胡文龍, 吳平平, 耿書國, 汪建樣, 殷 明
(南昌大學(xué)1研究生院醫(yī)學(xué)部,2第二附屬醫(yī)院骨科,江西 南昌 330006)
?
人臍帶間充質(zhì)干細(xì)胞分泌白細(xì)胞介素6促進骨肉瘤細(xì)胞增殖和遷移*
胡文龍1, 2,吳平平1,耿書國1, 2,汪建樣1, 2,殷明2△
(南昌大學(xué)1研究生院醫(yī)學(xué)部,2第二附屬醫(yī)院骨科,江西 南昌 330006)
[摘要]目的: 探討人臍帶間充質(zhì)干細(xì)胞(hUC-MSCs)對骨肉瘤Saos-2細(xì)胞增殖和遷移的作用及分子機制。方法: 組織塊貼壁法分離培養(yǎng)hUC-MSCs,流式細(xì)胞術(shù)鑒定細(xì)胞表面標(biāo)記物;CCK-8法和細(xì)胞計數(shù)法檢測hUC-MSCs條件培養(yǎng)基(CM)、重組人白細(xì)胞介素6(rhIL-6)及IL-6中和抗體對Saos-2細(xì)胞增殖的作用;ELISA檢測hUC-MSCs分泌IL-6的量;RT-PCR檢測增殖相關(guān)基因增殖細(xì)胞核抗原(PCNA)、cyclinD1和survivin的轉(zhuǎn)錄水平;Transwell實驗檢測hUC-MSCs和Saos-2細(xì)胞遷移能力的變化。結(jié)果: hUC-MSCs可向Saos-2細(xì)胞遷移;hUC-MSCs-CM含有高濃度的IL-6,可達(dá)(1 835.5±134.1)ng/L;hUC-MSCs-CM和rhIL-6均能促進Saos-2細(xì)胞增殖和遷移,IL-6中和抗體能明顯削弱hUC-MSCs-CM的促Saos-2細(xì)胞增殖和遷移作用;RT-PCR顯示hUC-MSCs-CM和rhIL-6均能上調(diào)Saos-2細(xì)胞增殖相關(guān)基因PCNA、cyclinD1和survivin的表達(dá),而IL-6中和抗體則削弱了這一作用。結(jié)論: 臍帶間充質(zhì)干細(xì)胞能向骨肉瘤Saos-2細(xì)胞遷移,并通過分泌IL-6促進其增殖和遷移。
[關(guān)鍵詞]人臍帶間充質(zhì)干細(xì)胞; 白細(xì)胞介素6; 細(xì)胞增殖; 細(xì)胞遷移
人臍帶間充質(zhì)干細(xì)胞(human umbilical cord-derived mesenchymal stem cells,hUC-MSCs)是一類來源于胎兒臍帶結(jié)締組織,具有多向分化潛能,能向腫瘤、損傷、炎癥等部位趨化,可分泌大量細(xì)胞因子的基質(zhì)干細(xì)胞。hUC-MSCs作為MSCs的新生代表,不僅與其它來源的MSCs具有相似的生物學(xué)特性和免疫表型,而且具有更強的增殖效率和自我更新能力,來源豐富、倫理爭議少,細(xì)胞含量豐富、微生物感染率低等優(yōu)點更使其成為了組織工程和細(xì)胞工程最理想的種子細(xì)胞。目前,hUC-MSCs移植已成為系統(tǒng)性紅斑狼瘡[1]、貝克型肌營養(yǎng)不良[2]、糖尿病[3]等難治性疾病的有效治療手段,并被用作肺癌[4]、卵巢癌[5]等實體瘤基因治療的載體細(xì)胞,發(fā)揮抗腫瘤作用,Kalaszczynska等[6]更是將hUC-MSCs稱為再生醫(yī)學(xué)的未來。然而,hUC-MSCs與腫瘤的關(guān)系卻錯綜復(fù)雜,Yang等[7]發(fā)現(xiàn)hUC-MSCs的條件培養(yǎng)基能明顯抑制膠質(zhì)瘤細(xì)胞的生長并介導(dǎo)其凋亡,而Li等[8]卻提供證據(jù)表明hUC-MSCs能活化MCF-7和MDA-MB-231乳腺癌細(xì)胞的ERK信號通路,從而促進腫瘤的增殖和轉(zhuǎn)移,可見,直接將hUC-MSCs作為腫瘤基因治療的載體細(xì)胞存在較大安全隱患。因此,明確hUC-MSCs與相關(guān)腫瘤的關(guān)系無疑具有重大意義。骨肉瘤是最常見的骨組織的原發(fā)性惡性腫瘤,好發(fā)于長骨干骺端,惡性程度高,預(yù)后差,以局部高侵襲性和容易向骨、肺部轉(zhuǎn)移為特點[9]。至今為止,hUC-MSCs與骨肉瘤的關(guān)系鮮有報道。
