• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of calcium-activated potassium channels in neuronal pacemaker activity

    2016-02-16 01:43:16NancyDONGZhongpingFENG
    關(guān)鍵詞:中平離子通道調(diào)節(jié)劑

    Nancy DONG,Zhong-ping FENG

    (Department of Physiology,University of Toronto,1 King′s College Circle, Toronto,Ontario,Canada M5S 1A8)

    ·REVIEW·

    Role of calcium-activated potassium channels in neuronal pacemaker activity

    Nancy DONG,Zhong-ping FENG

    (Department of Physiology,University of Toronto,1 King′s College Circle, Toronto,Ontario,Canada M5S 1A8)

    Spontaneous rhythmic activity of pacemaker neurons in the central nervous system underlies fundamental neurological processes such as locomotion,cognition and circadian rhythm. Among the wide range of ion channels required for its generation,the Ca2+-activated K+(KCa)channels play a prominent role in maintaining physiologically-relevant frequency and pattern of pacemaker activity. Much of our understanding of the functions of KCachannels in pacemaker neurons have been derived from pharmacological studies using channel modulators,such as iberiotoxin and apamin. Despite the significant advances made,recent studies have painted an increasingly complex picture of the effects of widely used KCachannel modulators on unintended targets that may confound our under?standing of their functions.In this review,we discussed the utility and shortcomings of the KCachannel modulators,and highlighted the significance of these findings,because the KCachannel modulators have been used in early clinical trials to treat disorders ranging from Parkinson disease to alcoholism.

    potassium channels,calcium-activated;pacemaker neurons;rhythmic activity;channel modulators

    Pacemaker neurons are capable of generating rhythmic activity in the absence of external inputs[1].They play a key role in many neurological functions,including locomotion,cognition and circadian rhythm[2].The computational advantage of spontaneous firing lies in that both excitatory and inhibitory synaptic inputs can be coded in a timely fashion in changes in the frequency and/or pattern of rhythmic activity.Therefore,the ability to maintain stable and precise rhythmic activity is fundamental to the physiological functions of pacemaker neurons.

    Pacemaker activity arises from an intricate interplay between the complement of ion channels present on the pacemaker neuron membrane, including hyperpolarization cyclic nucleotide(HCN)-activatedchannels[3],Na+leakchannels(NALCN)[4], voltage-gated Ca2+and Na+channels[5],and Ca2+-activated K+(KCa) channels[6]. KCachannels contribute to the repolarization and after-hyperpo?larization(AHP)phases of the action potential, thereby providing the negative feedback mechanism that stabilizes rhythmic activity in pacemaker neurons.Pharmacologicalmodulators ofKCachannels,such as iberiotoxin(IbTX)and periciazine (apamin),have been instrumental in elucidating the physiological functions of the large-conduc?tance(BK) and small-conductance(SK) KCachannels as regulators of pacemaker neuron activity[6]and as potential therapeutic targets in the treatment of neurological disorders[7-8].The goal of this article is to discuss the utility and potential caveats of commonly used pharmaco?logical agents in investigating the physiological function and therapeutic potential of KCachannels as regulators of pacemaker neuron activity.

    1 LARGE-CONDUCTANCE KCaCHANNELS

    1.1Structure and biophysical properties of BK channels

    BK channels are composed of both a tetra?meric α pore-forming subunit[9]and modulatory β subunits[10].Each monomer of the α-subunit, encodedbytheSlo1gene,consistsofan N-terminal transmembrane pore forming region (S0-S6)and a C-terminal cytoplasmic regulatory domain(S7-S10).The S0 domain is required for interaction with β-subunits,which greatly diversify the channel properties.The S1-S4 domains make up the voltage sensor,by virtue of charged amino acid residues in the S2-S4 domains[11-13]. The P-loop is likewise found in between the S5 and S6 domains,and together with the other three subunits to form the pore region that con?tains the signature K+selectivity GYG motif and binding sites for the pore blockers charybdotoxin (ChTX)and IbTX[14-15].The C-terminal cytoplasmic domain can be divided into two regulator of K+conductance domains(RCK1 and RCK2)that each contain one low affinity Ca2+binding site[16-17]. The C-terminaldomains of all four subunits come together to form a″gating ring″[18]that makes Ca2+-dependent activation of BK channels possible.Multiple promoters and splicing variants of the subunits have been identified to give rise to diversity in the structure and properties of the pore forming domain[19].

    The properties of a BK channel can be wideranging depending on the β-subunits associated with it.Currently,four β-subunits have been cloned[20-23]:β1is found in the smooth muscles,β2and β3specifically in neurons,and β4in the brain. The β-subunits associate in equal stoichiometric ratio with monomers of the α-subunits via the S0 segment to significantly modify the gating[24-25], pharmacological[26],and kinetic properties of the channel[27].For example,whereas BK channels containing the α-subunit alone or associated with the β1or β4-subunit do not inactivate,those with β2and β3-subunit show rapid inactivation[22-23].There?fore,careful biochemical characterization of the BK channels under examination is imperative before proceeding onto pharmacological studies.

    BK channels activate rapidly in the coincident presence of membrane depolarization and an intracellular Ca2+concentration>10 μmol·L-1[28]. The ensuing large K+current rapidly repolarizes the action potential and hyperpolarizes the membrane potential by mediating the fast component of the AHP(fAHP).The feedback loop is terminated with equal rapidity when BK channels are deactivated by membrane hyperpolarization and deactivation of voltage-gated Ca2+channels.

    1.2 Pharmacological modulators of BK channels

    As the structure and pharmacological prop?erties of BK channel modulators have been extensively reviewed elsewhere[29-30],only the most commonly used compounds in studying pacemaker neurons will be briefly introduced here.The earliest generation of BK channel blocker is ChTX,a potent yet largely non-selective K+channel blocker that is derived from the venom of the scorpionLeiurus quinquestriatus[31].It is now rarely used due to its additional activity inhibiting the voltage-gated K channels and inter?mediate-conductance KCa(IK)channels.

    Currently two BK channel blockers have been used extensively(Tab.1).IbTX,the most commonly used BK channel blocker,was later isolated from the venom of another species of scorpionsButhus tamulus[32].Like ChTX,IbTX acts by binding to the external opening of BK channels.However,the latter exhibits higher affinity and selectivity for BK channels than the former,possibly due to slight differences in the amino acid make-up and resultant charge[32-33]. One potentially serious pitfall of IbTX is that β4-subunit-containing BK channels are shown to be resistant to it.

    The tremorgenic indole alkaloid paxilline, produced byPenicillium paxilli,is the most widely used non-peptide BK channel blocker,due to itshigh potency,selectivity and reversibility of action[53]. Unlike ChTX and IbTX,paxilline acts on the αsubunit from the cytoplasmic side[54].The recently

    Tab.1 Pharmacology of KCachannel blockers commonly used in studies of central pacemaker neurons in vitro and in vivo

    isolated non-peptidergic BK channel blocker 1-〔1-hexyl-6-(methyloxy)-1H-indazol-3-yl〕-2-methyl-1-propanone(HMIMP)holds considerable promise, as it inhibits both the IbTX-sensitive and-resistant BK channel isoforms at nanomolar range and does not appear to affect human voltage-gated Na+,Ca2+and K+channels[55].

    While activators of BK channels have long been identified,such as the benzoimidazolones NS004 and NS1619,their usefulness is limited because of their poor potency and selectivity[56-57]. Furthermore,these compounds are designed to act at membrane potentials~50-100 mV,which are more positive than the physiological range[58]. To address these shortcomings,the Hollywood group[59]synthesized a family of anthraquinone analogues,named GoSlo-SR,that are capable ofactivating BK channels atphysiological membrane potentials.

    1.3 BK channels regulate central neuronal activities

    As BK channel activity is time-locked to the action potential,itis particularly suited to shaping the spike profile.Indeed,in excised patch recordings of cerebellar Purkinje neurons, a significant amount of BK current is activated during action potential-like waveforms[34].IbTX is the most widely used tool to study the role of BK channels in regulating rhythmic firing frequency in several central pacemaker neuron populations, though with varied results.Currently,the best understood system is arguably the suprachias?matic nucleus(SCN),which is the central circadian pacemaker of the mammalian brain.Spontaneous firing frequency of the SCN neurons is modulated in a diurnal fashion to mark the day/night cycle,i.e.high during the subjective day and low during the subjective night[60].Downstream of the circadian clock genePer1[37],BK channel expression andactivity in SCN neurons peak during the middle of the night phase in order to suppress the frequency of spontaneous firing[38].This circadian pattern of rhythmic activity is blunted when BK channel activity is inhibited by IbTX[38],a result that is replicated in a global BK channel knock?out model[61].

