• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of core electron temperature on current profile broadening with radiofrequency wave heating and current drive in EAST

    2022-09-06 13:04:26JiayuanZHANG張家源JinpingQIAN錢金平XianzuGONG龔先祖BinZHANG張斌MuquanWU吳木泉MiaohuiLI李妙輝JialeCHEN陳佳樂(lè)QingZANG臧慶ShiyaoLIN林士耀YanCHAO晁燕HailinZHAO趙海林RuirongLIANG梁瑞榮TianqiJIA賈天琦andYunchanHU胡云禪
    Plasma Science and Technology 2022年10期
    關(guān)鍵詞:張斌

    Jiayuan ZHANG(張家源),Jinping QIAN(錢金平),Xianzu GONG(龔先祖),Bin ZHANG (張斌),Muquan WU (吳木泉),Miaohui LI (李妙輝),Jiale CHEN (陳佳樂(lè)),Qing ZANG (臧慶),Shiyao LIN (林士耀),Yan CHAO (晁燕),Hailin ZHAO (趙海林),Ruirong LIANG (梁瑞榮),Tianqi JIA (賈天琦) and Yunchan HU (胡云禪)

    1 Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People’s Republic of China

    Abstract In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,which showed an outward shift of the current density profile of lower hybrid current drive (LHCD) in higher plasma density,the core electron temperature(Te(0)) is found to affect the LHCD current profile as well.According to equilibrium reconstruction,a significant increase in on-axis safety factor (q0) from 2.05 to 3.41 is observed by careful arrangement of RFCD.Simulations using ray-tracing code GENRAY and Fokker-Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile,revealing the sensitivity of the LHCD current profile to Te(0).The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher Te(0).With a lower Te(0),the LHCD current profile broadens due to off-axis deposition of power density.The sensitivity of the power deposition and current profile of LHCD to Te(0)provides a promising way to effectively optimize current profile via control of the core electron temperature.

    Keywords: current profile broadening,equilibrium reconstruction,core electron temperature,lower hybrid wave

    1.Introduction

    The advanced tokamak (AT) is widely considered to be one of the most promising approaches to tackle challenges regarding future fusion reactors,where inductive current drive is replaced by external current drive and bootstrap current drive[1].Current profile tailoring is of great significance for AT operation since a proper current profile shape is capable of avoiding MHD activities and forming internal transport barriers (ITB),which would enhance plasma performance to a large extent.There have been a number of research projects on the active control of current profile in dominant machines worldwide.DIII-D proposed feedback control of on-axis or minimum value of q using electron cyclotron wave heating (ECH) and neutral beam injection(NBI) to modify plasma conductivity so as to slow down the inward penetration of Ohmic current during the current ramp-up phase [2].An elevated minimum q (qmin)~1.4 has also been obtained using off-axis NBI after redirecting up to 5 MW of NBI from on-to off-axis in DIII-D,reaching a high value of βN~3.5 free of tearing modes owing to high qmin[3].However,improved confinement was not obtained in JET using the same strategy,albeit a similar q profile was demonstrated,an alternative with a faster current ramp-up rate and current overshoot was chosen to reach the target of high plasma confinement with broad current profile[4].Besides,a sustained ITB for 3.7 s with low/negative magnetic shear remaining off-axis has also been obtained by continuing the coupling of LHCD power during the main heating phase in JET [5],where the lower hybrid wave spectral broadening induced by parametric instability(PI)[6,7]is considered to play an important role.ASDEX Upgrade[8]discovered different plasma confinements with early heating during the current rampup phase and late heating during the flattop phase,where the former generated a transient reversed q profile.Real-time control of qminhas been achieved in JT-60U [9]using off-axis LHCD which could raise on-axis q under a proper setup;this process was completed through the control of the injected power of LHCD,hence its current drive.

    In EAST,LHCD [10,11]has been used as the main actuator to control the current profile because of its widely recognized high current drive efficiency.Different shapes of safety factor profiles have been demonstrated in past EAST campaigns under careful LHCD arrangements [12-16].It is,however,not easy to establish weak or reversed magnetic shear due to high-Z impurity accumulation in the core region,which is believed to improve confinement significantly,especially when EAST has upgraded both upper and lower divertor to ITER-like tungsten divertors in 2021.Therefore,to explore current profile broadening in the hope of shear reversal establishment,a series of current profile control experiments have been conducted in EAST.In this work,broad current profiles characterized by reduced internal inductance operation have been achieved using different heating and current drive (H&CD) schemes of radiofrequency (RF) waves.By examining the current profile characteristics in the process,it is found that the Te(0) plays a key role in the current profile broadening.According to both experiments and simulation analysis,current profiles and power density profiles of LHCD are found to be sensitive to the Te(0)where higher Te(0) leads to peak LHCD current profile while lower Te(0) helps broaden the LHCD current profile.

