• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of core electron temperature on current profile broadening with radiofrequency wave heating and current drive in EAST

    2022-09-06 13:04:26JiayuanZHANG張家源JinpingQIAN錢金平XianzuGONG龔先祖BinZHANG張斌MuquanWU吳木泉MiaohuiLI李妙輝JialeCHEN陳佳樂(lè)QingZANG臧慶ShiyaoLIN林士耀YanCHAO晁燕HailinZHAO趙海林RuirongLIANG梁瑞榮TianqiJIA賈天琦andYunchanHU胡云禪
    Plasma Science and Technology 2022年10期
    關(guān)鍵詞:張斌

    Jiayuan ZHANG(張家源),Jinping QIAN(錢金平),Xianzu GONG(龔先祖),Bin ZHANG (張斌),Muquan WU (吳木泉),Miaohui LI (李妙輝),Jiale CHEN (陳佳樂(lè)),Qing ZANG (臧慶),Shiyao LIN (林士耀),Yan CHAO (晁燕),Hailin ZHAO (趙海林),Ruirong LIANG (梁瑞榮),Tianqi JIA (賈天琦) and Yunchan HU (胡云禪)

    1 Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People’s Republic of China

    Abstract In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,which showed an outward shift of the current density profile of lower hybrid current drive (LHCD) in higher plasma density,the core electron temperature(Te(0)) is found to affect the LHCD current profile as well.According to equilibrium reconstruction,a significant increase in on-axis safety factor (q0) from 2.05 to 3.41 is observed by careful arrangement of RFCD.Simulations using ray-tracing code GENRAY and Fokker-Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile,revealing the sensitivity of the LHCD current profile to Te(0).The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher Te(0).With a lower Te(0),the LHCD current profile broadens due to off-axis deposition of power density.The sensitivity of the power deposition and current profile of LHCD to Te(0)provides a promising way to effectively optimize current profile via control of the core electron temperature.

    Keywords: current profile broadening,equilibrium reconstruction,core electron temperature,lower hybrid wave

    1.Introduction

    The advanced tokamak (AT) is widely considered to be one of the most promising approaches to tackle challenges regarding future fusion reactors,where inductive current drive is replaced by external current drive and bootstrap current drive[1].Current profile tailoring is of great significance for AT operation since a proper current profile shape is capable of avoiding MHD activities and forming internal transport barriers (ITB),which would enhance plasma performance to a large extent.There have been a number of research projects on the active control of current profile in dominant machines worldwide.DIII-D proposed feedback control of on-axis or minimum value of q using electron cyclotron wave heating (ECH) and neutral beam injection(NBI) to modify plasma conductivity so as to slow down the inward penetration of Ohmic current during the current ramp-up phase [2].An elevated minimum q (qmin)~1.4 has also been obtained using off-axis NBI after redirecting up to 5 MW of NBI from on-to off-axis in DIII-D,reaching a high value of βN~3.5 free of tearing modes owing to high qmin[3].However,improved confinement was not obtained in JET using the same strategy,albeit a similar q profile was demonstrated,an alternative with a faster current ramp-up rate and current overshoot was chosen to reach the target of high plasma confinement with broad current profile[4].Besides,a sustained ITB for 3.7 s with low/negative magnetic shear remaining off-axis has also been obtained by continuing the coupling of LHCD power during the main heating phase in JET [5],where the lower hybrid wave spectral broadening induced by parametric instability(PI)[6,7]is considered to play an important role.ASDEX Upgrade[8]discovered different plasma confinements with early heating during the current rampup phase and late heating during the flattop phase,where the former generated a transient reversed q profile.Real-time control of qminhas been achieved in JT-60U [9]using off-axis LHCD which could raise on-axis q under a proper setup;this process was completed through the control of the injected power of LHCD,hence its current drive.

    In EAST,LHCD [10,11]has been used as the main actuator to control the current profile because of its widely recognized high current drive efficiency.Different shapes of safety factor profiles have been demonstrated in past EAST campaigns under careful LHCD arrangements [12-16].It is,however,not easy to establish weak or reversed magnetic shear due to high-Z impurity accumulation in the core region,which is believed to improve confinement significantly,especially when EAST has upgraded both upper and lower divertor to ITER-like tungsten divertors in 2021.Therefore,to explore current profile broadening in the hope of shear reversal establishment,a series of current profile control experiments have been conducted in EAST.In this work,broad current profiles characterized by reduced internal inductance operation have been achieved using different heating and current drive (H&CD) schemes of radiofrequency (RF) waves.By examining the current profile characteristics in the process,it is found that the Te(0) plays a key role in the current profile broadening.According to both experiments and simulation analysis,current profiles and power density profiles of LHCD are found to be sensitive to the Te(0)where higher Te(0) leads to peak LHCD current profile while lower Te(0) helps broaden the LHCD current profile.

