• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Incretin hormone glucagon-like peptide 1 and gut microbiota

    2016-02-16 01:43:18TianruJIN
    關(guān)鍵詞:高血糖素激動劑胃腸道

    Tian-ru JIN

    (1.Division of Advanced Diagnostics,Toronto General Research Institute,University Health Network, Toronto,Ontario,Canada;2.Banting and Best Diabetes Centre,Faculty of Medicine, 3.Department of Physiology,University of Toronto,Toronto,Ontario,Canada)

    Incretin hormone glucagon-like peptide 1 and gut microbiota

    Tian-ru JIN1,2,3

    (1.Division of Advanced Diagnostics,Toronto General Research Institute,University Health Network, Toronto,Ontario,Canada;2.Banting and Best Diabetes Centre,Faculty of Medicine, 3.Department of Physiology,University of Toronto,Toronto,Ontario,Canada)

    There are more than two dozens of peptide hormones that are produced and released from the gastrointestinal(GI)tract.Among them,the incretin hormone glucagon-like peptide 1(GLP-1) has received the most intensive attention for the past 30 years.Functional studies on GLP-1 and anoth?er gut incretin hormone glucose-dependent insulinotropic peptide(GIP)have led to the development of novel diabetes therapeutic agents known as GLP-1 receptor agonists and DPP-Ⅵinhibitors.Instead of forming endocrine glands,the gut hormone producing endocrine cells are widely spread throughout the entire GI tract,permitting vital interactions with the″external″environment.Here a brief introduction on GLP-1 and how nutritional components regulate its secretion were made,followed by reviewing some key development on how gut environment affects the production and secretion of GLP-1,including the contribution of gut microbiota.

    glucagon-like peptide-1,incretins;L cell models;microbiota,gut;short-chain fatty acids

    1GUTPEPTIDEHORMONESAND INCRETIN HORMONE GLUCAGON-LIKE PEPTIDE 1(GLP-1)

    Many hormones,including steroids and peptides or amino acid derivatives,are produced by designated endocrine glands,including pineal gland,pituitary gland,thyroid and parathyroid glands,adrenal gland,pancreatic islets,and gonads.In the gastrointestinal(GI)tract,however, many different types of endocrine cells are broadly spread within the non-endocrine epithelia.These endocrine cells produce more than two dozens of peptide hormones,exerting various regulatory functions on the GI tract and elsewhere.The production and function of these hormones can be directly regulated by nutritional and other environmental changes.Among them,two gut hormones,known asglucagon-like peptide 1 (GLP-1)and glucose-dependentinsulinotropic peptide(GIP),have received intensive attention during the past 30 years.They are known as incretins,defined as gut produced hormones that can stimulate insulin secretion from pancreatic islet β-cells in glucose concentration dependent manners.Physiologically,incretin secretion is mainly a postprandial event,i.e.occurring after food ingestion[1].

    The concept of incretin was established in 1902 by two British scientists,Bayliss and Starling[2],even before insulin was successfully extracted from dog pancreatic islets in 1921 by Canadian scientists Frederick Banting and Charles Best.The first incretin GIP was isolated by Brown and Dryburgh[3]from intestinal mucosa in 1971.GIP is produced by the enteroendocrine K cells,mainly located within the duodenum and jejunum.Fourteen years later,the isolation of mammalian cDNAs that encodes the pre-hormone proglucagon led to the recognition of the secondincretin GLP-1[4-5].

    The proglucagon gene(Gcg)is expressed in pancreatic islet α cell,gut endocrine L cells and certain neuronal cells in the brain stem.Gcg Encodes the pre-hormone namely proglucagon with 180 amino acid residues.Post-translational processing,which occurs in tissue-or cell typespecific manners,leads to the production of active hormone glucagon in the pancreas,GLP-1 and GLP-2(a growth factor for small intestinal epithelia)in the gut and the brain stem[4,6].Since clinical studies have reproducibly shown that GLP-1 is able to facilitate insulin secretion and normalize blood glucose levels in diabetes patients when it is administered at supra-physiological dosages,while GIP could not,more attention has been made to develop novel therapeutic agents based on studies of GLP-1.It is worth mentioning that brain GLP-1 signaling controls satiety,and the body mass lowering effect of GLP-1 based drugs are also appreciable.For other extra-pancreatic function of GLP-1,please see review articles elsewhere[5,7-9].

    Mainly due to its short half-life,native GLP-1 itself cannot be utilized as the diabetes therapeutic agent.Scientists have overcome the challenge with two different strategies;each of them has led to the development of a category of new drugs.The first category is called GLP-1 analogues or GLP-1 receptor(GLP-1R)agonists,which mimic the function of GLP-1 in activating GLP-1R but have prolonged half-life.In 1992,Eng,et al[10-11]isolated the peptide hormone exendin-4 from the salivary glands of the gila monster(Heloderma suspectum),which mimics the function of GLP-1 in stimulating insulin secretion.The cDNA that en?codes exendin-4 was later isolated by Chen and Drucker[12].The first GLP-1R agonist,commercially known as exentide(Byetta),is the synthesized version of exendin-4,produced by Eli Lilly&Co. The laterones are modified human GLP-1 molecules.The second category is called dipeptidyl peptidase-4(DPP-4)inhibitors.DPP-4 is considered as a major enzyme that inactivates GLP-1 and GIP,while DPP-4 inhibition in preventing their degradation will raise the plasma levels of native GLP-1 and GIP.The first FDA approved DPP-4 inhibitor is sitagliptin,the product of Merck&Co., commercially known as Januvia.

    Although GLP-1 based drugs can improve the glycemic control in diabetes patients,they do not mimic the physiological meal-regulated GLP-1 elevation and fall. Thus,investigations on mechanisms underlying endogenousGLP-1 secretion and the modulation of the development of incretin-producing cells may lead to novel drug development.Recently,Petersen,et al[13]demon?strated that in a high fat diet(HFD)fed mouse model,NOTCH signaling pathway inhibition with the chemical inhibitor dibenzazepine increased L cell numbers in the gut,associated with improved glucose tolerance.

    2 NUTRITIONALCOMPONENTSON GLP-1 SECRETION

    During the development of GLP-1 based drugs for treating diabetes and its complications, cell models have also been developed for exploring mechanisms and dissecting signaling cascades that underline GLP-1 secretion as well as the biology of GLP-1-producing gut endocrine L cells[14-18].Tab.1 shows the available endocrine L cell and GLP-1 producing cell models.

    Among these cellular models,the mouse GLUTag cell line was utilized the most,due to the convenience as well as the fact that signaling cascades that regulate endogenous proglucagon gene expression,GLP-1 production,and GLP-1 secretion can be recaptured in this cell line.The GLUTag cell line was established by Drucker,et al[14,19]with the single-cell sub-cloning method against the large bowl tumor in the proglucagon-SV40 large T antigen transgenic mouse line in 1994.

    In the intestinal L cells,GLP-1 is stored in the secretory granules and released upon the stimu?lation.Neuronal factors,hormones,as well as directnutritionalcontactcan triggerGLP-1 secretion[20].Here I will briefly summarize thestudies on the three major nutritional components on GLP-1 secretion.For detailed mechanisms underlying GLP-1 secretion in response to nutri?tional,neuronal,and hormonal factors,please see excellent reviews elsewhere[21-23].

    Tab.1 GLP-1 producing intestinal cell models

    Plasma GLP-1 level during the fasting status ranges from 2-10 pmmol·L-1,and increases about 2-3 folds after the meal.The postprandial peak of GLP-1 level appears 20-30 min after the meal[1,20].Nutritional components that stimulate GLP-1 secretion include carbohydrates,amino acids and proteins,fatty acids and other lipids. Therefore,GLP-1 secretion can be influenced by the meal nutritional composition as well as the digestion process of the macronutrients.Since the nutritional composition of the meal can influence endogenous GLP-1 secretion,great efforts have been made to work towards providing nutritional alternatives in the prevention of obesity,diabetes and other metabolic disorders[24-26].

