• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pathological role of transient receptor potential melastatin member 2 channel in neurodegenerative diseases and Alzheimer disease

    2016-02-16 01:43:17FeiyaLIRaymondWONGEkaterinaTURLOVAHongshuoSUN
    關(guān)鍵詞:離子通道退行性阿爾茨海默

    Fei-ya LI,Raymond WONG,Ekaterina TURLOVA,Hong-shuo SUN,2,3,4

    (1.Department of Physiology,2.Department of Surgery,3.Department of Pharmacology,4.Institute of Medical Science,Faculty of Medicine,University of Toronto,Toronto,Canada M5S 1A8)

    Pathological role of transient receptor potential melastatin member 2 channel in neurodegenerative diseases and Alzheimer disease

    Fei-ya LI1,Raymond WONG1,Ekaterina TURLOVA1,Hong-shuo SUN1,2,3,4

    (1.Department of Physiology,2.Department of Surgery,3.Department of Pharmacology,4.Institute of Medical Science,Faculty of Medicine,University of Toronto,Toronto,Canada M5S 1A8)

    Neurodegenerative diseases refer to incurable conditions that result in progressive degeneration or death of nerve cells.This causes functional movement deficits and cognitive problems such as dementias.Among different types of neurodegenerative diseases,Alzheimer disease(AD) accounts for majority of the cases.The transient receptor potential melastatin member 2(TRPM2) channel is a Ca2+-permeable non-selective cation channel which has been studied and implicated in the pathological process of AD through different pathways including inflammation.This review summarizes the contribution of TRPM2 in AD pathology and recent advances in pharmacology of TRPM2,with a focus on relationships between β-amyloid,oxidative stress and Ca2+.We also discuss the potential future research direction for neurodegenerative diseases.

    transient receptor potential melastatin member 2;neurodegenerative diseases; Alzheimer disease;β-amyloid;oxidative stress;Ca2+;inflammation

    Neurodegenerative disease is an umbrella term for conditions that mainly affect the neurons in the human brain.Neurons are the fundamen?talelementsofthe centralnervoussystem (CNS)and normally do not have the ability to re?generate themselves.When dead neurons accu?mulate,severe diseases may arise.Neurodegen?erative diseases such as Parkinson disease (PD),Alzheimer disease(AD),and Huntington disease(HD)are responsible for the greatest burden on families,our society and healthcare system.Within the neurodegenerative diseases, AD represents approximately 60%-70%of cases. Cures for the aforementioned diseases have remained elusive.In recent years,ion channels became the third largest target for drug development and potential therapeutic target for neurodegen?erative diseases.Among the ion channels,the transient receptor potential melastatin-subfamily member(TRPM)channels,one of the six subfamilies in the TRP family,show strong trend in having roles in neurodegenerative diseases.Scientists aim to confront the growing challenge posed by neurodegenerative diseases in our aging population via unraveling the relationship between the physi?ological functions of the TRPM protein family and the pathophysiology of the neurodegenera?tive diseases.Studies to date already indicated that the altered TRPM expressions in mammalian cells could lead to human ion channel diseases, also known as channelopathies[1].

    The TRP channel was first identified as a protein inDrosophilamelanogaster[2-6].TRP channels are non-selective cation channels;somehave high selectivity to Ca2+,others are more permeable for Mg2+ions or other trace metal ions[7-9].Studies have shown that more than 30 different TRP genes have been identified and the TRP channels are grouped into 6 families named as TRPC(canonical),TRPM(melastatin), TRPV(vanilloid),TRPA(ankyrin),TRPP(polycystin) and TR PML(mucolipin)[10-12]. All these TRP channels consist of six transmembrane domains arranged in a tetrameric structure and are widely expressed in various cell types in the body,including neurons[13-16].Among the TRP channels,TRPM channels are implicated in brain diseases and neurodegenerative diseases[15].

    The melastatin(TRPM)subfamily of TRP family has been extensively studied.TRPM family has 8 isoforms named as TRPM1-TRPM8.Partic?ularly,TRPM1 is required for photoresponse and human TRPM1 mutationsare associated with congenitalstationarynightblindness(CSNB) where patients get night blindness and lack rod function at an early age[2].TRPM2 is a sensor for oxidative stress and it also plays a role in insulin secretion[17].TRPM3 is a sensor for noxious heat[18-20],while TRPM8 is a sensor for cold temperature[21-22].TRPM4,like TRPM2,is related to insulin secretion[23].TRPM5 is related to trans?mitter secretion in taste bud cells[24].TRPM6 is permeable to Mg2+and it functions in the distal convoluted tubule of the kidney as a doorsill for modulating Mg2+homeostasis by maintaining a threshold for Mg2+entry[25].TRPM7 is known to play an importantpathophysiologicalrole in stroke[26]and neonatal hypoxic-ischemic brain injury[27];TRPM7 also regulates axonal outgrowth and maturation ofneurons[28].Lastly,some studies show that the TRPM2 subfamily may play a role in the neurodegenerative diseases including AD[1,15,29-30],and the focus of this review is on our current understanding of the TRPM2 channel and its pathophysiological role in the neurodegenerative diseases,as well as its thera?peutic potential for AD.

    1 TRPM2 STRUCTURE AND TRANS?MEMBRANE TOPOLOGY

    TRPM2 is one of the eight members in TRPM subfamily.It is a calcium-permeable nonselective cation channel and it is activated by intracellular adenosine diphosphoribose(ADPR) through a unique NUDT9-H domain[31].TRPM2 channels are expressed in many tissues including brain,lung,liver,heart,and various cell types, including neurons,microglia immune cells and pancreatic β-cells[9,32-33].

    As it possesses bidirectional function between the ion channel itself and the C-terminal enzymatic NUDT9-H domain,TRPM2 is also known as a″chanzyme″,similar to that of TRPM6andTRPM7[31,34].TRPM2channelis encoded by TRPM2 gene,which in humans,is located in 21q22.3 region on chromosome with 32 exons and spans 90kb[31,35].In mice,this gene consists of 34 exons and spans 61kb[31,35].More?over,in human,there is an additional exon located at the 5′-terminus with a CgG island in the TRPM2 gene[35].TRPM2 protein in human consistsofapproximately1503aminoacids while in rodents each protein consists of 1507 amino acids[31,36].To form a channel,TRPM proteins typically assemble into homotetramers, each containing six transmembrane segments (S1-S6)with both intracellular N-and C-termini flanking the sides and a putative pore loop between the fifth and sixth segments.At the N-terminus,there are 4 homologous regions as well as a calmodulin(CaM)binding domain,a vital region that plays a role in regulating the channel opening property[37-39].At the C-terminus,there is a TRP box as well as a coiled-coil domain, both ofwhich have been assumed to be essential for the TRPM2 homogenous tetrameric assembling[16,31].

    ADPR has been reported and accepted as the activation molecule of TRPM2 channel.It regulates the opening of the channel by binding to the NUDT9-H homology domain and subse?quenthydrolysis of ribose 5-phosphate and adenosine monophosphate(AMP)and calcium entry into the cell.Since the channels are not selective to Ca2+,Na+and K+ions can also pass through the channel during the opening.The currents recorded from the TRPM2 channels differ from both Na+channels and K+channels. Unlike Na+and K+channels,TRPM2 channels show a linearⅠ-Ⅴrelationship and the channels could stay in the open stage for a long time[31,40].

    Regulation of TRPM2 via ADPR includes both facilitation and inhibition.Facilitation factors include Ca2+,hydrogen peroxide(H2O2),cyclic ADPR (Cadpr)[41]and nicotinic acid adenine dinucleotide phosphate(NAADP)[31],while inhibition factors include protons and AMP[41].These regu?latory factors could either directly or indirectly modulate TRPM2 channels.We will discuss modulatory effects of Ca2+and H2O2in details in the next section.

