• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Is hyperexcitability really guilty in amyotrophic lateral sclerosis?

    2015-12-15 11:23:33FelixLeroy,DanielZytnicki
    關(guān)鍵詞:酚類標準溶液繪制

    Is hyperexcitability really guilty in amyotrophic lateral sclerosis?

    Amyotrophic lateral sclerosis (ALS) is a lethal disorder characterized by the gradual degeneration of brainstem and spinal motoneurons as well as lateral cortico-spinal tracts. The onset generally occurs during the adult age except for some juvenile aggressive forms. Until recently, the vast majority of the cases (90%) were deemed sporadic. Mutations in the SOD1 gene have been for a long time the only ones reported in familiar forms of ALS. However, the recent implication of new genes of little known function cast a new view on this disease. C9ORF72, for example, is now recognized to account for 30% of the familial cases. Overall, ALS has been linked to 20 diff erent genes, many also associated with other degenerative diseases (frontotemporal dementia, Alzheimer or ataxia). Some of these genes are involved in RNA maturation (FUS, TARBD). Clinical observation of human patients and mouse models suggests that all motor pools and motoneurons are not equally aff ected (see Kanning et al., 2010). The disease usually starts in motor pools controlling the limbs or in the bulbar area before expanding to other motor pools, with the exception of a few resistant ones (Onuf’s and oculomotor nuclei). Within a vulnerable motor pool, motoneurons subtypes also exhibit diff erential vulnerability and follow an orderly degeneration; starting with the motoneurons innervating fast-contracting fatigable motor units (FF motoneurons) and followed by the ones innervating fast-contractile fatigue-resistant motor units (FR motoneurons). The motoneurons innervating slow motor units (S motoneurons) appear resistant to the disease. Although the mechanisms leading to the orderly degeneration are not known, many hypotheses have been raised (Ilieva et al., 2009).

    Extrinsic and intrinsic causes leading to an abnormal calcium entrance in the motoneurons: It has been suggested that an abnormal calcium entrance in motoneurons might be toxic and trigger degeneration (Ilieva et al., 2009). Indeed, calcium concentration in the cytoplasm is kept low and tightly regulated in all cells (Figure 1). Interestingly, vulnerable fast motoneurons express lower amounts of cytosolic calcium buff ering proteins, which could make them more sensitive to the large and fast fl uxes of calcium they experience (Kanning et al., 2010). In addition, the progression of the disease in fast motoneurons correlates with a decrease in calreticulin, an endoplasmic reticulum calcium buff ering protein, as well as a corresponding increase in cytosolic calcium concentration (Kanning et al., 2010). In neurons, calcium can enter the cytoplasm through numerous calcium channels that can be sorted according to their activation mechanism: ligand-gated channels (AMPA, NMDA), voltage-activated channels (N/P-, L- or T-type channels) and second-messenger-activated channels (IP3, G-protein receptors, Figure 1). Electrophysiological work has aimed to investigate whether changes in synaptic inputs or intrinsic electrical cell properties lead to more calcium entrance. By defi nition, changes seen in the former are deemed as a hyperexcitation, while changes in the latter are referred to as a hyperexcitability (Figure 1). Hyperexcitation originates from a shift in the balance of excitation and inhibition towards more net excitation. This can occur via increased excitation, decreased inhibition, and also altered glial activity. On the other hand, hyperexcitability can stem from any intrinsic mechanisms resulting in increased fi ring: higher input resistance, lower rheobase, depolarized resting potential, and hyperpolarized spiking threshold. It can also stem directly from an increase in calcium channel activity.

    Are vulnerable motoneurons hyperexcitable? Original studies on the SOD1 mutant mouse ALS models focused on electrical markers of hyperexcitability at diff erent pre-symptomatic stages. Motoneurons from mSOD1 embryos recorded in culture were found to be hyperexcitable (Kuo et al., 2005; van Zundert et al., 2008) in that they were recruited at lower current than WT motoneurons and their frequency of discharge (F) increased more with injected current (I) (higher F-I curve slope). Martin et al. (2013) found a similar result in an in vitro preparation of mSOD1 embryonic cord. In their preparation, shrinkage of the dendritic tree was associated with an increased input resistance. In mSOD1 neonates, hyperexcitability remained controversial until recently (see Leroy et al., 2014). The major caveat of the previous work on neonates was that the diff erential sensitivity of motoneurons subtypes to the disease was not taken into account. Leroy et al. (2014) established a link between discharge patterns and slow and fast motoneurons. Separate analysis of each subtypes allowed them to demonstrate that, surprisingly, the excitability of the vulnerable fast motoneurons was unchanged whereas the slow motoneurons became hyperexcitable. Hyperexcitability of the slow motoneurons arose from a decrease in their rheobase and a hyperpolarization of the spike threshold. Overall, studies at early stages, far from the disease onset, indicate that though motoneurons can display hyperexcitability, it is unlikely to be responsible for their later degeneration.

