• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vorticity Dynamics and Control of Self-PropelledFlying of a Three-Dimensional Bird

    2016-05-12 06:03:08LinlinZhuHuiGuanChuijieWu
    關(guān)鍵詞:大連理工大學(xué)遼寧翅膀

    Linlin Zhu, Hui Guan, Chuijie Wu,*

    (1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian Liaoning 116024, China 2. Dalian University of Technology, Dalian Liaoning 116024, China 3. PLA University of Science and Technology, Nanjing Jiangsu 211101, China)

    ?

    Vorticity Dynamics and Control of Self-PropelledFlying of a Three-Dimensional Bird

    Linlin Zhu1,2, Hui Guan3, Chuijie Wu1,2,*

    (1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian Liaoning 116024, China 2. Dalian University of Technology, Dalian Liaoning 116024, China 3. PLA University of Science and Technology, Nanjing Jiangsu 211101, China)

    Birds are propelled and lifted by wings’ flapping and rotating motion. In this study, the rotation amplitude and rotation time interval of wings were studied, the self-propelled flying motion of a three-dimentional(3D) bionic bird in a viscous flow is investigated numerically with a 3D computational fluid dynamics (CFD) package. The package includes the immersed boundary method (IBM), the volume of fluid (VOF) method, the adaptive multi-grid finite volume method, and the swimming and flying control strategy. It is suggested that the bird can fly faster forward or upward with an appropriate rotation amplitude and rotation time interval.

    Self-propelled, Bird flying, Numerical simulation, Three-dimensional, Rotation angle

    0 Introduction

    Flight has fascinated humans for many centuries [1]. Many animals have better movement per-formance than man-made vehicles, they can reduce drag force, suppress the turbulence and produce much more lift than our understanding. Birds are one of the efficient flyers in the nature, and their flapping flight is more complicated and efficient than the flight with fixed wings, as its dynamics is determined not only by its deformation but also by its wing motion aspects, such as flapping, rotation, and the specific relationship between flapping and rotation. Understanding of the dynamic interaction between the fluid and the wing may lead to a better

    micro air vehicles (MAV) design[1].

    Flapping flight has attracted global attention recently, and much work has been done using both experimental and computational methods (e.g. Ellington et al.

    [2], Dickinson et al.

    [3], Sane and Dickinson [4], Liu et al.

    [5], Sun and Tang [6, 7], Usherwood and Ellington [8], Wang et al.

    [9]), also a considerable understanding of the aerodynamic force generation mechanism has been achieved. However, in most of these studies, the flight was fixed and the body couldn’t move or rotate freely when is subjected to the action of the pressure, the viscous force and the gravity. Will the flapping flight with unfixed body and freely wings

    be the same? Study of a 3D bird’s self-propelled flying is more difficult but more similar to a real flyer in the nature.

    In the present study, numerical simulation of 3D bionic bird is used as a convenient tool. This is achieved by a CFD software package for 3D moving boundary problems, which combines the adaptive mesh refinement method, the immersed boundary method (IBM) and the volume of fluid (VOF) method, which is described in[12,13].

    1 Numerical Approaches

    In this study, the incompressible unsteady Navier-Stokes equations are solved using the finite volume method. The Cartesian adaptive mesh refinement technique is used to compute the flows with minimum overload. The computational domain is spatially discretized by a cubic finite volumes organized hierarchically as an octree. The projection and the multi-levels methods are used to solve the Poisson equation of pressure. The convective terms are discretized by the second order Godunov type scheme. The diffusion terms are discretized with the implicit Crank-Nicolson scheme, which can eliminate the viscous stability constraint. The details of the numerical algorithms refer to [14].

    The study of bird self-propelled flying is a moving boundaries problem involving complex geometry. The computing methods of moving boundaries problem are usually classified into the body-fitted moving mesh method and IBM for computational fluid dynamics. The boundary conditions can be simply and accurately set using body-fitted moving mesh method, but the grid generation is a difficult and time-consuming task. IBM requires significantly less computation than other methods without sacrificing the accuracy. In the present study, moving boundaries are treated with ghost-cell IBM, which employs discrete forcing where the forcing is either implicitly or explicitly applied to the discretized Navier-Stokes equations. The technique of adaptive multi-grids is used and the adaptive refinement criteria are both vorticity andT, whereTis a tracer of VOF. This ensures that the meshes intersecting with the moving body boundaries are the finest and accurate representation of moving boundaries is achieved [3].

    2 Motion Equations and Flying Parameters

    2.1 Motion Equations

    The dynamics governing equations for a 3D self-propelled bionic bird are

    (1)

    (2)

    wheremis the mass of the bionic bird,uis the translational velocity vector,Mis the moment andLis the moment of momentum,Iis the inertia tensor andΩis the rotation angular velocity vector.Fis the external force acting on the bird, including external forces due to local flow structures and the gravity acting on the bird, the external force due to local flow structures is defined by

    Ff=-∫?B(-pn+μω×n)ds

    (3)

    where?Bis the surface of the 3D bionic bird,nis the unit normal vector pointing out of the surface;μandωare the shear viscosity and vorticity, respectively. Equation (3) is a classical force formula derived directly from the momentum balance.

    2.2 Flapping Rule and Kinematic Parameters

    In this paper, the computational domain is 4×3×3(length×width×height), the dimensionless bird’s wingspan is 0.94, the density ratio of bird body to air is 20, the gravitational acceleration is 9.8, and the kinematics viscosity coefficient of the fluid isν=15.7×10-6.

    The bird body consists of four parts, the body trunk, the tail and a pair of flapping wings, which is shown in Figure 1(a) and (b). Figure 2 shows the 3D structures due to bird’s self-propelled flying, which is observed from the side and above.