    2ROLEOFTRPM2INALZHEIMER DISEASE

    TRPM2 has been implicated in Ca2+-mediated functional processes of insulin secretion,cyto?kineproduction,cellmotility,aswellascelldeath[31]. Its reactive oxygen species(ROS)sensitivity has implicated TRPM2 as a potential therapeutic targetfor neurodegenerative diseases and pathologies related to oxidative stress[31].It also makes TRPM2 a potential target for chronic inflammation[31,42].AD,the most common form of dementia,causes problems in cognitive functions. Symptoms ofmemory loss and intellectual disabilities develop slowly initially,but gradually exacerbate becoming serious enough to affect daily tasks.AD has three disease stages(mild, moderate and severe)and it is an irreversible brain disorder with no effective treatment.Based on current understanding,TRPM2 may contribute to AD through β-amyloid(Aβ),oxidative stress and Ca2+entry[29,43-45].Recent studies continue to show the importance of the aforementioned mechanisms in causing AD and consequently the therapeutic potential of intervention within these pathways.

    2.1RelationshipbetweenTRPM2and Alzheimer disease viaβ -amyloid

    Aβ is a peptide consisting of 39-43 amino acids among which the Aβ-fragment 25-35 (Aβ25-35)is actually the biologically active region and is crucially involved in AD[46].The peptide resultsfrom the breakdown ofthe amyloid precursor protein(APP)[47].Which is cleaved by β-secretase and γ-secretase,yielding Aβ[47-48].Aβ molecules can aggregate together and form soluble oligomers,accumulation of which is known to be highly toxic to nerve cells[49].Advanced brain imaging techniques allow researchers to study the development and spread of abnormal amyloid proteins in the living brain,as well as changes in brain structure and function.The level of Aβ could be determined and used for predicting AD in the early stage[50-51].

    Recently,a research has illustrated that TRPM2 can be positively regulated by Aβ.A recent study[44]used electrophysiological techniques, animal models and other molecular techniques to first reveal whether TRPM2 channel function could be modulated by Aβ oligomers and then test the effect of TRPM2 channels on Aβ oligomers toxicity.The electrophysiology results showed that TRPM2 currents〔induced byN-methyl-D-aspartic acid(NMDA)〕were magnified after the treatment of Aβ oligomers for 24 h.Therefore, augmentation of the recorded currents indicates that Aβ oligomers can positively modulate the opening property of TRPM2 channel.The APP/ PS1 mouse model used in the study was shown that when compared to wildtype mice,TRPM2 KO mice have reduced levels of endoplasmic reticulum(ER)stress in their brains,which is a pathophysiological change that could be used as a marker for AD[44-45].Normally in AD patients or AD mousemodels,ER stresswillincrease due to protein misfolding.Therefore the results of the study showed that symptoms of AD disease were improved with deletion of the TRPM2 channels.

    In summary,Aβ has been viewed as a pivotalfactor involved in the pathology of AD,and its toxicity is elicited,atleastpartially,by the TRPM2 channel.Therefore,it is quite possible that TRPM2 is a downstream transducer of Aβ toxicity during the development of AD.

    2.2 Relationship between TRPM2 and Alzheimer disease via oxidative stress

    Oxidative stress leads to many pathophysio?logical conditions in the body including neurode?generative diseases like AD[52].Oxidative stress is essentially an imbalance between the overpro?duction of ROS and the reduced ability of the body to lower the levels of these free radicals through anti-oxidants[52-53]. ROS is naturally generated during the process of respiration via the mitochondrial electron transport chain and sometimes they could be beneficial.

    H2O2is one typical chemical that generates oxidative stress in cells.TRPM2 channel activation has also been linked to oxidative stress.For example,the activation of TRPM2 channel after stimuli of oxidative stress release is regulated as follows:① H2O2activates production of ADPR and mobilizes ADPR from the mitochondria;② sufficient ADPR causes the TRPM2 channel opening via binding the NUDT9-H domain in the C-terminus.Following channelopening,Ca2+influx results,which increases the possibility of CaM binding to TRPM2 and therefore enhances the channel′s open probability(Fig 1).As[Ca2+]irises,itactivates the extrinsic and intrinsic apoptotic pathways,leading to the activation of caspase 3.Oxidative stress is known to have role in free ADPR generation via poly(ADP-ribose) polymerases(PARPs).The PARPscanbe degraded by poly(ADP-ribose)glycohydrolases, and then lead to the formation of ADPR[54]. Therefore,H2O2could activate TRPM2 channels through ADPR formation.An alternative hypothesis is that there may be a direct mechanism for H2O2regulating TRPM2 gating that is ADPR-independent[31].

    In summary,oxidative stress is shown to be involved in the pathology of AD,and it is also a factor in TRPM2 channel gating.Thus,there is possibility that TRPM2 is a factor for the develop?ment of AD through H2O2-induced oxidative stress.

    Fig.1 Activation mechanisms of TRPM2 and the subsequent downstream signaling cascade.Neurons expressTRPM2 channels,which are activated byADP-ribose (ADPR),and potentiated by nicotinamide adenine dinucleotide(NAD+)and H2O2.TRPM2 activation promotes Ca2+influx,which can lead to Ca2+imbalance.Extracellular H2O2can permeate through the cell membrane,and H2O2-induced Ca2+release from intracellular Ca2+stores further contributes to the Ca2+imbalance.This can induce neuronal cell death,which ultimately,can accumulate into the onset of neurodegenerative diseases.

    2.3 Relationship between TRPM2 and Alzheimer disease via Ca2+

    Ca2+,both extra-and intracellularly,plays a critical role in activating TRPM2 channels[39,55-56]. Even though TRPM2 is a″chanzyme″as previ?ously discussed,it is the binding of ADPR to the C-terminus that is critical for TRPM2 channel activation instead of enzymatic activity of the NUDT9-H domain[5].Intracellular Ca2+facilitates TRPM2 activation by strengthening the channel sensitivity to ADPR[57].Interaction between CaM and the IQ motif in the N-terminus of TRPM2 strengthens the positive feedback for TRPM2 activation,which subsequently causes increased Ca2+influx and enhanced intracellular calcium concentration[37].ADPR alone cannot trigger the activation of TRPM2 currents in the absence of Ca2+and a minimum of 30 nmol·L-1intracellular Ca2+is necessary to activate TRPM2 currents[55]. This facilitation is specific for Ca2+as studies showed that other ions such as Ba2+,or Zn2+,or Mg2+do not have such facilitation property[31,55]. Other than intracellular Ca2+,extracellular Ca2+also plays a critical role in TRPM2 activation and the facilitation function has a high efficiency:200 μmol·L-1of extracellular Ca2+could generate the same effect as 1 mmol·L-1external Ca2+[55]. Varying concentrations of Ca2+may differently modulate the gating property of TRPM2.The high concentration of intracellular Ca2+could promote the production or release of ADPR from mitochondria.Recentevidence concurs that TRPM2 channel can still be activated by[Ca2+]ieven when the ADPR binding sites are mutated. According to this result,a different signaling pathway for TRPM2 activation may lead into an unexplored mechanism.

    Under physiological conditions,Ca2+is a secondary messengerand plays a role in maintaining the normal functions of neurons.Under pathophysiological conditions,Ca2+overload will trigger the activation of multiple apoptotic signaling pathways,such as cytochrome/caspase 3[58], c-Jun/JNK[59]and protein kinase C(PKC)/NF-κB[60]pathways,all of which have been implicated in AD.