    Glucose is the known stimulus of GLP-1 secretion as oral glucose ingestion in humans and mouse increases plasma GLP-1 levels more effectively than intravenous glucose injection[27]. It has been suggested that glucose be up-taken by the endocrine L cells via the sodium-glucose transporter 1(SGLT1),leading to the activation of the voltage-gated Ca2+channels,the rising of intracellular Ca2+concentration and the activa?tion of the exocytotic machinery[28-29].Intracel?lular metabolism of glucose may also contribute to the stimulation of GLP-1 secretion,involving the closure of ATP-sensitive potassium(KATP)channel, the reduction of K+efflux,membrane depolarization and the influx of Ca2+[18,30-31].A number of human subject studies have assessed the effect of fructose,isomaltulose(palatinose),xylitol and erythritol on promoting GLP-1 secretion[32-35].

    In 2009,Greenfield,et al[36]demonstrated that glutamine can enhance GLP-1 secretion, accompanied with increased insulin levels,in both healthy but over body mass and diabetic subjects.Detailed mechanisms underlying the stimulation of GLP-1 release by glutamine needsfurther investigations,although it appears involving the elevation of intracellular Ca2+influx[37-38].Meat hydrolysate and essentialamino acid were shown to stimulate GLP-1 secretion in GLUTag and other cellular models,as well as in isolated perfused rat intestines[39-40].Although detailed underlying mechanisms need further exploration, it is likely that proton coupled transport through peptide transporter-1(PEPT1)and the activation ofthe calcium-sensing receptor(CaSR)are implicated[41].

    Fatty acids can serve as natural ligands of various G-protein coupled receptors(GPCRs). Both saturated and unsaturated long-chain fatty acid(LCFA)canactivateGPR40andGPR120[42-43], followed by the stimulation of phospholipase C (PLC),the activation of inositol-1,4,5-triphosphate (IP3)-mediated Ca2+release and GLP-1 secretion[44-45]. Short-chain fatty acids(SCFAs)can serve as the ligandsoftwootherGPCRs,GPR41and GPR43,which use both PLC dependent and independent signaling cascades to accelerate GLP-1 secretion[46-47].Recently,the cannabinoid receptor GPR119 has received intensive attention. In the gut endocrine L cells,GPR119 activation results in the elevation of cAMP level and elevated GLP-1 secretion[48].Very recently,Chepurny,et al[49]have shown that the GPR119 agonist AS1269574 can stimulate GLP-1 secretion in cultured GLP-1 producing cells via activating the TRPA1 cation channels.Indeed,attempts have been made to use GPR119 and GPR40 agonists as therapies in diabetic animal models[50-52].SCFAs can be the fermentation productsofgutmicrobiota, which will be further discussed in below.

    3A BRIEFINTRODUCTIONOFGUT MICROBIOTA

    The human body contains more than 100 trillion bacteria and other microorganisms in the GI tract,a number that 10 times greater than the total number of human cells in the body[53-54].The functional activities exerted by these microorganisms resemble those of an organ,making some scientiststo suggestthatthisbe indeed a″forgotten″organ.It has been estimated that human gut microflora have around a hundred times as many genes in aggregate as there are in the human genome[54-57],making the human genome only a very small portion of the″meta-genome″of the human body.Many physiological functions of our human body can be influenced by gut microflora and its alterations may facilitate the development and progression of obesity, cardiovascular disease(CVD),diabetes and nonalcoholic fatty liver disease(NAFLD)[58-60].

    On one hand,gut bacteria may produce toxins, such as endotoxin and other harmful materials. On the other hand,bacteria in our gut fulfill the host a large profile of useful functions,including the digestion of unutilized energy substrates,the stimulation of cell growth,the repression of the growth of harmful microorganisms,the training of the immune system to respond only to pathogens, and the defense against infections and other categories of diseases[53,61-62].As mentioned above, gut bacteria are involved in the production of SCFAsby the degradation ofdietary fiber. SCFAs Possess multiple beneficialeffects, including providing energy for gut mucosal cells, promoting mucosal cell differentiation and reducing the risk of carcinogenesis.Importantly,SCFAs utilized GPR41 and GPR43 as their mediators in facilitating GLP-1 secretion.

    4 GUT MICROBIOTA AND GLP-1 SECRETION

    It has been mentioned in the beginning that endocrine cells are widely spread within the GI tract,allowing them to be directly influenced by the ″external″environment,including both the nutritional components and the gut microbiota. GLP-1 Producing endocrine L cells are mainly located within the distal ileum and colon regions, although they can be located in other parts of the small intestine.The studies on how the gut micro?biota can directly and indirectly affect GLP-1 secretion,or its function,from the following threeaspects were summaried.

    4.1Gutmicrobiotafermentationproducts SCFAs affect GLP-1 secretion

    We have learned for about three decades that non-digestible carbohydrates can be fermented by gut microbiota.On one hand,this process can affect the gut microbiota composition;while on the other hand,the fermentation products affect energy metabolism of the host[63].

    The major fermentation products of nondigestible carbohydrate by the gut bacteria are SCFAs,consisting of acetate,propionate,butyrate, lactate and succinate[64].Back to 1987,Goodlad,et al[65]described the first time that fermentable carbohydrates are involved in glucose and energy homeostasis in experimental rats.They found that inert bulk fiber was unable to stimulate colonic epithelial cell proliferation in their rat model,while the fermentation processes on the non-digested carbohydrateswererequired to activate cell prolif?eration in the rat colon,linked with increased plasma GLP-1 level(known as enteroglucagon at that time)[65].Four years later,Longo,et al[66]demonstrated in anex vivorabbit distal colon model that SCFAs were able to stimulate the production of PYY,another anorexigenic peptide hormone produced in the ileum and colon.A large number of follow up studies have been conducted since then,in determining the role of fiber diet on GLP-1 secretion in various animal models[67-72].Notably,gut microbiota fermentation may also lead to reduced levels of plasma ghrelin, a″hunger hormone″that is produced in the gut as well[69].In 2013,Yadav,et al[73]tested in several mouse models that the administration of probiotics VSL#3(product of Tau Sigma,live bacteria) promoted GLP-1 secretion,associated with reduced food intake and improved glucose disposal. These changes are accompanied with the increase in the feces butyrate levels,whilein vitrostudy indicated that butyrate could stimulate GLP-1 secretion in the GLP-1 producing endocrine cell line.

    A number of human studies have also provided evidence that links gut microbiota fermentation and GLP-1 secretion,at least with the long-term fiber diet intervention.In 1996,in testing the hypothesis that colonic fermentation products of carbohydrates affect proximal gut motility and gastric tone,Ropert,et al[74]tested the effect of lactulose administration in healthy volunteers. They observed the decrease in gastric tone after oral lactulose administration or intracolonic infusion of lactose and SCFAs,but could not detect the changes on GLP-1 secretion.Increased GLP-1 secretion,however,was observed by Piche,et al[75]in 2003 in the oraladministration of fructooligosaccharides in patients with gastro?esophagealreflux disease.Cani,et al[76]have then demonstrated that in human subjects that 2 week administration of inulin-type fructans repressed appetite sensations,which was correlated with increased plasma GLP-1 and PYY levels. Parnell and Reimer[77]found that a 12 week inter?vention with oligofructose decreased visceral fat mass,associated with reduced circulating ghrelin and increased circulating PYY.No significant difference,however,was observed for plasma GLP-1 levels.In 2013,Nilsson,et al[78]found that an evening meal with Swedish brown beans, in comparison with white wheat bread,lowered the plasma blood glucose level and increased insulin sensitivity.These changes were associated with increased satiety hormones PYY and suppressedhungerhormoneghrelininnext morning.No difference was observed for GLP-1,although increased plasma GLP-2 (which is encoded by the same proglucagon gene)was observed.As GLP-2 is co-produced and co-released with GLP-1,the failure in detecting GLP-1 elevation could be due to a technical challenge,due to its relative short half-life.Bodinham,et al[79]reported that dietary fiber consumption in healthy male subjects did not acutely increase endogenous GLP-1 concentrations.They have suggested thatfurtherfiberfeeding studies be needed to clarify whether plasma GLP-1 level increases following a l onger-term dietary consumption[79].

    It is worth mentioning that a study performed by Cani,et al[80]with the Wistar rat model suggestedthat carbohydrates fermented in the gut may promote L-cell differentiation.Thus,long-term chronic fiber dietary uptake may indirectly affect gut GLP-1 signaling via increasing the gut endocrine L cell mass.In addition,Everard,et al[81]found that in the diabeticob/obmouse model,prebiotic feeding can increase L cell number,associated with improved glucose tolerance.