    The flapping motion of the wings contains two steps, rotation and flapping. The first step, both wings rotate along theyaxis (see Figure 1(c)), the rotation angleα2(t) is shown in Equation (5). The second step, both wings rotate along two straight lines parallel to thexaxis, the two lines contain the points (xp,yp,zp) and (xp, -yp,zp), respectively, which are intersection point of the bird body and each of the wings (see Figure 1(b)); the flapping angle of the right wing is always reversed to the left one. In this study, the flapping angle of the left wingα1(t) is defined as the major one, which is shown in Equation (4).

    In the study, the bird body coordinates (xl,yl,zl) and the global coordinates (x,y,z) are used, which can be converted to each other. In the bird body coordinate system, the flapping angleα1(t) and the rotation angleα2(t) in the first period can be written as:

    (4)

    α2(t)=

    (5)

    wheretis the time,αmandαnare the flapping amplitude and the rotation amplitude of the wings, respectively;Tis the flapping period,T1is the total rotation time interval of the wings in one flapping period.

    (a) Side view of the bird body

    (b) Top view of the bird body

    (c) Outline of the wingFig.1 3D profile of the bird body.

    (a) Side view of the 3D vortex structure

    (b) Top view of the 3D vortex structure

    Fig.2 3D vortex structure around the flying bird.

    The Equation (4) is presented by the red real line with “▲” in Figure 3(a), which is part of a cosine function with the maximum valueαmand the minimum value -αm. The Equation (5) is presented by the blue real line with “○” in Figure 3(a), more details are presented in Figure 3(b). The first equation is presented by the left black dashed line, which is a part of the sinusoidal function, where 0 andαnare the minimum and the maximum value of the line, andT1/4 is the maximumxaxis value. The second equation is presented by the left red real line, which is a straight line with a constant valueαn. The third equation is presented by the dark blue dash dot line, which is a part of a sinusoidal function, whereαnand -αnare the maximum and the minimum values of the line. The forth equation is presented by the right red real line, which is a straight line with a constant value -αn. The fifth equation is presented by the right black dashed line, which is a part of the sinusoidal function, where -αnand 0 are the minimum and the maximum value of the line. In Fig.3,αm=40°,αn=35°,T= 0.02,T1= 0.4T= 0.008.

    (a) Flapping angle and rotation angle

    (b) Rotation angleFig.3 Angles of the flapping wings in one period.

    The flapping motion of the wings contains both downstroke and upstroke in one period. Downstroke consists of four parts: when 0≤t

    Especially, whenT1=T, both downstroke and upstroke only consist the first and the forth parts, which is shown in Figure 14 withK1= 1.0.

    2.3 Boundary and Initial Conditions

    All boundaries of the computational region are set to be nonslip boundary conditions, i.e.

    ub=vb=wb= 0.

    Thus, the computational region is like a flume without inflow nor outflow.

    The bionic bird is stationary at the beginning, so the initial condition is

    u=v=w= 0.

    The immersed boundary conditions on the bird’s body surface are as follows. The body surface velocity of every point consists of the following three components.

    (1)The velocityV0arose from the aerodynamic force.

    (2)The linear velocityVrarose from the rotation.

    (3)The velocityVfarose from the flapping motion, which contains flapping and rotation.

    In the global coordinate system, the velocity of the bird surface generated by the flapping wings is:

    3 Results and Analysis

    In this study, the body trunk, the tail and two flapping wings are rigid body, respectively. At the beginning, the body trunk is fixed, we control the wings’ flapping and rotation, which is shown in Figure 3, so we can calculate the velocity of every point on the bird’s body surface, which we used as immersed boundary condition; then we can use the Navier-Stokes solver to compute the viscous force and the pressure force with the immersed boundary condition and the computational region boundary condition. Base on all above, the resultant force and moments due to the gravity, viscous force and pressure force can be achieved, so do the translation velocity and rotation angular velocity. In the end, we achieve the new flight position (at the beginning, the flight position is fixed; and after a critical time, which isT/4 in this study, the position is changed) including the translation and rotation from the last position. The next step is to use this translation velocity and rotation angular velocity getting the velocity of every point on the bird’s body surface as new immersed boundary condition.

    3.1 Different Rotation Amplitude Compared

    In this present study, five rotation amplitudes, i. e.,αn=15°, 25°, 35°, 45°, 55° were studied (Figure 4). The flapping periodT=0.02.

    In Figure 4, we found that, whent/T=0, 0.5, 1.0, the rotation angleα2changes dramatically with the increase of the rotation amplitudeαn, so the velocity arisen from the wings’ rotation become larger. Whent/T=0, 1.0, the flapping wings are at the beginning of downstroke; and whent/T=0.5, the flapping wings are at the end of downstroke.

    Fig.4 Different rotation amplitudes.

    Figure 5 shows the pressure distribution on the upper surface at the beginning of downstroke, the pressure in the region near the trailing edge on the upper surface is increased with the increase ofαn. Figure 6 shows the pressure distribution on the lower surface at the beginning of downstroke, the pressure in the region near the trailing edge on the lower surface is decreased with the increase ofαn. So the downward pressure on the wings’ surface is increased and the lift is decreased with the increase ofαnat the beginning of downstroke, which is shown in Figure 9.

    Figure 7 shows the pressure distribution on the upper surface at the end of downstroke, the pressure in the region near the trailing edge on the upper surface is decreased with the increase ofαn. Figure 8 shows the pressure distribution on the lower surface at the end of downstroke, the pressure in the region near the trailing edge on the lower surface is increased with the increase ofαn. So the upward pressure on the wings’ surface is increased and the lift is increased with the increase ofαnat the end of downstroke, which is shown in Figure 9.

    (a) αn = 15°(b) αn=25°(c) αn = 35°(d) αn=45°(e) αn=55°Fig.5 Pressure distribution on the upper surface when t = 0.04.