為明確hUC-MSCs對骨肉瘤細(xì)胞的作用,本實驗采用骨肉瘤Saos-2細(xì)胞作為研究對象,運用CCK-8、細(xì)胞計數(shù)、Transwell、抗體中和實驗、RT-PCR等方法研究hUC-MSCs對骨肉瘤體外增殖和轉(zhuǎn)移能力的影響及可能的機制。
材料和方法
1標(biāo)本來源
臍帶標(biāo)本取自九江市婦幼保健院,產(chǎn)婦及胎兒身體健康,營養(yǎng)狀況良好。產(chǎn)婦及家屬對實驗均知情同意,并經(jīng)醫(yī)院倫理委員會批準(zhǔn)。
2主要試劑與儀器
α-MEM培養(yǎng)基、胎牛血清、0.25%胰蛋白酶-EDTA消化液(Gibco);青、鏈霉素混合液、0.1% 結(jié)晶紫染色液(北京索萊寶科技有限公司);IgG-FITC、CD19-FITC、IgG-PE、CD29-PE、CD90-PE、CD105-PE單抗(Abcam);CCK-8(上海經(jīng)科化學(xué)科技有限公司);重組人白細(xì)胞介素6(recombinant human interleukin-6, rhIL-6)酶聯(lián)免疫吸附測定試劑盒(武漢伊萊瑞特生物科技有限公司);GREENspin細(xì)胞RNA快速提取試劑盒(北京莊盟國際生物基因科技有限公司);HiFi-MMLV cDNA逆轉(zhuǎn)錄試劑盒(北京康為世紀(jì)生物科技有限公司);2×Taq Master Mix(上海欣百諾生物科技有限公司);塑料培養(yǎng)皿、25 cm2塑料培養(yǎng)瓶、6孔板、96孔板、Transwell 24孔板(Corning);倒置相差顯微鏡 (Nikon);酶標(biāo)儀(Biotek)。
3實驗方法
3.1hUC-MSCs的分離培養(yǎng)及鑒定無菌取得臍帶后機械剝離臍動、靜脈,將華通氏膠剪碎成體積約3~5 mm3大小的組織塊,接種于塑料皿中,加入含10% 胎牛血清的α-MEM培養(yǎng)基,置于5% CO2、飽和濕度培養(yǎng)箱中培養(yǎng)。待細(xì)胞融合達(dá)80%~90% 時,消化傳代,接種于25 cm2塑料培養(yǎng)瓶內(nèi),繼續(xù)以10% 胎牛血清的α-MEM常規(guī)貼壁培養(yǎng),每3 d換液1次,細(xì)胞融合達(dá)80%~90% 時,按1∶3傳代。倒置相差顯微鏡連續(xù)觀察細(xì)胞形態(tài)及塑料貼壁能力。hUC-MSCs細(xì)胞傳代至第5代,消化離心后加入IgG-FITC、CD19-FITC、IgG-PE、CD29-PE、CD90-PE、CD105-PE單抗孵育后用流式細(xì)胞儀檢測。
3.2hUC-MSCs條件培養(yǎng)基(conditioned medium, CM)的制備第5代hUC-MSCs融合達(dá)80%后,更換無血清α-MEM,培養(yǎng)24 h后收集培養(yǎng)基,1 000×g離心20 min,0.22 μm過濾,加入10%胎牛血清即成hUC-MSCs-CM,-80 ℃凍存?zhèn)溆谩?/p>
3.3CCK-8法和細(xì)胞計數(shù)法檢測Saos-2細(xì)胞增殖情況CCK-8實驗取Saos-2細(xì)胞按每孔1 000個接種于96孔板,每孔加入200 μL相關(guān)培養(yǎng)基,每組設(shè)置4個復(fù)孔。分別于相應(yīng)時點取1塊板,每孔加入10 μL CCK-8試劑后37 ℃ 孵育2 h,酶標(biāo)儀測定其450 nm波長處吸光度(A)值;細(xì)胞計數(shù)實驗取Saos-2細(xì)胞按每孔20 000個接種于12孔板,每孔加入2 mL相關(guān)培養(yǎng)基,每組設(shè)置4個復(fù)孔。分別于相應(yīng)時點對各組細(xì)胞進行計數(shù)。
