• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended state observer for uncertain lower triangular nonlinear systems subject to stochastic disturbance

    2016-05-14 06:51:47ZehaoWUBaozhuGUO
    Control Theory and Technology 2016年3期

    Zehao WU,Baozhu GUO

    Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    The extended state observer(ESO)is the most important component of active disturbance rejection control(ADRC),an emerging control technology proposed by Han in his pioneer work[1].ADRC is now acknowledged to be an effective control strategy in dealing with systematically so called “total disturbance”which can include the coupling between unknown system dynamics,external disturbance,and the superadded unknown part of control input,in a large scale.The most remarkable feature of ADRC lies in its estimation/cancellation nature,where the total disturbance is considered as an extended state and is estimated,in real time,through ESO.The total disturbance is finally cancelled(compensated)in the feedback loop by its estimation.This estimation/cancellation nature of ADRC makes it capable of eliminating the uncertainty before it causes negative effect to control plant and the control energy can therefore be saved significantly in engineering applications.The idea of ADRC has been attracting more attention by the industry practitioners as presented in an up-to-date survey paper[2].The numerous concrete applications in different fields include flexible joint manipulator control[3],control of a model-scale helicopter[4],omnidirectional mobile robot control[5],vibrational control in MEMS gyroscopes[6],or control system in superconducting RF cavities[7],as reviewed,among many others,in[8].On the other hand,some progresses have also been made in theoretical foundations,see[9–16],name just a few.

    The first ESO is designed in[17]as follows:

    for the followingn-dimensional single input and single output(SISO)nonlinear system

    wheref:[0,∞)×Rn→ R is possibly an unknown function,w(t)the external disturbance,y(t)the measured output,andu(t)is the control input.

    The ESO(3)(with linear gain functions)is thus said to be linear ESO(LESO).The convergence of LESO(3)for SISO systems is presented in[19,20].

    As a special case of ESO(1)and a nonlinear generalization of LESO(3),a nonlinear ESO(NLESO in short)of the following:

    is proposed in[9],where convergence of NLESO(4)for SISO systems is concluded.Shortly afterwards,a series of convergence results on NLESO for more general deterministic systems are developed,see,for instance,[10–13].

    Although great progress has been achieved,most of the literatures including the aforementioned ones,however,are focused mainly on deterministic systems,and little attention is paid to stochastic counterparts.This motivates us,in this paper,to consider ESO for a class of uncertain stochastic nonlinear systems where the external stochastic disturbance satisfying an Ito-type stochastic differential equation.A typical example of such kind of exogenous disturbance is the “colored noise”whose fundamental noise sources through various feedback mechanisms may be regarded as white so that it can be produced by passing the white noise through a filter,described by an Ito-type stochastic differential equation,see,for instance,[21,22].Actually,“colored noise”exists in many practical systems such as physical model systems[23,24]and chemical model systems[25].The paper[16]focuses on the filtering problem of general discrete nonlinear uncertain systems with nonlinear un-known dynamics,stochastic process and measurement noises,where the extended state filter(ESF)is constructed to estimate timely the uncertainties of the system.In this paper,however,the bounded continuous time noise,considered as part of the stochastic total disturbance,is estimated by ESO.Precisely,the system that we consider is an uncertain lower triangular nonlinear system with external stochastic disturbance as

    wherex(t)=(x1(t),...,xn(t))T∈Rn,u(t)∈Rm,andy(t)=x1(t)∈R are the state,control(input),and output(measurement)of system,respectively;The functionshi:Rm+i→R(i=1,2,...,n)are known,whereasf:[0,∞)×Rn+1→ R is possible unknown measurable;Thew(t)∈R is used to describe the external stochastic disturbance which is assumed to satisfy the following uncertain stochastic differential equation:

    wherew(0)=w0and{Bt}t?0is an one-dimensional standard Brownian motion defined on a complete probability space(Ω,F,{Ft}t?0,P)with Ω being a sample space,F a σ-field,{Ft}t?0a filtration,andPthe probability measure;The functions φ :[0,∞)× R → R,ψ:[0,∞)×R→ R are unknown measurable functions.

    We proceed as follows.In the next section,Section 2,we design a NLESO to estimate both state and stochastic total disturbance.The mean-square convergence is proved.As a direct consequence,we conclude convergence for LESO.In Section 3,a special kind of ESO is applied to system(5)where the stochastic total disturbance includes external stochastic disturbance only.The corresponding convergence is developed.In Section 4,some numerical experiments are carried out to illustrate effectiveness of the proposed approach.