    (a) αn = 15°(b) αn=25°(c) αn = 35°(d) αn=45°(e) αn=55°Fig.6 Pressure distribution on the lower surface when t = 0.04.

    (a) αn = 15°(b) αn=25°(c) αn = 35°(d) αn=45°(e) αn=55°Fig.7 Pressure distribution on the upper surface when t = 0.05.

    (a) αn = 15°(b) αn=25°(c) αn = 35°(d) αn=45°(e) αn=55°Fig.8 Pressure distribution on the lower surface when t = 0.05.

    Fig.9 Lift of different rotation amplitudes.

    Fig.10 Velocity w of different rotation amplitudes.

    Figures 9(a)-(e) shows that the liftFzchanges periodically, here the period isT. One can see that, at the beginning and the end of the strokeFzincreases dramatically with the increase of the rotation amplitudeαn, which is confirmed by the pressure distribution on the wings. But in the other part of the stroke,Fzis closer to zero with the increase ofαn. Figure 9(f) showsFzin one period whenαn=15°, 35°, 55°, where flapping is at the beginning and the end of the downstroke whent=0.08 and 0.09, respectively. We found that, with the increase ofαn, when 0.08≤t≤0.088 and 0.098 ≤t≤0.1,Fzis decreased, when 0.088 ≤t≤0.098,Fzis increased. Figure 10 shows that the velocity of the body along thezaxis is increased whenαnincreases from 15° to 45°, but later decreased whenαnincreases from 45° to 55°. Figure 11 shows that the displacement of the body along thezaxis is increased whenαnincreases from 15° to 45°, but later decreased whenαnincreases from 45° to 55°, which is well-matched in the velocity.

    Fig.11 Displacement z of different rotation amplitudes.

    Figs.12 (a)-(e) shows that the thrustFxchanges periodically. Patently, near the beginning and the end of the stroke,Fxchanges dramatically with the increase of the rotation amplitudeαn,Fxbecomes higher a short interval just before the beginning and the end of the stroke, andFxbecomes lower a short interval just after the beginning and the end of the stroke. But in the other part of the strokeFxis closer to zero with the increase ofαn. Fig.12(f) showsFxin one period whenαn=15°, 35°, 55°. We found that, with the increase ofαn, when 0.08≤t≤0.088 and 0.09≤t≤0.094,Fxis decreased, when 0.088≤t≤0.09 and 0.098≤t≤0.1,Fxis increased. Fig.13(a) shows that the velocity of the body along thexaxis is increased whenαnincreases from 15° to 25°, but later is decreased whenαnincreases from 25° to 55°. Fig.13(b) shows that the displacement of the body along thexaxis is increased whenαnincreases from 15° to 25°, but later is decreased whenαnincreases from 25° to 55°, which is well-matched in the velocity.

    Both the velocity and the displacement of the bird along thezaxis are increased when the rotation amplitudeαnincreases up to a critical valueαnz, which is 45° in this study, after the critical value both are decreased. The velocity and the displacement of the bird along thexaxis both are increased whenαnincreases up to a critical valueαnx, which is 25° in this study, after the critical value both are decreased. The flight height of flying path in thex-zplane is increased faster whenαnincreases up to a critical valueαnk, which is 45° in this study, after the critical value that is increased slower, which is shown in Fig.13(c). The critical valueαnkdepends on bothαnzandαnx.

    Fig.12 Thrust of different rotation amplitudes.

    Fig.13 Velocity u, displacement x and the path of different rotation amplitudes.

    3.2 Different Rotation Time Interval Compared

    In this present study, different rotation time interval was studied. DefineK1=T1/T, whereTis the flapping period,T1is the total rotation time interval of the wings in one flapping period. In this study,T=0.02,K1=1.0, 0.7, 0.4, 0.2, 0.15, which is shown in Fig.14.

    In Fig.14 we found that, whent/T= 0, 0.5, 1.0, the rotation angleα2changes dramatically with the decrease of the rotation time intervalT1, so the velocity arisen from the wings’ rotation become larger.

    Fig.15 shows the pressure distribution on the upper surface at the beginning of downstroke, and the pressure in the region near the trailing edge on the upper surface is increased with the decrease ofT1. Fig.16 shows the pressure distribution on the lower surface at the beginning of downstroke, and the pressure in the region near the trailing edge on the lower surface is decreased with the decrease ofT1. So the downward pressure on the wings’ surface is increased and the lift is decreased with the decrease ofT1at the beginning of downstroke, which is shown in Fig.19.

    Fig.14 Different rotation time intervals.

    (a) K1 = 1.0(b) K1 = 0.7(c) K1 = 0.4(d) K1 = 0.2(e) K1 = 0.15Fig.15 Pressure distribution on the upper surface when t = 0.04.

    (a) K1 = 1.0(b) K1 = 0.7(c) K1 = 0.4(d) K1 = 0.2(e) K1 = 0.15Fig.16 Pressure distribution on the lower surface when t = 0.04.

    (a) K1 = 1.0(b) K1 = 0.7(c) K1 = 0.4(d) K1 = 0.2(e) K1 = 0.15Fig.17 Pressure distribution on the upper surface when t = 0.05.

    (a) K1 = 1.0(b) K1 = 0.7(c) K1 = 0.4(d) K1 = 0.2(e) K1 = 0.15Fig.18 Pressure distribution on the lower surface when t = 0.05.

    Fig.19 Lift of different rotation time interval.

    Fig.17 shows the pressure distribution on the upper surface at the end of downstroke, and the pressure in the region near the trailing edge on the upper surface is decreased with the decrease ofT1. Figure 18 shows the pressure distribution on the lower surface at the end of downstroke, and the pressure in the region near the trailing edge on the lower surface is increased with the decrease ofT1. So the upward pressure on the wings’ surface is increased and the lift is increased with the decrease ofT1at the end of downstroke, which is shown in Fig.19.