    3 INVOLVEMENT OF TRPM2 IN INFLAM?MATION

    As a newly identified Ca2+-permeable nonselective cation channel and the sensor of ROS, TRPM2 channel has recently been indicated to be involved in inflammation.Since TRPM2 channels are abundantly expressed in various tissue types,TRPM2 channels are also expressed and functional[61],and can act as a sensor for ROS in microglia,the resident immune cells of the CNS[54,62-63].There is evidence that suggests a role of TRPM2 channels as an oxidative stress and metabolic sensor regulating immune and inflammatory responses[64].TRPM2 contributes to lipopolysaccharides(LPS)/interferon γ-induced production of nitric oxide through the proinflam?matory p38/JNK pathway in microglia[65].In addition,TRPM2activationhasbeensuggested to be the link between oxidative stress and nod-like receptor family,pyrin domain containing 3(NLRP3) inflammasome activation[66].Mori,et al[67-68]recently discovered that deficiency of TRPM2 reduced inflammatory and neuropathic pain in several mouse models,including carrageenan or Formalininduced inflammatory pain,and peripheral nerve injury-induced neuropathic pain models.However, TRPM2 had no effect on basal mechanical and thermal nociceptive sensitivities[67-68].Furthermore, this group also discovered that TRPM2 channels are involved in pathological pain models based on centraland peripheralneuroinflammation, rather than physiologicalnociceptive pain[69]. Although the involvement of TRPM2 in ischemic stroke is not yet fully understood,in striatal neurons,TRPM2 activation induced death through oxidative stress[70].Specifically,TRPM2 channel gating is linked to NMDA channel activation. NMDA channel activity elicits a proinflammatory signaling cascade that begins with the production of nitric oxide and reactive nitrogen species,as well as generation of ADP-ribose.In ischemia,the nuclear enzyme PARP-1 is highly activated, which in turn phosphorylates and thus activates ADP-ribose.Consequently,ADP-ribose opens TRPM2 channels.Because TRPM2 activation is downstream ofNMDA channels, TRPM2 channels make an exciting therapeutic target.

    4 PHARMACOLOGY OF TRPM2

    As TRPM2 is highly related to neurodegen?erative diseases,the pharmacology of TRPM2 has attracted major interest in research field but currently is far from reaching a satisfactory state. However,different TRPM2 channels blockers have been widely studied and discovered but none of them possess a desirable specificity. Compounds that reported to have effect on TRPM2 channel also affected other targets.

    Flufenamic acid(FFA)was the first to be identified as TRPM2 blocker.It belongs to class of non-steroidal anti-inflammatory drugs(NSAIDs). Such fenamates are capable of producing antiinflammatory effects in the CNS.Studies have been done on TRPM2-expressing HEK-293 cells, and FFA evoked a pH-dependent inhibition of ADPR-or H2O2-induced cation currents[71].However, FFA has inhibitory effect not only on TRPM2channel;it has similar effect on other channels in TRP family such as TRPM4,TRPM5,TRPC3 and TRPC5[72-73].It also has an activation effect on TRPC6[74]and TRPA1[75].Therefore,fenamates like FFA are hardly satisfactory tools for study on clarification of role of TRPM2 channel.

    Other known blockers(but non-specific)of TRPM2 are the anti-fungals clotrimazole and econazole,and 2-aminoethoxydiphenylborate (2-APB).The anti-fungal compounds exert an open-channel block of TRPM2 channels activated by ADPR in HEK-293 cells but the inhibitory effect is irreversible[71].2-APB was first identified as an inositol 1,4,5-trisphosphate(IP3)receptor antagonist[76].Again,2-APB has been reported to exert inhibitory effect on certain TRPC channels and TRPM channels while also showing activation effect on some TRPV channels[77].Some heavy metal ions such as La3+and Gd3+[78-79]are known to have inhibitory effect on most TRP channel but TRPM2 seems to be an exception[73].A more recent study shows that divalent copper(Cu2+)is a potent TRPM2 channel blocker[80].

    Recently,AG490 is identified to have inhibitory effect on TRPM2 channel[81].The study shows that AG490 almost thoroughly blocked H2O2-induced intracellular Ca2+increase and significantly reduces H2O2-induced TRPM2 currents.H2O2can also activate the TRPA1 channel,however, AG490 has no significant effect on the H2O2-induced Ca2+influx mediated by TRPA1 channels. ADPR is anotherendogenous activatorfor TRPM2,however,in the patch-clamp study on TRPM2/HEK cells,AG490 only inhibits the H2O2-induced but not ADPR-induced TRPM2 inward current[81].Structurally,AG490 belongs to tyrphostin family and was synthesized in the early 1990s. Since AG490 was initially found to be a Janus kinase 2(JAK2)inhibitor,the same study examined whetherthe inhibitory effectofAG490 on TRPM2 activity was depending on the inhibition of JAK2.The study also tested the effects of other JAK2 inhibitors and none of them had effect on H2O2-induced Ca2+increase by TRPM2 channels.Thus,the results suggest that the inhibitory effect of AG490 on TRPM2 activation be independent from JAK2 inhibition.AG490 may manifest its inhibitory effect by scavenging intracellular hydroxyl radicals[81].

    Besides channel blocker discovery studies, the potentialpharmacologicalpossibilities of agonists of TRPM2 channels currently allow researchers to manipulate the channel activation. H2O2and ADPR are well known TRPM2 channel activator and binding of ADPR to TRPM2 may be a pharmacological target in the future.Several studies have suggested that other than H2O2and ADPR,TRPM2 channels can be also activated by nucleotides including cyclic ADPR(cADPR)[41], nicotinamide-adenine dinucleotide(NAD)[82],nicotinic acid-adenine dinucleotide(NAAD),NAAD-phosphate (NAADP)[83-84].However,whether these nucleotides play a direct role on TRPM2 activation remains controversial.

    5 CONCLUSION AND FUTURE DIREC?TIONS

    Based on what has been discussed,there are several lines of evidence that highlight the roles of TRPM2 channels in the AD.Both the mechanism underlying the cause of AD and the regulatory mechanism of TRPM2 channel are not fully understood.Firstly,both Akt and GSK3-β are pivotal protein kinases that confer the prosurvival effect in neurons,and it has been verified that TRPM2 inhibition activates Akt and promotes the phosphorylation of GSK3-β,thus enhancing the survival of neurons subjected to ischemic insult.However,whether JAK/STAT and other signaling pathways are involved is still unknown. On the other hand,it has been shown that TRPM2 is involved in neuronal toxicity mediated by Aβ.Although aggregation of Aβ and overphos?phorylation of tau proteins are two pathological characteristics of AD disease,it is uncertain if tau proteins that are located inside the cells would have any regulatory roles on TRPM2 channels as well.All these mechanisms still need more clarification.

    As discussed,the opening of TRPM2 chan?nel regulates oxidative stress,calcium ion influx and Aβ toxicity,all of which may cause neuronal cell death.Such assumptions lead to some future directions.First,TRPM2 could be a biomarker in the future for therapeutic diagnosis.Based on current understanding,increased TRPM2 activity increases the risk of neuronal cell death which could lead to dementia development.Neurode?generative diseases like AD do not have typical symptoms at the early stage;it is a slow and pro?gressive brain disorder process that takes place many years before the appearance of cognitive deficits.TRPM2 can potentially be used as a clinical biomarker to detect the onset of dementia at an earlier stage,ultimately resulting in a larger window frame for therapeutic action.Second,a specific TRPM2 blocker needs to be discovered. A drug needs to be designed that has a certain degree of specificity and efficacy for inhibition of TRPM2.

    Furthermore,as TRPM2 is shown to be related to neurodegenerative diseases,human tissue samples are needed for further evaluation. Samples from patients that suffer from AD have not yet collected for testing TRPM2 expression. Doing so,TRPM2 may be a biomarker for clinical diagnosisin the future.Researcheson the biological roles of TRPM2 in various cells and tissues have been performed in many laboratories, but the current progress is limited partially due to unavailable specific TRPM2 blockers.Modulation of TRPM2 channels may become an important pharmacological therapeutic target in the near future that is expected to be of value in a wide range of pathological conditions.

    REFERENCES:

    [1] Simon F,Varela D,Cabello-Verrugio C.Oxida?tive stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans[J].Cell Signal,2013,25(7):1614-1624.