    2 Convergence of extended state observer

    Motivated from deterministic case[13],we introduce a NLESOproposed in[13]with constanthigh gain tuning parameter for system(5)as follows:

    wheregi∈C(R;R)(i=1,2,...,n+1)are designed functions to be specified later,ε> 0 is the tuning parameter,andxn+1(t)is used to estimate the stochastic total disturbancexn+1(t)?f(t,x(t),w(t)).Here and throughout the paper,we always drop ε for the solution to(7)by abuse of notation without confusion.

    To obtain convergence of NLESO(7)for system(5),we need some assumptions.

    Assumption 1 is a prior assumption about the functionshi(·),f(·),φ(·),and ψ(·).

    Assumption 1f(·)is twice continuously differentiable with respect to its arguments,and there exist(known)constantsCi>0(i=1,2)and non-negative functionsζ1∈C(Rm;R),ζ2∈C(Rn;R),ζ3,ζ4∈C(R;R)such that for allt?0,x∈Rn,w∈R,

    Assumption 2 is a prior assumption about the control inputu(t)and the external stochastic disturbancew(t).

    Assumption 2There exists a(known)constantM?0 such that|u(t)|+|w(t)|?Malmost surely for allt?0.

    Remark 1Since the stochastic disturbancew(t)is regarded as part of an extended state variable of system(5)to be estimated by ESO,it is reasonable to assume that thew(t)itself and its“variation”(or differential)are bounded.It is also easy to verify that many practical deterministic disturbances such as “cos(a+bt)”,“sin(a+bt)”and stochastic disturbances such as “cos(at+bBt)”,“sin(at+bBt)”satisfy the assumption,wherea,bare con-stants and the deterministic disturbances are covered by letting ψ(·)≡ 0 and φ(·)be independent ofwin(6).

    Assumption 3 is on the designed functionsgi(·)’s in ESO(7).

    Assumption 3There exist constants λi(i=1,...,4)and twice continuously differentiable functionV:Rn+1→R which is positive definite and radially unbounded such that

    for some nonnegative continuous functionW:Rn+1→R and constants α,β > 0.

    Assumption 3 guarantees that the zero equilibrium of the following system:

    is asymptotically stable.

    where Γ > 0 is an ε-independent constant.

    ProofSet

    By Assumptions 1 and 2,we suppose without loss of

    By Assumptions 1 and 2,there exists a constantC4>0 such that

    A straightforward computation shows that η(t)satisfies

    We apply Ito’s formula toV(η(t))with respect totalong the solution η(t)of system(19)to obtain

    By(15),(17),(20),and Assumption 3,it follows that dEV(η(t))

    Since both the first term and the second one of the righthand side of(23)are bounded by ε multiplied by an ε-independent constant,there exists an ε-independent constant γ > 0 such that for allt∈ [a,∞),

    The simplest ESO is certainly the LESO which is a special case of(7):

    wheregi(·)?s(i=1,...,n+1)in ESO(7)are linear functions:gi(r)=air,r∈R.Define the matrix as follows:

    where Γ > 0 is an ε-independent constant.

    ProofLetQbe the unique positive definite matrix solution to the Lyapunov equationQE+ETQ=-I(n+1)×(n+1)for(n+1)-dimensional identity matrixI(n+1)×(n+1).Define the Lyapunov functionsV,W:Rn+1→R byV(y)=yTQy,W(y)=yTyfory∈Rn+1.It is easy to verify that all conditions of Assumption 3 are satisfied.The result then follows directly from Theorem 1. ?

    Remark 2Whenhi(·)≡ 0(i=1,2,...,n),system(5)is of the form:

    We thus conclude the results of[26]by Theorem1 and Corollary 1.

    3 Extended state observer utilizing known part

    Although theoretically,ESO spans the concept of disturbance which can include even the parts which are hardly to be treated by practitioner,ESO should utilizes the known information of the plant as much as possible to improves its performance.In this section,a special ESO is considered,where the system functionf(t,x,w)=f1(t,x)+f2(w),withf1(·)being known.In other words,the total disturbance comes from external stochastic disturbance only.In this case,the NLESO in this case can be modified as

    wherexn+1(t)is again used to estimate the stochastic total disturbancexn+1(t)?f2(w(t)).

    To have convergence of NLESO(30),we replace Assumption 1 by Assumption 1*.

    Assumption 1*f2(·)is twice continuously differentiable with respect to its argument and there exist(known)constantsDi>0(i=1,...,5)and nonnegative functions ζ5,ζ6∈C(R;R)such that for allt?0,x∈Rn,w∈R,

    By Assumptions 1*and 2,there exists a constantD6> 0 such that

    A straightforward computation shows that η(t)satisfies

    where ηi(t)(i=1,2,...,n+1)and Δi(t)(i=1,2,...,n)are defined as that in(14).By Assumption 3,we apply Ito’s formula toV(η(t))with respect totalong the solution η(t)of system(40)to obtain

    Then it follows from(15),(36),(39),and Assumption 3 that

    Since both the first term and the second one of the righthand side of(44)are bounded by ε multiplied by an ε-independent constant,there exists an ε-independent constant ξ > 0 such that for allt∈ [a,∞),

    Similarly,the corresponding LESO of(30)is as follows:

    Similarly to the proof of Corollary 1,we have immediately Corollary 2.

    where Γ > 0 is an ε-independent constant.