    A more complex picture is seen in the cerebellarPurkinje neurons,which highlights potential caveats of IbTX that should be taken into consideration when interpreting findings.In slice recordings,these neurons exhibit high frequency spontaneous firing(~40-50 Hz)[34].As the sole output neurons of the cerebellar cortex,the Purkinje neurons integrate a myriad of sensory, cortical and vestibular information needed to guide and coordinate voluntary motor behaviour[62]and encode them with high fidelity in the rate and precision of their firing activity.The discharge frequency is found to alternate over a wide range between rates higher and lower than the resting frequency in a consistent temporal relationship with the movement cycle[63].Indeed,recent studies have shown that the firing frequency is tightly controlled on the scale of milliseconds[64].Consistent with the role of BK channels in contributing to the fAHP,in vitrorecordings from acute cerebellar slices show that IbTX reduced the AHP[41]and increased the spontaneous firing activity[34,44].

    Paradoxically,Purkinje neurons of global BK channel knockout animals exhibit reduced spon?taneous activity[65].While developmental compen?sation in the knockout animals is a possibility,it may be prudent to employ multiple BK channel blockers to control for potential off-target effects. Interestingly,the abnormal Purkinje cell firing pattern and ataxic behaviour in BK channel knockout mice were reproduced in wildtype mice byin vivomicroinjection of paxilline into the vermis[66],suggesting that paxilline may be an effective alternative to IbTX.On a related note, an IbTX-resistant but 1-ethyl-2-benzimidazolinone (1-EBIO)-sensitive BK current has recently been identified in Purkinje neurons[67].IbTX-and ChTX-resistant BK channels contain the β4-subunit, whose extracellular loop results in a~1000 fold decrease in toxin association,rendering them insensitive to nanomolar concentrations of these blockers that are normally sufficient to inhibit BK channels[23].The β4-subunit mRNA is abundant in the mammalian brain[23],suggesting that effects of IbTX may not be entirely attributable to inhibition ofBK channels.Furtherinvestigations are required to provide additional evidence.

    1.4 Therapeutic potential of BK channels

    From the evidences summarized above,BK channels are potential drug targets in the treatment of motor and circadian rhythm disorders,such as ataxia,narcolepsy and insomnia.However,rescue of BK channel function in disease states is hindered by the lack of effective channel activators, for the efficacy of GoSlo-SR compounds have yet to be testedin vivo.Conversely,the toxin BK channel blockers are poor drug candidates,for in addition to potential off-target effects,the pepti?dergic nature of ChTX and IbTX means that they are not active orally,have short half-lives and poor blood-brain permeability[29].Nevertheless, paxilline may be a promising target for future studies,as no major side-effects were detected in a study examining its efficacy as a systemicallyadministered anti-convulsant in rodents[68].

    2 SMALL-CONDUCTANCE KCaCHANNELS

    2.1Structure and biophysical properties of SK channels

    Comparatively much more similar to voltagegated K+channels than BK channels,all three members of the SK family,SK1,SK2 and SK3, are homomeric tetramers of 6-transmembrane domain subunits[39].Thus it is the more surprising that SK channels are entirely voltage-independent, for the S4 segment contains only three positively charged residues as compared to many in most voltage-gated channels[69-70]. Instead,they are activated by submicromolar elevation in intracellular Ca2+by virtue of the constitutively bound calmodulin at the C-terminal calmodulin-binding domain (CaMBD)of each subunit[71-72].While the exactmechanism of gating is not yet clear,it is currently believed that Ca2+binding to calmodulin induces a conformational change in the arrangement of the tetramer that is translated into a mechanical force that opens the activation gate[73].This indirect coupling of Ca2+binding to channel opening results in slower activation kinetics as compared to BK channels,so that SK channels are fully open~5 ms after the action potential to mediate the medium AHP(mAHP)that lasts over hundreds of milliseconds[19].

    2.2 Pharmacological modulators of SK channels

    Excellent discussions of SK channel modulators can be found in two recent reviews[74-75],so only those most commonly used in studies of pacemaker neurons will be summarized here(Tab.1,channel blockers and Tab.2,channel activators).

    The isolation of apamin,from the honeybee venom,as a selective blocker of SK2 and SK3 channels has been of immeasurable significance in elucidating the physiological function of SK channels[69,86].Initially believed to be a simple pore blocker based on the finding that several critical amino acid residues in the outer pore region are critical to sensitivity to apamin[40],there is recent evidence that apamin binding to the outer pore causes a conformational change in the selectivity pore that prevents K+conductance[87]. However,SK3 channels have been shown to be less sensitive than SK2 channels to blockade by apamin[88].It may therefore be advisable to prop?erly characterize the biochemical profile of the SK channel under examination and employ multiple pore blockers to control for theeffects of subtype specificity.To more selectively manipulate SK2 channels,the synthetic peptide toxin Lei Dab7 may be employed[43,52].

    Tab.2 Pharmacology of KCachannel activators commonly used in studies of central pacemaker neurons in vitro and in vivo

    Both 1-EBIO and chlorzoxazone(CZX)potentiate SK channel activity by increasing channel open probability[76].Interestingly,CZX is already an FDA-approved central muscle relaxant,making it an attractive drug candidate in modulation of SK channels in pacemaker neurons.Nevertheless, the lack ofspecificity/selectivity remains a challenge as 1-EBIO activates SK1,SK2,and SK3 channels equally[89]and both 1-EBIO and CZX activate IK channels,which are not expressed in neurons,in a concentration-dependent manner[76]. The most recently discovered activator,CyPPA, is ineffective against IK channels but cannot differentiate between SK2 and SK3 subtypes[80].

    A recent study reported that the transient receptor potential melastatin member 7(TRPM7) channel is inhibited by SK channel activators derived from plant alkaloid quinine,including CyPPA,NS8593,SKA31 and UCL1684[81]. TRPM7channelsareubiquitouslyexpressed and implicated in a wide range of physiological functions including synaptic neurotransmission, intestinal peristalsis,regulation of vascular tone, bone growth and embryonic development[90],thus the effects of the plant alkaloid SK channel activators on related functions should be interpreted with caution.There is considerable promise in the CyPPA structural derivative NS13001,which is shown to be highly selective of the SK3 subtype and exhibit none of the off-target effects of CyP?PA in the micromolarconcentration range[43](Tab.2).

    2.3 SK channels regulate pacemaker neuronal activities

    In comparison with BK channels,the greater variety and selectivity of the SK channel modulators have allowed for better characterization of the role of SK channels in regulating pacemaker neuron activity.Through its contribution to the mAHP,SK channels control the firing threshold and thus regulate single spike in pacemaker cells.Its role is critical as a consistent mAHP after each spike ensures both that voltage-gated ion channels recover during each cycle and that cellular excitability remains low enough so random synaptic noises would not alter firing pattern.In addition to the frequency of firing,the precision/ regularity of rhythmic activity is another important component of the physiological functions of pace?maker neurons.

    In cerebellar Purkinje neurons,precise rhythmic firing is required to accurately reflect the strength and timing of excitatory and inhibitory synaptic inputs that shape the final output of the cerebellum. In addition to BK channels,SK channels are highly expressed in cerebellar Purkinje neurons[91]. Pharmacological blockade of SK channels by apamin[6,35]or UCL1684[92]both resulted in decreased regularity of tonic spiking in Purkinje neurons.Enhancement of SK channel activity using 1-EBIO,riluzole or CZX restores regular Purkinje neuron firing in mice with either SK channel knockout[93]or with mutations in P/Q-type voltage-gated Ca2+channels[78],to which SK channels are closely coupled.

    Spontaneously active dopaminergic(DA) neurons found in the substantia nigra pars com?pacta(SNc)and ventral tegmental area(VTA) exhibit two possible modes of firing,regular simple spiking and bursting.Changes in the firing patterns of these DA neurons impact the spatiotemporal profile of dopamine release in different regions of the brain,thereby affecting motor, motivation and memory processes in both physi?ological and pathological conditions,such as schizophrenia and Parkinson′s disease.Inhibition of SK channels in these neurons by apamin not only disrupts the precision of tonic firing but also causes transition to burst firing;and the effects of SK channel blockers were reversed by SK channel activators[46,48,94-95].Multiple subtypes of SK channels are expressed in these neurons,with SK3 channels being the most abundant[96].Deignan,et al[47]demonstrated SK2 and SK3 channels contribute differently to the pacemaker activity of SNc DA neurons,where the former is found primarily in the distal dendrites and regulates theprecision of spike firing,and the latter is mainly somatic and modulates the frequency of firing. While specific blockers to the channel subtypes are needed to elucidate the subtype-specific function of SK channels,it would be of interest to see if NS13001 can be used to selectively modulate SK3 channels in midbrain DA neurons.