3.4ELISA檢測hUC-MSCs-CM的IL-6濃度及抗體中和實驗取第5代hUC-MSCs培養(yǎng)于T25細(xì)胞培養(yǎng)瓶內(nèi),待細(xì)胞融合達(dá)80%,PBS漂洗1遍,加入3 mL無血清α-MEM培養(yǎng)24 h,1 000×g離心20 min,0.22 μm過濾。以無血清α-MEM稀釋2倍和3倍后按照IL-6 ELISA檢測試劑盒使用說明書檢測條件培養(yǎng)基中IL-6濃度。根據(jù)測定的IL-6濃度及其半數(shù)有效濃度,在hUC-MSCs-CM加入適量濃度的IL-6中和抗體以抑制IL-6的活性。
3.5Transwell遷移實驗hUC-MSCs遷移實驗:Transwell 24孔板,聚碳酸酯膜小孔的孔徑為8 μm,在下室加入600 μL含1×105Saos-2細(xì)胞或無細(xì)胞培養(yǎng)基,上室均種入1×105hUC-MSCs;Saos-2細(xì)胞遷移實驗:Saos-2細(xì)胞種入6孔板內(nèi),分別加入完全培養(yǎng)基、含20 μg/L rhIL-6的完全培養(yǎng)基、含或不含20 mg/L IL-6中和抗體的40% hUC-MSCs-CM預(yù)處理24 h,無血清α-MEM重懸細(xì)胞,調(diào)整細(xì)胞密度為1×109/L,上室每孔加入相應(yīng)100 μL細(xì)胞懸液,下室均加入600 μL含10% 胎牛血清的α-MEM完全培養(yǎng)基。37 ℃培養(yǎng)12 h后行結(jié)晶紫染色,顯微鏡下隨機選取5個視野計數(shù)穿過膜的細(xì)胞。
3.6RT-PCR檢測增殖相關(guān)基因表達(dá)水平取Saos-2細(xì)胞種于6孔板,培養(yǎng)48 h后提取總RNA,逆轉(zhuǎn)錄為cDNA后進行PCR擴增。擴增后DNA樣本用1% 瓊脂糖凝膠電泳20~30 min。SIM凝膠成像系統(tǒng)掃描分析條帶灰度值??俁NA的提取、逆轉(zhuǎn)錄、PCR反應(yīng)均按試劑盒說明操作。內(nèi)參照基因為β-actin,目的基因包括增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PCNA)、cyclinD1和survivin,引物序列及產(chǎn)物大小見表1。
4統(tǒng)計學(xué)處理
采用SPSS 19.0統(tǒng)計軟件進行數(shù)據(jù)分析。所有實驗均最少重復(fù)3次,數(shù)據(jù)采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,組間比較采用單因素方差分析,兩兩比較采用 Scheffe 檢驗,計數(shù)資料采用非參數(shù)秩和檢驗。以P<0.05為差異有統(tǒng)計學(xué)意義。
表1 引物序列
結(jié)果
1hUC-MSCs的培養(yǎng)及鑒定
臍帶組織貼壁培養(yǎng)7 d后,鏡下可見少量成纖維樣細(xì)胞從組織塊爬出,此后細(xì)胞逐漸增加,增殖迅速,14 d時,細(xì)胞融合達(dá)90% 以上。傳代后細(xì)胞形態(tài)呈均一的長梭形或紡錘形,呈魚群樣或旋渦狀分布。流式細(xì)胞表型檢測結(jié)果顯示,hUC-MSCs高表達(dá)CD29、CD90、CD105,陽性率均高于97%,CD19陽性率僅為0.1%,符合MSCs鑒定標(biāo)準(zhǔn),見圖1。
Figure 1.The flow cytometry results of cell surface markers on hUC-MSCs.