    Figs.19(a)-(e) shows that the liftFzchanges periodically. One can see that, at the beginning and the end of the strokeFzincreases dramatically with the decrease of the rotation time intervalT1, which is confirmed by the pressure distribution on the wings. But in the other part of the stroke,F(xiàn)zis closer to zero with the decrease ofT1. Figure 19(f) showsFzin one period whenT1=0.7T, 0.4T, 0.2T, where flapping is at the beginning and the end of the downstroke whent=0.08 and 0.09, respectively. We found that, with the decrease ofT1, when 0.08≤t≤0.081, 0.085≤t≤0.089, 0.092≤t≤0.096 and 0.099 ≤t≤0.1,Fzis decreased, when 0.082≤t≤0.083, 0.089≤t≤0.091 and 0.098≤t≤0.099,Fzis increased. Figure 20(a) shows that the velocity of the body along thezaxis is increased indistinctively whenT1decreases fromTto 0.4T, but later is decreased obviously whenT1decreases from 0.4Tto 0.15T. Fig.20(b) shows that the displacement of the body along thezaxis is increased whenT1decreases fromTto 0.4T, but later is decreased whenT1decreases from 0.4Tto 0.15T, which is well-matched with the velocity.

    Figs.21 (a)-(e) shows that the thrustFxchanges periodically. Patently,Fxchanges dramatically with the decrease of the rotation time intervalT1near the beginning and the end of the stroke. But in the other part of the stroke,Fxis closer to zero with the decrease.

    (a) w~t

    (b) z~tFig.20 Velocity w and the displacement z of different rotation time intervals.

    Fig.21 Thrust of different rotation time intervals.

    Fig.22 Velocity u, the displacement x, and the path of different rotation time intervals.

    ofT1. Figs.21(f) showsFxin one period whenT1=0.7T, 0.4T, 0.2T. We found that, with the decrease ofT1, when 0.08≤t≤0.081, 0.084≤t≤0.086, 0.087≤t≤0.088, 0.09≤t≤0.091 and 0.095≤t≤0.98,Fxis decreased, when 0.082≤t≤0.083, 0.089≤t≤0.09, 0.092≤t≤0.094 and 0.099≤t≤0.1,Fxis increased. Figure 22(a) shows that the velocity of the body along thexaxis is changed indistinctively whenT1decreases from 1.0Tto 0.4T, but later is increased whenT1decreases from 0.4Tto 0.15T. Figure 22(b) shows that the displacement of the body along thexaxis is decreased whenT1decreases from 1.0Tto 0.15T.

    Both the velocity and the displacement of the bird along thezaxis are increased when the rotation time intervalT1decreases down to a critical valueTnz, which is 0.4Tin this study, after the critical value both are decreased. The displacement of the bird along thexaxis is increased with the decrease ofT1. The flight height of flying path in thex-zplane is increased faster whenT1decreases down to a critical valueTnk, which is 0.4Tin this study, after the critical value that is decreased obviously, which is shown in Figure 22(c). The critical valueTnkdepends onTnz.

    4 Conclusion

    Wings’ rotation plays an important role in the bird’s flying motion, both lift and thrust are produced by the wing’s flapping motion, which contains flapping and rotation. Vorticity dynamics of a 3D bionic bird’s self-propelled flying in a viscous flow were investigated numerically. Different rotation amplitude and different rotation time interval were studied, where both the lift and the thrust are changed consequently with.

    Both the velocity and the displacement of the bird along thezaxis will reach the maximum value, when the rotation amplitudeαnis equal to a critical valueαnz. Both the velocity and the displacement of the bird along thexaxis will reach the maximum value, whenαnis equal to another critical valueαnx. The fastest increase of the flight height of flying path in thex-zplane can be reached, whenαnis equal to the third critical valueαnk, which depends on bothαnzandαnx.

    Both the velocity and the displacement of the bird along thezaxis will reach the maximum value, when the rotation time intervalT1is equal to a critical valueTnz. The displacement of the bird along thexaxis is increased with the decrease ofT1. The flight height of flying path in thex-zplane will increase fastest, whenT1is equal to another critical valueTnk, which depends onTnz.

    Base on all above, with appropriate rotation amplitudeαnand rotation time intervalT1, the bird will fly faster forward or upward.

    [1]Shyy W, Lian Y, Tang J, et al. Aerodynamics of low Reynolds number flyers[M]. New York: Cambridge Univ. Press, 2008.

    [2]Ellington C P, Van Den Berg C, Willmott A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384: 626-630, 1996.

    [3]Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science,1999, 284:1954-1960.

    [4]Sane S P, Dickinson M H. The control of flight force by a flapping wing: lift and drag production[J]. J. Exp. Biol., 2001, 204:2607-2626.

    [5]Liu H, Ellington C P, Kawachi K, C.et al. A computational fluid dynamic study of hawkmoth hovering[J]. J. Exp. Biol., 1998, 201: 461-477.

    [6]Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. J. Exp. Biol., 2002, 205:55-70.

    [7]Sun M, Tang J. Lift and power requirements of hovering flight in Drosophila virilis[J]. J. Exp. Biol., 2002, 205: 2413-2427.

    [8]Usherwood J R, Ellington C P. The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail[J]. J. Exp. Biol., 2002, 205: 1565-1576.

    [9]Wang Z J, Birch J M, Dickinson M H. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments[J]. J. Exp. Biol., 2004, 207: 449-460.

    [10]Pennycuick C J. Wingbeat frequency of birds in steady cruising flight: New data and improved predictions[J]. J. Exp. Biol., 1996, 199: 1613-1618.

    [12]Wang L, Wu C J. An adaptive version of ghost-cell immersed boundary method for incompressible flows with complex stationary and moving boundaries[J]. Sci. China Phys. Mech. Astron., 2010, 53(5):923-932.

    [13]Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[J]. J. Comput. Phys., 2003, 190:572-600.