    Membrane depolarization and irregular firing due blockade of SK channels have also been reported in several other pacemaker neuron populations,such as the subthalamic nucleus[49], dorsalraphe nuclei[51]and externalglobus pallidus[50],suggesting that SK channels may play a conserved role as regulatorofpacemaker activity in the central nervous system.

    2.4 Therapeutic potential of SK channels

    Several SK channel modulators are currently showing promise as drug candidates.In the cerebellum,abnormal Purkinje neuron pacemaker activity and thus loss of its information encoding ability results in ataxia,a feature of many conditions characterized by gaitdisturbances,postural instability and degraded fine motor coordination. In rodent models of spinocerebellar ataxia types 2[43]and 3[97],episodic ataxia type 2[78,82],and ataxia caused by CACNA1A mutation[79],SK channel activators are shown to be able to restore regular Purkinje neuron pacemaker activity and improve motor performancein vivo.Most recently,a randomized,double-blind,placebo-controlled trial found that riluzole,another FDA-approved muscle relaxant and SK channel activator,can alleviate motor symptoms in some human patients of spinocerebellar ataxia or Friedreich′s ataxia with few side effects[85].

    The basal ganglia are also critically involved in motor control,such that their neurodegeneration results in Parkinson′s disease,a progressive disorderthataffects generation ofvoluntary movements.Whereas neurons in both the SNc and subthalamic nucleus exhibit spontaneous rhythmic,single-spike activity in healthy subjects, burst-firing activity predominates in patients with Parkinson′s disease[98-99].Reduction in SK channel activity is hypothesized to underlie such a change,as they play a fundamental role in main?taining regular spiking behaviour and oppose the transition to burst firing[48-49].Consistent with such an idea,it has recently been shown that apamin alleviates some motor deficits in a rat model of Parkinson′s disease[42].

    In addition to motor processes,midbrain DA neurons also play an important role in cognitive functions such as memory,reward and motivation. The KCNN3 gene,which encodes the SK3 channel,contains a polymorphic CAG repeat in the amino-terminal cording region whose length has been implicated in schizophrenia[100-101]and anorexia nervosa[102].SK channels may also be a drug target in the treatment of addiction,for it has recently been shown that the systemic administration of the FDA-approved muscle relaxant CZX reduces excessive alcohol intake in rats[7].

    Nevertheless,the potential for widespread side-effects is a concern for systemically adminis?tered SK channel modulators.All three subtypes of SK channels are widely expressed throughout the brain[103-104]and the body,including vascular endothelium,skeletal muscle,smooth muscle, and cardiac myocytes[105].In addition,as mentioned above,the SK channel activators 1-EBIO and CZX also potentiate IK channel activity due to their structural similarities[76-77].While IK channels are not expressed in neurons,they are widely expressed in peripheral tissues,such as the colon,placenta,lungs and pancreas.Indeed, reported side effects of orally administered CZX and riluzole are mild but wide ranging,including nausea,diarrhea,hypertension,and somno?lence[106].Memory impairments are also possible, given studies showing that transgenic animals over-expressing SK2 channels exhibitimpaired performance in hippocampal-dependent memory tasks[107-108]and the systemic administration of CyPPA impairs encoding of object recognition memory in mice[109].

    3 CONCLUSION

    Pharmacologicalactivators and blockershave been instrumental in advancing our under?standing of the role of KCachannels as regulators of pacemaker neuron activity in the central nervous system.Nevertheless,as with all experimental approaches,knowledge of their limitations is necessary for proper interpretation of the findings. This is all the more important now as several of these compounds are being tested in human clinical trials.The discovery of increasingly more potent and selective KCachannel modulators holds great promise for unraveling the mechanism and physiological functions of pacemaker neuron activity in future studies.

    REFERENCES:

    [1] H?usserM,RamanIM,OtisT,SmithSL,Nelson A,du Lac S,et al.The beat goes on:spontaneous firing in mammalian neuronal microcircuits[J].J Neurosci,2004,24(42):9215-9219.

    [2] Ramirez JM,Tryba AK,Pena F.Pacemaker neurons and neuronal networks:an integrative view[J].Curr Opin Neurobiol,2004,14(6):665-674.

    [3] Atkinson SE,Maywood ES, Chesham JE,Colwell CS,Hastings MH,Williams SR.Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus[J].J Biol Rhythms,2011,26(3):210-220.

    [4] Lu TZ,F(xiàn)eng ZP.A Sodium leak current regu?lates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis[J]. PLoS One,2011,6(4):384-384.

    [5] Jackson AC,Yao GL,Bean BP.Mechanism of spontaneous firing in dorsomedial suprachias?matic nucleus neurons[J].J Neurosci,2004,24(37):7985-7998.

    [6] Edgerton JR,Reinhart PH.Distinct contributions of small and large conductance Ca2+-activated K+channels to rat Purkinje neuron function[J].J Physiol-London,2003,548(1):53-69.

    [7] Hopf FW, Simms JA, Chang SJ,Seif T,Bartlett SE,Bonci A.Chlorzoxazone,an SK-type potassium channel activator used in humans,reduces excessive alcohol intake in rats[J].Biol Psychiatry,2011,69(7):618-624.

    [8] Ristori G,Romano S,Visconti A,Cannoni S,Spadaro M,F(xiàn)rontaliM,etal.Riluzolein cerebellar ataxia:a randomized,double-blind,placebo-controlled pilot trial[J].Neurology,2010,74(10):839-845.

    [9] Atkinson NS,Robertson GA,Ganetzky B.A component of calcium-activated potassium channels encoded by the Drosophila-slo locus[J].Science,1991,253(519):551-555.

    [10] Shen KZ,Lagrutta A,Davies NW,Standen NB,Adelman JP,North RA.Tetraethylammonium block of slowpoke calcium-activated potassium channels expressed in Xenopus oocytes:evidence for tetrameric channel formation[J]. Pflugers Arch,1994,426(5):440-445.

    [11] Papazian DM,Timpe LC,Jan YN,Jan LY. Alteration ofvoltage-dependence ofshaker potassium channelbymutationsin the S4 sequence[J].Nature,1991,349(6307):305-310.

    [12] Papazian DM,Shao XM,Seoh SA,Mock AF,Huang YA.Electrostatic interactions of S4 voltage sensor in shaker K+channel[J].Neuron,1995,14(6):1293-1301.

    [13] Seoh SA,Sigg D,Papazian DM,Bezanilla F. Voltage-sensing residues in the S2 and S4 segments of the shaker K+channel[J].Neuron,1996,16(6):1159-1167.

    [14] Mullmann TJ, MunujosP, Garcia ML,Giangiacomo KM.Electrostatic mutations in iberiotoxin as a unique tool for probing the electrostatic structure of the maxi-K channel outer vestibule[J].Biochemistry,1999,38(8):2395-2402.

    [15] Vergara C,Moczydlowski E,Latorre R.Conduc?tion,blockade and gating in a Ca2+-activated K+channel incorporated into planar lipid bilayers[J].Biophys J,1984,45(1):73-76.

    [16] Schreiber M,Salkoff L.A novel calcium-sensing domain in the BK channel[J].Biophys J,1997,73(3):1355-1363.

    [17] Xia XM,Zeng XH,CJ L.Multiple regulatory sites in large-conductance calcium-activated potassium channels[J].Nature,2002,418(6900):880-884.

    [18] Yuan P,Leonetti MD,Pico AR,Hsiung Y,Mackinnon R.Structure of the human BK channel Ca2+-activation apparatus at 3.0 angstr?m reso?lution[J].Science,2010,329(5988):182-186.

    [19] Lancaster B,Nicoll RA.Properties of two calciumactivated hyperpolarizations in rat hippocampal neurones[J].J Physiol,1987,389(1987):187-203.

    [20] KnausHG,F(xiàn)olanderK,Garcia-CalvoM,Garcia ML,Kaczorowski GJ,Smith M,et al. Primary sequence and immunological character?ization of beta-subunit of high conductance Ca2+-activated K+channel from smooth muscle[J].J Biol Chem,1994,269(25):17274-17278.

    [21] Brenner R,Chen QH,Vilaythong A,Toney GM,Noebels JL,Aldrich RW.BK Channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures[J].Nat Neurosci,2005,8(12):1752-1759.