    4.2Certain dietary plant polyphenols can stimulate GLP-1 secretionin vitro

    We have learned for decades that many dietary plant polyphenol(PP)compounds,such as the curry compound curcumin,resveratrol and antho?cyanin,can function as therapeutic or even prevention agents for obesity,diabetes,and other metabolic diseases[82-85].Investigations have been conducted asking whether some of the metabolic beneficialeffects can be attributed to the improvement of GLP-1 production,or secretion, or signaling.

    Turmeric has been a medicine in a number of Asian countries for nearly 3000 years in the treatment of inflammatory diseases,while curcumin is the major component of Turmeric.Intensive animal studies have demonstrated the capability of curcumin in the treatment of various inflammatory and other diseases,including type 2 diabetes mellitus(T2DM)and obesity[82-83,86-88].In 2013,a team led by Tsuda[89]reported that in the mouse GLUTag cell line,curcumin treatment stimulated GLP-1 secretion.The same team reported more recently that anthocyanin can also induce GLP-1 secretion in this GLUTag cell model[90].The signif?icance of these findings needs to be validated with the properin vivoapproaches.The absorption rates for dietary PP are very low[91-92].Usually, the plasma polyphenol concentrations are more than 100 fold lower than the effective concentrations demonstrated in thein vitrocell culture studies[93], raising the possibility thatnotthe parental polyphenols but their gut metabolites exerting the metabolic beneficial effects.It is also worth mentioning that Antonyan,et al[94]have demon?strated the inhibitory effect of curcumin on DPP-4, raising the possibilities that curcumin intervention can raise plasma endogenous active GLP-1 and GIP levels and that curcumin-based DPP-4 inhibitors can be developed as novel diabetes drugs.

    4.3Gut microbiota may produce yet to be identified products that affect GLP-1 secretion or mimic function of GLP-1 or other metabolic hormones

    A very recent investigation conducted by Breton,et al[95]revealed that gut bacteria can influence host appetite and metabolism from a novel angle.In this study,they aimed to ask a big question:can nutrient-induced bacterial growth affects host metabolism.Regular nutrient provision for 20 min can stabilize exponential growthoftheharmlesscommensalbacteriaEscherichia coli(E.coli),accompanied with the change in bacterial proteomes.When they infused the stationary phase proteins from theE.coliinto the rat gut,they saw elevated plasma PYY levels. When rats received intraperitoneal injection of these proteins,food intake was repressed acutely, accompanied with neuron c-Fos activation in the hypothalamic POMC area,indicating the activation of the brain satiety pathway.The authors have also assessed the effect ofE.coliprotein colonic infusion on GLP-1 secretion.The exponential phaseE.coliprotein infusion but not thestationaryphaseE.coliprotein infusion resulted in increased levels of plasma GLP-1[95].Thus,E.colimay produce yet to be determined factors that can acutely facilitate GLP-1 secretion.

    Breton,et al[96]have then verified the effect of a bacterial protein namely caseinolytic protease B(CIpB)in the activation of hypothalamic POMC neurons.It appears that CIpB is the mimetic of α-melanocyte-stimulating hormone(α-MSH),a POMC-derived anorexigenic neuron peptide in mammals.Thus,bacteria can produce a protein which mimics the brain GLP-1 signaling cascade.

    5 SUMMARY

    Fig.1 summarizes our current understanding on the effect of gut microbiota on GLP-1 secretion, with the participation of dietary plant polyphenols.

    Fig.1 Summary of our current understanding on effect of nutrients and gut microbiota on GLP-1 secretion.

    Nutrient components including sugar,amino acids/peptides and lipids are known to regulate GLP-1 secretion.Selected dietary PP,or their gut metabolites may affect GLP-1 secretion or the biology(proliferation and protection)of GLP-1 producing endocrine L cells.Gut microbiota may exert their regulatory effect on Gcg transcription, or GLP-1 production,or GLP-1 secretion via its own products,or the fermentation products of diet fibers(i.e.SCFAs),or the PP metabolites. Importantly,dietary PP can bring the prebiotic effect,″re-shaping″gut microbiota,generating chronic beneficial effects,including the influence on the production and secretion of GLP-1 and other gut metabolic hormones.

    It has been generally accepted that gut microbiota can convert diet fibers(via the fermen?tation process)into SCFAs,which affect the secretion of GLP-1 and othergutmetabolic hormones,although thein vivoeffect could be masked due to technical challenge.The fermen?tation process may affect the proliferation and other features of gut hormone producing cells including the GLP-1 producing endocrine L cells, by yet to be explored mechanisms.We are convinced by thein vivobeneficial effects of dietary PP intervention and are aware of thein vitrostimulatory effect of at least two polyphenols (curcumin and anthocyanin)on GLP-1 secretion. The extremely low bioavailability of these PP in the circulation made us to wonder whether the acute stimulatory effect by the two PP on GLP-1 secretion indeed occursin vivo.Alternatively, this can be achieved by yet to be identified gut metabolites of the parental PP;or by combined effect with yet to be identified host or gut microbiota product(s).Nevertheless,the long-term metabolic beneficial effect of curcumin and other PP can be attributed to the stimulation of gut endocrine cell proliferation and the protection of these cells from the damage,due to the interaction between these PP and gut microbiota in re-shaping the gut microbiota.It needs to be investigated.We anticipate that following the recent work presented by Breton,et al[95],efforts will be made to determine whetherE.coliand other members of the gut microbiota can produce effective products in regulating the secretion of GLP-1 and other gut hormones,in addition to the production of host mimetic molecules,such as CIpB,to participate host metabolic regulation.

    ACKNOWLEDGEMENTS:The author thanks the Canadian Diabetes Association and Canadian Institutes of Health Research for supporting his GLP-1 related research.

    REFERENCES:

    [1] Baggio LL,Drucker DJ.Biology of incretins:GLP-1 and GIP[J].Gastroenterology,2007,13(6):2131-2157.

    [2] Bayliss WM,Starling EH.The mechanism of pan?creatic secretion[J].J Physiol,1902,28(5):325-353.

    [3] Brown JC,Dryburgh JR.A gastric inhibitory poly?peptide.Ⅱ.The complete amino acid sequence[J].Can J Biochem,1971,49(8):867-872.

    [4] Jin T.Mechanisms underlying proglucagon gene expression[J].J Endocrinol,2008,198(1):17-28.

    [5] Chiang YT,Ip W,Jin T.The role of the Wnt sig?naling pathway in incretin hormone production and function[J].Front Physiol,2012,3:273.

    [6] Schmidt WE,Siegel EG,Creutzfeldt W.Glucagonlike peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets[J].Diabetologia,1985,28(9):704-707.

    [7] Ussher JR,Drucker DJ.Cardiovascular biology of the incretin system[J].Endocr Rev,2012,33(2):187-215.

    [8] Ussher JR,Drucker DJ.Cardiovascular actions of incretin-based therapies[J].Circ Res,2014,114(11):1788-1803.

    [9] Muscogiuri G,Cignarelli A,Giorgino F,Prodam F,Santi D.Tirabassi G,et al.GLP-1:benefits be?yond pancreas[J].J Endocrinol Invest,2014,37(12):1143-1153.

    [10] Eng J,Kleinman WA,Singh L,Singh G,Raufman JP.Isolation and characterization of exendin-4,an exendin-3 analogue,from Heloderma suspectum venom.Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas[J]. J Biol Chem,1992,267(11):7402-7405.

    [11] Raufman JP,Singh L,Singh G,Eng J.Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from Guinea pig pancreas.Identification of a mammalian analogue of the reptilian peptide exendin-4[J].J Biol Chem,1992,267(30):21432-21437.

    [12] Chen YE,Drucker DJ.Tissue-specific expression ofunique mRNAsthatencode proglucagon?derived peptides or exendin 4 in the lizard[J].J Biol Chem,1997,272(7):4108-4115.

    [13] Petersen N,Reimann F,van Es JH,van den Berg BM,Kroone C,Pais R,et al.Targeting development of incretin-producing cells increases insulin secretion[J].J Clin Invest,2015,125(1):379-385.

    [14] Drucker DJ,Jin T,Asa SL,Young TA,Brubaker PL.Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendo?crine cell line[J].Mol Endocrinol,1994,8(12):1646-1655.