圖1人臍帶間充質(zhì)干細(xì)胞表面標(biāo)記物流式細(xì)胞術(shù)檢測結(jié)果
2hUC-MSCs能向Saos-2細(xì)胞靶向遷移并通過旁分泌途徑促進Saos-2細(xì)胞增殖
Transwell遷移實驗發(fā)現(xiàn)hUC-MSCs能穿過聚碳酸酯膜小孔向培養(yǎng)了Saos-2細(xì)胞的下室遷移,而對照組僅有個別細(xì)胞穿膜(圖2)。為了研究hUC-MSCs分泌的細(xì)胞因子對骨肉瘤Saos-2細(xì)胞的作用,本實驗將Saos-2培養(yǎng)于不同濃度hUC-MSCs-CM,采用CCK-8法繪制其生長曲線并進行了準(zhǔn)確的細(xì)胞計數(shù)。加入培養(yǎng)基后,對照組細(xì)胞較長時間處于潛伏期(4 d),20%、40% 和80% CM組細(xì)胞經(jīng)過1~2 d的潛伏期后均開始增殖,20% CM組細(xì)胞增殖相對較慢,40% CM和80% CM組細(xì)胞增殖迅速,進入對數(shù)生長期。接種4 d后,各組細(xì)胞均呈對數(shù)生長。20% CM和40% CM組細(xì)胞均于第10天進入平臺期,80% CM組細(xì)胞增殖迅速,提前進入平臺期(9~11 d),對照組細(xì)胞增殖相對緩慢,對數(shù)期較長(4~11 d)。3~11 d時,20%、40% 和80% CM組A值均高于對照組,差異有統(tǒng)計學(xué)顯著性(P<0.05),80%組高于40%組,40%組高于20%組,差異均有統(tǒng)計學(xué)顯著性(P<0.05)。與CCK-8結(jié)果一致,細(xì)胞計數(shù)實驗顯示,在細(xì)胞接種的第3、6、9天,20%、40% 和80% CM組的細(xì)胞平均數(shù)量均高于對照組,且具有濃度依賴性,差異均有統(tǒng)計學(xué)顯著性(P<0.05),見圖3。
3hUC-MSCs分泌大量IL-6
ELISA檢測發(fā)現(xiàn)hUC-MSCs-CM中IL-6的濃度可達(dá)(1 835.5±134.1)ng/L(8×105hUC-MSCs/24 h)。
4hUC-MSCs通過IL-6促進Saos-2細(xì)胞增殖
分別將5 μg/L、10 μg/L、20 μg/L的rhIL-6加入完全培養(yǎng)基中,CCK-8和細(xì)胞計數(shù)實驗顯示IL-6能明顯促進Saos-2細(xì)胞的活力和增殖,且3種濃度對OS細(xì)胞的促增殖效果差異明顯,呈現(xiàn)濃度依賴性(P<0.05)。40%的hUC-MSCs-CM促進Saos-2細(xì)胞增殖的作用顯著,加入IL-6中和抗體后,這種促增殖作用受到明顯抑制,見圖4。RT-PCR檢測發(fā)現(xiàn)20 μg/L的rhIL-6和40%的hUC-MSCs-CM均能上調(diào)Saos-2細(xì)胞增殖相關(guān)基因PCNA、cyclinD1和survivin的表達(dá)(P<0.05),而在CM中加入IL-6中和抗體后該3種基因的轉(zhuǎn)錄水平均出現(xiàn)了明顯下調(diào)(P<0.05),見圖5。
Figure 2.hUC-MSCs migrated to Saos-2 cells. A: complete medium was added to the lower chamber (control); B: complete medium suspended with Saos-2 cells was added to the lower chamber (Saos-2). Mean±SD.n=5.*P<0.05vscontrol.
圖2hUC-MSCs向Saos-2細(xì)胞定向遷移
Figure 3.The conditioned medium from hUC-MSCs promoted the proliferation of Saos-2 cells. A: the growth curves of Saos-2 cells cultured with different concentration of conditioned medium of hUC-MSCs were detected by CCK-8; B: the effects of conditioned medium from hUC-MSCs on the proliferation of Saos-2 cells were detected by cell counting. Mean±SD.n=4.*P<0.05vscontrol.