    [22] Wallner M,Meera P,Toro L.Molecular basis of fast inactivation in voltage and Ca2+-activated K+channels:A transmembrane beta-subunit homolog[J].Proc Natl Acad Sci USA,1999,96(7):4137-4142.

    [23] Meera P,Wallner M,Toro L.A neuronal beta subunit(KCNMB4)makes the large conduc?tance,voltage-and Ca2+-activated K+channel resistant to charybdotoxin and iberiotoxin[J].P Natl Acad Sci Proc USA,2000,97(10):5562-5567.

    [24] Cox DH,Cui J,Aldrich RW.Allosteric gating of a large conductance Ca-activated K+channel[J].J Gen Physiol,1997,110(3):257-281.

    [25] Wallner M,Meera P,Ottolia M,Kaczorowski GJ,Latorre R,Garcia ML,et al.Characterization of and modulation by a beta-subunit of a human maxi KCachannel cloned from myometrium[J]. Receptors Channels,1995,3(3):185-199.

    [26] Meera P,Jiang ZTL,Wallner M.A calcium switch for the functional coupling between alpha(hslo)and beta subunits(Kv,cabeta)of maxi K channels[J].Febs Lett,1996,382(1-2):84-88.

    [27] Sah P,F(xiàn)aber ES.Channels underlying neuronal calcium-activated potassium currents[J].Prog Neurobiol,2002,66(5):345-353.

    [28] Pallotta BS.Calcium-activated potassium channels in rat muscle inactivate from a short-duration open state[J].J Physiol,1985,363(1):501-516.

    [29] Nardi A,Olesen SP.BK Channel modulators:a comprehensive overview[J].Curr Med Chem,2008,15(11):1126-1146.

    [30] Yu M,Liu SL,Sun PB,Pan H,Tian CL,Zhang LH.Peptide toxins and small-molecule blockers of BK channels[J].Acta Pharmacol Sin,2016,37(1):56-66.

    [31] Miller C,Moczydlowski E,Latorre R,Phillips M. Charybdotoxin,a protein inhibitor of single Ca2+-activated K+channels from mammalian skeletal muscle[J].Nature,1985,313(6000):316-318.

    [32] Galvez A,Gimenez-Gallego G,Reuben J P, Roy-Contancin L,F(xiàn)eigenbaum P,Kaczorowski GJ,etal.Purification and characterization ofa unique,potent,peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus[J]. J Biol Chem,1990,265(19):11083-11090.

    [33] Candia S,Garcia ML,Latorre R.Mode of action of iberiotoxin,a potent blocker of the large conductance Ca2+-activated K+channel[J]. Biophys J,1992,63(2):583-590.

    [34] Womack MD,Khodakhah K.Characterization of large conductance Ca2+-activated K+channels in cerebellar Purkinje neurons[J].Eur J Neurosci,2002,16(7):1214-1222.

    [35] Womack MD,Khodakhah K.Dendritic control of spontaneous bursting in cerebellar Purkinje cells[J].J Neurosci,2004,24(14):3511-3521.

    [36] Womack MD,Carolyn C,Kamran K.Calciumactivated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons[J].J Neurosci,2004,24(40):8818-8822.

    [37] Takashi K,Block GD,Colwell CS.The circadian clock GenePeriod1 connects the molecular clock to neural activity in the suprachiasmatic nucleus[J].ASN Neuro,2015,7(6):e103309.

    [38] Pitts GR,Ohta H,Mcmahon DG.Daily rhythmicity of large-conductance Ca2+-activated K+currents in suprachiasmatic nucleus neurons[J].Brain Res,2006,1071(1):54-62.

    [39] K?hler M,Hirschberg B,Bond CT,Kinzie JM,Marrion NV,Maylie J,et al.Small-conductance,calcium-activated potassium channels from mammalian brain[J].Science,1996,273(5282):1709-1714.

    [40] Ishii TM,Maylie J,Adelman JP.Determinants of Apamin and d-tubocurarine block in SK potassium channels[J].J Biol Chem,1997,272(37):23195-23200.

    [41] Teshima K,Kim SH,Allen CN.Characterization of an apamin-sensitive potassium currentin suprachiasmatic nucleus neurons[J].Neuroscience,2003,120(1):65-73.

    [42] Maurice N,Deltheil T,Melon C,Degos B,Mourre C,Amalric M,et al.Bee venom alleviates motor deficits and modulates the transfer of cortical information through the basal ganglia in rat models of Parkinson′s disease[J].PLoS One,2015,10(11):e0142838.

    [43] Kasumu AW,Hougaard C,Rode F,Jacobsen TA,Sabatier JM,Eriksen BL,et al.Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2[J].Chem Biol,2012,19(10):1340-1353.

    [44] Womack MD,Hoang C,Khodakhah K.Large conductance calcium-activated potassium channels affect both spontaneous firing and intracellular calcium concentration in cerebellarPurkinje neurons[J].Neuroscience,2009,162(4):989-1000.

    [45] Karina A, Kamran K.Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N-type calcium channels in juvenile rats[J].J Physiol,2008,586(10):2523-2538.

    [46] Wolfart J,Neuhoff H, Franz O, Roeper J. Differential expression of the small-conductance,calcium-activated potassium channelSK3 is critical for pacemaker control in dopaminergic midbrain neurons[J].J Neurosci,2001,21(10):3443-3456.

    [47] Deignan J,LujánR,BondC,RiegelA,Watanabe M,Williams JT,et al.SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons[J].Neurosci?ence,2012,217(2012):67-76.

    [48] Ji H,Shepard PD.SK Ca2+-activated K+Channel ligands alter the firing pattern of dopaminecontaining neurons in vivo[J].Neuroscience,2006,140(2):623-633.

    [49] Hallworth NE,Wilson CJ,Bevan MD.Apaminsensitive small conductance calcium-activated potassium channels, through theirselective coupling to voltage-gated calcium channels,are critical determinants of the precision,pace,and pattern ofaction potentialgeneration in rat subthalamic nucleus neurons in vitro[J].J Neurosci,2003,23(23):7525-7542.

    [50] Deister CA,Chan CD.Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons[J].J Neurosci,2009,29(26):8452-8461.

    [51] Rouchet N,Waroux O,Lamy C,Massotte L,Scuvée-Moreau J,Liégeois JF,et al.SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons[J].Eur J Neurosci,2008,28(6):1108-1115.

    [52] Shakkottai VG,Regaya I,Wulff H,F(xiàn)ajloun Z,Tomita H,F(xiàn)athallah M,et al.Design and characterization of a highly selective peptide inhibitor ofthe smallconductance calciumactivated K+channel,SkCa2[J].J Biol Chem,2001,276(46):43145-43151.

    [53] KnausHG, McmanusOB, Lee SH,Schmalhofer WA,Garcia-Calvo M,Helms LM,et al.Tremorgenic indole alkaloids potently inhib?it smooth muscle high-conductance calcium-acti?vated potassium channels[J].Biochemistry,1994,33(19):5819-5828.

    [54] DefariasFP, Carvalho MF, Lee SH,Kaczorowski GJ,Suarez-Kurtz G.Effects of the K+channel blockers paspalitrem-C and paxilline on mammalian smooth muscle[J].Eur J Pharmacol,1996,314(1-2):123-128.

    [55] Zeng H,Gordon EZ,Lozinskaya I,Willette R,Xu X.1-〔1-Hexyl-6-(methyloxy)-1H-indazol-3-yl〕-2-methyl-1-propanone,a potent and highly selective small molecule blocker of the largeconductance voltage-gated and calcium-depen?dent K+channel[J].J Pharmacol Exp Ther,2008,327(1):168-177.

    [56] Gribkoff VK,Lum-Ragan JT,Boissard CG,Post-Munson DJ,Meanwell NA,Starrett JE,et al.Effects of channel modulators on cloned large-conductance calcium-activated potassium channels[J].Mol Pharmacol,1996,50(1):206-217.

    [57] Dérand R,Bulteau-Pignoux L,Becq F.Compar?ative pharmacology of the activity of wild-type and G551D mutated CFTR chloride channel:effect of the benzimidazolone derivative NS004[J].J Membr Biol,2003,194(2):109-117.

    [58] Bentzen BH,Nardi A,Calloe K,Madsen LS,Olesen SP,Grunnet M.The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+channels[J]. Mol Pharmacol,2007,72(4):1033-1044.

    [59] Roy S,Morayo Akande A,Large RJ,Webb TI,Camarasu C,Sergeant GP,et al.Structureactivity relationships of a novel group of largeconductance Ca2+-activated K+(BK)channel modulators:the GoSlo-SR family[J].Chem Med Chem,2012,7(10):1763-1769.