    [2] Irie S,F(xiàn)urukawa T.TRPM1[J].Handb Exp Pharmacol,2014,222:387-402.

    [3] Hofmann T,Schaefer M,Schultz G,Gudermann T. Transient receptor potential channels as molecu?lar substrates of receptor-mediated cation entry[J].J Mol Med(Berl),2000,78(1):14-25.

    [4] Minke B.The history of the Drosophila TRP Chan?nel:the birth of a new Channel superfamily[J].J Neurogenet,2010,24(4):216-233.

    [5] Nilius B,F(xiàn)lockerzi V.Mammalian transient recep?tor potential(TRP)cation channels.Preface[J]. Handb Exp Pharmacol,2014,223:v-vi.

    [6] Montell C,Rubin GM.Molecular characterization of the Drosophila TRP locus:a putative integral membrane protein required for phototransduction[J].Neuron,1989,2(4):1313-1323.

    [7] Huang CL.The transient receptor potential super?family of ion channels[J].J Am Soc Nephrol,2004,15(7):1690-1699.

    [8] Bouron A,Kiselyov K, Oberwinkler J.Perme?ation,regulation and control of expression of TRP channels by trace metal ions[J].Pflugers Arch,2015,467(6):1143-1164.

    [9] Gees M,Colsoul B,Nilius B.The role of transient receptor potential cation channels in Ca2+signaling[J].Cold Spring Harb Perspect Biol,2010,2(10):a003962.

    [10] Clapham DE,Runnels LW,Strübing C.The TRP ion channel family[J].Nat Rev Neurosci,2001,2(6):387-396.

    [11] Benemei S,De Cesaris F,F(xiàn)usi C,Rossi E,Lupi C,Geppetti P.TRPA1 and other TRP channels in mi?graine[J].J Headache Pain,2013,14:71.

    [12] Pan Z,Yang H,Reinach PS.Transient receptor potential(TRP)gene superfamily encoding cation channels[J].Hum Genomics,2011,5(2):108-116.

    [13] Hellmich UA,Gaudet R.Structural biology of TRP channels[J].Handb Exp Pharmacol,2014,223:963-990.

    [14] Li M,Yu Y,Yang J.Structural biology of TRP channels[J].Adv Exp Med Biol,2011,704:1-23.

    [15] Morelli MB,Amantini C,Liberati S,Santoni M,Nabissi M.TRP channels:new potential thera?peutic approaches in CNS neuropathies[J].CNS Neurol Disord Drug Targets,2013,12(2):274-293.

    [16] Zheng J.Molecular mechanism of TRP channels[J].Compr Physiol,2013,3(1):221-242.

    [17] Uchida K,Dezaki K,Damdindorj B,Inada H,ShiuchiT,MoriY,etal.LackofTRPM2 impaired insulin secretion and glucose metabolisms

    in mice[J].Diabetes,2011,60(1):119-126.

    [18] Oberwinkler J,Philipp SE.TRPM3[J].Handb Exp Pharmacol,2007,179:253-267.

    [19] Vriens J,Owsianik G,Hofmann T,Philipp SE,Stab J,Chen X,et al.TRPM3 is a nociceptor channel involved in the detection of noxious heat[J].Neuron,2011,70(3):482-494.

    [20] Oberwinkler J,Philipp SE.TRPM3[J].Handb Exp Pharmacol,2014,222:427-459.

    [21] Quallo T,Vastani N,Horridge E,Gentry C,Parra A,Moss S,et al.TRPM8 is a neuronal osmosen?sor that regulates eye blinking in mice[J].Nat Commun,2015,6:7150.

    [22] Yee NS.Roles of TRPM8 ion channels in cancer:proliferation,survival,and invasion[J].Cancers(Basel),2015,7(4):2134-2146.

    [23] Cheng H,Beck A,Launay P,Gross SA,Stokes AJ,Kinet JP,et al.TRPM4 controls insulin secretion in pancreatic beta cells[J].Cell Calcium,2007,41(1):51-61.

    [24] Roper SD.TRPs in taste and chemesthesis[J]. Handb Exp Pharmacol,2014,223:827-871.

    [25] van der Wijst J,Bindels RJ,Hoenderop JG.Mg2+homeostasis:the balancing act of TRPM6[J]. Curr Opin Nephrol Hypertens,2014,23(4):361-369.

    [26] Sun HS,Jackson MF,Martin LJ,Jansen K,Teves L,Cui H,et al.Suppression of hippocam?pal TRPM7 protein prevents delayed neuronal death in brain ischemia[J].Nat Neurosci,2009,12(10):1300-1307.

    [27] Chen W,Xu B,Xiao A,Liu L,F(xiàn)ang X,Liu R,et al.TRPM7 inhibitor carvacrol protects brain from neonatalhypoxic-ischemicinjury[J].Mol Brain,2015,8:11.

    [28] Turlova E, Bae CY,Deurloo M,Chen W,Barszczyk A,Horgen FD,et al.TRPM7 regulates axonaloutgrowth and maturation ofprimary hippocampal neurons[J].Mol Neurobiol,2016,53(1):595-610.

    [29] Xie YF,Macdonald JF,Jackson MF.TRPM2,Calcium and neurodegenerative diseases[J].Int J Physiol Pathophysiol Pharmacol,2010,2(2):95-103.

    [30] Maqbool M,Mobashir M,Hoda N.Pivotal role of glycogen synthase kinase-3:A therapeutic target for Alzheimer′s disease[J].Eur J Med Chem,2016,107:63-81.

    [31] Sumoza-Toledo A,Penner R.TRPM2:a multi?

    functional ion channel for calcium signalling[J].J Physiol,2011,589(Pt 7):1515-1525.

    [32] Belrose JC,Xie YF,Gierszewski LJ,Macdonald JF,Jackson MF.Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons[J].Mol Brain,2012,5:11.

    [33] Rempe DA,Takano T,Nedergaard M.TR(I)Pping towards treatment for ischemia[J].Nat Neurosci,2009,12(10):1215-1216.

    [34] Tóth B,Iordanov I,Csanády L.Putative chanzyme activity of TRPM2 cation channel is unrelated to pore gating[J].Proc Natl Acad Sci USA,2014,111(47):16949-16954.

    [35] Uemura T,Kudoh J,Noda S,Kanba S,Shimizu N. Characterization of human and mouse TRPM2 genes:identification of a novel N-terminal truncated protein specifically expressed in human striatum[J].Biochem Biophys Res Commun,2005,328(4):1232-1243.

    [36] Gelderblom M,Melzer N,Schattling B,G?b E,Hicking G,Arunachalam P,et al.Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke[J].Stroke,2014,45(11):3395-3402.

    [37] Tong Q,Zhang W,Conrad K,Mostoller K,Cheung JY,Peterson BZ,et al.Regulation of the transient receptor potential channel TRPM2 by the Ca2+sensor calmodulin[J].J Biol Chem,2006,281(14):9076-9085.

    [38] Sano Y,Inamura K,Miyake A,Mochizuki S,Yokoi H,Matsushime H,et al.Immunocyte Ca2+influx system mediated by LTRPC2[J].Science,2001,293(5533):1327-1330.

    [39] Mchugh D,F(xiàn)lemming R,Xu SZ,Perraud AL,Beech DJ.Critical intracellular Ca2+dependence of transient receptor potential melastatin 2(TRPM2)cation channel activation[J].J Biol Chem,2003,278(13):11002-11006.

    [40] Kheradpezhouh E,Ma L,Morphett A,Barritt GJ,Rychkov GY.TRPM2 channels mediate acetamin?ophen-induced liver damage[J].Proc Natl Acad Sci USA,2014,111(8):3176-3181.

    [41] Kolisek M,Beck A,F(xiàn)leig A,Penner R.Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels[J].Mol Cell,2005,18(1):61-69.