圖3hUC-MSCs條件培養(yǎng)基促進Saos-2細(xì)胞增殖
Figure 4.hUC-MSCs promoted the proliferation of Saos-2 cells by secreting IL-6. Saos-2 cells in different groups were cultured for 6 d and 9 d, cell proliferation was measured with CCK-8 assay (A) and cytometry (B). Mean±SD.n=4.*P<0.05vscontrol;#P<0.05vsCM.
圖4hUC-MSCs分泌IL-6促進Saos-2細(xì)胞增殖
Figure 5.The relative expression of proliferation-related genes detected by RT-PCR.Mean±SD.n=3.*P<0.05vscontrol;#P<0.05vsCM.
圖5RT-PCR檢測增殖相關(guān)基因表達(dá)情況
5hUC-MSCs通過IL-6促進Saos-2細(xì)胞遷移
20 μg/L的rhIL-6及40% hUC-MSCs-CM分別作用于Saos-2細(xì)胞24 h后,細(xì)胞的遷移能力明顯增強(P<0.05),CM+anti-IL-6組穿膜細(xì)胞數(shù)量明顯比CM組少,且少于對照組細(xì)胞(P<0.05),見圖6。
討論
近年來,間充質(zhì)干細(xì)胞與腫瘤的關(guān)系備受關(guān)注,然而間充質(zhì)干細(xì)胞到底是促進還是抑制腫瘤的發(fā)生發(fā)展至今尚無定論。大量研究表明MSCs能向損傷、炎癥部位定向遷移,分化成結(jié)締組織成分,支持血管生成,分泌細(xì)胞因子和生長因子,促進愈合。腫瘤被喻為“不可愈合的損傷”,因而,MSCs對腫瘤細(xì)胞的作用可能與其促進傷口愈合的功能相似。MSCs對腫瘤的趨向性是其作為腫瘤基因治療和細(xì)胞治療的載體細(xì)胞最重要的特性[10]。研究表明,進入腫瘤組織的間充質(zhì)干細(xì)胞參與形成腫瘤微環(huán)境,進而影響腫瘤的生長、遷移、血管形成等多種生物學(xué)行為[11]。間充質(zhì)干細(xì)胞不僅能通過直接接觸調(diào)節(jié)腫瘤細(xì)胞活性,還能分泌大量細(xì)胞因子、炎癥因子調(diào)控腫瘤的一系列生物學(xué)過程。Matsuzuka等[12]將經(jīng)過基因修飾高表達(dá)IFN-β的hUC-MSCs移植入細(xì)支氣管肺泡癌
Figure 6.hUC-MSCs promoted the migration of Saos-2 cells by secreting IL-6. Mean±SD.n=4.*P<0.05vscontrol;#P<0.05vsCM.
圖6hUC-MSCs分泌IL-6促進Saos-2細(xì)胞遷移
裸鼠模型體內(nèi),發(fā)現(xiàn)該hUC-MSCs能向腫瘤部位遷移并表達(dá)IFN-β抑制腫瘤的生長。此外,hUC-MSCs也被作為卵巢癌基因治療的載體細(xì)胞,發(fā)揮了顯著的抗腫瘤作用[7]。本研究通過Transwell遷移實驗證明hUC-MSCs具有強大的向骨肉瘤Saos-2細(xì)胞遷移的能力,表明hUC-MSCs有可能成為骨肉瘤基因治療的重要載體工具。然而進一步的研究卻顯示hUC-MSCs能通過分泌大量的細(xì)胞因子促進Saos-2細(xì)胞增殖和遷移,這就為hUC-MSCs應(yīng)用于骨肉瘤的治療帶來了巨大的安全隱患。因此,有必要進一步研究hUC-MSCs促進骨肉瘤增殖的分子機制,為消除hUC-MSCs的促瘤因素提供依據(jù),使hUC-MSCs盡早安全有效地用于骨肉瘤的治療,無疑具有重大的臨床意義。
IL-6與癌癥的發(fā)生、發(fā)展高度相關(guān),是參與腫瘤進程最重要炎性因子之一,多種惡性腫瘤能分泌大量IL-6,導(dǎo)致轉(zhuǎn)錄因子STAT3的持續(xù)性活化,進一步促進了IL-6表達(dá)上調(diào),這種正反饋調(diào)節(jié)為腫瘤的生長提供了良好的微環(huán)境[13]。 Lin等[14]發(fā)現(xiàn)骨肉瘤組織IL-6的表達(dá)明顯高于正常骨組織,進一步的研究表明IL-6能活化ICAM-1并促進骨肉瘤細(xì)胞的遷移。Tzeng等[15]也證明IL-6能活化ASK1通路進而上調(diào)血管內(nèi)皮生長因子,促進骨肉瘤的血管形成。研究表明hUC-MSCs能分泌多種細(xì)胞因子和炎癥因子,其中IL-6分泌量較高,可達(dá)(1 571.0±617.2)ng/L,遠(yuǎn)遠(yuǎn)超過骨髓間充質(zhì)干細(xì)胞的(704.0±51.5)ng/L[16-17]。