    4 Numerical simulation

    In this section,we present an example to illustrate the effectiveness ofthe proposed ESOto estimate both state and stochastic total disturbance.Consider the following second order uncertain lower triangular nonlinear system with exogenous stochastic disturbance:

    are known functions,whereas the stochastic total disturbancex3?f(t,x1,x2,w)is completely unknown.We suppose without loss of generality that the bounded inputu(t)is also disturbed by stochastic noise:

    First,we notice that the corresponding matrix in(27)for the linear part of(52)

    is Hurwitz with all eigenvalues being identical to-1.In this case,gi(·)in(7)can be specified as

    is the positive definite solution to the Lyapunov equationPE+ETP=-IforEgiven by(54).Similar to[9],Assumption 3 in(11)is satisfied for this example.Hence(52)serves as a well-defined NLESO for(49)from Theorem 1.The Milstein approximation method[27]is used to discretize systems(49)and(52).Figs.1–3 display the numerical results for(49)and(52)where we take

    and the time discrete step as

    is also Hurwitz.In addition,since the control input and external stochastic disturbance are uniformly bounded almost surely,the solution to system(49)is also uniformly bounded almost surely.Therefore,all the Assumptions in Theorem 1 are satisfied.It is seen from Figs.1–3 that the NLESO(52)is very effective in tracking system(49)not only for the state(x1(t),x2(t))but also for the extended state(total disturbance)x3(t)defined by

    It is observed from Fig.1 that the tracking effect forx1(t)is the best,andx2(t)the second from Fig.2,andx3(t)the third from Fig.3.These are coincident with theoretical estimation(13)that the estimation errors forx1(t),x2(t),andx3(t)are bounded by O(ε5),O(ε3),and O(ε)in practical mean square sense,respectively.In addition,the peaking values near the initial stages are observed in both Figs.2 and 3,which can be reduced by time-varying gain approach presented in the recent paper[28].

    Fig.1 The tracking effect for state x1.

    Fig.2 The tracking effect for state x2.

    Fig.3 The tracking effect for stochastic total disturbance x3.

    5 Conclusions

    In this paper,an extended state observer(ESO)is designed for a class of lower triangular nonlinear systems with large stochastic total disturbance which comes from both internal unknown dynamics and external stochastic disturbance.The ESO is used to estimate,in real time,not only the state but also the stochastic total disturbance by the measured output.The meansquare convergence of both nonlinear ESO and linear ESO are presented.In addition,a special kind of ESO is constructed for a class of lower triangular nonlinear systems where the stochastic total disturbance includes external stochastic disturbance only.The corresponding mean-square convergence is also concluded.The numerical simulations validate the theoretical results.

    [1]J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [2] Z.Gao.On the centrality of disturbance rejection in automatic control.ISA Transactions,2014,53(4):850–857.

    [3]R.Madonski,M.Kordasz,P.Sauer.Application of a disturbance rejection controller for robotic-enhanced limbre habilitation trainings.ISA Transactions,2014,53(4):899–908.

    [4]F.Leonard,A.Martini,G.Abba.Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts.IEEE Transactions on Control Systems Technology,2012,20(1):154–163.

    [5]H.Sira-Ram′?rez,C.L′opez-Uribe,M.Velasco-Villa.Linear observer-based active disturbance rejection control of the omnidirectional mobile robot.Asian Journal of Control,2012,15(1):51–63.

    [6]L.Dong,D.Avanesian.Drive-mode control for vibrational MEMS gyroscopes.IEEE Transactions on Industrial Electronics,2009,56(4):956–963.

    [7]J.Vincent,D.Morris,N.Usher,et al.On active disturbance rejection based control design for superconducting RF cavities.Nuclear Instruments and Methods in Physics Research–Section A,2011,643(1):11–16.

    [8]R.Madonski,P.Herman.Survey on methods of increasing the efficiency of extended state disturbance observers.ISA Transactions,2015,56:18–27.

    [9]B.Guo,Z.Zhao.On the convergence of extended state observer fornonlinearsystems with uncertainty.Systems&ControlLetters,2011,60(6):420–430.