    [15] Park JG,Kramer BS,Steinberg SM,Carmichael J,Collins JM,Minna JD,et al.Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay[J]. Cancer Res,1987,47(22):5875-5879.

    [16] Rindi G,Grant SG,Yiangou Y,Ghatei MA,Bloom SR,Bautch VL,et al.Development of neuroendo?crine tumors in the gastrointestinal tract of trans?genic mice.Heterogeneity of hormone expression[J].Am J Pathol,1990,136(6):1349-1363.

    [17] Anini Y,Brubaker PL.Role of leptin in the regulation of glucagon-like peptide-1 secretion[J].Diabetes,2003,52(2):252-259.

    [18] Reimann F,Habib AM,Tolhurst G,Parker HE,Rogers GJ,Gribble FM.Glucose sensing in L cells:a primary cell study[J].Cell Metab,2008,8(6):532-539.

    [19] Lee YC,Asa SL,Drucker DJ.Glucagon gene 5′-flanking sequences direct expression of simian virus 40 large T antigen to the intestine,producing carcinoma of the large bowel in transgenic mice[J].J Biol Chem,1992,267(15):10705-10708.

    [20] Tolhurst G,Reimann F,Gribble FM.Nutritional regulation of glucagon-like peptide-1 secretion[J].J Physiol,2009,587(1):27-32.

    [21] BrubakerPL.Minireview:updateonincretinbiology:focusonglucagon-likepeptide-1[J].Endocrinology,2010,151(5):1984-1989.

    [22] Svendsen B,Holst JJ.Regulation of gut hormone secretion.Studies using isolated perfused intes?tines[J].Peptides,2016,77:47-53.

    [23] Nauck MA,Vardarli I,Deacon CF,Holst JJ,Meier JJ.Secretion of glucagon-like peptide-1(GLP-1)in type 2 diabetes:what is up,what is down?[J]. Diabetologia,2011,54(1):10-18.

    [24] Zhou J,Martin RJ,Tulley RT,Raggio AM,Mc?cutcheon KL,Shen L,et al.Dietary resistant starch upregulates total GLP-1 and PYY in a sus?tained day-long manner through fermentation in rodents[J].Am J Physiol Endocrinol Metab,2008,295(5):E1160-E1166.

    [25] Burcelin R.The incretins:a link between nutrients and well-being[J].Br J Nutr,2005,93(Suppl 1):S147-S156.

    [26] Brynes AE,Edwards CM,Jadhav A,Ghatei M,Bloom SR,F(xiàn)rost GS.Diet-induced change in fatty acid composition of plasma triacylglycerols is not associated with change in glucagon-like peptide 1 or insulin sensitivity in people with type 2 diabetes[J].Am J Clin Nutr,2000,72(5):1111-1118.

    [27] Alssema M,Rijkelijkhuizen JM,Holst JJ,Teer?link T,Scheffer PG,Eekhoff EM,et al.Pre?served GLP-1 and exaggerated GIP secretion in type 2 diabetes and relationships with triglycer?ides and ALT[J].Eur J Endocrinol,2013,169(4):421-430.

    [28] Gribble FM,Williams L,Simpson AK,Reimann F.A novel glucose-sensing mechanism contribut?ing to glucagon-like peptide-1 secretion from the GLUTag cell line[J].Diabetes,2003,52(5):1147-1154.

    [29] Gorboulev V,Schürmann A,Vallon V,Kipp H,Jaschke A,Klessen D,et al.Na+-D-glucosecotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion[J].Diabetes,2012,61(1):187-196.

    [30] Mace OJ,Schindler M,Patel S.The regulation of K-and L-cell activity by GLUT2 and the calciumsensing receptor CasR in rat small intestine[J].J Physiol,2012,590(12):2917-2936.

    [31] Reimann F,Gribble FM.Glucose-sensing in glu?cagon-like peptide-1-secreting cells[J].Diabe?tes,2002,51(9):2757-2763.

    [32] Kuhre RE,Gribble FM,Hartmann B,Reimann F,Windel?v JA,Rehfeld JF,et al.Fructose stimulates GLP-1 but not GIP secretion in mice,rats,and humans[J].Am J Physiol Gastrointest Liver Physiol,2014,306(7):G622-G630.

    [33] Hira T,Muramatsu M,Okuno M,Hara H.GLP-1 secretion in response to oral and luminal palati?nose(isomaltulose)in rats[J].J Nutr Sci Vitaminol(Tokyo),2011,57(1):30-35.

    [34] Maeda A,Miyagawa J,Miuchi M,Nagai E,Konishi K,Matsuo T,et al.Effects of the naturallyoccurring disaccharides,palatinose and sucrose,on incretin secretion in healthy non-obese subjects[J].J Diabetes Invest,2013,4(3):281-286.

    [35] Woelnerhanssen BK,Cajacob L,Keller N,Doody A,Drewe J,Rehfeld JF,et al.Gut hormone secretion,gastric emptying and glycemic responses to eryth?ritol and xylitol in lean and obese subjects[J/OL]. Am J Physiol Endocrinol Metab,(2016-4-26)[2016-5-1]http://ajpendo.physiology.org/content/ early/2016/04/20/ajpendo.00037.2016

    [36] Greenfield JR,F(xiàn)arooqi IS,Keogh JM,Henning E,Habib AM,Blackwood A,et al.Oral glutamine increases circulating glucagon-like peptide-1,glucagon,and insulin concentrations in lean,obese,and type 2 diabetic subjects[J].Am J Clin Nutr,2009,89(1):106-113.

    [37] Reimann F,Williams L,da Silva Xavier G,Rutter GA,Gribble FM.Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells[J].Diabetologia,2004,47(9):1592-1601.

    [38] Tolhurst G,Zheng Y,Parker HE,Habib AM,Reimann F,Gribble FM.Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+and cAMP[J].Endocrinolo?gy,2011,152(2):405-413.

    [39] Cordier-BussatM,Bernard C,LevenezF,Klages N,Laser-Ritz B,Philippe J,et al.Peptones stimulate both the secretion of the incretin hormone?glucagon-like peptide 1 and the transcription of the proglucagon gene[J].Diabetes,1998,47(7):1038-1045.

    [40] Reimer RA.Meat hydrolysate and essential amino acid-induced glucagon-like peptide-1 secretion,in the human NCI-H716 enteroendocrine cell line,is regulated by extracellularsignal-regulated kinase1/2 and p38 mitogen-activated protein ki?nases[J].J Endocrinol,2006,191(1):159-170.

    [41] Diakogiannaki E,Pais R,Tolhurst GA,Horscroft J,Rauscher B,Zietek T,et al.Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calciumsensing receptor[J].Diabetologia,2013,56(12):2688-2696.

    [42] Briscoe CP,Tadayyon M,Andrews JL,Benson WG,Chambers JK,Eilert MM,et al.The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids[J].J Biol Chem,2003,278(13):11303-11311.

    [43] Tanaka T,Yano T,Adachi T,Koshimizu TA,Hirasawa A,Tsujimoto G.Characterization of the rat free fatty acid receptor GPR120.In vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells[J].Naunyn Schmiedebergs Arch Pharmacol,2008,377(4-6):515-522.

    [44] HaraT,HirasawaA,IchimuraA,KimuraI,Tsujimoto G.Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders[J].J Pharm Sci,2011,100(9):3594-3601.

    [45] Hirasawa A,Tsumaya K,Awaji T,Katsuma S,Adachi T,Yamada M,et al.Free fatty acids regulate gutincretin glucagon-like peptide-1 secretion through GPR120[J].Nat Med,2005,11(1):90-94.

    [46] Brown AJ,Goldsworthy SM,Barnes AA,Eilert MM,Tcheang L,Daniels D,et al.The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J].J Biol Chem,2003,278(13):11312-11319.

    [47] Le Poul E,Loison C,Struyf S,Springael JY,Lannoy V,Decobecq ME,et al.Functional char?acterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J].J Biol Chem,2003,278(28):25481-25489.

    [48] Hansen KB,Rosenkilde MM,Knop FK,Wellner N,Diep TA,Rehfeld JF,et al.2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans[J].J Clin Endocrinol Metab,2011,96(9):E1409-E1417.