    In the following sections,a summary of recent EAST experiments is given in section 2 with a detailed demonstration of current profile broadening experiments with different RF arrangements.The sensitivity of LHCD current profiles and power density profiles to the core electron temperature is discussed in section 3 in detail.Finally,a summary is given in section 4.

    2.Broadening of current profiles through RF adjustment

    It is desirable to obtain broad current profiles since ITB formation is heavily associated with the weak or reversed shear and hence broad or even hollow current profiles[17].EAST is equipped with very flexible radio-frequency heating and current drive systems which are in use at present to tailor the current profile,two ECH gyrotron systems capable of producing a maximum power of 2 MW in total at a frequency of 140 GHz,and two LHCD systems at frequencies of 2.45 GHz and 4.6 GHz,respectively.It should be noted that the 4.6 GHz LHCD is preferred to the 2.45 GHz LHCD in EAST to fulfill the role of current drive and current profile control,considering the avoidance of parametric instability (PI) [10]which would influence the coupling of the lower hybrid wave into plasmas and hence the current drive efficiency at lower frequency [18,19]and the topology analysis of the propagation domain [20].

    Figure 1 summarizes recent current profile control experiments with the same Ip= 0.4 MA in EAST,showing the correlation of the internal inductance between plasma density and Te(0),whererevealing the shape of the current profile (i.e.,decreasinglirepresents current profile broadening and vice versa).As shown in previous experiments[12],higher plasma density is beneficial to the current profile broadening because the LHCD current profile is likely to shift outward under higher plasma density as the LHCD is the dominant current drive in EAST.The correlation betweenliand neshown in figure 1(a) also demonstrates the same tendency,implying the effect of plasma density on current density profiles.On the other hand,the correlation betweenliand Te(0)makes it more obvious that higher Te(0)leads to a peak current profile as shown in figure 1(b),indicating that current density profiles may be more sensitive to Te(0).

    Figure 1.Summary of recent current profile control experiments in EAST,where (a) demonstrates the correlation between the internal inductance and plasma density and (b) shows the correlation between li and Te(0).

    Figure 2.Time traces of several plasma parameters of EAST shots with different RF H&CD schemes including (a) plasma current in MA,(b) line-averaged density,(c) internal inductance,(d) power of ECH in MW and (e) power of LHCD in MW.

    The sensitivity of Te(0)to current profile is also observed in detailed experiments.Broad current profiles characterized by reducedliwith Ip= 0.4 MA and line-averaged density〈ne〉~4.5 × 1019m?3have been achieved using different RF injection schemes as shown in figure 2.As can be seen from figure 2(d),the difference in RF H&CD lies mainly in the ECH power.In the discharge of #85327,an ECH power of 0.9 MW is applied,whereas no ECH power is applied in shot #85389.The power of LHCD is only slightly lower in the discharge of #85389,as shown in figure 2(e) at about 2.7 MW compared to 3 MW in shot #85327.Note that the first power stage in figure 2(e) indicates the injection of 2.45 GHz LHCD while the second indicates the injection of 4.6 GHz LHCD.The difference in the input power results in a significant decrease ofli,as is clearly shown in figure 2(c).In shot #85327,theliduring the flattop phase is about 0.88 while that in #85389 is about 0.74,representing obvious current profile broadening with LHCD only.

    Equilibrium reconstruction [21,22]has been carried out with the verification of the soft x-ray(SXR)emissivity profile based on the theory that iso-emissivity surfaces of SXR are able to represent surfaces of poloidal flux when assuming that electron density,impurity density and electron temperature are all constant on a magnetic surface [23].It should be pointed out that the reconstruction process has been constrained by the internal measurement of the polarimeterinterferometer (POINT) [24].The SXR iso-emissivity surfaces are used to verify the reconstruction results as a double check,as shown in figure 3(b).The equilibrium reconstruction results are deemed reasonable considering two factors.First,fluxes of both poloidal flux and SXR emissivity share the same peak location at R = 1.9 m,indicating the same magnetic axis in both profiles.Second,the rectangle in black illustrates four points along the profiles,showing the same value of poloidal flux at the same SXR emissivity with a tolerable error of 0.7% between F1and F2.As shown in figure 3(a),q0is 2.05 in #85327 with the H&CD of both LHCD and ECH while increased q0~3.41 is obtained in#85389 with LHCD only,confirming that the current profile is significantly broadened in#85389 with LHCD as the only actuator.The distinct difference in q profiles is also in line with that inl.i

    3.The impact of core electron temperature on current profile

    In order to understand the mechanism of current profile broadening through RF H&CD arrangement,an investigation into the influence of Te(0) on the current profile has been carried out.The main difference for the cases discussed above is the RF actuator which serves as the electron-heating source.Therefore,the difference in RF power input would straightforwardly influence the electron temperature.On the other hand,the deposition location of ECH is in the plasma core with the toroidal and poloidal angles of 200° and 77°,respectively,in shot#85327,which would consequently lead to the difference in Te(0).Based on these facts,Te(0) is assumed to play a key role in the current profile broadening process.