    [14]Wu C J, Wang L. Numerical simulations of self-propelled swimming of 3D bionic fish school[J]. Sci. China Ser. E-Tech. Sci., 2009, 52(3): 658-669.

    0258-1825(2016)02-0204-10

    三維機(jī)器鳥自主飛行的渦動(dòng)力學(xué)分析與控制

    朱霖霖1,2, 關(guān) 暉3, 吳錘結(jié)1,2,*

    (1. 工業(yè)裝備結(jié)構(gòu)分析國(guó)家重點(diǎn)實(shí)驗(yàn)室, 遼寧 大連 116024; 2. 大連理工大學(xué), 遼寧 大連 116024; 3. 中國(guó)人民解放軍理工大學(xué), 江蘇 南京 211101)

    鳥類通過翅膀的拍動(dòng)和旋轉(zhuǎn)運(yùn)動(dòng)提供飛行的驅(qū)動(dòng)力和升力。本文研究了機(jī)器鳥翅膀的旋轉(zhuǎn)幅度和旋轉(zhuǎn)時(shí)間對(duì)飛行的狀態(tài)影響,發(fā)現(xiàn)適當(dāng)?shù)剡x取這兩個(gè)參數(shù)可以控制機(jī)器鳥在水平方向和豎直方向上的速度。本研究主要使用了兩個(gè)工具:在不可壓粘性流體中自主飛行的三維機(jī)器鳥和一個(gè)三維計(jì)算流體力學(xué)軟件包,后者包含了浸入邊界法(IBM)、體積函數(shù)法(VOF)、自適應(yīng)多重網(wǎng)格有限體積法和游動(dòng)與飛行的控制機(jī)制。

    自主飛行;鳥的飛行;數(shù)值模擬;三維;旋轉(zhuǎn)角度

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0007

    *Professor, School of Aeronautics and Astronautics; cjwudut@dlut.edu.cn

    format: Zhu L L, Guan H, Wu C J. Vorticity dynamics and control of self-propelled flying of a three-dimensional bird[J]. Acta Aerodynamica Sinica, 2016, 34(2): 204-213.

    10.7638/kqdlxxb-2016.0007. 朱霖霖,關(guān)暉,吳錘結(jié). 三維機(jī)器鳥自主飛行的渦動(dòng)力學(xué)分析與控制(英文)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2016, 34(2): 204-213.

    Received: 2015-12-15; Revised:2016-01-10

    Supported by the National Natural Science Foundation (No.11072053, 11372068)