    [49] Chepurny OG,Holz GG,Roe MW,Leech CA. GPR119 agonist AS1269574 activates TRPA1 cation channels to stimulate GLP-1 secretion[J/OL].Mol Endocrinol,(2016-4-15)[2016-5-1]http://press.endocrine.org/doi/pdf/10.1210/e.2015-1306

    [50] Overton HA,F(xiàn)yfe MC,Reynet C.GPR119,a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity[J].Br J Pharmacol,2008,153(Suppl 1):S76-S81.

    [51] Semple G,F(xiàn)ioravanti B,Pereira G,Calderon I,Uy J,Choi K,et al.Discovery of the first potent and orally efficacious agonist of the orphan G-protein coupled receptor 119[J].J Med Chem,2008,51(17):5172-5175.

    [52] Tanaka H,Yoshida S,Minoura H,Negoro K,Shimaya A,Shimokawa T,et al.Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion[J].Life Sci,2014,94(2):115-121.

    [53] Guarner F,Malagelada JR.Gut flora in health and disease[J].Lancet,2003,361(9356):512-519.

    [54] Qin J,Li R,Raes J,Arumugam M,Burgdorf KS,Manichanh C,et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature,2010,464(7285):59-65.

    [55] Zhao L.The gut microbiota and obesity:from correlation to causality[J].Nat Rev Microbiol,2013,11(9):639-647.

    [56] Xu J,Gordon JI.Honor thy symbionts[J].Proc Natl Acad Sci USA,2003,100(18):10452-10459.

    [57] Ley RE,Peterson DA,Gordon JI.Ecological and evolutionary forces shaping microbial diversity in the human intestine[J].Cell,2006,124(4):837-848.

    [58] Turnbaugh PJ,B?ckhed F,F(xiàn)ulton L,Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J].Cell Host Microbe,2008,3(4):213-223.

    [59] Fujimoto T,Imaeda H,Takahashi K,Kasumi E,Bamba S,F(xiàn)ujiyama Y,et al.Decreased abun?dance of Faecali bacterium prausnitzii in the gut microbiota of Crohn′s disease[J].J Gastroenterol Hepatol,2013,28(4):613-619.

    [60] Takaki A,Kawai D,Yamamoto K.Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis(NASH)[J].IntJ Mol Sci,2014,15(5):7352-7379.

    [61] Sears CL.A dynamic partnership:celebrating our gut flora[J].Anaerobe,2005,11(5):247-251.

    [62] Wynne AG,Mccartney AL,Brostoff J,Hudspith BN,Gibson GR.An in vitro assessment of the effects of broad-spectrum antibiotics on the human gut microflora and concomitant isolation of a Lactobacillus plantarum with anti-candida activities[J].Anaerobe,2004,10(3):165-169.

    [63] Petschow B,Doré J,Hibberd P,Dinan T,Reid G,Blaser M,et al.Probiotics,prebiotics,and the host microbiome:the science of translation[J]. Ann N Y Acad Sci,2013,1306:1-17.

    [64] Everard A,Cani PD.Gut microbiota and GLP-1[J].Rev Endocr Metab Disord,2014,15(3):189-196.

    [65] Goodlad RA,Lenton W,Ghatei MA,Adrian TE,Bloom SR,Wright NA.Effects of an elemental diet,inert bulk and different types of dietary fibre on the response of the intestinal epithelium to refeeding in the rat and relationship to plasma gastrin,enteroglucagon,and PYY concentrations[J]. Gut,1987,28(2):171-180.

    [66] Longo WE,Ballantyne GH,Savoca PE,Adrian TE,Bilchik AJ,Modlin IM.Short-chain fatty acid release of peptide YY in the isolated rabbit distal colon[J].Scand J Gastroenterol,1991,26(4):442-448.

    [67] Gee JM,Lee-Finglas W,Wortley GW,Johnson IT. Fermentable carbohydrates elevate plasma enteroglucagon but high viscosity is also necessary to stimulate small bowel mucosal cell proliferation in rats[J].J Nutr,1996,126(2):373-379.

    [68] Reimer RA,Mcburney MI.Dietary fiber modulates intestinalproglucagon messenger ribonucleic acid and postprandial secretion of glucagon-like peptide-1 and insulin in rats[J].Endocrinology,1996,137(9):3948-3956.

    [69] Cani PD,Dewever C,Delzenne NM.Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation(glucagon-like peptide-1 and ghrelin)in rats[J].Br J Nutr,2004,92(3):521-526.

    [70] Cani PD,Neyrinck AM,Maton N,Delzenne NM. Oligofructose promotes satiety in rats fed a highfat diet:involvement of glucagon-like peptide-1[J].Obes Res,2005,13(6):1000-1007.

    [71] Cani PD,Knauf C,Iglesias MA,Drucker DJ,Delzenne NM,Burcelin R.Improvement of glucose tolerance and hepatic insulin sensitivity byoligofructose requires a functional glucagon-like peptide 1 receptor[J].Diabetes,2006,55(5):1484-1490.

    [72] Cani PD,Possemiers S,Van de Wiele T,Guiot Y,Everard A,Rottier O,et al.Changes in gut micro?biota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J].Gut,2009,58(8):1091-1103.

    [73] Yadav H,Lee JH,Lloyd J,Walter P,Rane SG. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion[J].J Biol Chem,2013,288(35):25088-25097.

    [74] Ropert A,Cherbut C,Rozé C,Le Quellec A,Holst JJ,F(xiàn)u-Cheng X,et al.Colonic fermentation and proximal gastric tone in humans[J].Gastro?enterology,1996,111(2):289-296.

    [75] Piche T,Des Varannes SB,Sacher-Huvelin S,HolstJJ,CuberJC,GalmicheJP.Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease[J]. Gastroenterology,2003,124(4):894-902.

    [76] Cani PD,Lecourt E,Dewulf EM,Sohet FM,Pachikian BD,Naslain D,et al.Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with conse?quences forappetite sensation and glucose response after a meal[J].Am J Clin Nutr,2009,90(5):1236-1243.

    [77] Parnell JA,Reimer RA.Weightloss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults[J].Am J Clin Nutr,2009,89(6):1751-1759.

    [78] Nilsson A,Johansson E,Ekstr?m L,Bj?rck I. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast:a randomized cross-over study[J].PLoS One,2013,8(4):e59985.

    [79] Bodinham CL,Al-Mana NM,Smith L,Robertson MD.Endogenous plasma glucagon-like peptide-1 following acute dietary fibre consumption[J].Br J Nutr,2013,110(8):1429-1433.

    [80] Cani PD,Hoste S,Guiot Y,Delzenne NM. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats[J]. Br J Nutr,2007,98(1):32-37.

    [81] Everard A,Lazarevic V,Derrien M,Girard M,Muccioli GG,Muccioli GM,et al.Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice[J].Diabetes,2011,60(11):2775-2786.

    [82] Shao W,Yu Z,Chiang Y,Yang Y,Chai T,F(xiàn)oltz W,et al.Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes[J].PLoS One,2012,7(1):e28784.

    [83] Tian L,Zeng K,Shao W,Yang BB,F(xiàn)antus IG,Weng J,et al.Short-term curcumin gavage sensitizes insulin signaling in dexamethasonetreated C57BL/6 mice[J].J Nutr,2015,145(10):2300-2307.

    [84] Wang D,Xia M,Yan X,Li D,Wang L,Xu Y,et al.Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b[J].Circ Res,2012,111(8):967-981.

    [85] Qin Y,Xia M,Ma J,Hao Y,Liu J,Mou H,et al. Anthocyanin supplementation improves serum LDL-and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects[J].Am J Clin Nutr,2009,90(3):485-492.

    [86] Alappat L, Awad AB.Curcumin and obesity:evidence and mechanisms[J].Nutr Rev,2010,68(12):729-738.

    [87] Gupta SC,Kismali G,Aggarwal BB.Curcumin,a component of turmeric:from farm to pharmacy[J].Biofactors,2013,39(1):2-13.

    [88] Weisberg SP,Leibel R,Tortoriello DV.Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of di?abesity[J].Endocrinology,2008,149(7):3549-3558.

    [89] Takikawa M,Kurimoto Y,Tsuda T.Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinaseⅡ activation[J].Biochem Biophys Res Commun,2013,435(2):165-170.