    Figure 4 illustrates time traces of ECE signals,liand RF power input from 1 to 4 s,covering phases of the initiation and the maintenance of theliseparation.ECE signals shown in figure 4(a)represent the Te(0)variation[25]with RF power injection,as in figures 4(c)and(d),clearly distinguishing the gap in Te(0)between shots#85327 and#85389.To examine the current profile behavior of LHCD when thelistarts to separate,hard x-ray (HXR) analysis has been carried out at t = 2.4 s,as the magenta dashed line shows in figure 4.The comparison between HXR radiation profiles in different forms is demonstrated in figure 5 where the shaded area represents the plasma core region near chord number 12.Figure 5(a) illustrates the relative intensity comparison of HXR profiles where higher intensity is observed for shot#85327 compared to shot #85389.It has been widely recognized that the measurement of LHCD performance can be examined by fast electron population generated through electron Landau damping[26,27],which can be observed by HXR diagnostics by receiving the bremsstrahlung emission in the spectrum range of the HXR.Hence,the higher HXR intensity shown in shot #85327 indicates that much more power is deposited in the plasma core,implying a higher LHCD efficiency for shot #85327 with higher Te(0) with ECH.On the other hand,the LHCD current profile broadening could be inferred by normalized HXR profiles given in figure 5(b) where the normalization is performed through normalizing the intensity of HXR in each chord to the value of chord 12,which could reveal the shape of the LHCD current profile.Compared to the normalized HXR profile for shot#85327,shot#85389 shows multiple peaks at chords of 11,13 and 15,indicating a much broader LHCD current profile with lower Te(0).Therefore,combined with the differences in both LHCD efficiency and power deposition location shift indicated by different forms of HXR profiles in figure 5,it is reasonable to conclude that a higher Te(0) with the H&CD scheme of both LHCD and ECH leads to a peak LHCD current profile and provides evidence of the sensitivity of the LHCD current profile to Te(0).

    Figure 3.(a)Safety factor profiles at t = 3.8 s during flattop phase with error bar in the light shaded area,(b)magnetic flux profile obtained in equilibrium reconstruction in blue versus emissivity profile obtained from SXR reconstruction in red at Z = 0,both of which are normalized to its own maximum value.The black rectangle marks four points on profiles,where E1 and E2 are on the emissivity profile,F1 and F2 are on the flux profile.

    Figure 4.Time histories from 1 to 4 s of several plasma parameters including(a)ECE signal signifying Te(0),(b)internal inductance,(c)power of ECH in MW and(d)power of LHCD in MW.The magenta dashed line indicates t = 2.4 s shortly after li separation while the green dashed line indicates t = 3.8 s when a large gap of li separation is maintained.

    Figure 5.HXR profiles for shot#85327 in red and shot#85389 in blue at t = 2.4 s.(a)HXR relative intensity profiles with error bars and(b) normalized HXR profiles.

    Figure 6.(a) Temperature profiles,(b) density profiles,(c) LHCD current profiles and (d) power deposition profiles of LHCD.The shaded area is the error bar region for each profile.

    Figure 7.Comparison of (a) measured HXR profiles and (b) HXR profiles came from CQL3D.

    More evidence could be found intuitively in the phase when a larger difference in Te(0) between shots #85327 and#85389 is maintained.A detailed simulation analysis of the LHCD current profile has been carried out during this phase at t = 3.8 s,as shown in figure 6,along with temperature profiles which came from Thomson scattering (TS) diagnostics and density profiles obtained by POINT and reflectometry.The difference in Te(0)shown in Teprofiles is in line with ECE signals,showing consistency of the measurement between TS and ECE.Density profiles in figure 6(b) only show slight differences,thus excluding the role of density in the current profile broadening process.

    Current density profiles and power deposition profiles of LHCD are calculated using ray-tracing code GENRAY and Fokker-Planck code CQL3D,as shown in figures 6(c) and(d).Note that errors may exist in Wentzel-Kramers-Brillouin(WKB) approximation in the ray-tracing code [28,29],nevertheless results are consistent with experimental observations.As can be seen,LHCD current profiles vary with temperature profiles.In the case of higher Te(0),the LHCD current profile peaks near the plasma core region with higher

    peak value.From the power deposition profile,one can also find that a large amount of power is deposited near the plasma core,which is in line with the current profile.Clear broadening of the LHCD current profile could be observed in shot#85389 with lower Te(0) by the generation of a second current peak near ρ~0.7.The peak value close to the core also decreases owing to lower LHCD efficiency.Likewise,the broadening of the LHCD current profile also reflects in the power deposition profile,whose shape remains flat in the radius of ρ<0.7.