    [10]B.Guo,Z.Zhao.On convergence of the nonlinear active disturbance rejection control for MIMO systems.SIAM Journal on Control and Optimization,2013,51(2):1727–1757.

    [11]B.Guo,Z.Zhao.On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty.IET Control Theory&Applications,2012,6(15):2375–2386.

    [12]Z.Zhao,B.Guo.Active disturbance rejection control approach to stabilization of lower triangular systems with uncertainty.International Journal of Robust and Nonlinear Control,2016,26(11):2314–2337.

    [13]Z.Zhao,B.Guo.Extended state observer for uncertain lower triangular nonlinear systems.Systems&Control Letters,2015,85:100–108.

    [14]Y.Huang,W.Xue.Active disturbance rejection control:methodology and theoretical analysis.ISA Transactions,2014,53(4):963–976.

    [15]W.Xue,Y.Huang.On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems.ISA Transactions,2014,53(4):955–962.

    [16]W.Bai,W.Xue,Y.Huang,et al.Extended state filter design for general nonlinear uncertain systems.Proceedings of the 54th Annual Conference of the Society of Instrument and Control Engineers of Japan(SICE),Hangzhou:IEEE,2015:712–717.

    [17]J.Han.A class of extended state observers for uncertain systems.Control and Decision,1995,10(1):85–88(in Chinese).

    [18]Z.Gao.Scaling and bandwith-parameterization based controller tuning.Proceedings of the American Control Conference,New York:IEEE,2006:4989–4996.

    [19]X.Yang,Y.Huang.Capability of extended state observer for estimating uncertainties.Proceedings of the American Control Conference,New York:IEEE,2009:3700–3705.

    [20]Q.Zheng,L.Gao,Z.Gao.On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics.Proceedingsofthe46thIEEEConference on Decision and Control,2007:4090–4095.

    [21]S.Faetti,P.Grigolini.Unitary point of view on the puzzling problem of nonlinear systems driven by colored noise.Physical Review A,1987,36(1):441–444.

    [22]Y.Jia,X.Zheng,X.Hu,et al.Effects of colored noise on stochastic resonance in a bistable system subjectto multiplicative and additive noise.Physical Review E,2001,63(3):DOI 10.1103/PhysRevE.63.031107.

    [23]Z.Huang,W.Zhu,Y.Ni,et al.Stochastic averaging of strongly non-linear oscillators under bounded noise excitation.Journal of Sound and Vibration,2002,254(2):245–267.

    [24]M.Misono,T.Kohmoto,Y.Fukuda,et al.Stochastic resonance in an optical bistable system driven by colored noise.Optics Communications,1998,152(4/6):255–258.

    [25]S.Zhong,H.Xin.Effects of colored noise on internal stochastic resonance in a chemical model system.Chemical Physics Letters,2001,333(1/2):133–138.

    [26]B.Guo,Z.Wu,H.Zhou.Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance.IEEE Transactions on Automatic Control,2016,61(6):1613–1618.

    [27]D.J.Higham.An algorithmic introduction to numericalsimulation of stochastic differential equations.SIAM Review,2001,43(3):525–546.

    [28]Z.Zhao,B.Guo.On active disturbance rejection control for nonlinear systems using time-varying gain.European Journal of Control,2015,23:62–70.