    In the following sections,a summary of recent EAST experiments is given in section 2 with a detailed demonstration of current profile broadening experiments with different RF arrangements.The sensitivity of LHCD current profiles and power density profiles to the core electron temperature is discussed in section 3 in detail.Finally,a summary is given in section 4.

    2.Broadening of current profiles through RF adjustment

    It is desirable to obtain broad current profiles since ITB formation is heavily associated with the weak or reversed shear and hence broad or even hollow current profiles[17].EAST is equipped with very flexible radio-frequency heating and current drive systems which are in use at present to tailor the current profile,two ECH gyrotron systems capable of producing a maximum power of 2 MW in total at a frequency of 140 GHz,and two LHCD systems at frequencies of 2.45 GHz and 4.6 GHz,respectively.It should be noted that the 4.6 GHz LHCD is preferred to the 2.45 GHz LHCD in EAST to fulfill the role of current drive and current profile control,considering the avoidance of parametric instability (PI) [10]which would influence the coupling of the lower hybrid wave into plasmas and hence the current drive efficiency at lower frequency [18,19]and the topology analysis of the propagation domain [20].

    Figure 1 summarizes recent current profile control experiments with the same Ip= 0.4 MA in EAST,showing the correlation of the internal inductance between plasma density and Te(0),whererevealing the shape of the current profile (i.e.,decreasinglirepresents current profile broadening and vice versa).As shown in previous experiments[12],higher plasma density is beneficial to the current profile broadening because the LHCD current profile is likely to shift outward under higher plasma density as the LHCD is the dominant current drive in EAST.The correlation betweenliand neshown in figure 1(a) also demonstrates the same tendency,implying the effect of plasma density on current density profiles.On the other hand,the correlation betweenliand Te(0)makes it more obvious that higher Te(0)leads to a peak current profile as shown in figure 1(b),indicating that current density profiles may be more sensitive to Te(0).

    Figure 1.Summary of recent current profile control experiments in EAST,where (a) demonstrates the correlation between the internal inductance and plasma density and (b) shows the correlation between li and Te(0).

    Figure 2.Time traces of several plasma parameters of EAST shots with different RF H&CD schemes including (a) plasma current in MA,(b) line-averaged density,(c) internal inductance,(d) power of ECH in MW and (e) power of LHCD in MW.

    The sensitivity of Te(0)to current profile is also observed in detailed experiments.Broad current profiles characterized by reducedliwith Ip= 0.4 MA and line-averaged density〈ne〉~4.5 × 1019m?3have been achieved using different RF injection schemes as shown in figure 2.As can be seen from figure 2(d),the difference in RF H&CD lies mainly in the ECH power.In the discharge of #85327,an ECH power of 0.9 MW is applied,whereas no ECH power is applied in shot #85389.The power of LHCD is only slightly lower in the discharge of #85389,as shown in figure 2(e) at about 2.7 MW compared to 3 MW in shot #85327.Note that the first power stage in figure 2(e) indicates the injection of 2.45 GHz LHCD while the second indicates the injection of 4.6 GHz LHCD.The difference in the input power results in a significant decrease ofli,as is clearly shown in figure 2(c).In shot #85327,theliduring the flattop phase is about 0.88 while that in #85389 is about 0.74,representing obvious current profile broadening with LHCD only.

    Equilibrium reconstruction [21,22]has been carried out with the verification of the soft x-ray(SXR)emissivity profile based on the theory that iso-emissivity surfaces of SXR are able to represent surfaces of poloidal flux when assuming that electron density,impurity density and electron temperature are all constant on a magnetic surface [23].It should be pointed out that the reconstruction process has been constrained by the internal measurement of the polarimeterinterferometer (POINT) [24].The SXR iso-emissivity surfaces are used to verify the reconstruction results as a double check,as shown in figure 3(b).The equilibrium reconstruction results are deemed reasonable considering two factors.First,fluxes of both poloidal flux and SXR emissivity share the same peak location at R = 1.9 m,indicating the same magnetic axis in both profiles.Second,the rectangle in black illustrates four points along the profiles,showing the same value of poloidal flux at the same SXR emissivity with a tolerable error of 0.7% between F1and F2.As shown in figure 3(a),q0is 2.05 in #85327 with the H&CD of both LHCD and ECH while increased q0~3.41 is obtained in#85389 with LHCD only,confirming that the current profile is significantly broadened in#85389 with LHCD as the only actuator.The distinct difference in q profiles is also in line with that inl.i

    3.The impact of core electron temperature on current profile

    In order to understand the mechanism of current profile broadening through RF H&CD arrangement,an investigation into the influence of Te(0) on the current profile has been carried out.The main difference for the cases discussed above is the RF actuator which serves as the electron-heating source.Therefore,the difference in RF power input would straightforwardly influence the electron temperature.On the other hand,the deposition location of ECH is in the plasma core with the toroidal and poloidal angles of 200° and 77°,respectively,in shot#85327,which would consequently lead to the difference in Te(0).Based on these facts,Te(0) is assumed to play a key role in the current profile broadening process.