    [60] Schwartz WJ.Further evaluation of the tetrodo?toxin-resistant circadian pacemaker in the supra?chiasmatic nuclei[J].J Biol Rhythms,1991,6(2):149-158.

    [61] Kent J,Meredith AL.BK channels regulate spon?taneous action potential rhythmicity in the supra?chiasmatic nucleus[J].PLoS One,2008,3(12):e3884.

    [62] Ito M.The modifiable neuronal network of the cerebellum[J].Jpn J Physiol,1984,34(5):781-792.

    [63] Thach WT.Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey[J].J Neurophysiol,1968,31(5):785-797.

    [64] Person AL,Raman IM.Synchrony and neural coding in cerebellar circuits[J].Front Neural Circuits,2012,6(50):97.

    [65] Sausbier M,Hu H,Arntz C,F(xiàn)eil S,Kamm S,Adelsberger H,et al.Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+channel deficiency[J].Proc Natl Acad Sci USA,2004,101(25):9474-9478.

    [66] Cheron G,Sausbier M,Sausbier U,Neuhuber W,Ruth P,Dan B,et al.BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo[J].PLoS One,2009,4(11):e7991.

    [67] Benton MD,Lewis AH,Bant JS,Raman IM. Iberiotoxin-sensitive and-insensitive BK currents in Purkinje neuron somata[J].J Neurophysiol,2013,109(10):2528-2541.

    [68] Sheehan JJ,Benedetti BL,Barth AL.Anticon?vulsant effects of the BK-channel antagonist paxilline[J].Epilepsia,2009,50(4):711-720.

    [69] Blatz AL,Magleby KL.Single apamin-blocked Ca-activated K+channels of small conductance in cultured rat skeletal muscle[J].Nature,1986,323(690):718-720.

    [70] Hirschberg B,Maylie J,Adelman JP,Marrion NV.Gating of recombinant small-conductance Ca-activated K+channels by calcium[J].J Gen Physiol,1998,111(4):565-581.

    [71] Xia XM,F(xiàn)akler B,Rivard A,Wayman G,Johnson-Pais T,Keen JE,et al.Mechanism of calcium gating in small-conductance calciumactivated potassium channels[J].Nature,1998,395(671):503-507.

    [72] Keen JE,Khawaled R,F(xiàn)arrens DL,Neelands T,Rivard A,Bond CT,et al.Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels[J].J Neurosci,1999,19(20):8830-8838.

    [73] Schumacher MA,Crum M,Miller MC.Crystal structures of apocalmodulin and an apocalmodulin/ SK potassium channel gating domain complex[J].Structure,2004,12(5):849-860.

    [74] Christophersen P,Wulff H.Pharmacological gating modulation of small-and intermediate-conduc?tance Ca2+-activated K+channels(KCa2.x and KCa3.1)[J].Channels,2015,9(6):336-343.

    [75] Cui M,Qin GR,Yu KQ,Bowers M.Targeting the small-and intermediate-conductance Ca2+-activated potassium channels:the drug-binding pocket at the channel/calmodulin interface[J]. Neurosignals,2014,22(2):65-78.

    [76] Syme CA,Gerlach AC,Singh AK,Devor DC. Pharmacological activation of cloned intermediateand small-conductance Ca2+-activated K+channels[J].Am J Physiol Cell Physiol,2000,278(3):C570-C581.

    [77] Lappin SC,Dale TJ,Brown JT,Trezise DJ,Davies CH.Activation of SK channels inhibits epileptiform bursting in hippocampal CA3 neurons[J].Brain Res,2005,1065(1065):37-46.

    [78] Walter JT,Alvina K,Womack MD,Chevez C,Khodakhah K.Decreases in the precision of Purkinje cellpacemaking cause cerebellar dysfunction and ataxia[J].Nat Neurosci,2006,9(3):389-397.

    [79] Gao Z,Todorov B,Barrett CF,Van Dorp S,F(xiàn)errari MD,Van Den Maagdenberg AM,et al. Cerebellarataxia by enhanced Ca(V)2.1 currents is alleviated by Ca2+-dependent K+-channel activators in Cacna1a(S218L)mutant mice[J]. J Neurosci,2012,32(44):15533-15546.

    [80] Hougaard C, Eriksen BL, J?rgensen S,Johansen TH,Dyhring T,Madsen LS,et al. Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+channels[J].Br J Pharmacol,2007,151(5):655-665.

    [81] ChubanovV,MederosYSchnitzlerM,Mei?nerM,Sch?fer S,Abstiens K,Hofmann T,et al.Natural and synthetic modulators of SK(Kca2)potassium channels inhibit magnesium-dependent activity ofthe kinase-coupled cation channel TRPM7[J].Br J Pharmacol,2012,166(4):1357-1376.

    [82] Alvi?a K,Khodakhah K.KCachannels as thera?peutic targets in episodic ataxia type-2[J].J Neurosci,2010,30(21):7249-7257.

    [83] Str?baek D,Teuber L,J?rgensen TD,Ahring PK,Kjaer K,Hansen RS,et al.Activation of human IK and SK Ca2+-activated K+channels by NS309(6,7-dichloro-1H-indole-2,3-dione 3-oxime)[J].Biochim Biophys Acta,2004,1665(1-2):1-5.

    [84] Cao YJ,Dreixler JC,Couey JJ,Houamed KM. Modulation of recombinant and native neuronalSK channels by the neuroprotective drug riluzole[J].Eur J Pharmacol,2002,449(1-2):47-54.

    [85] Romano S,Coarelli G,Marcotulli C,Leonardi L,Piccolo F,Spadaro M,et al.Riluzole in patients with hereditary cerebellar ataxia:a randomised,double-blind,placebo-controlled trial[J].Lancet Neurol,2015,14(10):985-991.

    [86] Habermann E.Apamin[J].Pharmacol Ther,1984,25(2):255-270.

    [87] Lamy C,Goodchild SJ,Weatherall KL,Jane DE,Liégeois JF,Seutin V,et al.Allosteric block of KCa2 channels by apamin[J].J Biol Chem,2010,285(35):27067-27077.

    [88] Pedarzani P,Stocker M.Molecular and cellular basis of small-and intermediate-conductance,calcium-activated potassium channel function in the brain[J].Cell Mol Life Sci,2008,65(20):3196-3217.

    [89] PedarzaniP, Mccutcheon JE, RoggeG,Jensen BS,Christophersen P,Hougaard C,et al. Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing currentⅠ(AHP)and modulates the firing properties of hippocampal pyramidal neurons[J].J Biol Chem,2005,280(50):41404-41411.

    [90] Yee NS,Kazi AA,Yee RK.Cellular and devel?opmentalbiologyof TRPM7 channel-kinase:implicated roles in cancer[J].Cells,2014,3(3):751-777.

    [91] Hosy E,Piochon C,Teuling E,Rinaldo L,Hansel C.SK2 channel expression and function in cerebellar Purkinje cells[J].J Physiol,2011,589(Pt14):3433-3440.

    [92] Kaffashian M,Shabani M,Goudarzi I,Behzadi G,Zali A,Janahmadi M.Profound alterations in the intrinsic excitability of cerebellar Purkinje neurons following neurotoxin 3-acetylpyridine(3-AP)-induced ataxia in rat:new insights into the role of small conductance K+channels[J]. Physiol Res,2011,60(2):355-365.

    [93] Shakkottai VG,Chou CH,Oddo S,Sailer CA,Knaus HG,Gutman GA,et al.Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia[J].J Clin Invest,2004,113(4):582-590.

    [94] Wolfart J,Roeper J.Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons[J].J Neurosci,2002,22(9):3404-3413.

    [95] Waroux O,Massotte L,Alleva L,Graulich A,Thomas E,Liégeois JF,et al.SK channels control the firing pattern of midbrain dopaminergic neurons in vivo[J].Eur J Neurosci,2005,22(12):3111-3121.

    [96] Tacconi S,Carletti R,Bunnemann B,Plumpton C,Merlo Pich E,Terstappen GC.Distribution of the messenger RNA for the small conductance calciumactivated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity[J]. Neuroscience,2001,102(1):209-215.

    [97] Shakkottai VG,do Carmo Costa M,Dell′Orco JM,Sankaranarayanan A,Wulff H,Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3[J].J Neurosci,2011,31(36):13002-13014.

    [98] Schiemann J,Schlaudraff F,Klose V,Bingmer M,Seino S,Magill PJ,et al.K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration[J].Nat Neurosci,2012,15(9):1272-1280.