    [90] Kato M,Tani T,Terahara N,Tsuda T.The antho?cyanin delphinidin 3-rutinoside stimulates glucagonlike peptide-1 secretion in murine GLUTag cell line via the Ca2+/calmodulin-dependent kinaseⅡpathway[J].PLoS One,2015,10(5):e0126157.

    [91] Manach C,Williamson G,Morand C,Scalbert A,Remesy C.Bioavailability and bioefficacy of poly?phenols in humans.I.Review of 97 bioavailability studies[J].Am J Clin Nutr,2005,81(1 Suppl):230S-242S.

    [92] Douglass BJ,Clouatre DL.Beyond yellow curry:assessing commercial curcumin absorption technologies[J].J Am Coll Nutr,2015,34(4):347-358.

    [93] Nijveldt RJ, Van Nood E, Van Hoorn DE,Boelens PG,Van Norren K,Van Leeuwen PA. Flavonoids:a review of probable mechanisms of action and potential applications[J].Am J Clin Nutr,2001,74(4):418-425.

    [94] Antonyan A, De A, Vitali LA, Pettinari R,Marchetti F,Gigliobianco MR,et al.Evaluation of(arene)Ru(Ⅱ)complexes of curcumin as inhibitors of dipeptidyl peptidaseⅣ[J].Biochim?ie,2014,99:146-152.

    [95] Breton J,Tennoune N,Lucas N,F(xiàn)rancois M,Legrand R,Jacquemot J,et al.Gut commensal E.coliproteins activate host satiety pathways following nutrient-induced bacterial growth[J]. Cell Metab,2016,23(2):324-334.

    [96] Tennoune N,Chan P,Breton J,Legrand R,Chabane YN,Akkermann K,et al.Bacterial ClpB heat-shock protein,an antigen-mimetic of the anorexigenic peptide α-MSH,at the origin of eating disorders[J].Transl Psychiatry,2014,4:e458.

    胰高血糖素樣肽1和腸道菌群

    金天如1,2,3

    (1.Division of Advanced Diagnostics,Toronto General Research Institute,University Health Network, Toronto,Ontario,Canada;2.Banting and Best Diabetes Centre,Faculty of Medicine, 3.Department of Physiology,University of Toronto,Toronto,Ontario,Canada)

    胃腸道生產(chǎn)20多種肽類激素。其中,胰高血糖素樣肽1(GLP-1)在過去的30年里受到最多關(guān)注。人們對GLP-1以及另一腸道激素葡萄糖依賴性促胰島素肽(GIP)功能的研究已導(dǎo)致了兩類新的糖尿病治療藥物的開發(fā),分別稱為GLP-1R激動劑和DPP-Ⅳ抑制劑。腸道的這些內(nèi)分泌細胞不是聚集在內(nèi)分泌腺體中,而是廣泛分布在整個胃腸道中,從而與“外部”環(huán)境包括食物以及腸道菌群充分接觸。本文簡要介紹了GLP-1以及營養(yǎng)成分如何調(diào)節(jié)其分泌,并重點討論了腸道環(huán)境如何影響GLP-1的產(chǎn)生和分泌,包括腸道菌群的貢獻。

    胰高血糖素樣肽1;腸促胰島素肽;L細胞模型;腸道菌群;短鏈脂肪酸

    2016-05-17 接受日期:2016-06-14)

    金天如,Tel:+1(416)581-7670,E-mail:tianru.jin@utoronto.ca

    R335

    :A

    :1000-3002-(2016)06-0691-12

    10.3867/j.issn.1000-3002.2016.06.008

    (本文編輯:喬 虹)