    Measured HXR profiles in figure 7(a) show that the current drive efficiency drops with decreasing Te(0),indicated by decreased intensity in the core,which serves as another factor in current profile broadening.Simulated HXR profiles obtained in CQL3D code are also given in figure 7(b).In a comparison of simulated HXR profiles with measured ones,calculated LHCD current profiles using GENRAY-CQL3D could be verified.Despite spikes in measured HXR profiles which came from diagnostics,the shape and tendency are quite similar in the core region,showing a good match of LHCD current profiles between experiments and modelling.

    By summarizing results of both experimental observation and simulations,it is not difficult to conclude the sensitivity of the LHCD current profile to the Te(0).Based on the HXR profile analysis shortly afterlistarts to separate,the peak LHCD current profile could be found in the higher Te(0)case while the broadened current profile could be inferred from different forms of HXR profiles with lower Te(0).More intuitively,LHCD current profiles broaden as the LHCD deposition location shifts outward in the lower Te(0) case when theliseparation is maintained at t = 3.8 s compared to the higher Te(0) case.The formation of the peaked current profile is a result of the combined action of on-axis LHCD deposition and higher current drive efficiency in higher Te(0).

    4.Summary

    In this work,the clear broadening of a current profile characterized by lowerliis achieved by using LHCD as the only actuator compared with the case with H&CD of both LHCD and ECH.In the absence of ECH power,the Te(0) becomes lower compared to the case with both LHCD and ECH,which results in the outward shift of both the current profile and the power density profile of LHCD.The equilibrium reconstruction also confirms the current profile broadening behavior with q0increased to 3.41 in lower Te(0) from 2.05 in higher Te(0).More intuitively,the sensitivity of the LHCD current profile to Te(0) is carefully evaluated by HXR analysis and detailed simulations of LHCD current profiles using GENRAY and CQL3D,both of which confirm that higher Te(0) leads to the peaking of LHCD current profiles,while lower Te(0) is beneficial in the broadening of the LHCD current profile.

    As mentioned before,similar current profile broadening behavior has been observed in EAST density scan experiments.However,it is the difference in plasma density that accounts mainly for the LHCD current profile broadening,thus leading to the overall current density profile broadening.In fact,the temperature profile also varies in density scan experiments,albeit to a smaller degree.The summary in figure 1 points out the dependence of current profile broadening on plasma density,as well as on Te(0).The tendency found in the correlation betweenliand Te(0)is more obvious compared to density,which indicates that the current profile may be more easily affected by temperature.According to the sensitivity of the LHCD current profile to Te(0) demonstrated in this work,the profile control of temperature may be more effective in tailoring the current density profile in EAST,which provides promising approaches to establishing weak or reversed shear in future experiments.

    Acknowledgments

    This work is supported by the National MCF Energy R&D Program of China (No.2019YFE0304000),National Natural Science Foundation of China (Nos.12005262 and 11975274),the Anhui Provincial Natural Science Foundation(No.2108085J06),the Users with Excellence Program of Hefei Science Center CAS (Nos.2021HSC-UE018 and 2020HSC-UE011),the External Cooperation Program of Chinese Academy of Sciences (No.116134KYSB20180035)and the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences (No.DSJJ-2021-04).

