦免费观看视频1| 午夜福利在线免费观看网站| 欧美日韩视频精品一区| 免费av中文字幕在线| 日日摸夜夜添夜夜添小说| 国产精品一区二区精品视频观看| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区三区在线| av欧美777| 中文字幕人妻丝袜制服| 午夜精品久久久久久毛片777| 成熟少妇高潮喷水视频| 亚洲色图av天堂| 日韩 欧美 亚洲 中文字幕| 欧美日韩乱码在线| 久久草成人影院| 久久精品国产综合久久久| 亚洲成人免费av在线播放| 叶爱在线成人免费视频播放| 国产成人一区二区三区免费视频网站| 亚洲精品国产一区二区精华液| 久久青草综合色| 欧美日韩亚洲高清精品| 人妻一区二区av| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图| 欧美 亚洲 国产 日韩一| 伊人久久大香线蕉亚洲五| 十八禁网站免费在线| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9 | 亚洲国产精品合色在线| 国产成人精品久久二区二区免费| 国产精品一区二区精品视频观看| av线在线观看网站| 黄色视频不卡| 久久香蕉激情| 99国产精品99久久久久| 国产精品亚洲一级av第二区| 亚洲国产精品sss在线观看 | 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美日韩在线播放| 亚洲精品一二三| 狠狠狠狠99中文字幕| 精品国产一区二区久久| 国产99久久九九免费精品| 国产精品亚洲一级av第二区| 天天影视国产精品| 亚洲精品中文字幕一二三四区| 日本vs欧美在线观看视频| 脱女人内裤的视频| 午夜福利影视在线免费观看| 亚洲七黄色美女视频| 国产免费男女视频| 欧美色视频一区免费| 日韩欧美国产一区二区入口| 少妇粗大呻吟视频| 亚洲精品中文字幕在线视频| 一a级毛片在线观看| 国产黄色免费在线视频| 国产成人啪精品午夜网站| 国产精品免费视频内射| 巨乳人妻的诱惑在线观看| 母亲3免费完整高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲va日本ⅴa欧美va伊人久久| 久久人人97超碰香蕉20202| 久久中文字幕人妻熟女| 亚洲欧美激情综合另类| 欧美乱码精品一区二区三区| 亚洲少妇的诱惑av| 精品免费久久久久久久清纯 | 国产精品亚洲一级av第二区| 99热只有精品国产| 精品无人区乱码1区二区| 国产成人精品久久二区二区免费| 国产成人欧美| 日韩熟女老妇一区二区性免费视频| 超色免费av| 两个人看的免费小视频| 天堂俺去俺来也www色官网| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全免费视频| 老司机午夜福利在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 日本欧美视频一区| 亚洲七黄色美女视频| www.熟女人妻精品国产| 老熟妇仑乱视频hdxx| 老汉色av国产亚洲站长工具| 久久九九热精品免费| 免费在线观看日本一区| 国产日韩欧美亚洲二区| 亚洲国产精品一区二区三区在线| 成人国语在线视频| 色老头精品视频在线观看| 日韩精品免费视频一区二区三区| 国产精品av久久久久免费| 成熟少妇高潮喷水视频| 欧美 亚洲 国产 日韩一| 欧美老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 精品国产国语对白av| 国产不卡一卡二| 91国产中文字幕| 中文字幕高清在线视频| 欧美在线黄色| a在线观看视频网站| 中文字幕av电影在线播放| 午夜免费成人在线视频| 女人久久www免费人成看片| e午夜精品久久久久久久| 中文字幕精品免费在线观看视频| 亚洲欧美色中文字幕在线| 国产精品一区二区在线观看99| 欧美日韩乱码在线| 夫妻午夜视频| 在线观看www视频免费| 成在线人永久免费视频| 性少妇av在线| 亚洲色图av天堂| 久久久久精品人妻al黑| 国产精品亚洲av一区麻豆| 国产精品99久久99久久久不卡| 精品国产美女av久久久久小说| 亚洲精华国产精华精| 国产99久久九九免费精品| 国产一区有黄有色的免费视频| 国产成人精品久久二区二区91| 免费av中文字幕在线| 精品电影一区二区在线| 国产伦人伦偷精品视频| 中文字幕最新亚洲高清| 亚洲 国产 在线| 最新的欧美精品一区二区| 韩国av一区二区三区四区| 80岁老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| xxxhd国产人妻xxx| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看黄色视频的| 亚洲一区中文字幕在线| 欧美日本中文国产一区发布| 亚洲一区高清亚洲精品| 国产亚洲一区二区精品| а√天堂www在线а√下载 | www.