    可以免费在线观看a视频的电影网站| 国产精品自产拍在线观看55亚洲| 嫁个100分男人电影在线观看| 女人精品久久久久毛片| 黄片播放在线免费| 激情在线观看视频在线高清| 搡老岳熟女国产| 大陆偷拍与自拍| 国产极品粉嫩免费观看在线| 国产成人精品久久二区二区免费| 久久久久亚洲av毛片大全| 日韩欧美三级三区| 国产精华一区二区三区| 国产精品 欧美亚洲| www日本在线高清视频| 午夜视频精品福利| 久久精品人人爽人人爽视色| 国产麻豆69| 可以在线观看毛片的网站| 亚洲三区欧美一区| 亚洲,欧美精品.| 欧美成人性av电影在线观看| 精品久久蜜臀av无| 一边摸一边抽搐一进一出视频| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 成熟少妇高潮喷水视频| 亚洲国产精品合色在线| 黄色女人牲交| 视频在线观看一区二区三区| 国产高清国产精品国产三级| 丰满饥渴人妻一区二区三| 国产精品国产av在线观看| 满18在线观看网站| 国产av一区在线观看免费| 看免费av毛片| ponron亚洲| 久久久水蜜桃国产精品网| av超薄肉色丝袜交足视频| e午夜精品久久久久久久| 日本撒尿小便嘘嘘汇集6| 中文字幕人妻丝袜一区二区| 久久精品国产亚洲av高清一级| 国产熟女午夜一区二区三区| 很黄的视频免费| 日韩有码中文字幕| 国产片内射在线| 午夜91福利影院| 99久久久亚洲精品蜜臀av| 亚洲五月色婷婷综合| 国产成人欧美| 人人妻,人人澡人人爽秒播| 免费在线观看完整版高清| 黄频高清免费视频| 欧美日韩一级在线毛片| svipshipincom国产片| 两性午夜刺激爽爽歪歪视频在线观看 | 电影成人av| 成人黄色视频免费在线看| 欧洲精品卡2卡3卡4卡5卡区| 色播在线永久视频| 亚洲欧美精品综合一区二区三区| 国产视频一区二区在线看| 久久精品亚洲熟妇少妇任你| 身体一侧抽搐| 亚洲全国av大片| 久久国产精品男人的天堂亚洲| 欧美黑人精品巨大| 18禁国产床啪视频网站| 99在线人妻在线中文字幕| 国产一区二区在线av高清观看| 91成年电影在线观看| 精品国产乱码久久久久久男人| 一级,二级,三级黄色视频| 精品国产一区二区久久| 日日爽夜夜爽网站| 国产男靠女视频免费网站| 久久中文字幕人妻熟女| 日本三级黄在线观看| 精品少妇一区二区三区视频日本电影| 久久精品影院6| 亚洲人成电影免费在线| 又黄又粗又硬又大视频| 国产精品久久久人人做人人爽| 亚洲国产欧美一区二区综合| 夜夜躁狠狠躁天天躁| 一边摸一边做爽爽视频免费| 88av欧美| 两人在一起打扑克的视频| 欧美 亚洲 国产 日韩一| 日本欧美视频一区| 久久精品成人免费网站| 日日摸夜夜添夜夜添小说| 国产精品影院久久| 欧美成人性av电影在线观看| 精品第一国产精品| 亚洲伊人色综图| 中文字幕另类日韩欧美亚洲嫩草| 色尼玛亚洲综合影院| 国产亚洲av高清不卡| 91精品三级在线观看| 在线观看日韩欧美| 亚洲av片天天在线观看| 天天影视国产精品| 日韩大码丰满熟妇| 色综合婷婷激情| 亚洲成人精品中文字幕电影 | 成人精品一区二区免费| 国产真人三级小视频在线观看| 啪啪无遮挡十八禁网站| 免费观看精品视频网站| 欧美av亚洲av综合av国产av| 国产成人影院久久av| 夜夜躁狠狠躁天天躁| 亚洲全国av大片| 日韩欧美免费精品| 正在播放国产对白刺激| 精品电影一区二区在线| 久久精品国产亚洲av高清一级| www.精华液| 精品国产亚洲在线| 国产精品自产拍在线观看55亚洲| 黑人猛操日本美女一级片| 亚洲中文字幕日韩| 琪琪午夜伦伦电影理论片6080| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区| 国产精品爽爽va在线观看网站 | 性色av乱码一区二区三区2| 国产亚洲欧美精品永久| 亚洲精品中文字幕在线视频| 少妇裸体淫交视频免费看高清 | 在线视频色国产色| 一个人观看的视频www高清免费观看 | 多毛熟女@视频| 国产一区二区三区视频了| 国产免费现黄频在线看| 日韩欧美在线二视频| 一区二区三区激情视频| 色综合站精品国产| 欧美中文综合在线视频| 午夜精品国产一区二区电影| 免费观看人在逋| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| 日韩欧美免费精品| 国产成人av激情在线播放| 日韩精品青青久久久久久| 一夜夜www| 黄色丝袜av网址大全| 久久婷婷成人综合色麻豆| 