    猜你喜歡
    張斌
    夕陽(yáng)家園
    金秋(2022年10期)2022-11-25 16:28:12
    Design of three-dimensional imaging lidar optical system for large field of view scanning
    A scanning distortion correction method based ongalvanometer Lidar system?
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    一路有你都是歌
    Dynamic measurement of beam divergence angle of different fields of view of scanning lidar?
    《花之戀》
    The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers?
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    天水同映長(zhǎng)安塔
    金秋(2018年12期)2018-09-17 09:33:08
    免费观看的影片在线观看| 久久久久久久午夜电影| 欧美激情久久久久久爽电影| 免费看av在线观看网站| 制服丝袜大香蕉在线| 久久久午夜欧美精品| 亚洲无线观看免费| 色av中文字幕| 色综合站精品国产| 亚洲国产高清在线一区二区三| 成人鲁丝片一二三区免费| 久久久久久久精品吃奶| 欧美日本亚洲视频在线播放| 亚洲午夜理论影院| 女人被狂操c到高潮| 桃红色精品国产亚洲av| 国产伦精品一区二区三区视频9| 国产 一区 欧美 日韩| 亚洲无线在线观看| 欧美+亚洲+日韩+国产| 欧美日本视频| 精品久久久久久成人av| 日韩亚洲欧美综合| 国产精品福利在线免费观看| 日韩国内少妇激情av| 国产久久久一区二区三区| 91在线精品国自产拍蜜月| 免费电影在线观看免费观看| 99久久久亚洲精品蜜臀av| 久久人妻av系列| 国产麻豆成人av免费视频| 最近视频中文字幕2019在线8| 日韩中字成人| 免费av不卡在线播放| 国产伦精品一区二区三区四那| 少妇的逼水好多| 国产亚洲欧美98| 亚洲精品久久国产高清桃花| 久久中文看片网| 日韩欧美国产一区二区入口| 精品人妻1区二区| 大又大粗又爽又黄少妇毛片口| 久久精品国产99精品国产亚洲性色| 欧美日韩乱码在线| 亚洲最大成人av| 日本 av在线| 男女啪啪激烈高潮av片| 国产精品1区2区在线观看.| 人妻丰满熟妇av一区二区三区| 亚洲精品乱码久久久v下载方式| 成人av在线播放网站| 深爱激情五月婷婷| 深夜精品福利| 国产不卡一卡二| 身体一侧抽搐| 网址你懂的国产日韩在线| 人妻久久中文字幕网| 午夜免费激情av| 观看美女的网站| 国产一区二区亚洲精品在线观看| 久久久久久国产a免费观看| 久久久久久久久久成人| 国产综合懂色| 日韩欧美国产在线观看| 麻豆成人午夜福利视频| 国产成人影院久久av| 在线观看美女被高潮喷水网站| 搡女人真爽免费视频火全软件 | 日韩强制内射视频| 国产伦精品一区二区三区视频9| 日韩中字成人| 国产精品国产三级国产av玫瑰| 少妇丰满av| 国产主播在线观看一区二区| 久久久午夜欧美精品| 久久精品国产自在天天线| 他把我摸到了高潮在线观看| 国产精品福利在线免费观看| 色在线成人网| 国产真实伦视频高清在线观看 | 成人特级av手机在线观看| 精品久久久久久久久av| 91麻豆精品激情在线观看国产| 在线观看一区二区三区| 免费看a级黄色片| 中文亚洲av片在线观看爽| 国产探花极品一区二区| 淫妇啪啪啪对白视频| 欧美另类亚洲清纯唯美| 在线看三级毛片| 国产人妻一区二区三区在| 99国产精品一区二区蜜桃av| 国产成人福利小说| 波多野结衣高清作品| 久久精品久久久久久噜噜老黄 | 国产亚洲精品久久久久久毛片| 婷婷精品国产亚洲av| 搞女人的毛片| 搡老熟女国产l中国老女人| 色尼玛亚洲综合影院| 久久99热6这里只有精品| 1024手机看黄色片| 精品一区二区三区视频在线| 51国产日韩欧美| 桃色一区二区三区在线观看| 国产成人aa在线观看| 好男人在线观看高清免费视频| 欧美性感艳星| 国产精品,欧美在线| 国内精品一区二区在线观看| 国产在线精品亚洲第一网站| 亚洲va在线va天堂va国产| 国产黄a三级三级三级人| 99国产极品粉嫩在线观看| 18禁黄网站禁片午夜丰满| 天天躁日日操中文字幕| 国产精品三级大全| 18禁黄网站禁片免费观看直播| av在线亚洲专区| 女人被狂操c到高潮| 