    猜你喜歡
    大連理工大學(xué)遼寧翅膀
    遼寧之光
    新少年(2022年3期)2022-03-17 07:06:38
    讀遼寧 愛遼寧
    沒有翅膀也要飛向遠(yuǎn)方
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    『無腳鳥』枕著翅膀睡覺
    遼寧艦
    學(xué)與玩(2018年5期)2019-01-21 02:13:08
    偽隨機(jī)碼掩蔽的擴(kuò)頻信息隱藏
    01海上遼寧
    今日遼寧(2015年11期)2015-04-13 05:35:46
    因?yàn)槲覜]有折斷她的翅膀
    中泰化學(xué)與大連理工大學(xué)簽署戰(zhàn)略合作框架協(xié)議
    成年人黄色毛片网站| 欧美日韩国产亚洲二区| 国产高清三级在线| 亚洲欧美日韩东京热| 又紧又爽又黄一区二区| 午夜福利高清视频| 我的老师免费观看完整版| 国产又色又爽无遮挡免费看| 免费高清视频大片| 最新中文字幕久久久久 | 日日摸夜夜添夜夜添小说| 很黄的视频免费| 精品欧美国产一区二区三| 亚洲精华国产精华精| 亚洲九九香蕉| 一个人免费在线观看的高清视频| 国产高清视频在线观看网站| 18禁国产床啪视频网站| 亚洲成人精品中文字幕电影| 91字幕亚洲| 白带黄色成豆腐渣| 国产精品久久久av美女十八| 国产高清视频在线观看网站| 69av精品久久久久久| 国产精品久久视频播放| 国产成人啪精品午夜网站| 午夜精品一区二区三区免费看| 特级一级黄色大片| 国产高潮美女av| 一二三四在线观看免费中文在| 啦啦啦免费观看视频1| 99久久精品热视频| 国产亚洲欧美在线一区二区| 在线看三级毛片| 欧美国产日韩亚洲一区| 少妇的逼水好多| 亚洲成av人片在线播放无| 一二三四在线观看免费中文在| 身体一侧抽搐| 黄色女人牲交| 日韩高清综合在线| 色综合欧美亚洲国产小说| 91老司机精品| 亚洲中文字幕一区二区三区有码在线看 | 国产精品亚洲一级av第二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产清高在天天线| 男人和女人高潮做爰伦理| 欧美丝袜亚洲另类 | 美女免费视频网站| 长腿黑丝高跟| 成人无遮挡网站| 亚洲精品乱码久久久v下载方式 | 国产精品野战在线观看| 精品国产超薄肉色丝袜足j| 97人妻精品一区二区三区麻豆| 亚洲美女视频黄频| 91字幕亚洲| 成人亚洲精品av一区二区| 午夜激情福利司机影院| 18禁黄网站禁片午夜丰满| a级毛片在线看网站| 国产精品 国内视频| 国产麻豆成人av免费视频| 欧美黄色淫秽网站| 白带黄色成豆腐渣| 18禁黄网站禁片免费观看直播| 宅男免费午夜| 成人av在线播放网站| 欧美另类亚洲清纯唯美| 国产伦在线观看视频一区| 国产av在哪里看| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 国产精品98久久久久久宅男小说| 2021天堂中文幕一二区在线观| 国产精品,欧美在线| 国产精品久久久久久人妻精品电影| 精品熟女少妇八av免费久了| 午夜久久久久精精品| 在线观看免费视频日本深夜| 日本 av在线| 淫秽高清视频在线观看| av片东京热男人的天堂| netflix在线观看网站| 日本黄色视频三级网站网址| 黄片小视频在线播放| 黄频高清免费视频| 国产日本99.免费观看| 中文资源天堂在线| 亚洲成人久久性| 在线永久观看黄色视频| 国产高清有码在线观看视频| 国产综合懂色| 在线观看66精品国产| 我的老师免费观看完整版| 成年女人永久免费观看视频| 精品一区二区三区视频在线 | 日韩有码中文字幕| 小蜜桃在线观看免费完整版高清| 12—13女人毛片做爰片一| 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 婷婷丁香在线五月| 国产成人精品久久二区二区免费| 99re在线观看精品视频| 久久久久久久久久黄片| 国产精品久久视频播放| 观看免费一级毛片| 神马国产精品三级电影在线观看| 国产精品爽爽va在线观看网站| 舔av片在线| 日本黄色片子视频| 国产熟女xx| 亚洲人成网站在线播放欧美日韩| 亚洲无线在线观看| 在线观看美女被高潮喷水网站 | 国产亚洲欧美98| 色综合欧美亚洲国产小说| 99国产精品99久久久久| 国产高清视频在线播放一区| 变态另类丝袜制服| 中国美女看黄片| 怎么达到女性高潮| 12—13女人毛片做爰片一| 国产蜜桃级精品一区二区三区| 啪啪无遮挡十八禁网站| 国产97色在线日韩免费| 美女扒开内裤让男人捅视频| 久久久国产成人精品二区| 搡老妇女老女人老熟妇| 我要搜黄色片| а√天堂www在线а√下载| 国产成人影院久久av| 久久久久国产一级毛片高清牌| 黑人欧美特级aaaaaa片| 国产亚洲精品av在线| 日韩精品中文字幕看吧| 18禁黄网站禁片午夜丰满| 免费在线观看亚洲国产| 一本久久中文字幕| 国产精品美女特级片免费视频播放器 | 在线观看午夜福利视频| 99久久综合精品五月天人人| 高清在线国产一区| 免费无遮挡裸体视频| 2021天堂中文幕一二区在线观| 国产高清视频在线观看网站| 日韩有码中文字幕| 免费观看精品视频网站| 亚洲电影在线观看av| 最新中文字幕久久久久 | 欧美日韩中文字幕国产精品一区二区三区| 成人av在线播放网站| 中文在线观看免费www的网站| 久久久久国产精品人妻aⅴ院| 国产乱人视频| 国产精品自产拍在线观看55亚洲| 中文字幕精品亚洲无线码一区| 午夜精品一区二区三区免费看| 变态另类成人亚洲欧美熟女| 99久久久亚洲精品蜜臀av| 亚洲一区二区三区色噜噜| 九九久久精品国产亚洲av麻豆 | 亚洲精品456在线播放app | 岛国在线观看网站| 亚洲熟女毛片儿| 午夜福利18| 成年女人永久免费观看视频| 精品无人区乱码1区二区| 精品国内亚洲2022精品成人| 国产爱豆传媒在线观看| 欧美日韩中文字幕国产精品一区二区三区| 99热6这里只有精品| 国产激情欧美一区二区| 1000部很黄的大片| 精品国产三级普通话版| 好男人电影高清在线观看| 亚洲精品乱码久久久v下载方式 | 哪里可以看免费的av片| 午夜福利欧美成人| 精品国产美女av久久久久小说| 久久香蕉国产精品| 国产伦人伦偷精品视频| 久久精品综合一区二区三区| 国产精品免费一区二区三区在线| 19禁男女啪啪无遮挡网站| 国内揄拍国产精品人妻在线| 亚洲片人在线观看| 国产野战对白在线观看| 久久婷婷人人爽人人干人人爱| 