    Figure 4 illustrates time traces of ECE signals,liand RF power input from 1 to 4 s,covering phases of the initiation and the maintenance of theliseparation.ECE signals shown in figure 4(a)represent the Te(0)variation[25]with RF power injection,as in figures 4(c)and(d),clearly distinguishing the gap in Te(0)between shots#85327 and#85389.To examine the current profile behavior of LHCD when thelistarts to separate,hard x-ray (HXR) analysis has been carried out at t = 2.4 s,as the magenta dashed line shows in figure 4.The comparison between HXR radiation profiles in different forms is demonstrated in figure 5 where the shaded area represents the plasma core region near chord number 12.Figure 5(a) illustrates the relative intensity comparison of HXR profiles where higher intensity is observed for shot#85327 compared to shot #85389.It has been widely recognized that the measurement of LHCD performance can be examined by fast electron population generated through electron Landau damping[26,27],which can be observed by HXR diagnostics by receiving the bremsstrahlung emission in the spectrum range of the HXR.Hence,the higher HXR intensity shown in shot #85327 indicates that much more power is deposited in the plasma core,implying a higher LHCD efficiency for shot #85327 with higher Te(0) with ECH.On the other hand,the LHCD current profile broadening could be inferred by normalized HXR profiles given in figure 5(b) where the normalization is performed through normalizing the intensity of HXR in each chord to the value of chord 12,which could reveal the shape of the LHCD current profile.Compared to the normalized HXR profile for shot#85327,shot#85389 shows multiple peaks at chords of 11,13 and 15,indicating a much broader LHCD current profile with lower Te(0).Therefore,combined with the differences in both LHCD efficiency and power deposition location shift indicated by different forms of HXR profiles in figure 5,it is reasonable to conclude that a higher Te(0) with the H&CD scheme of both LHCD and ECH leads to a peak LHCD current profile and provides evidence of the sensitivity of the LHCD current profile to Te(0).

    Figure 3.(a)Safety factor profiles at t = 3.8 s during flattop phase with error bar in the light shaded area,(b)magnetic flux profile obtained in equilibrium reconstruction in blue versus emissivity profile obtained from SXR reconstruction in red at Z = 0,both of which are normalized to its own maximum value.The black rectangle marks four points on profiles,where E1 and E2 are on the emissivity profile,F1 and F2 are on the flux profile.

    Figure 4.Time histories from 1 to 4 s of several plasma parameters including(a)ECE signal signifying Te(0),(b)internal inductance,(c)power of ECH in MW and(d)power of LHCD in MW.The magenta dashed line indicates t = 2.4 s shortly after li separation while the green dashed line indicates t = 3.8 s when a large gap of li separation is maintained.

    Figure 5.HXR profiles for shot#85327 in red and shot#85389 in blue at t = 2.4 s.(a)HXR relative intensity profiles with error bars and(b) normalized HXR profiles.

    Figure 6.(a) Temperature profiles,(b) density profiles,(c) LHCD current profiles and (d) power deposition profiles of LHCD.The shaded area is the error bar region for each profile.

    Figure 7.Comparison of (a) measured HXR profiles and (b) HXR profiles came from CQL3D.

    More evidence could be found intuitively in the phase when a larger difference in Te(0) between shots #85327 and#85389 is maintained.A detailed simulation analysis of the LHCD current profile has been carried out during this phase at t = 3.8 s,as shown in figure 6,along with temperature profiles which came from Thomson scattering (TS) diagnostics and density profiles obtained by POINT and reflectometry.The difference in Te(0)shown in Teprofiles is in line with ECE signals,showing consistency of the measurement between TS and ECE.Density profiles in figure 6(b) only show slight differences,thus excluding the role of density in the current profile broadening process.

    Current density profiles and power deposition profiles of LHCD are calculated using ray-tracing code GENRAY and Fokker-Planck code CQL3D,as shown in figures 6(c) and(d).Note that errors may exist in Wentzel-Kramers-Brillouin(WKB) approximation in the ray-tracing code [28,29],nevertheless results are consistent with experimental observations.As can be seen,LHCD current profiles vary with temperature profiles.In the case of higher Te(0),the LHCD current profile peaks near the plasma core region with higher

    peak value.From the power deposition profile,one can also find that a large amount of power is deposited near the plasma core,which is in line with the current profile.Clear broadening of the LHCD current profile could be observed in shot#85389 with lower Te(0) by the generation of a second current peak near ρ~0.7.The peak value close to the core also decreases owing to lower LHCD efficiency.Likewise,the broadening of the LHCD current profile also reflects in the power deposition profile,whose shape remains flat in the radius of ρ<0.7.