    [99] Zaghloul KA,BlancoJA,WeidemannCT,Mcgill K,Jaggi JL,Baltuch GH,et al.Human substantia nigra neurons encode unexpected financial rewards[J].Science,2009,323(5920):1496-1499.

    [100] Ivkovic′M,Rankovic′V,Tarasjev A,Orolicki S,Damjanovic′A,Paunovic′VR,et al.Schizophrenia and polymorphic CAG repeats array of calciumactivated potassium channel(KCNN3)gene in Serbian population[J].Int J Neurosci,2006,116(2):157-164.

    [101] Grube S,Gerchen MF,Adamcio B,Pardo LA,Martin S,Malzahn D,et al.A CAG repeat poly?morphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia[J]. EMBO Mol Med,2011,3(6):309-319.

    [102] Koronyo-Hamaoui M,Gak E,Stein D,F(xiàn)risch A,Danziger Y,Leor S,et al.CAG repeat polymor?phism within the KCNN3 gene is a significant contributor to susceptibility to anorexia nervosa:a case-control study of female patients and several ethnic groups in the Israeli Jewish population[J].Am J Med Genet B Neuropsychiatr Genet,2004,131B(1):76-80.

    [103] Sailer CA,Hu H,Kaufmann WA,Trieb M,Schwarzer C,Storm JF,et al.Regional differ?ences in distribution and functional expression of small-conductance Ca2+-activated K+channels in ratbrain[J].J Neurosci,2002,22(22):9698-9707.

    [104] SailerCA,KaufmannWA,MarksteinerJ,Knaus HG.Comparative immunohistochemical distribution ofthree small-conductance Ca2+-activated potassium channel subunits,SK1,SK2,and SK3 in mouse brain[J].Mol Cell Neurosci,2004,26(3):458-469.

    [105] Ledoux J,Werner ME,Brayden JE,Nelson MT.Calcium-activated potassium channels and the regulation of vascular tone[J].Physiology,2006,21(1):69-78.

    [106] Bensimon G,Doble A.The tolerability of riluzole in the treatment of patients with amyotrophic lateral sclerosis[J].Expert Opin Drug Saf,2004,3(6):525-534.

    [107] HammondRS,BondCT,StrassmaierT, Ngo-Anh TJ, Adelman JP, Maylie J, et al. Small-conductance Ca2+-activated K+channel type 2(SK2)modulates hippocampal learning,memory,and synaptic plasticity[J].J Neurosci,2006,26(6):1844-1853.

    [108] Stackman RW,Bond CT,Adelman JP.Contex?tual memory deficits observed in mice overex?pressing smallconductance Ca2+-activated K+type 2(KCa2.2,SK2)channels are caused by an encoding deficit[J].Learn Mem,2008,15(4):208-213.

    [109] Vick KA,Michael G,Stackman RW.In vivo pharmacological manipulation of small conduc?tance Ca2+-activated K+channels influences motor behavior,object memory and fear conditioning[J].Neuropharmacology,2010,58(3):650-659.

    鈣離子激活鉀通道對(duì)起搏神經(jīng)元活性的作用

    Nancy DONG,馮中平

    (Department of Physiology,University of Toronto,1 King′s College Circle,Toronto,Ontario,Canada M5S 1A8)

    中樞起搏神經(jīng)元的自發(fā)節(jié)律活動(dòng)是神經(jīng)功能的基礎(chǔ),這些神經(jīng)功能例如體位移動(dòng),晝夜節(jié)律和認(rèn)識(shí)知覺。神經(jīng)元的自發(fā)節(jié)律活動(dòng)的生成涉及多種離子通道,鈣離子激活鉀通道(KCa通道)在維持生理性起博頻率和規(guī)律中起著的突出的作用。根據(jù)對(duì)iberiotoxin和蜂毒明肽類的KCa通道調(diào)節(jié)藥物的藥理研究,我們對(duì)KCa通道在起搏神經(jīng)元功能中的作用的認(rèn)識(shí)獲得很大的提高。盡管近年的研究取得了顯著的進(jìn)步,鈣激活鉀通道調(diào)節(jié)劑的廣泛使用增加了非特異性藥物作用意想不到的復(fù)雜性。由于KCa通道調(diào)節(jié)劑已經(jīng)用于帕金森病和乙醇中毒等多種疾病的早期臨床試驗(yàn)治療,本文強(qiáng)調(diào)了這些藥物作用和不足在使用中的重要性。

    鉀通道鈣激活;自發(fā)起搏神經(jīng)元;節(jié)律活動(dòng);通道調(diào)節(jié)劑

    馮中平,E-mail:zp.feng@utoronto.ca,Tel:+1(416)946-0671

    2016-03-16 接受日期:2016-06-13)

    R966

    :A

    :1000-3002-(2016)06-0627-13

    10.3867/j.issn.1000-3002.2016.06.003

    Biography:Nancy DONG,female,HBSc,graduate student, main research field is neuroscience,E-mail:nancy.dong@ mail.utoronto.ca

    Zhong-ping FENG,Tel:+1(416) 946-0671,E-mail:zp.feng@utoronto.ca

    (本文編輯:喬 虹)