在线观看午夜福利视频| 国产高清有码在线观看视频| 久久久久久久午夜电影| 久久精品国产清高在天天线| 国产精品久久久久久亚洲av鲁大| 亚洲av二区三区四区| 久久久久久久久中文| 99久国产av精品| 麻豆国产av国片精品| 观看美女的网站| 日韩精品青青久久久久久| 国产精品亚洲美女久久久| videossex国产| 久久国产乱子免费精品| 久久久久久久久久成人| 69av精品久久久久久| 亚洲熟妇中文字幕五十中出| avwww免费| 国产精品98久久久久久宅男小说| 亚洲成a人片在线一区二区| 日本欧美国产在线视频| 天堂√8在线中文| 久久久久久九九精品二区国产| 九九在线视频观看精品| 婷婷亚洲欧美| 亚洲性久久影院| 国产亚洲欧美98| 午夜爱爱视频在线播放| 国产精华一区二区三区| 欧美成人a在线观看| 3wmmmm亚洲av在线观看| 国产女主播在线喷水免费视频网站 | 国产精品三级大全| 亚洲美女视频黄频| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲av涩爱 | 欧美中文日本在线观看视频| 久久久色成人| 欧美成人性av电影在线观看| 国产国拍精品亚洲av在线观看| 亚洲乱码一区二区免费版| 大又大粗又爽又黄少妇毛片口| 中文字幕免费在线视频6| 99热6这里只有精品| 亚洲va在线va天堂va国产| 国产精品久久久久久av不卡| 亚洲自偷自拍三级| 午夜福利欧美成人| 日本 av在线| 搡女人真爽免费视频火全软件 | 极品教师在线视频| 精品久久久久久久久久久久久| 国产精华一区二区三区| 中国美女看黄片| a在线观看视频网站| 91久久精品国产一区二区成人| 日本a在线网址| 免费大片18禁| 99国产极品粉嫩在线观看| 午夜福利高清视频| 全区人妻精品视频| 国产黄片美女视频| 黄色配什么色好看| 在线观看舔阴道视频| 可以在线观看毛片的网站| 亚洲美女搞黄在线观看 | 午夜免费男女啪啪视频观看 | 久久99热这里只有精品18| 国产一区二区三区av在线 | 欧美一级a爱片免费观看看| 免费在线观看日本一区| 日本撒尿小便嘘嘘汇集6| 特大巨黑吊av在线直播| 成人二区视频| 成人特级av手机在线观看| 日韩中字成人| 97人妻精品一区二区三区麻豆| 村上凉子中文字幕在线| 午夜福利在线在线| 国产精品福利在线免费观看| 国产精品1区2区在线观看.| 91狼人影院| 天堂av国产一区二区熟女人妻| 亚洲欧美精品综合久久99| 国产麻豆成人av免费视频| 好男人在线观看高清免费视频| 毛片一级片免费看久久久久 | 22中文网久久字幕| 成人国产综合亚洲| 午夜视频国产福利| 精品99又大又爽又粗少妇毛片 | 午夜福利在线在线| 亚洲午夜理论影院| 亚洲在线自拍视频| 精品午夜福利视频在线观看一区| 亚洲国产色片| 国内精品宾馆在线| 国产精品久久视频播放| 国产伦人伦偷精品视频| 99在线人妻在线中文字幕| 村上凉子中文字幕在线| 欧美日韩黄片免| 国产黄片美女视频| 中文资源天堂在线| 午夜精品一区二区三区免费看| 欧美色视频一区免费| 嫩草影院入口| 91久久精品国产一区二区成人| 欧美日韩中文字幕国产精品一区二区三区| 精华霜和精华液先用哪个| 美女免费视频网站| 久久人人精品亚洲av| 国内少妇人妻偷人精品xxx网站| 国产精品98久久久久久宅男小说| 欧美日韩瑟瑟在线播放| 麻豆一二三区av精品| 久久久久精品国产欧美久久久| 国产单亲对白刺激| 午夜激情福利司机影院| 亚洲av免费高清在线观看| 免费观看的影片在线观看| 俺也久久电影网| 午夜精品在线福利| 男人和女人高潮做爰伦理| 日韩高清综合在线| 色播亚洲综合网| 日本 欧美在线| 欧美zozozo另类| 在线观看午夜福利视频| 亚洲七黄色美女视频| 国产精品三级大全| 久久亚洲精品不卡| АⅤ资源中文在线天堂| 综合色av麻豆| 俺也久久电影网| 熟女人妻精品中文字幕| 国产精品av视频在线免费观看| 亚洲欧美日韩无卡精品| 精品人妻视频免费看| 亚洲av中文av极速乱 | avwww免费| 亚洲成人精品中文字幕电影| 亚洲真实伦在线观看| 成人毛片a级毛片在线播放| 亚洲成人免费电影在线观看| 精品福利观看| 欧美激情久久久久久爽电影| 日韩一区二区视频免费看| 欧美潮喷喷水| 国产欧美日韩精品一区二区| 亚洲三级黄色毛片| 人妻丰满熟妇av一区二区三区| 国产高清三级在线| 国产成人a区在线观看| 乱码一卡2卡4卡精品| 久久精品国产亚洲av天美| 亚洲avbb在线观看| 性欧美人与动物交配| 51国产日韩欧美| 亚洲欧美日韩高清专用| 久久午夜亚洲精品久久| 国产亚洲精品久久久com| 午夜激情福利司机影院| 亚洲欧美激情综合另类| 欧美xxxx黑人xx丫x性爽| 一边摸一边抽搐一进一小说| av视频在线观看入口| 