    [42] Yamamoto S,Shimizu S,Mori Y.Involvement of TRPM2 channel in amplification of reactive oxygen species-induced signaling and chronic inflammation[J].Nihon Yakurigaku Zasshi,2009,134(3):122-126.

    [43] Yamamoto S,Wajima T,Hara Y,Nishida M,Mori Y. Transient receptor potential channels in Alzheimer′s disease[J].Biochim Biophys Acta,2007,1772(8):958-967.

    [44] Ostapchenko VG,Chen M,Guzman MS,Xie YF,Lavine N,F(xiàn)an J,et al.The transient receptor potential melastatin 2(TRPM2)channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment[J].J Neurosci,2015,35(45):15157-15169.

    [45] Wang J,Jackson MF,Xie YF.Glia and TRPM2 channels in plasticity of central nervous system and Alzheimer′s diseases[J].Neural Plast,2016:1680905.

    [46] Mattson MP,Cheng B,DavisD,BryantK,Lieberburg I,Rydel RE.beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity[J].J Neurosci,1992,12(2):376-389.

    [47] O′Brien RJ,Wong PC.Amyloid precursor protein processing and Alzheimer′s disease[J].Annu Rev Neurosci,2011,34(1):185-204.

    [48] Nunan J,Small DH.Regulation of APP cleavage by alpha-,beta-and gamma-secretases[J].FEBS Lett,2000,483(1):6-10.

    [49] Irvine GB,El-Agnaf OM,Shankar GM,Walsh DM. Protein aggregation in the brain:the molecular basis for Alzheimer′s and Parkinson′s diseases[J].Mol Med,2008,14(7-8):451-464.

    [50] Lemere CA,Masliah E.Can Alzheimer disease be prevented by amyloid-beta immunotherapy?[J].Nat Rev Neurol,2010,6(2):108-119.

    [51] Mosconi L,Berti V,Glodzik L,Pupi A,De Santi S,de Leon MJ.Pre-clinical detection of Alzheimer′s disease using FDG-PET,with or without amyloid imaging[J].J Alzheimers Dis,2010,20(3):843-854.

    [52] Uttara B,Singh AV,Zamboni P,Mahajan RT. Oxidative stress and neurodegenerative diseas?es:a review of upstream and downstream antioxi?dant therapeutic options[J].Curr Neuropharma?col,2009,7(1):65-74.

    [53] Gebicki JM.Oxidative stress,free radicals and proteinperoxides[J].ArchBiochemBiophys,2016,595:33-39.

    [54] Buelow B,Song Y,Scharenberg AM.The poly-(ADP-ribose)polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes[J].J Biol Chem,2008,283(36):24571-24583.

    [55] Starkus J,Beck A,F(xiàn)leig A,Penner R.Regulation of TRPM2 by extra-and intracellular calcium[J]. J Gen Physiol,2007,130(4):427-440.

    [56] Csanády L,T?rocsik B.Four Ca2+ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate[J].J Gen Physiol,2009,133(2):189-203.

    [57] Lange I,Penner R,F(xiàn)leig A,Beck A.Synergistic regulation of endogenous TRPM2 channels by ad?enine dinucleotides in primary human neutrophils[J].Cell Calcium,2008,44(6):604-615.

    [58] Zhang Y,Qin W,Zhang L,Wu X,Du N,Hu Y,et al.MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the set?ting of atherosclerosis[J].Sci Rep,2015,5:9401.

    [59] Timothy SK,Teng S,Stolie r AJ,Bolton JS,F(xiàn)uhrman GM.Postmastectomy radiation in patients with four or more positive nodes[J].Am Surg,2002,68(6):539-544.

    [60] Mattson MP,Duan W.″Apoptotic″biochemical cascades in synaptic compartments:roles in adaptive plasticity and neurodegenerative disorders[J].J Neurosci Res,1999,58(1):152-166.

    [61] Kraft R,Grimm C,Grosse K,Hoffmann A,Sauerbruch S,Kettenmann H,et al.Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia[J]. Am J Physiol Cell Physiol,2004,286(1):C129-C137.

    [62] Hara Y,Wakamori M,Ishii M,Maeno E,Nishida M,Yoshida T,et al.LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death[J].Mol Cell,2002,9(1):163-173.

    [63] Takahashi N,Kozai D,Kobayashi R,Ebert M,Mori Y.Roles of TRPM2 in oxidative stress[J]. Cell Calcium,2011,50(3,SI):279-287.

    [64] Knowles H,Li Y,Perraud AL.The TRPM2 ion channel,an oxidative stress and metabolic sensor regulating innate immunity and inflammation[J]. Immunol Res,2013,55(1-3):241-248.

    [65] Miyake T,Shirakawa H,Kusano A,Sakimoto S,Konno M,Nakagawa T,et al.TRPM2 contributes to LPS/IFNγ-induced production of nitric oxide via the p38/JNK pathway in microglia[J]. Biochem Biophys Res Commun,2014,444(2):212-217.

    [66] Zhong Z,Zhai Y,Liang S,Mori Y,Han R,Sutterwala FS,et al.TRPM2 links oxidative stress to NLRP3 inflammasome activation[J]. Nat Commun,2013,4:1611.

    [67] Haraguchi K,Kawamoto A,Isami K,Maeda S,Kusano A,Asakura K,et al.TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice[J].J Neurosci,2012,32(11):3931-3941.

    [68] Isami K,HaraguchiK,SoK,AsakuraK,Shirakawa H,Mori Y,et al.Involvement of TRPM2 in peripheral nerve injury-induced infiltration of peripheral immune cells into the spinal cord in mouse neuropathic pain model[J].PLoS One,2013,8(7):e66410.

    [69] So K,Haraguchi K,AsakuraK,IsamiK,Sakimoto S,Shirakawa H,et al.Involvement of TRPM2 in a wide range of inflammatory and neu?ropathic pain mouse models[J].J Pharmacol Sci,2015,127(3):237-243.

    [70] Fonfria E,Marshall IC,Boyfield I,Skaper SD,Hughes JP,Owen DE,et al.Amyloid betapeptide(1-42)and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures[J].J Neurochem,2005,95(3):715-723.

    [71] Hill K,Mcnulty S,Randall AD.Inhibition of TRPM2 channels by the antifungal agents clotrim?azole and econazole[J].Naunyn Schmiedebergs Arch Pharmacol,2004,370(4):227-237.

    [72] Ullrich ND,Voets T,Prenen J,Vennekens R,Talavera K,Droogmans G,et al.Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice[J].Cell Calcium,2005,37(3):267-278.

    [73] Kraft R,Harteneck C.The mammalian melastatinrelated transient receptor potential cation channels:an overview[J].Pflugers Arch,2005,451(1):204-211.

    [74] Inoue R,Okada T,Onoue H,Hara Y,Shimizu S,Naitoh S,et al.The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha1-adrenoceptoractivated Ca2+-permeable cation channel[J].Circ Res,2001,88(3):325-332.

    [75] Eisfeld J,Luckhoff A.TRPM2[M]//Rosenthal W,ed. Transient Receptor Potential(TRP)Channels. Springer Berlin Heidelberg,2007:237-252.

    [76] Maruyama T,Kanaji T,Nakade S,Kanno T,Mikoshiba K. 2APB, 2-aminoethoxydiphenyl borate,a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+release[J].J Biochem,1997,122(3):498-505.

    [77] Togashi K,Inada H,Tominaga M.Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate(2-APB)[J].Br J Pharmacol,2008,153(6):1324-1330.

    [78] Halaszovich CR,Zitt C,Jungling E,Luckhoff A. Inhibition of TRP3 channels by lanthanides.Block from the cytosolic side of the plasma membrane[J].J Biol Chem,2000,275(48):37423-37428.

    [79] Tousova K,Vyklicky L,Susankova K,Benedikt J,Vlachova V.Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites[J].Mol Cell Neurosci,2005,30(2):207-217.