本研究通過ELISA檢測發(fā)現(xiàn)hUC-MSCs分泌的IL-6高達(dá)(1 835.5±134.1)ng/L。為證實IL-6與Saos-2細(xì)胞增殖、遷移的關(guān)系,本研究將rhIL-6直接作用于Saos-2細(xì)胞,發(fā)現(xiàn)rhIL-6具有促進其增殖和遷移的作用;加入IL-6中和抗體后,hUC-MSCs-CM的促增殖和遷移作用明顯下降,以上數(shù)據(jù)充分說明了hUC-MSCs能通過分泌IL-6促進Saos-2細(xì)胞增殖和遷移。Transwell遷移實驗中,IL-6中和抗體預(yù)處理過的Saos-2細(xì)胞遷移能力明顯低于對照組,表明IL-6可能是hUC-MSCs分泌的細(xì)胞因子中最主要的促進骨肉瘤轉(zhuǎn)移的因素。進一步的RT-PCR檢測發(fā)現(xiàn)rhIL-6和hUC-MSCs-CM均能促進Saos-2細(xì)胞的增殖相關(guān)基因PCNA、cyclinD1和survivin表達(dá),IL-6中和抗體明顯削弱了hUC-MSCs-CM對以上基因的上調(diào)作用。
綜上,本研究表明hUC-MSCs能向骨肉瘤細(xì)胞定向遷移并分泌大量的IL-6;hUC-MSCs分泌的IL-6可能通過上調(diào)PCNA、cyclinD1和survivin的表達(dá),促進骨肉瘤細(xì)胞增殖;hUC-MSCs分泌的IL-6能促進骨肉瘤細(xì)胞遷移。本實驗明確了hUC-MSCs的促瘤因素,為其基因改造提供了依據(jù),促進了骨肉瘤基因治療的早日實現(xiàn)。
[參考文獻(xiàn)]
[1]Shi D, Wang D, Li X, et al. Allogeneic transplantation of umbilical cord-derived mesenchymal stem cells for diffuse alveolar hemorrhage in systemic lupus erythematosus[J]. Clin Rheumatol, 2012, 31(5):841-846.
[2]Li P, Cui K, Zhang B, et al. Transplantation of human umbilical cord-derived mesenchymal stem cells for the treatment of Becker muscular dystrophy in affected pedigree members[J]. Int J Mol Med, 2015, 35(4):1051-1057.
[3]Wang G, Li Y, Wang Y, et al. Roles of the co-culture of human umbilical cord Wharton′s jelly-derived mesenchymal stem cells with rat pancreatic cells in the treatment of rats with diabetes mellitus[J]. Exp Ther Med, 2014, 8(5):1389-1396.
[4]Zhang X, Zhang L, Xu W, et al. Experimental therapy for lung cancer: umbilical cord-derived mesenchymal stem cell-mediated interleukin-24 delivery[J]. Curr Cancer Drug Targets, 2013, 13(1):92-102.
[5]Zhang Y, Wang J, Ren M, et al. Gene therapy of ovarian cancer using IL-21-secreting human umbilical cord mesenchymal stem cells in nude mice[J]. J Ovarian Res, 2014, 7(8):1-10.
[6]Kalaszczynska I, Ferdyn K. Wharton′s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance[J]. Biomed Res Int, 2015,2015:430847.
[7]Yang C, Lei D, Ouyang W, et al. Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell linesinvitro[J]. Biomed Res Int, 2014, 2014:109389.
[8]Li T, Zhang C, Ding Y, et al. Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway[J]. Oncol Rep, 2015, 34(3):1469-1477.