露出奶头的视频| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线美女| 欧美日韩中文字幕国产精品一区二区三区 | 大香蕉久久成人网| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频| 岛国视频午夜一区免费看| 三级毛片av免费| 国产精品国产高清国产av| 欧美老熟妇乱子伦牲交| 日本wwww免费看| 757午夜福利合集在线观看| 1024香蕉在线观看| 国产成人av教育| 国产成人免费无遮挡视频| 精品福利永久在线观看| 99热只有精品国产| 午夜福利在线免费观看网站| 这个男人来自地球电影免费观看| 日本wwww免费看| 亚洲avbb在线观看| 久久青草综合色| 国产精品免费视频内射| 久久人人精品亚洲av| 女生性感内裤真人,穿戴方法视频| 又大又爽又粗| 十分钟在线观看高清视频www| 国产片内射在线| 女人爽到高潮嗷嗷叫在线视频| 午夜两性在线视频| 亚洲国产看品久久| 一级作爱视频免费观看| 又紧又爽又黄一区二区| 丝袜美腿诱惑在线| 久久人妻av系列| 99国产极品粉嫩在线观看| 色精品久久人妻99蜜桃| 国产熟女xx| 国产精品久久久人人做人人爽| bbb黄色大片| 亚洲国产精品合色在线| 久久精品影院6| 精品久久蜜臀av无| 亚洲av成人不卡在线观看播放网| 亚洲五月婷婷丁香| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 欧美丝袜亚洲另类 | 精品人妻1区二区| 久久精品成人免费网站| 日韩国内少妇激情av| 黄片小视频在线播放| e午夜精品久久久久久久| 久久香蕉精品热| 国产精品av久久久久免费| 国产av一区在线观看免费| 亚洲精品在线观看二区| a在线观看视频网站| 黑人操中国人逼视频| 宅男免费午夜| 国产亚洲欧美98| 在线观看www视频免费| 香蕉丝袜av| 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| 午夜精品在线福利| 日日夜夜操网爽| 亚洲一区二区三区欧美精品| 女警被强在线播放| 人人澡人人妻人| 欧美激情久久久久久爽电影 | 亚洲av成人不卡在线观看播放网| 黄片小视频在线播放| 一级片免费观看大全| 99久久综合精品五月天人人| 欧洲精品卡2卡3卡4卡5卡区| 91九色精品人成在线观看| 天天躁夜夜躁狠狠躁躁| 国产成年人精品一区二区 | 水蜜桃什么品种好| 欧美黑人精品巨大| 男人的好看免费观看在线视频 | 夜夜看夜夜爽夜夜摸 | 99精品久久久久人妻精品| 一级毛片女人18水好多| 少妇粗大呻吟视频| 自线自在国产av| 搡老岳熟女国产| 淫秽高清视频在线观看| a在线观看视频网站| 伦理电影免费视频| 在线十欧美十亚洲十日本专区| 精品一区二区三卡| 高清毛片免费观看视频网站 | 不卡一级毛片| 淫秽高清视频在线观看| 亚洲第一欧美日韩一区二区三区| 一边摸一边做爽爽视频免费| 99热只有精品国产| av福利片在线| netflix在线观看网站| 日韩成人在线观看一区二区三区| 欧美激情极品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 中文字幕人妻丝袜一区二区| 69精品国产乱码久久久| 国产精品野战在线观看 | 国产成人av教育| 国产精品1区2区在线观看.| 99re在线观看精品视频| 国产精品偷伦视频观看了| 国产精品野战在线观看 | 欧美丝袜亚洲另类 | 亚洲男人天堂网一区| 制服诱惑二区| 久久青草综合色| 黑人巨大精品欧美一区二区蜜桃| 亚洲九九香蕉| 久久伊人香网站| 亚洲成人免费电影在线观看| 啦啦啦 在线观看视频| 波多野结衣一区麻豆| 美女高潮到喷水免费观看| 欧美在线一区亚洲| 久久香蕉激情| 精品国内亚洲2022精品成人| 欧美+亚洲+日韩+国产| 99国产综合亚洲精品| √禁漫天堂资源中文www| 搡老熟女国产l中国老女人| 91成人精品电影| 精品福利永久在线观看| 精品第一国产精品| 亚洲一区二区三区色噜噜 | 18禁黄网站禁片午夜丰满| 在线十欧美十亚洲十日本专区| 在线天堂中文资源库| 无人区码免费观看不卡| 欧美性长视频在线观看| 18禁国产床啪视频网站| 18禁黄网站禁片午夜丰满| 在线国产一区二区在线| 欧美在线黄色| 亚洲一区二区三区欧美精品| 欧美大码av| 国产精品1区2区在线观看.