    [80] Zeng B,Chen GL,Xu SZ.Divalent copper is a potent extracellular blocker for TRPM2 channel[J].Biochem Biophys Res Commun,2012,424(2):279-284.

    [81] Shimizu S,Yonezawa R,Hagiwara T,Yoshida T,Takahashi N,Hamano S,et al.Inhibitory effects of AG490 on H2O2-induced TRPM2-mediated Ca2+entry[J].Eur J Pharmacol,2014,742:22-30.

    [82] Nazirog?lu M,Lückhoff A.A calcium influx pathway regulated separately by oxidative stress and ADP-ribose in TRPM2 channels:single channel events[J].Neurochem Res,2008,33(7):1256-1262.

    [83] Rosenbaum T.Activators of TRPM2:getting it right[J].J Gen Physiol,2015,145(6):485-487.

    [84] Tóth B,Iordanov I, Csanády L.Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals noveldirectagonistADP-ribose-2′-phosphate[J].J Gen Physiol,2015,145(5):419-430.

    瞬時(shí)受體電位M2型離子通道在神經(jīng)退行性病變和阿爾茨海默病病理學(xué)中的作用

    李菲婭1,Raymond WONG1,Ekaterina TURLOVA1,孫宏碩1,2,3,4

    (1.Department of Physiology,2.Department of Surgery,3.Department of Pharmacology,4.Institute of Medical Science,Faculty of Medicine,University of Toronto,Toronto,Canada M5S 1A8)

    神經(jīng)退行性病變是一種可導(dǎo)致神經(jīng)細(xì)胞漸進(jìn)性退變或死亡的不可治愈性疾病。該疾病可誘發(fā)功能性運(yùn)動(dòng)障礙以及精神問題,比如癡呆。在諸多種類的神經(jīng)退行性病變中,阿爾茨海默病占據(jù)最大比例。瞬時(shí)受體電位M2型(TRPM2)離子通道是一個(gè)可通過鈣離子的非選擇性陽離子通道。研究表明,TRPM2離子通道有可能通過不同路徑(包括炎癥路徑)參與阿爾茨海默病的病理過程。本綜述主要通過對(duì)TRPM2與Aβ、氧化應(yīng)激以及鈣離子之間關(guān)系的討論,總結(jié)概括了TRPM2在阿爾茨海默病病理學(xué)中的作用,也對(duì)近期TRPM2藥理學(xué)領(lǐng)域的研究進(jìn)展進(jìn)行了探討,并對(duì)如何進(jìn)一步研究TRPM2在阿爾茨海默病中的作用進(jìn)行了展望。

    瞬時(shí)受體電位M2型;神經(jīng)退行性病變;阿爾茨海默??;Aβ;氧化應(yīng)激;鈣離子;炎癥

    孫宏碩,E-mail:hss.sun@utoronto.ca

    2016-05-04 接受日期:2016-06-14)

    R966

    :A

    :1000-3002-(2016)06-0656-11

    10.3867/j.issn.1000-3002.2016.06.005

    Biography:Fei-ya LI,female,graduate student,research focus on the role of ion channels in neuroprotection and drug development for stroke and hypoxia.E-mail:feiya.li@ mail.utoronto.ca

    Hong-shuo SUN,E-mail:hss.sun@ utoronto.ca

    (本文編輯:喬 虹)