    Measured HXR profiles in figure 7(a) show that the current drive efficiency drops with decreasing Te(0),indicated by decreased intensity in the core,which serves as another factor in current profile broadening.Simulated HXR profiles obtained in CQL3D code are also given in figure 7(b).In a comparison of simulated HXR profiles with measured ones,calculated LHCD current profiles using GENRAY-CQL3D could be verified.Despite spikes in measured HXR profiles which came from diagnostics,the shape and tendency are quite similar in the core region,showing a good match of LHCD current profiles between experiments and modelling.

    By summarizing results of both experimental observation and simulations,it is not difficult to conclude the sensitivity of the LHCD current profile to the Te(0).Based on the HXR profile analysis shortly afterlistarts to separate,the peak LHCD current profile could be found in the higher Te(0)case while the broadened current profile could be inferred from different forms of HXR profiles with lower Te(0).More intuitively,LHCD current profiles broaden as the LHCD deposition location shifts outward in the lower Te(0) case when theliseparation is maintained at t = 3.8 s compared to the higher Te(0) case.The formation of the peaked current profile is a result of the combined action of on-axis LHCD deposition and higher current drive efficiency in higher Te(0).

    4.Summary

    In this work,the clear broadening of a current profile characterized by lowerliis achieved by using LHCD as the only actuator compared with the case with H&CD of both LHCD and ECH.In the absence of ECH power,the Te(0) becomes lower compared to the case with both LHCD and ECH,which results in the outward shift of both the current profile and the power density profile of LHCD.The equilibrium reconstruction also confirms the current profile broadening behavior with q0increased to 3.41 in lower Te(0) from 2.05 in higher Te(0).More intuitively,the sensitivity of the LHCD current profile to Te(0) is carefully evaluated by HXR analysis and detailed simulations of LHCD current profiles using GENRAY and CQL3D,both of which confirm that higher Te(0) leads to the peaking of LHCD current profiles,while lower Te(0) is beneficial in the broadening of the LHCD current profile.

    As mentioned before,similar current profile broadening behavior has been observed in EAST density scan experiments.However,it is the difference in plasma density that accounts mainly for the LHCD current profile broadening,thus leading to the overall current density profile broadening.In fact,the temperature profile also varies in density scan experiments,albeit to a smaller degree.The summary in figure 1 points out the dependence of current profile broadening on plasma density,as well as on Te(0).The tendency found in the correlation betweenliand Te(0)is more obvious compared to density,which indicates that the current profile may be more easily affected by temperature.According to the sensitivity of the LHCD current profile to Te(0) demonstrated in this work,the profile control of temperature may be more effective in tailoring the current density profile in EAST,which provides promising approaches to establishing weak or reversed shear in future experiments.

    Acknowledgments

    This work is supported by the National MCF Energy R&D Program of China (No.2019YFE0304000),National Natural Science Foundation of China (Nos.12005262 and 11975274),the Anhui Provincial Natural Science Foundation(No.2108085J06),the Users with Excellence Program of Hefei Science Center CAS (Nos.2021HSC-UE018 and 2020HSC-UE011),the External Cooperation Program of Chinese Academy of Sciences (No.116134KYSB20180035)and the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences (No.DSJJ-2021-04).