99精品欧美一区二区三区四区| 亚洲av日韩精品久久久久久密| 美女黄网站色视频| 老汉色av国产亚洲站长工具| 亚洲无线在线观看| 亚洲欧美日韩卡通动漫| 观看美女的网站| www.www免费av| 亚洲精品国产精品久久久不卡| 久久精品影院6| 成在线人永久免费视频| 深夜精品福利| 九九热线精品视视频播放| 视频区欧美日本亚洲| 亚洲七黄色美女视频| 禁无遮挡网站| 在线看三级毛片| 日韩欧美在线二视频| 国产又黄又爽又无遮挡在线| 九色国产91popny在线| 99久久99久久久精品蜜桃| 亚洲熟女毛片儿| 亚洲av美国av| 后天国语完整版免费观看| 九色国产91popny在线| 全区人妻精品视频| 91麻豆精品激情在线观看国产| 99国产综合亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 精品国内亚洲2022精品成人| 国产午夜精品论理片| 国产乱人伦免费视频| 一进一出抽搐gif免费好疼| 亚洲熟妇中文字幕五十中出| 国产淫片久久久久久久久 | 老熟妇仑乱视频hdxx| 女生性感内裤真人,穿戴方法视频| 99在线视频只有这里精品首页| 脱女人内裤的视频| www日本黄色视频网| 一夜夜www| 一个人观看的视频www高清免费观看 | 18禁黄网站禁片午夜丰满| 亚洲av片天天在线观看| 国产成人系列免费观看| 男女视频在线观看网站免费| 真人一进一出gif抽搐免费| 久久久精品大字幕| 日韩人妻高清精品专区| 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 最近视频中文字幕2019在线8| 久久伊人香网站| 成年版毛片免费区| 国产蜜桃级精品一区二区三区| 日本一二三区视频观看| 看片在线看免费视频| 亚洲 国产 在线| 在线观看美女被高潮喷水网站 | 欧美日韩黄片免| 日本 av在线| 国产精华一区二区三区| 高潮久久久久久久久久久不卡| 每晚都被弄得嗷嗷叫到高潮| 一夜夜www| 久久伊人香网站| 亚洲熟女毛片儿| 国产欧美日韩精品亚洲av| 啪啪无遮挡十八禁网站| 中文字幕久久专区| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 国产免费av片在线观看野外av| 两个人视频免费观看高清| 国内精品久久久久久久电影| 亚洲国产精品合色在线| 成年版毛片免费区| 18禁黄网站禁片免费观看直播| 午夜福利在线观看吧| 亚洲黑人精品在线| 日本撒尿小便嘘嘘汇集6| 给我免费播放毛片高清在线观看| 久久久久久国产a免费观看| 亚洲五月天丁香| 欧美丝袜亚洲另类 | 精品国产超薄肉色丝袜足j| 午夜免费观看网址| 亚洲黑人精品在线| 非洲黑人性xxxx精品又粗又长| 中文字幕久久专区| 熟女电影av网| 成人三级黄色视频| 一区二区三区高清视频在线| 一级a爱片免费观看的视频| 99久久无色码亚洲精品果冻| 国产亚洲精品综合一区在线观看| 久久久国产精品麻豆| 观看免费一级毛片| 久久精品国产清高在天天线| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 99热6这里只有精品| av在线蜜桃| 亚洲精品中文字幕一二三四区| 国产97色在线日韩免费| 午夜精品久久久久久毛片777| 国产高清三级在线| 91字幕亚洲| 国产精品 国内视频| 国产精品野战在线观看| 久久精品aⅴ一区二区三区四区| 国产精华一区二区三区| 久久久久免费精品人妻一区二区| 亚洲片人在线观看| 午夜激情福利司机影院| 亚洲欧美精品综合一区二区三区| 91av网一区二区| 99国产精品一区二区蜜桃av| 欧美一级毛片孕妇| 天天一区二区日本电影三级| 欧美一区二区精品小视频在线| 日韩欧美三级三区| www.999成人在线观看| 国产成人影院久久av| svipshipincom国产片| xxx96com| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久久久毛片| 国产蜜桃级精品一区二区三区| 18禁美女被吸乳视频| 一级作爱视频免费观看| 亚洲国产精品久久男人天堂| 一级毛片精品| av在线蜜桃| 不卡一级毛片| 国产精品香港三级国产av潘金莲| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩一区二区精品| 99热精品在线国产| 女同久久另类99精品国产91| 18禁黄网站禁片免费观看直播| 国产三级黄色录像| 91久久精品国产一区二区成人 | 国产精品 欧美亚洲| 不卡av一区二区三区| 神马国产精品三级电影在线观看| 床上黄色一级片| 好男人在线观看高清免费视频| 久久久国产成人精品二区| 中文字幕高清在线视频| 午夜福利高清视频| 国产精品一及| 中文字幕熟女人妻在线| 国产黄色小视频在线观看| 美女cb高潮喷水在线观看 | 成人一区二区视频在线观看| 国产精品98久久久久久宅男小说| 久久久国产欧美日韩av| 一个人免费在线观看的高清视频| 精品欧美国产一区二区三| 99久久成人亚洲精品观看| www日本在线高清视频| 1000部很黄的大片| 五月玫瑰六月丁香| 性色avwww在线观看| 日本三级黄在线观看| 国产精品一区二区三区四区免费观看 | 亚洲自拍偷在线| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频| 中文字幕人成人乱码亚洲影| 一级作爱视频免费观看| 欧美高清成人免费视频www| 啦啦啦免费观看视频1| 免费看十八禁软件| 亚洲国产日韩欧美精品在线观看 | 国产蜜桃级精品一区二区三区| 精品一区二区三区视频在线 | av片东京热男人的天堂| 日韩中文字幕欧美一区二区| 国产伦人伦偷精品视频| 国产久久久一区二区三区| 男人舔女人的私密视频| 18禁裸乳无遮挡免费网站照片| 国产av麻豆久久久久久久| 精华霜和精华液先用哪个| 日本一二三区视频观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久av网站| www.