    猜你喜歡
    離子通道退行性阿爾茨海默
    阿爾茨海默病的預(yù)防(下)
    中老年保健(2022年2期)2022-08-24 03:21:24
    阿爾茨海默病的預(yù)防(上)
    中老年保健(2022年1期)2022-08-17 06:14:36
    電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進(jìn)展
    蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
    睡眠不當(dāng)會(huì)增加阿爾茨海默風(fēng)險(xiǎn)
    奧秘(2018年9期)2018-09-25 03:49:56
    衰老與神經(jīng)退行性疾病
    退行性肩袖撕裂修補(bǔ)特點(diǎn)
    關(guān)節(jié)置換治療老年膝關(guān)節(jié)退行性骨關(guān)節(jié)炎30例臨床報(bào)道
    CH25H與阿爾茨海默病
    溫針配合整脊手法治療腰椎退行性滑脫癥50例
    成年版毛片免费区| 久久精品国产99精品国产亚洲性色| 久久久久久久午夜电影| 国产真实伦视频高清在线观看 | 99久久精品国产亚洲精品| 麻豆av噜噜一区二区三区| 国产在线精品亚洲第一网站| 久久精品91蜜桃| 97超视频在线观看视频| 亚洲,欧美精品.| 精品久久久久久久末码| 又爽又黄无遮挡网站| 中文资源天堂在线| 久久国产乱子免费精品| 最近中文字幕高清免费大全6 | 人妻久久中文字幕网| 小蜜桃在线观看免费完整版高清| 国产爱豆传媒在线观看| 国产精品日韩av在线免费观看| 亚洲成av人片免费观看| 国产色爽女视频免费观看| 久久国产精品影院| 亚洲片人在线观看| 岛国在线免费视频观看| 亚洲精品456在线播放app | 欧美日本亚洲视频在线播放| 国产精品爽爽va在线观看网站| 麻豆国产av国片精品| 午夜久久久久精精品| 精品福利观看| 日本 av在线| av视频在线观看入口| 久久久国产成人精品二区| 91在线观看av| 男人和女人高潮做爰伦理| 99久久成人亚洲精品观看| 欧美不卡视频在线免费观看| 日韩成人在线观看一区二区三区| 免费观看人在逋| aaaaa片日本免费| a级一级毛片免费在线观看| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 69av精品久久久久久| 色综合欧美亚洲国产小说| 熟妇人妻久久中文字幕3abv| avwww免费| 欧美性猛交╳xxx乱大交人| 欧美成人a在线观看| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人av在线观看| 国产视频一区二区在线看| 精品一区二区三区视频在线观看免费| 男人舔奶头视频| 一进一出好大好爽视频| 国产精品女同一区二区软件 | 国产蜜桃级精品一区二区三区| 久久久久久国产a免费观看| 亚洲成av人片免费观看| 成人亚洲精品av一区二区| 亚洲午夜理论影院| 我的老师免费观看完整版| avwww免费| 天美传媒精品一区二区| 免费观看的影片在线观看| 亚洲人与动物交配视频| 男女视频在线观看网站免费| 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| 色视频www国产| 久久久精品大字幕| 午夜两性在线视频| 男女下面进入的视频免费午夜| 制服丝袜大香蕉在线| 熟女人妻精品中文字幕| 亚洲国产精品久久男人天堂| 中文字幕久久专区| 日本熟妇午夜| h日本视频在线播放| 欧美bdsm另类| 听说在线观看完整版免费高清| 69人妻影院| 久久久国产成人免费| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩高清在线视频| 特级一级黄色大片| 最好的美女福利视频网| 免费av毛片视频| 成人无遮挡网站| 国产成人欧美在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 天堂av国产一区二区熟女人妻| 亚洲精品在线美女| 国产真实伦视频高清在线观看 | 一边摸一边抽搐一进一小说| 午夜激情欧美在线| 中出人妻视频一区二区| 久久久久久久亚洲中文字幕 | 亚洲欧美清纯卡通| 欧美国产日韩亚洲一区| 网址你懂的国产日韩在线| 色在线成人网| 香蕉av资源在线| 亚洲av一区综合| 亚洲国产色片| 看免费av毛片| 身体一侧抽搐| 男女床上黄色一级片免费看| 噜噜噜噜噜久久久久久91| 欧美zozozo另类| 久久精品国产99精品国产亚洲性色| 天堂网av新在线| 天天一区二区日本电影三级| 国产三级在线视频| 国产成人福利小说| 成人特级av手机在线观看| 免费观看人在逋| av女优亚洲男人天堂| 日本三级黄在线观看| 亚洲成av人片在线播放无| 亚洲国产高清在线一区二区三| 少妇人妻一区二区三区视频| 久久精品影院6| 国产精品女同一区二区软件 | 可以在线观看的亚洲视频| 亚洲久久久久久中文字幕| 久久久久久久久中文| 久久香蕉精品热| 久久人人精品亚洲av| 天堂动漫精品| 国产精品久久久久久人妻精品电影| 男插女下体视频免费在线播放| 99久国产av精品| 国产精品1区2区在线观看.| 99热只有精品国产| 欧美丝袜亚洲另类 | 亚洲精品日韩av片在线观看| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久免费视频| 美女cb高潮喷水在线观看| 能在线免费观看的黄片| 国产免费男女视频| 精品久久久久久久久av| 在现免费观看毛片| 国产探花极品一区二区| 美女黄网站色视频| 免费在线观看成人毛片| 看十八女毛片水多多多| 国产黄a三级三级三级人| 两人在一起打扑克的视频| 国内精品一区二区在线观看| 亚州av有码| 国产成人av教育| 久久久久国产网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天天一区二区日本电影三级| 午夜激情久久久久久久| 婷婷色av中文字幕| 麻豆久久精品国产亚洲av| 久久影院123| 久久久久久久国产电影| 在线观看av片永久免费下载| 国产成人a∨麻豆精品| 日韩视频在线欧美| 男女下面进入的视频免费午夜| 亚洲欧美清纯卡通| 欧美+日韩+精品| 亚洲av男天堂| 国产精品伦人一区二区| 午夜福利网站1000一区二区三区| 国产免费视频播放在线视频| 波多野结衣巨乳人妻| 3wmmmm亚洲av在线观看| 大香蕉97超碰在线| 国产白丝娇喘喷水9色精品| 国产一区亚洲一区在线观看| 久久久久久久国产电影| 国产极品天堂在线| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添av毛片| 国产精品av视频在线免费观看| 日本欧美国产在线视频| 精品酒店卫生间| 又粗又硬又长又爽又黄的视频| 亚洲成人一二三区av| 一级毛片黄色毛片免费观看视频| 日本爱情动作片www.在线观看| 免费黄频网站在线观看国产| 日本-黄色视频高清免费观看| 亚洲av电影在线观看一区二区三区 | 内地一区二区视频在线| 人妻夜夜爽99麻豆av| 视频中文字幕在线观看| tube8黄色片| 蜜臀久久99精品久久宅男| 欧美成人a在线观看| 国产探花在线观看一区二区| 久久久久精品久久久久真实原创| av女优亚洲男人天堂| 亚洲在久久综合| 男人舔奶头视频| 深爱激情五月婷婷| 国产v大片淫在线免费观看| 久久久欧美国产精品| 日韩精品有码人妻一区| 麻豆成人午夜福利视频| 黄色一级大片看看| 国产亚洲最大av| 亚洲不卡免费看| 久久久久久九九精品二区国产| 国产av国产精品国产| 国产淫语在线视频| 草草在线视频免费看| 日韩欧美一区视频在线观看 | 纵有疾风起免费观看全集完整版| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 免费av毛片视频| 建设人人有责人人尽责人人享有的 | 国产伦在线观看视频一区| av免费在线看不卡| 嘟嘟电影网在线观看| 人妻夜夜爽99麻豆av| 女人十人毛片免费观看3o分钟| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 久久精品国产亚洲网站| 夜夜看夜夜爽夜夜摸| 久久久精品欧美日韩精品| 极品少妇高潮喷水抽搐| 少妇被粗大猛烈的视频| 日本黄色片子视频| 亚洲精品亚洲一区二区| 男人爽女人下面视频在线观看| 国产毛片在线视频| 久久久亚洲精品成人影院| 国产 一区精品| 一级片'在线观看视频| 91精品伊人久久大香线蕉| 久久精品久久久久久久性| 精品久久久噜噜| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 精品少妇久久久久久888优播| 性色av一级| 在线精品无人区一区二区三 | 亚洲伊人久久精品综合| 久久97久久精品| 久热久热在线精品观看| 免费大片黄手机在线观看| 26uuu在线亚洲综合色| 91精品伊人久久大香线蕉| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 久久人人爽人人爽人人片va| 涩涩av久久男人的天堂| 男女下面进入的视频免费午夜| 午夜激情福利司机影院| 欧美精品人与动牲交sv欧美| 97热精品久久久久久| 91狼人影院| 啦啦啦在线观看免费高清www| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线| 中文乱码字字幕精品一区二区三区| 三级经典国产精品| 观看美女的网站| 欧美97在线视频| 亚洲av成人精品一二三区| 国产亚洲一区二区精品| 日韩一本色道免费dvd| 亚洲欧美清纯卡通| 99视频精品全部免费 在线| 91在线精品国自产拍蜜月| 亚洲人成网站在线观看播放| 亚州av有码| 高清毛片免费看| 只有这里有精品99| 99热全是精品| 