    猜你喜歡
    張斌
    夕陽(yáng)家園
    金秋(2022年10期)2022-11-25 16:28:12
    Design of three-dimensional imaging lidar optical system for large field of view scanning
    A scanning distortion correction method based ongalvanometer Lidar system?
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    一路有你都是歌
    Dynamic measurement of beam divergence angle of different fields of view of scanning lidar?
    《花之戀》
    The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers?
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    天水同映長(zhǎng)安塔
    金秋(2018年12期)2018-09-17 09:33:08
    国产高清videossex| 久久 成人 亚洲| 亚洲性夜色夜夜综合| 一区福利在线观看| 精品日产1卡2卡| 久久狼人影院| 制服诱惑二区| 精品欧美国产一区二区三| 亚洲精品美女久久av网站| 国产精品免费一区二区三区在线| 国产亚洲精品av在线| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 黑丝袜美女国产一区| 亚洲第一青青草原| 国产一级毛片七仙女欲春2 | 麻豆成人av在线观看| 成人国产一区最新在线观看| 精品国产国语对白av| 老司机午夜福利在线观看视频| 女生性感内裤真人,穿戴方法视频| 日本精品一区二区三区蜜桃| 亚洲电影在线观看av| 特大巨黑吊av在线直播 | 999精品在线视频| 级片在线观看| 人人妻人人澡人人看| 国产精品精品国产色婷婷| 日韩精品青青久久久久久| 亚洲av五月六月丁香网| 免费一级毛片在线播放高清视频| 欧美大码av| 久久久精品国产亚洲av高清涩受| 一本综合久久免费| 人人妻,人人澡人人爽秒播| 亚洲av五月六月丁香网| 欧美+亚洲+日韩+国产| 国产精品野战在线观看| 国产又黄又爽又无遮挡在线| 日本一本二区三区精品| 夜夜躁狠狠躁天天躁| 精品乱码久久久久久99久播| 999久久久国产精品视频| 久久久久精品国产欧美久久久| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| 一进一出抽搐gif免费好疼| 一进一出好大好爽视频| 久久热在线av| 午夜精品在线福利| 好看av亚洲va欧美ⅴa在| 国产精品久久电影中文字幕| 欧美成人午夜精品| 免费在线观看黄色视频的| 男女午夜视频在线观看| 欧美三级亚洲精品| 精品国内亚洲2022精品成人| 51午夜福利影视在线观看| 免费在线观看完整版高清| 色哟哟哟哟哟哟| 免费在线观看日本一区| 夜夜夜夜夜久久久久| 性色av乱码一区二区三区2| 一个人免费在线观看的高清视频| а√天堂www在线а√下载| 女生性感内裤真人,穿戴方法视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美性猛交黑人性爽| 久久人人精品亚洲av| 18禁黄网站禁片免费观看直播| 色哟哟哟哟哟哟| 国产午夜福利久久久久久| 欧美日韩亚洲国产一区二区在线观看| 成人国产一区最新在线观看| 中文亚洲av片在线观看爽| 国产精品一区二区精品视频观看| 午夜成年电影在线免费观看| 欧美成人一区二区免费高清观看 | 少妇 在线观看| 精品国内亚洲2022精品成人| 一本一本综合久久| 国产一区二区三区在线臀色熟女| 国产亚洲精品av在线| 亚洲欧美激情综合另类| 热re99久久国产66热| 亚洲精品在线观看二区| 国产视频一区二区在线看| 午夜免费鲁丝| 老熟妇乱子伦视频在线观看| 特大巨黑吊av在线直播 | 日韩欧美 国产精品| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久精品电影 | 亚洲熟女毛片儿| 精品国产一区二区三区四区第35| 成人国产综合亚洲| 91九色精品人成在线观看| 午夜成年电影在线免费观看| 一进一出好大好爽视频| 97人妻精品一区二区三区麻豆 | 国产精品1区2区在线观看.