| 亚洲激情在线av| 免费看十八禁软件| 成人18禁高潮啪啪吃奶动态图| 色哟哟哟哟哟哟| 久久久国产精品麻豆| 99久久精品国产亚洲精品| 9191精品国产免费久久| 巨乳人妻的诱惑在线观看| 亚洲精华国产精华精| 男女高潮啪啪啪动态图| 一边摸一边做爽爽视频免费| 欧美激情极品国产一区二区三区| 国产97色在线日韩免费| 老司机在亚洲福利影院| 长腿黑丝高跟| 久久久久国产一级毛片高清牌| 女同久久另类99精品国产91| 欧美激情久久久久久爽电影 | 亚洲精品国产色婷婷电影| 自线自在国产av| 一个人观看的视频www高清免费观看 | 中文亚洲av片在线观看爽| 国产有黄有色有爽视频| 黄色怎么调成土黄色| 国产成人系列免费观看| 国产色视频综合| 精品国产国语对白av| 亚洲国产精品sss在线观看 | 亚洲国产中文字幕在线视频| 国产视频一区二区在线看| 久久精品影院6| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 色在线成人网| 亚洲五月婷婷丁香| 不卡av一区二区三区| 99热只有精品国产| 亚洲男人的天堂狠狠| 新久久久久国产一级毛片| 久久久久久久久久久久大奶| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 亚洲精华国产精华精| xxxhd国产人妻xxx| 波多野结衣高清无吗| 99精国产麻豆久久婷婷| 大码成人一级视频| 又黄又爽又免费观看的视频| 日本黄色日本黄色录像| 最新在线观看一区二区三区| 欧美乱色亚洲激情| 欧美一区二区精品小视频在线| 日韩三级视频一区二区三区| 精品欧美一区二区三区在线| 国产精品亚洲一级av第二区| 久久香蕉国产精品| 欧美丝袜亚洲另类 | 成人黄色视频免费在线看| 日日摸夜夜添夜夜添小说| 国产99白浆流出| 国产精品自产拍在线观看55亚洲| 97超级碰碰碰精品色视频在线观看| 99国产精品一区二区三区| 天堂√8在线中文| 国产激情久久老熟女| 国产精品久久久av美女十八| 很黄的视频免费| 不卡av一区二区三区| 亚洲性夜色夜夜综合| xxx96com| 少妇被粗大的猛进出69影院| 无人区码免费观看不卡| 亚洲一区二区三区色噜噜 | 中文字幕最新亚洲高清| 国产精品影院久久| 国产精品久久久久久人妻精品电影| 9色porny在线观看| 悠悠久久av| 亚洲黑人精品在线| 久久青草综合色| 国产一卡二卡三卡精品| 日韩欧美在线二视频| 欧美在线黄色| 国产精品亚洲av一区麻豆| 三上悠亚av全集在线观看| 如日韩欧美国产精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 成人亚洲精品一区在线观看| 最新美女视频免费是黄的| 国产xxxxx性猛交| 很黄的视频免费| 老汉色∧v一级毛片| 一级,二级,三级黄色视频| 国产免费男女视频| 19禁男女啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| av片东京热男人的天堂| 国产99白浆流出| 久久中文字幕一级| xxx96com| 久久国产乱子伦精品免费另类| 如日韩欧美国产精品一区二区三区| 老司机亚洲免费影院| 国产午夜精品久久久久久| 色尼玛亚洲综合影院| 亚洲成人精品中文字幕电影 | 中文字幕av电影在线播放| 两个人免费观看高清视频| 国产极品粉嫩免费观看在线| 欧美日韩精品网址| 大陆偷拍与自拍| 高潮久久久久久久久久久不卡| avwww免费| av片东京热男人的天堂| 12—13女人毛片做爰片一| 电影成人av| 色婷婷久久久亚洲欧美| av在线天堂中文字幕 | 亚洲 国产 在线| 1024视频免费在线观看| 欧美 亚洲 国产 日韩一| www.999成人在线观看| 性少妇av在线| 中文亚洲av片在线观看爽| 亚洲国产精品一区二区三区在线| 热re99久久国产66热| 国产av一区二区精品久久| 久久精品国产99精品国产亚洲性色 | 婷婷丁香在线五月| 午夜视频精品福利| 日本a在线网址| 亚洲中文日韩欧美视频| 少妇被粗大的猛进出69影院| 亚洲第一欧美日韩一区二区三区| 久久人人97超碰香蕉20202| 国产精品成人在线| 黄色成人免费大全| 中文字幕人妻丝袜制服| 午夜日韩欧美国产| 亚洲熟妇熟女久久| svipshipincom国产片| 午夜精品国产一区二区电影| 久久久久九九精品影院| 水蜜桃什么品种好| 日本免费a在线| 一级毛片女人18水好多| 国产主播在线观看一区二区| 欧美黄色淫秽网站| 韩国精品一区二区三区| 国产欧美日韩一区二区精品| 亚洲专区国产一区二区| 满18在线观看网站| 香蕉久久夜色| 亚洲av电影在线进入| xxxhd国产人妻xxx| a级片在线免费高清观看视频| av网站在线播放免费| 