91在线精品国自产拍蜜月| 一个人免费在线观看电影| 一个人免费在线观看电影| 亚洲欧美日韩无卡精品| 深夜a级毛片| 黄色一级大片看看| 看黄色毛片网站| 日日夜夜操网爽| 男人狂女人下面高潮的视频| 亚洲精品456在线播放app | 99久久无色码亚洲精品果冻| а√天堂www在线а√下载| 欧美性猛交╳xxx乱大交人| 九九热线精品视视频播放| 亚洲国产欧洲综合997久久,| 久久久久久久精品吃奶| 九九久久精品国产亚洲av麻豆| 亚洲成人精品中文字幕电影| 色在线成人网| 美女免费视频网站| 丰满人妻一区二区三区视频av| 哪里可以看免费的av片| 亚洲七黄色美女视频| 在线观看午夜福利视频| 韩国av在线不卡| 免费在线观看日本一区| 国产成人一区二区在线| 欧美区成人在线视频| 麻豆久久精品国产亚洲av| 精品久久久久久,| 搡女人真爽免费视频火全软件 | 午夜免费成人在线视频| 日韩中字成人| 美女黄网站色视频| 99热只有精品国产| 校园人妻丝袜中文字幕| 好男人在线观看高清免费视频| 韩国av在线不卡| 久久精品国产鲁丝片午夜精品 | 级片在线观看| 亚洲三级黄色毛片| 色综合色国产| av中文乱码字幕在线| 亚洲一级一片aⅴ在线观看| АⅤ资源中文在线天堂| 免费大片18禁| 亚洲精品456在线播放app | 成年版毛片免费区| 免费一级毛片在线播放高清视频| 国产精品亚洲美女久久久| 日韩中文字幕欧美一区二区| 日韩欧美 国产精品| 我的老师免费观看完整版| av天堂在线播放| 亚洲美女视频黄频| 日本精品一区二区三区蜜桃| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华精| xxxwww97欧美| 在线播放国产精品三级| 国产伦在线观看视频一区| 午夜福利高清视频| 日韩精品有码人妻一区| 国产精品三级大全| 99riav亚洲国产免费| 色5月婷婷丁香| 久久久久久久久久久丰满 | 午夜激情欧美在线| 成熟少妇高潮喷水视频| 欧洲精品卡2卡3卡4卡5卡区| 十八禁国产超污无遮挡网站| 久久久久精品国产欧美久久久| 精品久久久久久久人妻蜜臀av| 久久精品国产亚洲av涩爱 | 国产精品综合久久久久久久免费| 在线观看av片永久免费下载| 成人三级黄色视频| 日韩人妻高清精品专区| 亚洲综合色惰| 长腿黑丝高跟| а√天堂www在线а√下载| 国产成人影院久久av| 久久精品国产亚洲网站| 乱系列少妇在线播放| 亚洲欧美精品综合久久99| 直男gayav资源| 欧美色视频一区免费| 最近最新免费中文字幕在线| 国产淫片久久久久久久久| 51国产日韩欧美| 一本精品99久久精品77| 国产亚洲精品综合一区在线观看| 午夜日韩欧美国产| 国产伦一二天堂av在线观看| 女同久久另类99精品国产91| av.在线天堂| 热99在线观看视频| 国产av不卡久久| 夜夜爽天天搞| 狂野欧美白嫩少妇大欣赏| 亚洲天堂国产精品一区在线| 久久草成人影院| 成人综合一区亚洲| 搞女人的毛片| 一进一出抽搐gif免费好疼| 午夜福利欧美成人| 露出奶头的视频| 毛片一级片免费看久久久久 | 麻豆成人av在线观看| 1000部很黄的大片| 大型黄色视频在线免费观看| 免费看a级黄色片| 精品一区二区免费观看| 男女边吃奶边做爰视频| 性插视频无遮挡在线免费观看| 两人在一起打扑克的视频| 亚洲第一电影网av| 国产精品不卡视频一区二区| 中文资源天堂在线| 免费观看在线日韩| 波多野结衣高清无吗| 黄色女人牲交| 变态另类丝袜制服| 久久6这里有精品| 1024手机看黄色片| 内地一区二区视频在线| 欧美一级a爱片免费观看看| 日韩精品青青久久久久久| 熟女电影av网| 欧美bdsm另类| 俄罗斯特黄特色一大片| av视频在线观看入口| 国产亚洲欧美98| 国产在视频线在精品| 国产av麻豆久久久久久久| 国产成人一区二区在线| 国产精品久久久久久久电影| 亚洲电影在线观看av| 国产精品福利在线免费观看| 精品午夜福利在线看| 亚洲av熟女| 一进一出抽搐动态| 午夜久久久久精精品| 一个人看视频在线观看www免费| 精品99又大又爽又粗少妇毛片 | 黄色丝袜av网址大全| 国产精品国产高清国产av| 免费高清视频大片| 久久99热6这里只有精品| 国产精品乱码一区二三区的特点| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| .国产精品久久| 麻豆国产97在线/欧美| 成年免费大片在线观看| 欧美日韩瑟瑟在线播放| 日本免费一区二区三区高清不卡| 91麻豆精品激情在线观看国产| 长腿黑丝高跟| 国产黄色小视频在线观看| 亚洲精品久久国产高清桃花| 久99久视频精品免费| 精品久久久久久成人av| netflix在线观看网站| 日韩中文字幕欧美一区二区| 日本色播在线视频| 国产亚洲av嫩草精品影院| 一进一出抽搐动态| 又黄又爽又刺激的免费视频.