| 一本一本综合久久| 狠狠狠狠99中文字幕| www.999成人在线观看| 999久久久精品免费观看国产| 日韩欧美三级三区| 丝袜在线中文字幕| 成人18禁高潮啪啪吃奶动态图| 成人三级做爰电影| 首页视频小说图片口味搜索| 在线观看日韩欧美| 亚洲熟妇中文字幕五十中出| 精品一区二区三区av网在线观看| 久久久久久大精品| 国产欧美日韩精品亚洲av| 在线十欧美十亚洲十日本专区| 国产国语露脸激情在线看| 国产人伦9x9x在线观看| 国产精品乱码一区二三区的特点| 精品高清国产在线一区| 成人国产综合亚洲| 伊人久久大香线蕉亚洲五| 男女做爰动态图高潮gif福利片| 亚洲av成人av| 夜夜爽天天搞| 美女 人体艺术 gogo| 操出白浆在线播放| 国产激情久久老熟女| 一级毛片女人18水好多| 在线观看舔阴道视频| 男女那种视频在线观看| 亚洲,欧美精品.| 国产一卡二卡三卡精品| 久久久久久久午夜电影| 免费搜索国产男女视频| 免费在线观看黄色视频的| 中文在线观看免费www的网站 | 丝袜人妻中文字幕| 十分钟在线观看高清视频www| 精品久久久久久久久久免费视频| 9191精品国产免费久久| 国内精品久久久久精免费| 在线免费观看的www视频| 深夜精品福利| 久久久久九九精品影院| 成年女人毛片免费观看观看9| 亚洲av电影不卡..在线观看| 国产亚洲精品综合一区在线观看 | 亚洲第一欧美日韩一区二区三区| 免费一级毛片在线播放高清视频| 欧美日韩黄片免| 日韩精品免费视频一区二区三区| 久久久久久国产a免费观看| 大型av网站在线播放| 少妇熟女aⅴ在线视频| 欧美日本视频| 午夜两性在线视频| 美女大奶头视频| 久久精品国产亚洲av香蕉五月| 人人妻,人人澡人人爽秒播| 法律面前人人平等表现在哪些方面| 久久久久久久久免费视频了| 男男h啪啪无遮挡| 亚洲中文字幕日韩| 亚洲成人精品中文字幕电影| 波多野结衣高清作品| 亚洲狠狠婷婷综合久久图片| 男女之事视频高清在线观看| 日韩大码丰满熟妇| 亚洲欧美一区二区三区黑人| 一级a爱视频在线免费观看| 不卡一级毛片| 国产高清激情床上av| 亚洲av成人av| 两个人视频免费观看高清| x7x7x7水蜜桃| 高潮久久久久久久久久久不卡| 色av中文字幕| 狠狠狠狠99中文字幕| 桃色一区二区三区在线观看| 国产成人精品久久二区二区免费| 少妇 在线观看| 丁香欧美五月| 淫秽高清视频在线观看| 午夜精品久久久久久毛片777| 两个人看的免费小视频| 国产精品野战在线观看| 久久国产亚洲av麻豆专区| 午夜免费成人在线视频| 亚洲精品中文字幕在线视频| 男人舔奶头视频| АⅤ资源中文在线天堂| 亚洲狠狠婷婷综合久久图片| 日韩国内少妇激情av| 久久精品国产99精品国产亚洲性色| 国产一区二区三区在线臀色熟女| 午夜激情福利司机影院| 欧美日本视频| 国产三级在线视频| 久久久久久久午夜电影| 国产欧美日韩一区二区精品| 亚洲欧洲精品一区二区精品久久久| 无限看片的www在线观看| 国产高清视频在线播放一区| 香蕉av资源在线| 99久久无色码亚洲精品果冻| 国产精品 欧美亚洲| 搞女人的毛片| 欧美又色又爽又黄视频| 日韩三级视频一区二区三区| 国产精品 国内视频| 免费人成视频x8x8入口观看| 亚洲午夜精品一区,二区,三区| 在线观看66精品国产| 91成人精品电影| 黄片小视频在线播放| 午夜亚洲福利在线播放| 一进一出抽搐动态| 亚洲国产中文字幕在线视频| 国产亚洲精品综合一区在线观看 | 欧美国产日韩亚洲一区| 成人亚洲精品av一区二区| 视频区欧美日本亚洲| 色播亚洲综合网| 精品无人区乱码1区二区| 黄片播放在线免费| 悠悠久久av| 18禁国产床啪视频网站| 欧美黑人巨大hd| 久久久久国产一级毛片高清牌| 日日爽夜夜爽网站| 亚洲精品国产区一区二| 欧美激情 高清一区二区三区| 免费看十八禁软件| 欧美国产日韩亚洲一区| 少妇 在线观看| 啦啦啦免费观看视频1| АⅤ资源中文在线天堂| 1024手机看黄色片| 亚洲欧洲精品一区二区精品久久久| 欧美性长视频在线观看| 久久国产精品男人的天堂亚洲| 黄色视频,在线免费观看| 国产成人一区二区三区免费视频网站| 国产成人av激情在线播放| 国产成人av激情在线播放| 亚洲自拍偷在线| 欧美+亚洲+日韩+国产| 国产av不卡久久| 国产av又大| 国内久久婷婷六月综合欲色啪| 韩国av一区二区三区四区| 免费在线观看影片大全网站| 最好的美女福利视频网| 国产人伦9x9x在线观看| 99国产精品一区二区三区| 中文字幕人成人乱码亚洲影| 18禁裸乳无遮挡免费网站照片 | 精品久久久久久成人av| 欧美日韩瑟瑟在线播放| 男女下面进入的视频免费午夜 | 少妇的丰满在线观看| 一级毛片女人18水好多| 欧美亚洲日本最大视频资源| 久久精品国产清高在天天线| 男人的好看免费观看在线视频 | 可以在线观看毛片的网站| ponron亚洲| or卡值多少钱| 国产97色在线日韩免费| 亚洲最大成人中文| 日韩欧美一区视频在线观看| www.www免费av| 淫妇啪啪啪对白视频| 午夜视频精品福利| 极品教师在线免费播放| 可以免费在线观看a视频的电影网站| 又黄又爽又免费观看的视频| 亚洲,欧美精品.