    Tian-ru JIN,Tel:+1(416)581-7670,

    E-mail:tianru.jin@utoronto.ca

    猜你喜歡
    高血糖素激動劑胃腸道
    體外仿生胃腸道模型的開發(fā)與應(yīng)用
    科學(xué)(2022年4期)2022-10-25 02:43:06
    胃腸道間質(zhì)瘤的CT診斷價值
    胰高血糖素樣肽1及其受體激動劑在支氣管哮喘治療中的研究進展
    綠蘿花中抗2型糖尿病PPARs激動劑的篩選
    中成藥(2018年10期)2018-10-26 03:41:22
    GPR35受體香豆素類激動劑三維定量構(gòu)效關(guān)系研究
    2型糖尿病應(yīng)用胰高血糖素樣肽-1受體激動劑治療的效果探討
    空腹及糖負荷后胰高血糖素水平與代謝綜合征的相關(guān)性研究
    AMPK激動劑AICAR通過阻滯細胞周期于G0/G1期抑制肺動脈平滑肌細胞增殖
    連花清瘟膠囊致胃腸道不良反應(yīng)1例
    胰高血糖素樣肽-1類似物治療2型糖尿病的研究進展
    天堂俺去俺来也www色官网| 欧美日韩视频精品一区| h视频一区二区三区| 午夜久久久在线观看| 精品少妇黑人巨大在线播放| 一本综合久久免费| 国产精品成人在线| 欧美黑人欧美精品刺激| 亚洲精品在线美女| 一级毛片女人18水好多| 国产黄频视频在线观看| 一本一本久久a久久精品综合妖精| 成人av一区二区三区在线看 | 国产精品免费视频内射| 黄色怎么调成土黄色| 免费观看a级毛片全部| 成人亚洲精品一区在线观看| 青春草视频在线免费观看| 韩国高清视频一区二区三区| 国产片内射在线| 在线观看免费午夜福利视频| 搡老岳熟女国产| 男男h啪啪无遮挡| 五月开心婷婷网| 日韩欧美免费精品| 黑人猛操日本美女一级片| 少妇粗大呻吟视频| av在线老鸭窝| www.999成人在线观看| 一边摸一边抽搐一进一出视频| 黄色片一级片一级黄色片| 99re6热这里在线精品视频| 久久久久久久大尺度免费视频| 亚洲精品久久午夜乱码| 最近最新免费中文字幕在线| 亚洲av美国av| 纯流量卡能插随身wifi吗| 中文字幕高清在线视频| 一本色道久久久久久精品综合| 亚洲欧美精品自产自拍| 日韩欧美一区视频在线观看| 国产精品国产三级国产专区5o| 9色porny在线观看| 精品久久久久久电影网| 亚洲精品中文字幕一二三四区 | 丰满少妇做爰视频| 亚洲熟女精品中文字幕| 人妻一区二区av| 亚洲三区欧美一区| 精品国产乱子伦一区二区三区 | 老司机影院成人| av网站在线播放免费| 18在线观看网站| 国产伦人伦偷精品视频| 人妻一区二区av| 97在线人人人人妻| 色老头精品视频在线观看| 法律面前人人平等表现在哪些方面 | 精品少妇黑人巨大在线播放| 日本91视频免费播放| 亚洲欧美日韩另类电影网站| 大片免费播放器 马上看| 熟女少妇亚洲综合色aaa.| 国产成人av教育| 国产精品偷伦视频观看了| 日本精品一区二区三区蜜桃| 亚洲中文字幕日韩| 国产精品熟女久久久久浪| 黄色a级毛片大全视频| 成年女人毛片免费观看观看9 | 中国美女看黄片| 精品国产乱码久久久久久男人| 精品少妇黑人巨大在线播放| av欧美777| 蜜桃国产av成人99| 国产精品熟女久久久久浪| 我的亚洲天堂| av一本久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 老司机午夜十八禁免费视频| 成年人黄色毛片网站| 中国美女看黄片| 亚洲黑人精品在线| 视频区欧美日本亚洲| 99久久人妻综合| 欧美亚洲日本最大视频资源| 女人爽到高潮嗷嗷叫在线视频| 欧美少妇被猛烈插入视频| 欧美精品一区二区大全| 欧美日韩亚洲综合一区二区三区_| 99精品欧美一区二区三区四区| 午夜影院在线不卡| 色老头精品视频在线观看| 午夜福利视频精品| 一级毛片电影观看| 亚洲人成电影免费在线| 精品福利永久在线观看| 18禁国产床啪视频网站| av在线app专区| 国产精品1区2区在线观看. | 大码成人一级视频| av超薄肉色丝袜交足视频| 香蕉国产在线看| 一区二区三区精品91| 欧美激情高清一区二区三区| 91成年电影在线观看| 日韩电影二区| 精品亚洲成国产av| 中文字幕制服av| 婷婷成人精品国产| 亚洲精品成人av观看孕妇| 亚洲一区中文字幕在线| 不卡av一区二区三区| 搡老熟女国产l中国老女人| 丰满迷人的少妇在线观看| 成人国语在线视频| 日韩大片免费观看网站| 99久久国产精品久久久| 亚洲天堂av无毛| tocl精华| 久久精品亚洲av国产电影网| 1024视频免费在线观看| 欧美精品一区二区大全| 天天操日日干夜夜撸| 亚洲精华国产精华精| 最近最新免费中文字幕在线| 国产精品久久久久久人妻精品电影 | 国产亚洲欧美精品永久| 久久久精品国产亚洲av高清涩受| 十八禁人妻一区二区| 亚洲av日韩在线播放| 十八禁网站免费在线| 人妻 亚洲 视频| 在线观看人妻少妇| 久久精品国产a三级三级三级| 亚洲成人免费电影在线观看| 人妻人人澡人人爽人人| 亚洲精品av麻豆狂野| 亚洲欧洲精品一区二区精品久久久| 亚洲人成电影免费在线| 成人手机av| 美女大奶头黄色视频| 肉色欧美久久久久久久蜜桃| 久久女婷五月综合色啪小说| 一二三四社区在线视频社区8| 亚洲,欧美精品.| 青春草视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产深夜福利视频在线观看| 久久久精品区二区三区| 久久精品国产a三级三级三级| 精品人妻1区二区| 久久久国产欧美日韩av| 十八禁人妻一区二区| 超色免费av| 波多野结衣一区麻豆| 在线观看免费日韩欧美大片| 国产黄色免费在线视频| 男人操女人黄网站| 久久久国产成人免费| 99久久国产精品久久久| 十分钟在线观看高清视频www| 国产成人欧美在线观看 | 亚洲国产欧美日韩在线播放| 女人被躁到高潮嗷嗷叫费观| 国产精品影院久久| 少妇精品久久久久久久| 日韩精品免费视频一区二区三区| 成年动漫av网址| 欧美午夜高清在线| 少妇被粗大的猛进出69影院| 91麻豆精品激情在线观看国产 | 国产成人欧美| 秋霞在线观看毛片| 91字幕亚洲| 亚洲av成人不卡在线观看播放网 | 亚洲九九香蕉| 亚洲精品中文字幕一二三四区 | 成人亚洲精品一区在线观看| 男女之事视频高清在线观看| 色精品久久人妻99蜜桃| 青草久久国产| 国产一区二区在线观看av| 久久久国产成人免费| 亚洲av男天堂| 免费av中文字幕在线| 久久青草综合色| 黑人操中国人逼视频| 男人爽女人下面视频在线观看| 国产精品一二三区在线看| 纯流量卡能插随身wifi吗| 欧美av亚洲av综合av国产av| www.自偷自拍.com| 国产又爽黄色视频| 精品亚洲乱码少妇综合久久| 久久久久精品人妻al黑| 亚洲激情五月婷婷啪啪| 两性夫妻黄色片| 国产国语露脸激情在线看| 国产精品久久久久久人妻精品电影 | 欧美国产精品va在线观看不卡| 欧美激情久久久久久爽电影 | 免费观看人在逋| 亚洲性夜色夜夜综合| 国产av精品麻豆| 亚洲国产精品一区二区三区在线| 大型av网站在线播放| 久久免费观看电影| 亚洲人成电影观看| 汤姆久久久久久久影院中文字幕| 国产一区二区三区av在线| 香蕉国产在线看| 久久香蕉激情| 首页视频小说图片口味搜索| 国产精品欧美亚洲77777| 脱女人内裤的视频| 91精品国产国语对白视频| 欧美性长视频在线观看| 精品国产超薄肉色丝袜足j| 亚洲精品一区蜜桃| 日韩精品免费视频一区二区三区| 一本一本久久a久久精品综合妖精| 在线天堂中文资源库| 国产有黄有色有爽视频| 国产精品久久久久久人妻精品电影 | 蜜桃国产av成人99| 国产精品久久久av美女十八| 欧美午夜高清在线| 久久久久精品人妻al黑| 午夜福利免费观看在线| 久久精品国产亚洲av高清一级| a级毛片在线看网站| 精品国产乱码久久久久久小说| 国产极品粉嫩免费观看在线| 久久99热这里只频精品6学生| 久久中文字幕一级| 悠悠久久av| 91大片在线观看| 亚洲精品国产色婷婷电影| 一级毛片女人18水好多| 日韩免费高清中文字幕av| 精品国产超薄肉色丝袜足j| 一个人免费看片子| 一二三四在线观看免费中文在| 五月天丁香电影| 午夜精品国产一区二区电影| 久久精品熟女亚洲av麻豆精品| 黄色视频不卡| 色精品久久人妻99蜜桃| 99热网站在线观看| 久久人人爽av亚洲精品天堂| 欧美精品啪啪一区二区三区 | 精品亚洲乱码少妇综合久久| 久久亚洲国产成人精品v| 成人免费观看视频高清| 亚洲精华国产精华精| 精品久久久久久电影网| 丰满迷人的少妇在线观看| 国产在视频线精品| 亚洲精品国产区一区二| 亚洲成人免费av在线播放| 日本黄色日本黄色录像| 久久免费观看电影| 亚洲免费av在线视频| 久久久久久久精品精品| a 毛片基地| 日韩欧美国产一区二区入口| 欧美变态另类bdsm刘玥| 午夜福利在线免费观看网站| 免费人妻精品一区二区三区视频| 午夜久久久在线观看| 人妻人人澡人人爽人人| 超碰97精品在线观看| 精品国产一区二区三区四区第35| 十八禁网站网址无遮挡| 欧美在线一区亚洲| 国产成人一区二区三区免费视频网站| 午夜成年电影在线免费观看| av在线播放精品| 亚洲精品第二区| 亚洲 国产 在线| a级片在线免费高清观看视频| 亚洲av日韩精品久久久久久密| 亚洲精品日韩在线中文字幕| 色婷婷av一区二区三区视频| 两个人看的免费小视频| 丝袜美足系列| 97精品久久久久久久久久精品| 91成人精品电影| 日韩,欧美,国产一区二区三区| 黄色视频,在线免费观看| 国产精品成人在线| 久久久久视频综合| 91精品伊人久久大香线蕉| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| tocl精华| 久久久精品94久久精品| 