男人操女人黄网站| 黄色 视频免费看| 人人妻人人澡人人看| 亚洲欧美日韩无卡精品| 高清在线国产一区| 久久久水蜜桃国产精品网| 中文字幕av电影在线播放| 日韩欧美免费精品| 久热爱精品视频在线9| 麻豆国产av国片精品| 亚洲精品一区av在线观看| 老司机福利观看| 丰满的人妻完整版| 亚洲精品av麻豆狂野| 大陆偷拍与自拍| 午夜激情av网站| 真人一进一出gif抽搐免费| 99久久人妻综合| 久久久国产一区二区| 在线免费观看的www视频| 真人做人爱边吃奶动态| 在线看a的网站| 国产亚洲精品久久久久久毛片| 日韩有码中文字幕| 欧美在线黄色| 精品久久久久久久久久免费视频 | 亚洲欧洲精品一区二区精品久久久| 国产精品二区激情视频| 91九色精品人成在线观看| 电影成人av| 午夜视频精品福利| 大码成人一级视频| 99精品欧美一区二区三区四区| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 夜夜看夜夜爽夜夜摸 | 丝袜在线中文字幕| 亚洲成国产人片在线观看| 一进一出好大好爽视频| 久久国产亚洲av麻豆专区| 国产伦人伦偷精品视频| 夜夜看夜夜爽夜夜摸 | 午夜视频精品福利| 亚洲第一欧美日韩一区二区三区| 黄片小视频在线播放| 99久久99久久久精品蜜桃| 69av精品久久久久久| 激情视频va一区二区三区| 日本vs欧美在线观看视频| 午夜a级毛片| 99精品在免费线老司机午夜| 亚洲精品中文字幕一二三四区| 一区二区三区激情视频| 精品久久久久久电影网| 两个人免费观看高清视频| 免费一级毛片在线播放高清视频 | √禁漫天堂资源中文www| 啦啦啦 在线观看视频| 在线十欧美十亚洲十日本专区| 国产精品成人在线| 精品久久久久久,| 9色porny在线观看| 少妇裸体淫交视频免费看高清 | 在线看a的网站| 国产一区二区三区视频了| 国产精品亚洲av一区麻豆| 黄片小视频在线播放| 女人爽到高潮嗷嗷叫在线视频| 在线观看午夜福利视频| 99国产极品粉嫩在线观看| 亚洲欧洲精品一区二区精品久久久| 午夜福利免费观看在线| 久热爱精品视频在线9| 美女 人体艺术 gogo| 国产又爽黄色视频| 我的亚洲天堂| 日本免费a在线| 欧美日韩黄片免| 久久草成人影院| 美女高潮喷水抽搐中文字幕| 国产成+人综合+亚洲专区| 国产黄色免费在线视频| 成人国产一区最新在线观看| www.精华液| 国产免费现黄频在线看| 亚洲欧美日韩另类电影网站| 亚洲成a人片在线一区二区| 欧美激情 高清一区二区三区| 91在线观看av| 在线观看免费日韩欧美大片| 精品久久久久久,| 黄色a级毛片大全视频| 18禁美女被吸乳视频| 亚洲国产欧美日韩在线播放| 精品久久久久久成人av| 久久久久久大精品| 女同久久另类99精品国产91| aaaaa片日本免费| 亚洲成人国产一区在线观看| 好看av亚洲va欧美ⅴa在| 久久性视频一级片| 精品久久久久久,| 精品国产乱子伦一区二区三区| 亚洲欧美一区二区三区黑人| 12—13女人毛片做爰片一| 国产精品久久电影中文字幕| 成人亚洲精品一区在线观看| 欧美成人午夜精品| 两人在一起打扑克的视频| 88av欧美| 一边摸一边抽搐一进一出视频| 女警被强在线播放| 亚洲视频免费观看视频| 国产免费男女视频| 在线观看日韩欧美| 少妇被粗大的猛进出69影院| 精品久久久精品久久久| 真人一进一出gif抽搐免费| av在线播放免费不卡| 中文字幕高清在线视频| 高清毛片免费观看视频网站 | 午夜老司机福利片| 精品国产美女av久久久久小说| 午夜福利影视在线免费观看| 99在线视频只有这里精品首页| 在线观看免费视频网站a站| 久久国产亚洲av麻豆专区| 这个男人来自地球电影免费观看| 亚洲自拍偷在线| 亚洲 欧美一区二区三区| 色精品久久人妻99蜜桃| 亚洲自拍偷在线| 亚洲色图综合在线观看| 满18在线观看网站| 不卡一级毛片| 欧美黄色淫秽网站| av视频免费观看在线观看| 日韩大尺度精品在线看网址 | 夜夜爽天天搞| 黄色 视频免费看| 首页视频小说图片口味搜索| 久久精品aⅴ一区二区三区四区| 精品第一国产精品| 91成年电影在线观看| 曰老女人黄片| 男人操女人黄网站| 人人妻,人人澡人人爽秒播| 成人亚洲精品av一区二区 | 国产精品98久久久久久宅男小说| 亚洲色图 男人天堂 中文字幕| 乱人伦中国视频| 日韩欧美在线二视频| 在线天堂中文资源库| 日韩免费高清中文字幕av| 1024视频免费在线观看| 日韩免费av在线播放| 在线av久久热| 在线永久观看黄色视频|