| 久久香蕉激情| 香蕉久久夜色| 在线视频色国产色| 日韩av在线大香蕉| 久久伊人香网站| 免费无遮挡裸体视频| 久久久国产成人精品二区| 亚洲欧美精品综合久久99| 欧美精品啪啪一区二区三区| 欧美又色又爽又黄视频| 色播亚洲综合网| 99国产精品99久久久久| 国产又色又爽无遮挡免费看| 一区二区三区精品91| 亚洲av成人一区二区三| 18禁黄网站禁片免费观看直播| 亚洲精品久久国产高清桃花| 欧美一级a爱片免费观看看 | 国产在线精品亚洲第一网站| 国产一级毛片七仙女欲春2 | xxx96com| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 1024手机看黄色片| 国产精品电影一区二区三区| 白带黄色成豆腐渣| 一二三四社区在线视频社区8| aaaaa片日本免费| 怎么达到女性高潮| 老司机在亚洲福利影院| 亚洲国产毛片av蜜桃av| 国内毛片毛片毛片毛片毛片| 精品第一国产精品| 亚洲美女黄片视频| 亚洲成av人片免费观看| 欧美 亚洲 国产 日韩一| 黄色女人牲交| 国产成人一区二区三区免费视频网站| 日韩国内少妇激情av| 国产一区二区三区视频了| 中文字幕久久专区| 日韩精品青青久久久久久| АⅤ资源中文在线天堂| 男人的好看免费观看在线视频 | 亚洲人成77777在线视频| 色尼玛亚洲综合影院| 日本五十路高清| 18禁黄网站禁片午夜丰满| 欧美亚洲日本最大视频资源| 真人一进一出gif抽搐免费| 久久精品国产综合久久久| 亚洲精品美女久久av网站| √禁漫天堂资源中文www| 色在线成人网| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 日本一区二区免费在线视频| 国产精品综合久久久久久久免费| av福利片在线| 大型黄色视频在线免费观看| av福利片在线| 好男人电影高清在线观看| 在线观看免费日韩欧美大片| 精品国产超薄肉色丝袜足j| 18美女黄网站色大片免费观看| 欧美日韩瑟瑟在线播放| 亚洲七黄色美女视频| 国产成+人综合+亚洲专区| 视频区欧美日本亚洲| 成人欧美大片| 国产午夜精品久久久久久| 啦啦啦观看免费观看视频高清| 亚洲男人天堂网一区| 午夜福利成人在线免费观看| 午夜影院日韩av| 在线观看免费午夜福利视频| 欧美+亚洲+日韩+国产| 亚洲成人久久爱视频| 麻豆久久精品国产亚洲av| 青草久久国产| 亚洲中文字幕一区二区三区有码在线看 | 久久精品国产亚洲av香蕉五月| 国产亚洲av嫩草精品影院| 国产亚洲精品综合一区在线观看 | 一级a爱视频在线免费观看| 19禁男女啪啪无遮挡网站| 女警被强在线播放| 亚洲av五月六月丁香网| 久久久久久久午夜电影| 国产精品永久免费网站| 亚洲成人久久性| 国产精品精品国产色婷婷| 亚洲精品国产一区二区精华液| 国产精品99久久99久久久不卡| 欧美激情 高清一区二区三区| 国产区一区二久久| 成人三级黄色视频| 欧美日韩亚洲国产一区二区在线观看| 国产高清激情床上av| 国产成人啪精品午夜网站| av欧美777| 久久久国产成人免费| 欧美性长视频在线观看| 大型av网站在线播放| 欧洲精品卡2卡3卡4卡5卡区| 欧美在线黄色| 国产精品 欧美亚洲| 丁香欧美五月| √禁漫天堂资源中文www| 一区二区日韩欧美中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 亚洲国产看品久久| 午夜成年电影在线免费观看| 久久中文看片网| 91大片在线观看| 欧美黄色片欧美黄色片| 脱女人内裤的视频| 精品久久久久久久毛片微露脸| 精品久久久久久久人妻蜜臀av| 美女高潮到喷水免费观看| 99国产精品99久久久久| 免费看美女性在线毛片视频| 日韩精品中文字幕看吧| 欧美黑人巨大hd| 一级a爱视频在线免费观看| 这个男人来自地球电影免费观看| 亚洲成人免费电影在线观看| 制服诱惑二区| 国内少妇人妻偷人精品xxx网站 | 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 1024视频免费在线观看| 亚洲精品国产区一区二| 人人妻人人澡人人看| 国产av在哪里看| 99久久精品国产亚洲精品| 免费看a级黄色片| www国产在线视频色| 午夜福利欧美成人| 一本精品99久久精品77| 国产av不卡久久| 波多野结衣巨乳人妻| 免费高清在线观看日韩| av电影中文网址| 一夜夜www| 国产黄片美女视频| 成人手机av| 免费在线观看影片大全网站| 亚洲人成伊人成综合网2020| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久| 亚洲男人天堂网一区| 成人一区二区视频在线观看| 亚洲中文av在线| 波多野结衣巨乳人妻| 久久中文字幕一级| 国内少妇人妻偷人精品xxx网站 | 欧美激情高清一区二区三区| 亚洲国产精品合色在线| 18美女黄网站色大片免费观看| 精品国产超薄肉色丝袜足j| 亚洲人成电影免费在线| 无遮挡黄片免费观看| 亚洲男人的天堂狠狠| avwww免费| 黄色丝袜av网址大全| 亚洲久久久国产精品| 国产激情欧美一区二区| 香蕉丝袜av| 欧美乱色亚洲激情| 夜夜爽天天搞| 999精品在线视频| 非洲黑人性xxxx精品又粗又长| 午夜影院日韩av| 国产精品久久电影中文字幕| 欧美激情 高清一区二区三区| 一本精品99久久精品77| 国产一区二区在线av高清观看| 色播在线永久视频| 99国产精品一区二区蜜桃av| 精品国产亚洲在线| 免费在线观看成人毛片| 一级a爱片免费观看的视频| www.