成年人午夜在线观看视频| 在线亚洲精品国产二区图片欧美| 精品一品国产午夜福利视频| 亚洲性夜色夜夜综合| 日韩有码中文字幕| 91大片在线观看| 国产精品免费视频内射| 91成人精品电影| 日本黄色日本黄色录像| 免费人妻精品一区二区三区视频| 精品第一国产精品| 亚洲精品第二区| 巨乳人妻的诱惑在线观看| 亚洲av日韩精品久久久久久密| 欧美成狂野欧美在线观看| 成人18禁高潮啪啪吃奶动态图| 下体分泌物呈黄色| 国产亚洲av片在线观看秒播厂| 在线精品无人区一区二区三| 永久免费av网站大全| 精品久久久久久电影网| 在线观看免费高清a一片| 国产视频一区二区在线看| 国产成人系列免费观看| 色94色欧美一区二区| 亚洲天堂av无毛| 精品一区在线观看国产| a级毛片黄视频| 国产精品久久久av美女十八| 亚洲九九香蕉| 亚洲国产av新网站| 久久热在线av| 亚洲三区欧美一区| 欧美激情 高清一区二区三区| 亚洲精品日韩在线中文字幕| 日本猛色少妇xxxxx猛交久久| 天天躁日日躁夜夜躁夜夜| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 国产亚洲精品久久久久5区| 99久久国产精品久久久| 国精品久久久久久国模美| 国产成人欧美| 国产精品一区二区在线观看99| av福利片在线| 天堂8中文在线网| 97精品久久久久久久久久精品| 日韩欧美一区视频在线观看| 久久精品国产亚洲av高清一级| 老司机午夜十八禁免费视频| 久久国产亚洲av麻豆专区| 侵犯人妻中文字幕一二三四区| av在线老鸭窝| 免费观看人在逋| 成人国产av品久久久| 欧美精品一区二区大全| 日韩中文字幕视频在线看片| 国产在视频线精品| 国产亚洲av片在线观看秒播厂| 亚洲av电影在线进入| 性少妇av在线| 天天躁日日躁夜夜躁夜夜| 精品人妻1区二区| 叶爱在线成人免费视频播放| 亚洲免费av在线视频| 狂野欧美激情性bbbbbb| 嫩草影视91久久| 成人免费观看视频高清| 日本wwww免费看| 王馨瑶露胸无遮挡在线观看| 99国产极品粉嫩在线观看| 国产免费现黄频在线看| 久久香蕉激情| 在线观看免费高清a一片| 丝瓜视频免费看黄片| videosex国产| 人人妻人人澡人人看| 亚洲欧美日韩高清在线视频 | 12—13女人毛片做爰片一| 成年动漫av网址| 最近最新免费中文字幕在线| 美女扒开内裤让男人捅视频| 日韩 亚洲 欧美在线| 亚洲精品一二三| 亚洲五月婷婷丁香| 中国国产av一级| 性色av一级| 国产精品九九99| 菩萨蛮人人尽说江南好唐韦庄| 久久99热这里只频精品6学生| 国产一级毛片在线| 捣出白浆h1v1| 国产极品粉嫩免费观看在线| 国产成人a∨麻豆精品| 乱人伦中国视频| 亚洲欧美一区二区三区黑人| 亚洲伊人久久精品综合| 王馨瑶露胸无遮挡在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 高清黄色对白视频在线免费看| 欧美日韩亚洲国产一区二区在线观看 | 首页视频小说图片口味搜索| 美国免费a级毛片| 亚洲国产毛片av蜜桃av| 国产成人精品久久二区二区91| 美女扒开内裤让男人捅视频| 欧美成人午夜精品| 久久久久精品人妻al黑| 欧美日韩一级在线毛片| 国产亚洲精品一区二区www | 99精品久久久久人妻精品| 热re99久久国产66热| 免费黄频网站在线观看国产| 伊人亚洲综合成人网| 国产精品一区二区免费欧美 | 超色免费av| 国产免费视频播放在线视频| av天堂在线播放| 大型av网站在线播放| av一本久久久久| 国产日韩欧美在线精品| 纵有疾风起免费观看全集完整版| av又黄又爽大尺度在线免费看| 亚洲国产精品成人久久小说| 欧美午夜高清在线| 操出白浆在线播放| 高清欧美精品videossex| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 亚洲av成人一区二区三| 国产淫语在线视频| 亚洲天堂av无毛| 国产亚洲精品一区二区www | 色婷婷av一区二区三区视频| 色老头精品视频在线观看| 欧美激情 高清一区二区三区| 视频区图区小说| 亚洲专区字幕在线| 80岁老熟妇乱子伦牲交| 99香蕉大伊视频| 日韩免费高清中文字幕av| 日韩视频在线欧美| 69精品国产乱码久久久| 亚洲av片天天在线观看| 亚洲国产毛片av蜜桃av| 超色免费av| 丰满少妇做爰视频| 国产又色又爽无遮挡免| av福利片在线| 国产精品熟女久久久久浪| 亚洲av美国av| 日本vs欧美在线观看视频| 欧美av亚洲av综合av国产av| 在线观看免费视频网站a站| 亚洲五月婷婷丁香| 在线观看舔阴道视频| av视频免费观看在线观看| 视频区图区小说| 亚洲欧美日韩另类电影网站| 日本黄色日本黄色录像| 国产成人欧美在线观看 | 亚洲一区二区三区欧美精品| 国产免费视频播放在线视频| 日韩电影二区| 日韩有码中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av欧美aⅴ国产| 91精品伊人久久大香线蕉| 午夜福利乱码中文字幕| 一区二区av电影网| 国产亚洲av高清不卡| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9 | 日韩精品免费视频一区二区三区| 久久久国产成人免费| 一边摸一边抽搐一进一出视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品乱久久久久久| 久久久精品区二区三区| 欧美激情高清一区二区三区| 青青草视频在线视频观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲天堂av无毛| 一二三四在线观看免费中文在| 黑丝袜美女国产一区| 久久综合国产亚洲精品| 亚洲欧美色中文字幕在线| 国产一区二区三区av在线| 日韩免费高清中文字幕av| 蜜桃在线观看..| 国产97色在线日韩免费| 欧美日韩亚洲高清精品| 亚洲黑人精品在线| 午夜日韩欧美国产| 国产一卡二卡三卡精品| 在线av久久热| 18禁观看日本| 桃红色精品国产亚洲av| 五月天丁香电影| 亚洲人成77777在线视频| 国产日韩一区二区三区精品不卡| 久久国产精品男人的天堂亚洲| 国产熟女午夜一区二区三区| a 毛片基地| 久久国产精品大桥未久av| 91大片在线观看| 亚洲成人免费av在线播放| 亚洲人成电影观看| 黄色a级毛片大全视频| 日韩 亚洲 欧美在线| 国产精品影院久久| 美女中出高潮动态图| 精品少妇黑人巨大在线播放| 久久中文字幕一级| 亚洲激情五月婷婷啪啪| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| 亚洲视频免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 好男人电影高清在线观看| 男女边摸边吃奶| 热99国产精品久久久久久7| 性高湖久久久久久久久免费观看| 国产高清videossex| 亚洲成人免费av在线播放| 后天国语完整版免费观看| 黄色视频在线播放观看不卡| 香蕉丝袜av| 午夜福利视频精品| 亚洲男人天堂网一区| 免费久久久久久久精品成人欧美视频| av天堂在线播放| 中文字幕人妻熟女乱码| 亚洲专区国产一区二区| 天堂中文最新版在线下载| 亚洲精品av麻豆狂野| 久久久水蜜桃国产精品网| av国产精品久久久久影院| 捣出白浆h1v1| 日本av手机在线免费观看| 另类亚洲欧美激情| 国产男女内射视频| 亚洲国产毛片av蜜桃av| 热99re8久久精品国产| 国产成人欧美| av超薄肉色丝袜交足视频| 不卡av一区二区三区| 久久中文字幕一级| 大片免费播放器 马上看| 中文字幕人妻丝袜一区二区| 欧美中文综合在线视频| 一个人免费看片子| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线| av网站免费在线观看视频| 不卡av一区二区三区| 最近中文字幕2019免费版| 精品高清国产在线一区| 中文字幕人妻丝袜一区二区| 成人18禁高潮啪啪吃奶动态图| 午夜福利一区二区在线看| 亚洲成国产人片在线观看| 丝瓜视频免费看黄片| 亚洲人成电影免费在线| 丝袜在线中文字幕| 成人手机av| 国产无遮挡羞羞视频在线观看| 久久精品亚洲av国产电影网| 一边摸一边做爽爽视频免费| 最近最新免费中文字幕在线| 欧美日韩av久久| 亚洲一码二码三码区别大吗| 欧美 亚洲 国产 日韩一| 国内毛片毛片毛片毛片毛片| 91九色精品人成在线观看| 日韩视频一区二区在线观看| xxxhd国产人妻xxx| 精品人妻熟女毛片av久久网站| 精品国产乱子伦一区二区三区 | 久久久久国产一级毛片高清牌| 丝袜喷水一区| 成年女人毛片免费观看观看9 | 交换朋友夫妻互换小说| 亚洲一区中文字幕在线| 交换朋友夫妻互换小说| 97人妻天天添夜夜摸| 久久免费观看电影| a 毛片基地| a级毛片在线看网站| 九色亚洲精品在线播放| 久久精品成人免费网站| 一级a爱视频在线免费观看| 亚洲精品久久久久久婷婷小说| 麻豆乱淫一区二区| 91国产中文字幕| 亚洲中文字幕日韩| 国产精品偷伦视频观看了| 精品国产超薄肉色丝袜足j| 如日韩欧美国产精品一区二区三区| 亚洲熟女毛片儿| 母亲3免费完整高清在线观看| 久热爱精品视频在线9| 最新的欧美精品一区二区| 亚洲中文字幕日韩| 久9热在线精品视频| 欧美亚洲日本最大视频资源| 一进一出抽搐动态| 99国产极品粉嫩在线观看| 国产成人欧美在线观看 | 老司机午夜十八禁免费视频| 国产亚洲精品第一综合不卡| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品熟女亚洲av麻豆精品| svipshipincom国产片| 18禁国产床啪视频网站| 我的亚洲天堂| 啦啦啦 在线观看视频|