[9]Jaffe N. Adjuvant chemotherapy in osteosarcoma: an odyssey of rejection and vindication[J]. Cancer Treat Res, 2009, 152(11):219-237.
[10]Compte M, Nunez-Prado N, Sanz L, et al. Immunotherapeutic organoids: a new approach to cancer treatment[J]. Biomatter, 2013, 3(1):e23897.
[11]Hata N, Shinojima N, Gumin J, et al. Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas[J]. Neurosurgery, 2010, 66(1):144-157.
[12]Matsuzuka T, Rachakatla RS, Doi C, et al. Human umbilical cord matrix-derived stem cells expressing interferon-beta gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice[J]. Lung Cancer, 2010, 70(1):28-36.
[13]Chang Q, Daly L, Bromberg J. The IL-6 feed-forward loop: a driver of tumorigenesis[J]. Semin Immunol, 2014, 26(1):48-53.
[14]Lin YM, Chang ZL, Liao YY, et al. IL-6 promotes ICAM-1 expression and cell motility in human osteosarcoma[J]. Cancer Lett, 2013, 328(1):135-143.
[15]Tzeng HE, Tsai CH, Chang ZL, et al. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma[J]. Biochem Pharmacol, 2013, 85(4):531-540.
[16]Friedman R, Betancur M, Boissel L, et al. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation[J]. Biol Blood Marrow Transplant, 2007, 13(12):1477-1486.
[17]Lu LL, Liu YJ, Yang SG, et al. Isolation and characte-rization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials[J]. Haematologica, 2006, 91(8):1017-1026.
(責(zé)任編輯: 陳妙玲, 余小慧)
hUC-MSCs promote proliferation and migration of osteosarcoma cells by secreting IL-6HU Wen-long1, 2, WU Ping-ping1, GENG Shu-guo1, 2, WANG Jian-yang1, 2, YIN Ming2
(1MedicineGraduateSchool,2DepartmentofOrthopedics,TheSecondAffiliatedHospital,NanchangUniversity,Nanchang330006,China.E-mail:yinming0791@aliyun.com)
[ABSTRACT]AIM: To investigate the effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on the proliferation and migration of osteosarcoma cells (Saos-2) and the underlying molecular mechanism. METHODS: hUC-MSCs were isolated and cultured by tissue explants adherent method. The cell surface markers on hUC-MSCs were identified by flow cytometry. The effects of conditioned medium (CM) from hUC-MSCs (hUC-MSCs-CM), recombinant human interleukin-6 (rhIL-6) and IL-6 neutralizing antibody on the proliferation of Saos-2 cells were detected by CCK-8 assay and cell counting. IL-6 secretion of hUC-MSCs was assayed by ELISA. RT-PCR was used to assess the transcription level of proliferation-related genes proliferating cell nuclear antigen (PCNA),cyclinD1 andsurvivin. The migration potential of hUC-MSCs and Saos-2 cells was measured by Transwell assay. RESULTS: hUC-MSCs migrated to Saos-2 cells. hUC-MSCs-CM contained a high concentration of IL-6, up to (1 835.5±134.1) ng/L. hUC-MSCs-CM and rhIL-6 promoted the proliferation and migration of Saos-2 cells. Addition of neutralizing antibody against IL-6 in the hUC-MSCs-CM impaired this proliferation and migration of Saos-2 cells. The mRNA expression ofPCNA,cyclinD1 andsurvivinwas up-regulated by hUC-MSCs-CM and rhIL-6, while this effect was dramatically attenuated by treatment with IL-6 neutralizing antibody. CONCLUSION: hUC-MSCs migrate to osteosarcoma cells and promote the proliferation and migration of osteosarcoma cells through secreting IL-6invitro.
[KEY WORDS]Human umbilical cord-derived mesenchymal stem cells; Interleukin-6; Cell proliferation; Cell migration
doi:10.3969/j.issn.1000- 4718.2016.02.002
[中圖分類號]R329.2+1; R730.23
[文獻(xiàn)標(biāo)志碼]A
通訊作者△Tel: 0792-86301236; E-mail: yinming0791@aliyun.com
*[基金項目]國家自然科學(xué)基金資助項目(No. 81160226)
[收稿日期]2015- 08- 10[修回日期] 2015- 12- 03
[文章編號]1000- 4718(2016)02- 0201- 07