熟女人妻精品国产| 久久精品影院6| 韩国av一区二区三区四区| 国产成人精品久久二区二区91| 免费无遮挡裸体视频| 久久九九热精品免费| 韩国精品一区二区三区| 亚洲欧美精品综合久久99| 亚洲激情在线av| 丁香六月欧美| 少妇裸体淫交视频免费看高清 | 妹子高潮喷水视频| 美女 人体艺术 gogo| 欧美av亚洲av综合av国产av| 久久伊人香网站| 国产欧美日韩精品亚洲av| 看黄色毛片网站| 精品免费久久久久久久清纯| 亚洲三区欧美一区| 热99re8久久精品国产| 巨乳人妻的诱惑在线观看| 久久午夜综合久久蜜桃| 亚洲精品粉嫩美女一区| 欧美性长视频在线观看| 国产色视频综合| 日韩精品青青久久久久久| 人妻久久中文字幕网| 91麻豆精品激情在线观看国产| 看免费av毛片| 国产伦人伦偷精品视频| 在线观看免费视频日本深夜| 一进一出抽搐动态| 男女下面进入的视频免费午夜 | av在线播放免费不卡| 最新美女视频免费是黄的| 亚洲精品国产精品久久久不卡| 欧美 亚洲 国产 日韩一| 精品久久久久久久末码| 男人舔女人的私密视频| 欧美另类亚洲清纯唯美| 中文字幕人妻丝袜一区二区| 无限看片的www在线观看| 日韩大码丰满熟妇| 韩国精品一区二区三区| 午夜成年电影在线免费观看| 久久久水蜜桃国产精品网| 亚洲一区二区三区不卡视频| 免费看十八禁软件| 久久精品人妻少妇| 日本三级黄在线观看| 亚洲av成人av| 亚洲自偷自拍图片 自拍| 这个男人来自地球电影免费观看| 侵犯人妻中文字幕一二三四区| 一本一本综合久久| 亚洲国产精品999在线| 国产人伦9x9x在线观看| 久久久久久大精品| 免费无遮挡裸体视频| 欧美色视频一区免费| 久久人人精品亚洲av| 欧美大码av| 美女高潮到喷水免费观看| 国产精品国产高清国产av| 久久性视频一级片| 欧美日本亚洲视频在线播放| 久久国产精品人妻蜜桃| 黑丝袜美女国产一区| 精品不卡国产一区二区三区| 99久久国产精品久久久| 男女下面进入的视频免费午夜 | 亚洲第一av免费看| 国产在线精品亚洲第一网站| 黄频高清免费视频| 国产成人欧美| 99久久综合精品五月天人人| 亚洲精品美女久久av网站| www日本在线高清视频| 国产精品av久久久久免费| 亚洲熟女毛片儿| aaaaa片日本免费| 91麻豆精品激情在线观看国产| 久久精品国产综合久久久| 最近最新免费中文字幕在线| 久久欧美精品欧美久久欧美| 美女扒开内裤让男人捅视频| 国产精品二区激情视频| 亚洲专区字幕在线| 免费看十八禁软件| 午夜免费成人在线视频| 观看免费一级毛片| 免费看美女性在线毛片视频| 精品国产超薄肉色丝袜足j| 国产成人欧美在线观看| 日本精品一区二区三区蜜桃| 色婷婷久久久亚洲欧美| 可以在线观看的亚洲视频| 一a级毛片在线观看| 亚洲 欧美一区二区三区| 欧美成人性av电影在线观看| 国产99白浆流出| 欧美成人免费av一区二区三区| 久久久水蜜桃国产精品网| 久久久久国产精品人妻aⅴ院| 99精品久久久久人妻精品| 亚洲片人在线观看| 成人欧美大片| 久久精品91无色码中文字幕| 免费看a级黄色片| 国产成人av激情在线播放| 男女之事视频高清在线观看| 一区二区三区高清视频在线| svipshipincom国产片| 淫秽高清视频在线观看| 久久香蕉精品热| 国产区一区二久久| 88av欧美| 亚洲va日本ⅴa欧美va伊人久久| 国产av又大| 日韩 欧美 亚洲 中文字幕| 国产99久久九九免费精品| 一级片免费观看大全| 亚洲 国产 在线| 中文字幕最新亚洲高清| 久久久国产精品麻豆| 日韩精品中文字幕看吧| 国产成人一区二区三区免费视频网站| 国产私拍福利视频在线观看| 美国免费a级毛片| 1024手机看黄色片| 久久精品aⅴ一区二区三区四区| 黑人操中国人逼视频| 欧美性长视频在线观看| 一本一本综合久久| 亚洲自拍偷在线| 99精品在免费线老司机午夜| 一个人观看的视频www高清免费观看 | 三级毛片av免费| 日韩欧美一区二区三区在线观看| 国产伦在线观看视频一区| 高清毛片免费观看视频网站| 啦啦啦免费观看视频1| 男男h啪啪无遮挡| 成人手机av| 精品国产一区二区三区四区第35| 国产成人精品久久二区二区免费| 大香蕉久久成人网| 亚洲av成人不卡在线观看播放网| 最新美女视频免费是黄的| av视频在线观看入口| 伊人久久大香线蕉亚洲五|