    猜你喜歡
    中平離子通道調(diào)節(jié)劑
    顛倒村
    電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進(jìn)展
    “中平穴”定位考辨
    蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
    植物生長調(diào)節(jié)劑在園藝作物上的應(yīng)用
    Management of The Government for Public Facilities in The New Rural Communities
    哮喘治療中白三烯調(diào)節(jié)劑的應(yīng)用觀察
    疼痛和離子通道
    等離子通道鉆井技術(shù)概況和發(fā)展前景
    斷塊油氣田(2013年2期)2013-03-11 15:32:53
    抗腫瘤藥及免疫調(diào)節(jié)劑的醫(yī)院用藥現(xiàn)狀
    色视频www国产| 岛国毛片在线播放| 亚洲成人一二三区av| 日韩av不卡免费在线播放| 老师上课跳d突然被开到最大视频| 王馨瑶露胸无遮挡在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲一区二区三区欧美精品| 人人妻人人看人人澡| 国产69精品久久久久777片| 欧美zozozo另类| 菩萨蛮人人尽说江南好唐韦庄| 久久女婷五月综合色啪小说| 99热这里只有精品一区| 大片免费播放器 马上看| 一本—道久久a久久精品蜜桃钙片| 亚洲久久久国产精品| 如何舔出高潮| 亚洲欧美清纯卡通| 精品久久久久久久久av| 身体一侧抽搐| av专区在线播放| 国产 精品1| 国产视频首页在线观看| 日日啪夜夜撸| 中国美白少妇内射xxxbb| 国产精品久久久久成人av| 国产伦精品一区二区三区视频9| 亚洲精品一二三| 国产精品伦人一区二区| 插阴视频在线观看视频| 国产精品一区二区在线不卡| 亚洲欧美日韩无卡精品| 午夜视频国产福利| 久久久久性生活片| 亚洲精品久久午夜乱码| 草草在线视频免费看| 肉色欧美久久久久久久蜜桃| av视频免费观看在线观看| a级毛色黄片| 精品少妇久久久久久888优播| 日日撸夜夜添| 在线看a的网站| 日韩国内少妇激情av| 丝瓜视频免费看黄片| 国产老妇伦熟女老妇高清| 国产视频首页在线观看| 亚洲av男天堂| 午夜日本视频在线| 女人久久www免费人成看片| 美女中出高潮动态图| 妹子高潮喷水视频| 免费观看的影片在线观看| 欧美国产精品一级二级三级 | 国产成人一区二区在线| 中文字幕亚洲精品专区| 国产精品久久久久久精品电影小说 | 精华霜和精华液先用哪个| 国产黄片美女视频| 国产精品99久久久久久久久| 丝瓜视频免费看黄片| 狂野欧美白嫩少妇大欣赏| 久久午夜福利片| 男女国产视频网站| 九九久久精品国产亚洲av麻豆| av网站免费在线观看视频| 性高湖久久久久久久久免费观看| 国产av一区二区精品久久 | 尾随美女入室| 免费少妇av软件| 涩涩av久久男人的天堂| 亚洲精品国产av蜜桃| 人妻系列 视频| 欧美精品亚洲一区二区| 国产片特级美女逼逼视频| 日韩免费高清中文字幕av| 91久久精品国产一区二区三区| 亚洲欧美精品专区久久| 夫妻性生交免费视频一级片| 尾随美女入室| 黄色欧美视频在线观看| 婷婷色av中文字幕| 我要看黄色一级片免费的| 丰满乱子伦码专区| 久久久久久久久大av| 亚洲最大成人中文| 人妻系列 视频| 亚洲综合精品二区| 日韩成人av中文字幕在线观看| 亚洲一级一片aⅴ在线观看| 免费观看a级毛片全部| 久久久久久九九精品二区国产| 亚洲久久久国产精品| 国产伦精品一区二区三区四那| 直男gayav资源| 秋霞在线观看毛片| av国产久精品久网站免费入址| 一边亲一边摸免费视频| 日韩中字成人| av在线观看视频网站免费| 亚洲成人av在线免费| 免费看光身美女| 日韩视频在线欧美| 直男gayav资源| 美女高潮的动态| videossex国产| 美女xxoo啪啪120秒动态图| 国产欧美另类精品又又久久亚洲欧美| 久久久久精品久久久久真实原创| 中文欧美无线码| 肉色欧美久久久久久久蜜桃| 黄色日韩在线| 久久久久久久久久成人| 九九在线视频观看精品| 精品国产乱码久久久久久小说| 搡老乐熟女国产| av女优亚洲男人天堂| 成人美女网站在线观看视频| .国产精品久久| 欧美日本视频| 欧美97在线视频| 内地一区二区视频在线| 99热这里只有是精品在线观看| 春色校园在线视频观看| 六月丁香七月| 免费大片18禁| 国产高清国产精品国产三级 | 亚洲精品456在线播放app| 亚洲欧美中文字幕日韩二区| 国产亚洲精品久久久com| 午夜福利视频精品| 天美传媒精品一区二区| 97在线视频观看| 亚洲av福利一区| 久久久成人免费电影| 少妇丰满av| 婷婷色麻豆天堂久久| 国产av精品麻豆| 国产高清不卡午夜福利| 老司机影院毛片| 看十八女毛片水多多多| 尾随美女入室| 一级毛片aaaaaa免费看小| av天堂中文字幕网| 寂寞人妻少妇视频99o| 高清午夜精品一区二区三区| 欧美激情国产日韩精品一区| 免费看不卡的av| 欧美97在线视频| 欧美一级a爱片免费观看看| 一个人免费看片子| 涩涩av久久男人的天堂| 久久精品国产亚洲av天美| 免费看日本二区| 国产老妇伦熟女老妇高清| 亚洲国产精品成人久久小说| 97热精品久久久久久| 卡戴珊不雅视频在线播放| 亚洲,一卡二卡三卡| av在线播放精品| 啦啦啦中文免费视频观看日本| 亚洲精品久久午夜乱码| 国国产精品蜜臀av免费| 国产亚洲最大av| 美女xxoo啪啪120秒动态图| 99九九线精品视频在线观看视频| 中国国产av一级| 伦理电影免费视频| 国产精品一区二区在线不卡| 久久综合国产亚洲精品| 观看美女的网站| av国产精品久久久久影院| 在线观看美女被高潮喷水网站| 欧美另类一区| av一本久久久久| 日韩强制内射视频| 中国国产av一级| 高清不卡的av网站| 美女内射精品一级片tv| 亚洲四区av| 亚洲国产色片| 久久久亚洲精品成人影院| 日韩av不卡免费在线播放| 亚洲精品,欧美精品| 日韩,欧美,国产一区二区三区| 国产伦理片在线播放av一区| 伦精品一区二区三区| 久久久久久久大尺度免费视频| 久久人人爽人人片av| 欧美一区二区亚洲| 亚洲精品国产色婷婷电影| 亚洲精品国产成人久久av| 欧美少妇被猛烈插入视频| 精品一区在线观看国产| 精品久久久久久久久av| 亚洲在久久综合| 日本色播在线视频| 3wmmmm亚洲av在线观看| 精品国产乱码久久久久久小说| 亚洲人与动物交配视频| 中国国产av一级| 久久97久久精品| 最近手机中文字幕大全| 国产成人aa在线观看| 欧美xxxx性猛交bbbb| 久久99热6这里只有精品| 国产亚洲一区二区精品| 国产精品国产三级国产专区5o| 韩国av在线不卡| 国产中年淑女户外野战色| 久久久久国产精品人妻一区二区| 国产中年淑女户外野战色| 亚洲av综合色区一区| 免费黄网站久久成人精品| 中文字幕亚洲精品专区| 99久久人妻综合| 中文字幕人妻熟人妻熟丝袜美| 国产日韩欧美亚洲二区| 亚洲av成人精品一区久久| 大又大粗又爽又黄少妇毛片口| 久久久精品免费免费高清| 少妇精品久久久久久久| 日本欧美视频一区| 夜夜爽夜夜爽视频| 久久精品国产亚洲av天美| 国产色爽女视频免费观看| kizo精华| 最近中文字幕2019免费版| 国产精品一区二区性色av| 免费高清在线观看视频在线观看| 99久久精品热视频| 黑人猛操日本美女一级片| av国产精品久久久久影院| 我要看黄色一级片免费的| 建设人人有责人人尽责人人享有的 | 18禁在线播放成人免费| 嫩草影院新地址| 日韩欧美精品免费久久| 亚洲国产精品成人久久小说| 精品一区二区三卡| 国产精品.久久久| 99热网站在线观看| 美女cb高潮喷水在线观看| 国产美女午夜福利| 国产无遮挡羞羞视频在线观看| 国产精品久久久久久精品古装| 高清在线视频一区二区三区| 国产欧美日韩精品一区二区| 亚洲在久久综合| 日本免费在线观看一区| 亚洲欧美一区二区三区黑人 | 校园人妻丝袜中文字幕| 男男h啪啪无遮挡| 18禁裸乳无遮挡免费网站照片| 水蜜桃什么品种好| 老女人水多毛片| 亚洲精华国产精华液的使用体验| 人妻制服诱惑在线中文字幕| 亚洲欧美一区二区三区黑人 | 国产成人aa在线观看| 欧美 日韩 精品 国产| 国产免费又黄又爽又色| 国产成人一区二区在线| 欧美日韩综合久久久久久| 交换朋友夫妻互换小说| 国产精品成人在线| 色吧在线观看| 18禁在线播放成人免费| 高清欧美精品videossex| 男人狂女人下面高潮的视频| 少妇精品久久久久久久| 亚洲久久久国产精品| 中文天堂在线官网| 久久精品国产自在天天线| 国产亚洲欧美精品永久| 综合色丁香网| 91精品一卡2卡3卡4卡| 看免费成人av毛片| 国产乱人视频| 亚洲综合色惰| 欧美性感艳星| 亚洲精品日本国产第一区| 中文字幕制服av| 亚洲人成网站高清观看| 亚洲最大成人中文| 日韩欧美 国产精品| 日本wwww免费看| 久久人人爽av亚洲精品天堂 | 女性被躁到高潮视频| 午夜福利视频精品| 国产片特级美女逼逼视频| 国产久久久一区二区三区| 国产精品不卡视频一区二区| 肉色欧美久久久久久久蜜桃| 哪个播放器可以免费观看大片| 中文精品一卡2卡3卡4更新| 啦啦啦视频在线资源免费观看| 中文乱码字字幕精品一区二区三区| 精品99又大又爽又粗少妇毛片| 