自偷自拍.com| 久久精品91无色码中文字幕| 男男h啪啪无遮挡| 亚洲精品一二三| 狂野欧美激情性xxxx| 热re99久久精品国产66热6| 日本a在线网址| 我的亚洲天堂| 国产真人三级小视频在线观看| 国产色视频综合| 色婷婷久久久亚洲欧美| 天堂动漫精品| 免费久久久久久久精品成人欧美视频| 国产精品综合久久久久久久免费 | 欧美日韩成人在线一区二区| 精品少妇久久久久久888优播| videos熟女内射| 中亚洲国语对白在线视频| 日日爽夜夜爽网站| 精品人妻在线不人妻| 亚洲人成伊人成综合网2020| 亚洲欧美日韩另类电影网站| 成人免费观看视频高清| av一本久久久久| 精品亚洲成国产av| 久9热在线精品视频| 亚洲色图av天堂| 极品教师在线免费播放| 制服人妻中文乱码| 涩涩av久久男人的天堂| 午夜精品在线福利| 免费日韩欧美在线观看| 极品教师在线免费播放| 欧洲精品卡2卡3卡4卡5卡区| 久久人人97超碰香蕉20202| 色精品久久人妻99蜜桃| 王馨瑶露胸无遮挡在线观看| 午夜福利,免费看| 免费久久久久久久精品成人欧美视频| 777久久人妻少妇嫩草av网站| 捣出白浆h1v1| 久久久久精品国产欧美久久久| 亚洲 国产 在线| 国产黄色免费在线视频| 免费在线观看视频国产中文字幕亚洲| 日韩欧美三级三区| 自拍欧美九色日韩亚洲蝌蚪91| 999久久久精品免费观看国产| 大陆偷拍与自拍| 精品一区二区三区av网在线观看| 国产精品久久久av美女十八| 午夜老司机福利片| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧美网| av有码第一页| 国产成人av激情在线播放| 久热这里只有精品99| 国产亚洲欧美精品永久| 伊人久久大香线蕉亚洲五| 久久香蕉激情| 国产精品久久久久久精品古装| 亚洲av熟女| 午夜福利影视在线免费观看| 成人免费观看视频高清| 脱女人内裤的视频| 欧美黄色片欧美黄色片| 男女高潮啪啪啪动态图| 国产精品香港三级国产av潘金莲| 久久久精品国产亚洲av高清涩受| 国产亚洲一区二区精品| 午夜福利在线观看吧| 97人妻天天添夜夜摸| 狠狠婷婷综合久久久久久88av| 丁香六月欧美| 高清视频免费观看一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲伊人色综图| 很黄的视频免费| 老熟女久久久| 精品熟女少妇八av免费久了| 天堂俺去俺来也www色官网| 一边摸一边抽搐一进一小说 | 日本精品一区二区三区蜜桃| 国产片内射在线| 国产xxxxx性猛交| 成熟少妇高潮喷水视频| 99re在线观看精品视频| 久久精品国产99精品国产亚洲性色 | 美女国产高潮福利片在线看| 亚洲国产精品一区二区三区在线| 看黄色毛片网站| 捣出白浆h1v1| 精品国内亚洲2022精品成人 | 免费人成视频x8x8入口观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久亚洲精品国产蜜桃av| 国产成人欧美| 亚洲色图 男人天堂 中文字幕| 麻豆成人av在线观看| 视频在线观看一区二区三区| 亚洲五月色婷婷综合| 中国美女看黄片| 老司机在亚洲福利影院| 久久精品成人免费网站| 国产亚洲精品久久久久久毛片 | 亚洲午夜理论影院| 国产三级黄色录像| 啦啦啦在线免费观看视频4| 日本精品一区二区三区蜜桃| 国产日韩一区二区三区精品不卡| 日韩精品免费视频一区二区三区| 操美女的视频在线观看| 日韩制服丝袜自拍偷拍| 三级毛片av免费| 91字幕亚洲| 国产国语露脸激情在线看| 成人国产一区最新在线观看| 老司机午夜十八禁免费视频| 新久久久久国产一级毛片| 十分钟在线观看高清视频www| 好男人电影高清在线观看| 精品久久久久久电影网| 韩国精品一区二区三区| 久久久久国内视频| 丰满饥渴人妻一区二区三| 久久九九热精品免费| 飞空精品影院首页| 国产av又大| 免费在线观看影片大全网站| 欧美精品一区二区免费开放| 婷婷成人精品国产| 一级作爱视频免费观看| 大型黄色视频在线免费观看| 国产成人av教育| 亚洲少妇的诱惑av| 国产精品亚洲av一区麻豆| 日韩 欧美 亚洲 中文字幕| 久久久国产一区二区| 国产淫语在线视频| 91大片在线观看| 欧美黑人欧美精品刺激| xxxhd国产人妻xxx| 亚洲av电影在线进入| 中文字幕精品免费在线观看视频| 大香蕉久久网| 精品久久久精品久久久| 精品免费久久久久久久清纯 | 成人亚洲精品一区在线观看| 99久久99久久久精品蜜桃| 少妇裸体淫交视频免费看高清 | a级片在线免费高清观看视频| 色尼玛亚洲综合影院| 精品乱码久久久久久99久播|