精华液| 12—13女人毛片做爰片一| 久久久久久久精品吃奶| 国产午夜精品论理片| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 欧美乱码精品一区二区三区| 美女高潮喷水抽搐中文字幕| 精品99又大又爽又粗少妇毛片 | 久久人人精品亚洲av| 久久天躁狠狠躁夜夜2o2o| 波多野结衣巨乳人妻| 97超视频在线观看视频| 桃色一区二区三区在线观看| 午夜视频精品福利| 国产精品久久视频播放| 欧美不卡视频在线免费观看| 色综合站精品国产| 亚洲欧美日韩高清在线视频| 久久婷婷人人爽人人干人人爱| 国产亚洲欧美98| 黄色 视频免费看| 啪啪无遮挡十八禁网站| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 成人亚洲精品av一区二区| 伊人久久大香线蕉亚洲五| 丝袜人妻中文字幕| netflix在线观看网站| 国产91精品成人一区二区三区| 女人被狂操c到高潮| 亚洲 欧美 日韩 在线 免费| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| 一区福利在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美人成| 欧美乱色亚洲激情| 99久久无色码亚洲精品果冻| 亚洲精品在线美女| 国产美女午夜福利| 少妇人妻一区二区三区视频| 国产成人啪精品午夜网站| 色吧在线观看| 天堂av国产一区二区熟女人妻| 欧美性猛交黑人性爽| 亚洲国产日韩欧美精品在线观看 | 精品一区二区三区四区五区乱码| 国产成人系列免费观看| 精品久久久久久久久久久久久| 日本精品一区二区三区蜜桃| 亚洲av成人一区二区三| 欧美zozozo另类| 国语自产精品视频在线第100页| 18美女黄网站色大片免费观看| 亚洲熟女毛片儿| av女优亚洲男人天堂 | 国产精品永久免费网站| 老汉色av国产亚洲站长工具| 亚洲无线观看免费| 色精品久久人妻99蜜桃| 每晚都被弄得嗷嗷叫到高潮| 欧美3d第一页| 九九久久精品国产亚洲av麻豆 | 丰满的人妻完整版| 精品国产乱子伦一区二区三区| 女生性感内裤真人,穿戴方法视频| 91九色精品人成在线观看| 国产成人精品无人区| 在线观看66精品国产| 亚洲欧美日韩高清专用| 亚洲乱码一区二区免费版| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片| 国产精品一区二区免费欧美| 欧美性猛交黑人性爽| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久视频播放| 精品电影一区二区在线| 国产单亲对白刺激| 久久中文看片网| 一级毛片高清免费大全| 欧美激情在线99| 日本黄色视频三级网站网址| 精品一区二区三区四区五区乱码| 国内揄拍国产精品人妻在线| 脱女人内裤的视频| 男女之事视频高清在线观看| 国产亚洲精品久久久久久毛片| 亚洲成人久久爱视频| 久久人人精品亚洲av| 欧美国产日韩亚洲一区| 国产三级黄色录像| 色老头精品视频在线观看| 免费观看的影片在线观看| 波多野结衣高清无吗| 色av中文字幕| 亚洲av成人av| 老司机深夜福利视频在线观看| 国产精品 国内视频| 每晚都被弄得嗷嗷叫到高潮| 精品久久蜜臀av无| 深夜精品福利| 香蕉久久夜色| 18美女黄网站色大片免费观看| 一进一出抽搐gif免费好疼| 欧美中文日本在线观看视频| 在线免费观看的www视频| 午夜日韩欧美国产| 色播亚洲综合网| 1000部很黄的大片| 中出人妻视频一区二区| 中文字幕人妻丝袜一区二区| 欧美乱色亚洲激情| 美女cb高潮喷水在线观看 | 国产av一区在线观看免费| 老汉色av国产亚洲站长工具| 亚洲自偷自拍图片 自拍| 麻豆av在线久日| 男人舔女人的私密视频| 法律面前人人平等表现在哪些方面| 免费高清视频大片| 国内精品一区二区在线观看| 午夜免费激情av| 大型黄色视频在线免费观看| 午夜福利成人在线免费观看| 亚洲精品美女久久av网站| 国产亚洲精品一区二区www| 香蕉丝袜av| 国产亚洲精品一区二区www| 欧美黑人巨大hd| 人妻夜夜爽99麻豆av| 麻豆成人午夜福利视频| 99久久久亚洲精品蜜臀av| 97超级碰碰碰精品色视频在线观看| 亚洲片人在线观看| 99国产精品99久久久久| 色精品久久人妻99蜜桃| 午夜福利在线在线| 天堂影院成人在线观看| or卡值多少钱| 99视频精品全部免费 在线 | 久久精品国产亚洲av香蕉五月| 国产精品野战在线观看| 老鸭窝网址在线观看| 999精品在线视频| 99久久国产精品久久久| 成人国产一区最新在线观看| 国产三级黄色录像| 国产v大片淫在线免费观看| 国产精品久久久av美女十八| 成人亚洲精品av一区二区| 亚洲片人在线观看| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| a级毛片在线看网站| 久久久久国产精品人妻aⅴ院| 国产精品女同一区二区软件 | 亚洲 欧美 日韩 在线 免费| 日本a在线网址| 欧美精品啪啪一区二区三区| 亚洲av电影在线进入| 成人一区二区视频在线观看| 琪琪午夜伦伦电影理论片6080| 人人妻人人看人人澡| 黄色视频,在线免费观看| 亚洲av片天天在线观看| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 亚洲av熟女| 欧美不卡视频在线免费观看| 丝袜人妻中文字幕| 日本黄色视频三级网站网址| 99久久国产精品久久久| 欧美午夜高清在线| 91九色精品人成在线观看| 毛片女人毛片| 美女大奶头视频| 精品国产乱子伦一区二区三区| 欧美激情在线99| 伊人久久大香线蕉亚洲五| 久久久久精品国产欧美久久久| 国产精品精品国产色婷婷| 久久香蕉精品热| 成年免费大片在线观看| 亚洲国产欧洲综合997久久,| 手机成人av网站| 亚洲成av人片免费观看| 丁香欧美五月| 99久久精品一区二区三区| 母亲3免费完整高清在线观看| 91字幕亚洲| 久久午夜综合久久蜜桃| 久久中文字幕一级| 悠悠久久av| 成人18禁在线播放| 国产精品女同一区二区软件 | 久久久久国产一级毛片高清牌| 九色成人免费人妻av| 亚洲欧美精品综合一区二区三区| 桃色一区二区三区在线观看| 十八禁网站免费在线| 又黄又爽又免费观看的视频| 在线免费观看不下载黄p国产 | 9191精品国产免费久久| 久久九九热精品免费| 少妇丰满av| 一区二区三区国产精品乱码| 黄片大片在线免费观看| 91av网一区二区| 成人精品一区二区免费| 又大又爽又粗| 啦啦啦免费观看视频1| 中文字幕av在线有码专区| 最近最新免费中文字幕在线| 色在线成人网| 丁香六月欧美| 桃红色精品国产亚洲av| 色噜噜av男人的天堂激情| 亚洲av成人一区二区三| 午夜精品在线福利| 国产精品香港三级国产av潘金莲| 黑人操中国人逼视频| 国产亚洲av嫩草精品影院| 午夜a级毛片| 99久久99久久久精品蜜桃| 后天国语完整版免费观看| 国产蜜桃级精品一区二区三区| 亚洲自偷自拍图片 自拍| 国产成人av教育| 欧美午夜高清在线|