人人妻人人看人人澡| 1000部很黄的大片| 亚洲欧美成人综合另类久久久| 噜噜噜噜噜久久久久久91| 能在线免费看毛片的网站| 99热全是精品| 黄色欧美视频在线观看| 99视频精品全部免费 在线| 99热国产这里只有精品6| 国产精品女同一区二区软件| a 毛片基地| 欧美一级a爱片免费观看看| 国产精品一区二区三区四区免费观看| 免费人妻精品一区二区三区视频| 免费久久久久久久精品成人欧美视频 | 特大巨黑吊av在线直播| 午夜视频国产福利| 国产免费一级a男人的天堂| 日本vs欧美在线观看视频 | 国产成人精品婷婷| av卡一久久| 蜜桃亚洲精品一区二区三区| 国产精品一区二区三区四区免费观看| 丰满人妻一区二区三区视频av| av在线播放精品| 亚洲精品乱码久久久v下载方式| 色5月婷婷丁香| 永久免费av网站大全| 少妇人妻一区二区三区视频| 免费av中文字幕在线| 日韩免费高清中文字幕av| 久热久热在线精品观看| 中文资源天堂在线| 午夜福利在线在线| 男女边吃奶边做爰视频| 久久国内精品自在自线图片| 极品少妇高潮喷水抽搐| 女人久久www免费人成看片| 亚洲欧美日韩无卡精品| 久久ye,这里只有精品| 欧美精品亚洲一区二区| 美女中出高潮动态图| 男的添女的下面高潮视频| 国产亚洲91精品色在线| 一本久久精品| 亚洲不卡免费看| 免费看光身美女| 亚洲天堂av无毛| 久久综合国产亚洲精品| 少妇 在线观看| 欧美变态另类bdsm刘玥| 欧美精品一区二区大全| 五月玫瑰六月丁香| 春色校园在线视频观看| 涩涩av久久男人的天堂| 欧美最新免费一区二区三区| 日本色播在线视频| 久久青草综合色| 成人二区视频| 精品少妇黑人巨大在线播放| 日产精品乱码卡一卡2卡三| 黑人高潮一二区| 免费观看无遮挡的男女| 中文字幕亚洲精品专区| 久久久久久久久久久免费av| 草草在线视频免费看| 国产精品久久久久久av不卡| 乱码一卡2卡4卡精品| 欧美日韩综合久久久久久| 一区二区av电影网| 日韩免费高清中文字幕av| 18+在线观看网站| 夜夜看夜夜爽夜夜摸| 精品久久久久久电影网| 春色校园在线视频观看| 欧美一级a爱片免费观看看| 欧美精品一区二区大全| 亚洲精品国产成人久久av| 国产中年淑女户外野战色| 久久亚洲国产成人精品v| 欧美日韩在线观看h| 久久97久久精品| 九九爱精品视频在线观看| 久久久久性生活片| 成人特级av手机在线观看| 亚洲欧美清纯卡通| 久久精品国产鲁丝片午夜精品| 精品酒店卫生间| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 韩国高清视频一区二区三区| 人妻制服诱惑在线中文字幕| 一区二区av电影网| 久久韩国三级中文字幕| 国产欧美日韩一区二区三区在线 | freevideosex欧美| 日韩精品有码人妻一区| 亚洲高清免费不卡视频| 老女人水多毛片| 日本免费在线观看一区| 日本wwww免费看| 日本一二三区视频观看| 国产免费又黄又爽又色| 高清黄色对白视频在线免费看 | 视频区图区小说| 午夜免费鲁丝| 国产精品蜜桃在线观看| 国产精品一区二区三区四区免费观看| 日本午夜av视频| 六月丁香七月| av线在线观看网站| 久久精品熟女亚洲av麻豆精品| 国产午夜精品一二区理论片| 女的被弄到高潮叫床怎么办| 久久韩国三级中文字幕| 亚洲电影在线观看av| 97在线人人人人妻| 久久久久国产网址| 最黄视频免费看| 一区二区三区免费毛片| 亚洲av成人精品一区久久| 汤姆久久久久久久影院中文字幕| 免费观看性生交大片5| 男人添女人高潮全过程视频| 亚洲国产av新网站| 少妇人妻精品综合一区二区| 亚洲国产日韩一区二区| 日本vs欧美在线观看视频 | 99九九线精品视频在线观看视频| 国产精品国产三级国产专区5o| 在线精品无人区一区二区三 | 日本黄色片子视频| 九草在线视频观看| 国产伦精品一区二区三区视频9| 久久国内精品自在自线图片| 久久婷婷青草| 一区二区三区精品91| 国产精品一区二区在线不卡| 特大巨黑吊av在线直播| 99视频精品全部免费 在线| 日韩中文字幕视频在线看片 | 99国产精品免费福利视频| 欧美日韩精品成人综合77777| 男男h啪啪无遮挡| 成人综合一区亚洲| 精品人妻偷拍中文字幕| 高清av免费在线| 欧美3d第一页| 成人免费观看视频高清| 日本wwww免费看| 97热精品久久久久久| 日韩电影二区| 汤姆久久久久久久影院中文字幕| 天堂8中文在线网| 在线亚洲精品国产二区图片欧美 | 免费av中文字幕在线| 超碰97精品在线观看| 人人妻人人澡人人爽人人夜夜| 国产男人的电影天堂91| 成人二区视频| 久久国产精品大桥未久av | 国产伦精品一区二区三区视频9| 久久国内精品自在自线图片| 国产在线男女| av免费观看日本| 日本欧美国产在线视频| 欧美+日韩+精品| av免费在线看不卡| 欧美xxxx性猛交bbbb| 国产伦在线观看视频一区| 交换朋友夫妻互换小说| 久久鲁丝午夜福利片| 五月伊人婷婷丁香| 99久久综合免费| 中文字幕久久专区| av免费观看日本| 日韩视频在线欧美| 国产欧美亚洲国产| 大片电影免费在线观看免费| 婷婷色av中文字幕| 三级国产精品欧美在线观看| 超碰av人人做人人爽久久| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站 | 亚洲天堂av无毛| 麻豆成人午夜福利视频| 女人久久www免费人成看片| 激情五月婷婷亚洲| 乱码一卡2卡4卡精品| 欧美精品一区二区免费开放| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| 2018国产大陆天天弄谢| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 一本久久精品| 国产欧美亚洲国产| 国产精品免费大片| 18禁动态无遮挡网站| 男女啪啪激烈高潮av片| 99久久综合免费| 久热这里只有精品99| 亚洲怡红院男人天堂| 久久99热6这里只有精品| 欧美三级亚洲精品| 午夜福利视频精品| 尾随美女入室| 草草在线视频免费看| 成年免费大片在线观看| 制服丝袜香蕉在线| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久电影| 亚洲四区av| 制服丝袜香蕉在线| 久久久久网色| 欧美精品人与动牲交sv欧美| 丰满少妇做爰视频| 日韩,欧美,国产一区二区三区| 麻豆国产97在线/欧美| 纯流量卡能插随身wifi吗| 久久久亚洲精品成人影院| videossex国产| 日韩国内少妇激情av| 一边亲一边摸免费视频| 精品亚洲成a人片在线观看 | 国产人妻一区二区三区在| 精品国产露脸久久av麻豆| 亚洲,一卡二卡三卡| 亚洲精华国产精华液的使用体验| 丰满人妻一区二区三区视频av| 精品99又大又爽又粗少妇毛片| 国产极品天堂在线| 下体分泌物呈黄色| 你懂的网址亚洲精品在线观看| 99久久精品国产国产毛片| 国产精品一区二区性色av| 国产人妻一区二区三区在| 男女啪啪激烈高潮av片| 99热6这里只有精品| av在线观看视频网站免费| 欧美3d第一页| 精品久久久久久久久亚洲| 久久人人爽人人片av| 欧美精品一区二区免费开放| 亚洲精品456在线播放app| 久久国产乱子免费精品| 蜜桃久久精品国产亚洲av| 亚洲综合色惰| 精品久久久噜噜| 国产精品欧美亚洲77777| 午夜视频国产福利| 国产成人精品婷婷| 久久久a久久爽久久v久久| 亚洲美女视频黄频| 直男gayav资源| 十分钟在线观看高清视频www | 国产美女午夜福利| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人 | 亚洲一区二区三区欧美精品| 色婷婷久久久亚洲欧美| 国产av码专区亚洲av| 日日摸夜夜添夜夜爱| 亚洲无线观看免费| 日韩强制内射视频| 久久久欧美国产精品| 有码 亚洲区| 免费人成在线观看视频色| 一本色道久久久久久精品综合| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片 | 1000部很黄的大片| 欧美日韩国产mv在线观看视频 | 青青草视频在线视频观看| 日韩在线高清观看一区二区三区| 国产精品免费大片| 一个人免费看片子| 亚州av有码| 国产成人a区在线观看| 亚洲一级一片aⅴ在线观看| 精品亚洲乱码少妇综合久久| 少妇人妻 视频| 国产91av在线免费观看| 日韩精品有码人妻一区| 狠狠精品人妻久久久久久综合| 少妇被粗大猛烈的视频| 国产v大片淫在线免费观看| 亚洲精品日韩av片在线观看| 国产无遮挡羞羞视频在线观看| 免费人妻精品一区二区三区视频| 免费在线观看成人毛片| 国产黄频视频在线观看| 成年免费大片在线观看| 国产午夜精品久久久久久一区二区三区| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区| 国产精品一二三区在线看| 亚洲av中文av极速乱| 亚洲精品第二区| 汤姆久久久久久久影院中文字幕| 人妻系列 视频| 中文欧美无线码| 国产一级毛片在线| 精品久久久久久久久亚洲| 国产爽快片一区二区三区| 亚洲av成人精品一二三区| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www | 日本爱情动作片www.在线观看| 欧美激情极品国产一区二区三区 | 少妇猛男粗大的猛烈进出视频| 老司机影院毛片| 成人美女网站在线观看视频| 18禁裸乳无遮挡动漫免费视频|