午夜日本视频在线| 少妇 在线观看| 国产成人精品久久久久久| 性插视频无遮挡在线免费观看| 亚洲国产精品999| 麻豆国产97在线/欧美| 国产亚洲av片在线观看秒播厂| 3wmmmm亚洲av在线观看| 麻豆精品久久久久久蜜桃| 在线看a的网站| 好男人视频免费观看在线| 高清视频免费观看一区二区| 国产国拍精品亚洲av在线观看| 丝瓜视频免费看黄片| 精品人妻视频免费看| 国产 精品1| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 久久女婷五月综合色啪小说 | 久久久欧美国产精品| 777米奇影视久久| av线在线观看网站| 成人国产麻豆网| 国产精品伦人一区二区| 久久久午夜欧美精品| 一本一本综合久久| 精品熟女少妇av免费看| 毛片女人毛片| 寂寞人妻少妇视频99o| 国产免费一区二区三区四区乱码| 一个人看视频在线观看www免费| 国产精品爽爽va在线观看网站| 青春草视频在线免费观看| 中国三级夫妇交换| 中文在线观看免费www的网站| 国内揄拍国产精品人妻在线| 91精品国产九色| 日产精品乱码卡一卡2卡三| 亚洲最大成人手机在线| 国产免费福利视频在线观看| 99久国产av精品国产电影| 免费av不卡在线播放| 日韩成人av中文字幕在线观看| 97超碰精品成人国产| 久久久久久国产a免费观看| 国产色婷婷99| 一级片'在线观看视频| 男女那种视频在线观看| 精品午夜福利在线看| 免费黄频网站在线观看国产| 黑人高潮一二区| 久久久久久久久久久丰满| 男女下面进入的视频免费午夜| 免费看日本二区| 亚洲自拍偷在线| 韩国高清视频一区二区三区| 日产精品乱码卡一卡2卡三| 狂野欧美白嫩少妇大欣赏| 1000部很黄的大片| 水蜜桃什么品种好| 神马国产精品三级电影在线观看| 韩国av在线不卡| 中文字幕av成人在线电影| 中文乱码字字幕精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 欧美 日韩 精品 国产| 免费看a级黄色片| 亚洲精品成人av观看孕妇| 国产视频内射| 亚洲欧美精品专区久久| 91精品国产九色| 欧美日韩视频精品一区| 免费看日本二区| 欧美日韩在线观看h| 久久精品久久久久久久性| 只有这里有精品99| 国产精品伦人一区二区| 在线观看一区二区三区| 国产久久久一区二区三区| 精品人妻视频免费看| 免费看av在线观看网站| 亚洲精品成人久久久久久| 如何舔出高潮| 亚洲怡红院男人天堂| 国产爽快片一区二区三区| 精品久久久久久久久亚洲| 免费看日本二区| 日本午夜av视频| 亚洲av不卡在线观看| 欧美bdsm另类| 日日啪夜夜爽| xxx大片免费视频| 中文字幕久久专区| 男女国产视频网站| 亚洲,欧美,日韩| 亚洲av一区综合| 精品少妇黑人巨大在线播放| 综合色丁香网| 国产精品.久久久| 卡戴珊不雅视频在线播放| 人妻制服诱惑在线中文字幕| 男男h啪啪无遮挡| 欧美最新免费一区二区三区| 久久久久九九精品影院| 亚洲av日韩在线播放| 五月天丁香电影| 欧美精品一区二区大全| 免费在线观看成人毛片| 97人妻精品一区二区三区麻豆| 男人狂女人下面高潮的视频| 日韩精品有码人妻一区| 老女人水多毛片| 成人国产av品久久久| 色哟哟·www| 成人欧美大片| 一级二级三级毛片免费看| av在线亚洲专区| 午夜亚洲福利在线播放| 亚洲经典国产精华液单| 婷婷色综合www| 身体一侧抽搐| 99热6这里只有精品| 国产黄频视频在线观看| 国产爽快片一区二区三区| 亚洲国产av新网站| 国产精品麻豆人妻色哟哟久久| 国产男人的电影天堂91| a级一级毛片免费在线观看| 日韩强制内射视频| 亚洲欧美日韩东京热| 国产免费视频播放在线视频| 国产精品久久久久久久电影| 简卡轻食公司| 2021天堂中文幕一二区在线观| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 又黄又爽又刺激的免费视频.| 午夜激情久久久久久久| 欧美日本视频| 欧美激情在线99| 久久女婷五月综合色啪小说 | 看十八女毛片水多多多| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 干丝袜人妻中文字幕| 在线观看一区二区三区| 国产精品麻豆人妻色哟哟久久| 国产av不卡久久| 波多野结衣巨乳人妻| 国产精品女同一区二区软件| 一个人看的www免费观看视频| 最后的刺客免费高清国语| 身体一侧抽搐| 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 亚洲国产精品国产精品| 又粗又硬又长又爽又黄的视频| 午夜视频国产福利| 日韩成人av中文字幕在线观看| 国产黄片美女视频| 亚洲av免费高清在线观看| 亚洲激情五月婷婷啪啪| 成人亚洲精品av一区二区| 国产成人免费观看mmmm| 免费人成在线观看视频色| 国产视频首页在线观看| 人妻制服诱惑在线中文字幕| 最近手机中文字幕大全| 午夜日本视频在线| 欧美极品一区二区三区四区| 国产一区亚洲一区在线观看| 欧美老熟妇乱子伦牲交| 嫩草影院入口| 国产免费一级a男人的天堂| 久久久久性生活片| 日韩不卡一区二区三区视频在线| 亚洲精品日韩av片在线观看| 建设人人有责人人尽责人人享有的 | 欧美三级亚洲精品| 亚洲欧美一区二区三区国产| 亚洲欧美精品专区久久| 日日啪夜夜爽| 97在线视频观看| 亚洲,欧美,日韩| 久久午夜福利片| 午夜福利网站1000一区二区三区| 欧美3d第一页| 成人国产av品久久久| 超碰av人人做人人爽久久| 网址你懂的国产日韩在线| 国产精品熟女久久久久浪| 国产精品国产三级专区第一集| 中文字幕亚洲精品专区| 亚洲自偷自拍三级| 国产伦在线观看视频一区| 好男人视频免费观看在线| 永久免费av网站大全| 99热这里只有是精品在线观看| 日韩伦理黄色片| 国产日韩欧美在线精品| 97在线视频观看| 久久鲁丝午夜福利片| 能在线免费看毛片的网站| 22中文网久久字幕| 国产欧美日韩一区二区三区在线 | av在线亚洲专区| 精品久久久久久久末码| 在线观看av片永久免费下载| 欧美极品一区二区三区四区| 啦啦啦在线观看免费高清www| 尾随美女入室| 18禁裸乳无遮挡免费网站照片| 国产永久视频网站| 晚上一个人看的免费电影| 一本色道久久久久久精品综合| 18+在线观看网站| 91久久精品国产一区二区成人| 亚洲av日韩在线播放| 热re99久久精品国产66热6| 国产精品秋霞免费鲁丝片| 亚洲丝袜综合中文字幕| 综合色丁香网| 国产午夜福利久久久久久| 国产精品一二三区在线看| 亚洲伊人久久精品综合| 人人妻人人看人人澡| 91精品伊人久久大香线蕉| 交换朋友夫妻互换小说| 欧美极品一区二区三区四区| 2018国产大陆天天弄谢| 岛国毛片在线播放| 老司机影院成人| 91aial.com中文字幕在线观看| av黄色大香蕉| 久久久精品欧美日韩精品| 国产精品一区二区在线观看99| 亚洲国产精品成人久久小说| 黄片wwwwww| 亚洲在线观看片| 18禁在线播放成人免费| 国产精品久久久久久久电影| 美女高潮的动态| 国产成人免费观看mmmm| 亚洲国产精品999| 一本久久精品| 免费看a级黄色片| 乱码一卡2卡4卡精品| 久久ye,这里只有精品| 国产男女超爽视频在线观看| 免费黄色在线免费观看| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| av国产精品久久久久影院| 亚洲成人久久爱视频| 精品国产乱码久久久久久小说| 国产日韩欧美在线精品| 啦啦啦中文免费视频观看日本| 制服丝袜香蕉在线| 91精品国产九色| 中文精品一卡2卡3卡4更新| 国产一区二区三区综合在线观看 | 精品久久久久久久人妻蜜臀av| 久久韩国三级中文字幕| 日韩av不卡免费在线播放| 欧美成人午夜免费资源| 国产亚洲最大av| 波野结衣二区三区在线| 国产精品国产三级国产专区5o| 国产成人91sexporn| 日韩成人伦理影院| 毛片女人毛片| 3wmmmm亚洲av在线观看| 亚洲av中文字字幕乱码综合| 国产精品久久久久久av不卡| 亚洲av国产av综合av卡| 极品少妇高潮喷水抽搐| 国产综合精华液| 永久网站在线| 午夜精品国产一区二区电影 | 内地一区二区视频在线| 91久久精品国产一区二区三区| 欧美最新免费一区二区三区| a级毛色黄片| 黑人高潮一二区| 免费大片黄手机在线观看| 熟女人妻精品中文字幕| 少妇人妻久久综合中文| 国产伦在线观看视频一区| 色婷婷久久久亚洲欧美| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 亚洲欧美清纯卡通| 婷婷色综合大香蕉| 精品久久久久久久人妻蜜臀av| 成人无遮挡网站| 亚洲自拍偷在线| 男女无遮挡免费网站观看| 一个人观看的视频www高清免费观看| 午夜日本视频在线| 日本一本二区三区精品| 欧美zozozo另类| 亚洲一区二区三区欧美精品 | 一级二级三级毛片免费看| 午夜福利在线观看免费完整高清在| 蜜桃亚洲精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 亚洲欧美一区二区三区国产| 久久久久久伊人网av| 亚洲在久久综合| 精品人妻熟女av久视频| 高清日韩中文字幕在线| 日韩,欧美,国产一区二区三区| 熟女人妻精品中文字幕| 高清日韩中文字幕在线| 天天一区二区日本电影三级| 狂野欧美白嫩少妇大欣赏| 亚洲一级一片aⅴ在线观看| 久久鲁丝午夜福利片| 午夜激情福利司机影院| 亚州av有码| 成年版毛片免费区| 国产亚洲一区二区精品| 2018国产大陆天天弄谢| 99精国产麻豆久久婷婷| 欧美成人精品欧美一级黄| 欧美另类一区| 夜夜看夜夜爽夜夜摸| 国产91av在线免费观看| 国产精品精品国产色婷婷| 国产女主播在线喷水免费视频网站| 久久久久久久久久久丰满| 黄色怎么调成土黄色| 亚洲精品亚洲一区二区| 国产成人a区在线观看| av卡一久久| 久久99蜜桃精品久久|