| 在线a可以看的网站| 日本色播在线视频| 淫秽高清视频在线观看| 日韩亚洲欧美综合| 亚洲美女搞黄在线观看 | 欧美色视频一区免费| 春色校园在线视频观看| 内地一区二区视频在线| 成人永久免费在线观看视频| 97碰自拍视频| 美女免费视频网站| 偷拍熟女少妇极品色| 日本黄色片子视频| 少妇熟女aⅴ在线视频| 欧美又色又爽又黄视频| a级毛片a级免费在线| 国产中年淑女户外野战色| 啦啦啦观看免费观看视频高清| 日韩人妻高清精品专区| 欧美日韩乱码在线| 一本精品99久久精品77| av在线蜜桃| 亚洲av日韩精品久久久久久密| 成人av在线播放网站| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 少妇丰满av| 毛片一级片免费看久久久久 | 久久久久久久久中文| 欧美又色又爽又黄视频| 麻豆国产97在线/欧美| 国产精品美女特级片免费视频播放器| 亚洲av电影不卡..在线观看| 国产毛片a区久久久久| 黄片wwwwww| 久久亚洲真实| 在线播放国产精品三级| 色综合色国产| 国产伦精品一区二区三区视频9| 国国产精品蜜臀av免费| 精品人妻熟女av久视频| 欧美高清成人免费视频www| 国产精品无大码| 男女边吃奶边做爰视频| 国产中年淑女户外野战色| 人人妻人人看人人澡| 日本色播在线视频| 日日干狠狠操夜夜爽| 别揉我奶头 嗯啊视频| 精品不卡国产一区二区三区| 午夜福利高清视频| 99热只有精品国产| 亚洲黑人精品在线| 九色国产91popny在线| 国产免费一级a男人的天堂| 12—13女人毛片做爰片一| 国产精品免费一区二区三区在线| 男女边吃奶边做爰视频| 美女 人体艺术 gogo| 亚洲在线自拍视频| 精品人妻偷拍中文字幕| 欧美性感艳星| 内地一区二区视频在线| 欧美日韩综合久久久久久 | 日本一二三区视频观看| 成人美女网站在线观看视频| 又粗又爽又猛毛片免费看| 欧美一区二区亚洲| 男人和女人高潮做爰伦理| 国产成人a区在线观看| 日韩欧美 国产精品| 小蜜桃在线观看免费完整版高清| 午夜免费成人在线视频| 亚洲av熟女| 国产精品99久久久久久久久| 国产av不卡久久| 久久人妻av系列| 久久久成人免费电影| 亚洲久久久久久中文字幕| 18禁黄网站禁片免费观看直播| 国产视频内射| 国产精品久久久久久亚洲av鲁大| 真人一进一出gif抽搐免费| 在线天堂最新版资源| videossex国产| 网址你懂的国产日韩在线| 亚洲欧美日韩卡通动漫| 欧美精品啪啪一区二区三区| 在线观看午夜福利视频| 亚洲第一区二区三区不卡| 51国产日韩欧美| 欧美日韩精品成人综合77777| 别揉我奶头 嗯啊视频| 亚洲av免费在线观看| 免费观看精品视频网站| 最近视频中文字幕2019在线8| 黄色一级大片看看| 毛片一级片免费看久久久久 | 日本 av在线| av在线老鸭窝| 亚洲无线在线观看| 欧美精品啪啪一区二区三区| 国产av不卡久久| 欧美潮喷喷水| 超碰av人人做人人爽久久| 久久久久国产精品人妻aⅴ院| 欧美zozozo另类| 亚洲最大成人中文| 亚洲五月天丁香| 婷婷精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 国产女主播在线喷水免费视频网站 | 亚洲av二区三区四区| 国产成人影院久久av| 悠悠久久av| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 直男gayav资源| 免费电影在线观看免费观看| 亚洲av中文字字幕乱码综合| 免费黄网站久久成人精品| 黄色女人牲交| 日韩一区二区视频免费看| av在线天堂中文字幕| 国产精品一区二区三区四区免费观看 | 久久精品影院6| 亚洲性久久影院| 欧美成人a在线观看| 成人av一区二区三区在线看| 国内精品久久久久久久电影| 村上凉子中文字幕在线| 日韩欧美在线二视频| 深夜a级毛片| 天堂影院成人在线观看| 琪琪午夜伦伦电影理论片6080| 久久精品国产亚洲av涩爱 | 精品人妻视频免费看| 国产久久久一区二区三区| 亚州av有码| 国产午夜精品论理片| 色播亚洲综合网| 身体一侧抽搐| 麻豆av噜噜一区二区三区| 日本 av在线| 午夜精品一区二区三区免费看| 国产一区二区三区在线臀色熟女| 看十八女毛片水多多多| 麻豆国产av国片精品| 午夜福利18| 久久久久精品国产欧美久久久| 深夜精品福利| 亚洲国产日韩欧美精品在线观看| 在线观看美女被高潮喷水网站| 伦理电影大哥的女人| 日本欧美国产在线视频| 少妇丰满av| 亚洲无线观看免费| 能在线免费观看的黄片| 国产精品免费一区二区三区在线|