    Until recently, the inability to record from mouse adult motoneurons prevented to look for hyperexcitability at the end of the pre-symptomatic phase. Delestree et al. (2014) recorded motoneurons in vivo in SOD1 G93A mice. At the population level, they found that every hallmark of excitability remained unchanged despite a decrease in input conductance. Some motoneurons, however, lost the ability to fi re repetitively. Using a diff erent preparation, Hadzipasic et al. (2014) recorded motoneurons in acute slices made from adult SOD1 G85R mice. They performed a cluster analysis to categorize their motoneurons into pseudo-physiological types. Regardless of the types considered, they observed no change in input resistance. Furthermore, the motoneurons supposedly innervating the fastest motor units exhibited hyperpolarized resting potentials, which could manifest as hypoexcitability. Overall, both studies in adults failed to report any signs of hyperexcitability whereas they saw diff erent signs of hypoexcitability. Rather than to record from adult mouse motoneurons, several studies used a preparation that diff erentiated fi broblasts from ALS patients into motoneurons (induced pluripotent stem cells or IPSC), therefore, specifically investigating cell-autonomous mechanisms of ALS. The fi rst two studies on IPSC derived either from mSOD1 (Wainger et al., 2014) or C9ORF72 (Sareen et al., 2013) patients brought seemingly contradictory results. After 4 weeks of diff erentiation, Wainger et al. (2014) noted that SOD1 patient-derived motoneurons fi red spontaneously more often, albeit exhibiting a lower input resistance. They linked the hyperexcitability to a decrease in delayed-rectifi er potassium currents (Kv7). In contrast, working on C9ORF72 patient-derived motoneurons, Sareen et al. (2013) diff erentiated their IPSC for 8 weeks. They observed a

    lower frequency of fi ring upon current injection and increased KCNQ3 expression, which led them to conclude that the motoneurons were hypoexcitable. The expression of other genes involved in membrane excitability, such as DPP6 and 3 members of the cerebellin family of proteins involved in synapse formation (CBLN1-3), was also altered. Devlin et al. (2015) recently published a study reconciling the two previous IPSC studies. They derived IPSC from TARDBP and C9ORF72 ALS patients. In their case, the gain of the F-I curve initially increased leading to hyperexcitability as in Wainger et al. (2014). However, hyperexcitability was transient and was later followed by a decrease in the sodium and potassium currents generating the action potentials. As in the studies by Sareen et al. (2013) and Delestree et al. (2014), the cells capable of sustained fi ring progressively lose this ability. Studies in adult and IPSC confirmed that hyperexcitability is a transient, early phenomenon absent in adults. Therefore, if anything, adult motoneurons are hypoexcitable. The fact that, in early stages, only the resistant motoneurons display hyperexcitability makes it unlikely that an initial phase of hyperexcitability during early development could trigger the late degeneration. The reason(s) why the largest adult motoneurons lose the ability to fi re repetitively and whether this may lead to degeneration remains to be investigated.

    Figure 1 Mechanisms regulating the motoneuron spiking activity and cytosolic calcium concentration.

    If hyperexcitability is not guilty, what about synaptic hyperexcitation? We know since Charcot’s work that the lateral cortico-spinal tract also degenerates during the ALS. The tract comprises axons from the motor cortex pyramidal neuron that control the excitation of local network upstream of the motoneurons at every spinal cord level. They might therefore indirectly trigger the hyperexcitation of the motoneurons. Indeed, transcranial magnetic studies in human suggest that the cortex become hyperexcitable in early stages of the disease (Vucic et al., 2008). In SOD1 G93A mice, Saba et al. (2015) found that the neurons in layer V of motor cortex were hyperexcitable due to a lower rheobase. In addition, they also observed a higher frequency of excitatory post-synaptic currents, larger dendritic arbor and increased expression of VGLUT2 in layer 5. This suggests that increased excitation could originate early on along the motor command chain and trickle down to the fi nal eff ectors, the motoneurons (Figure 1). In a mouse model of spinal muscular atrophy, another motor neuron disease, Mentis et al. (2011) showed that motoneuron hyperexcitability was not a primary disease mechanism but a homeostatic response to compensate for the decrease in proprioceptive inputs. However, due to the extensive pre-symptomatic period, it is more diffi cult to separate direct from compensatory mechanisms in ALS.

    Dysfunctions in spinal interneurons and glial cells have also been observed in ALS (Pullen and Athanasiou, 2009; Martin and Chang, 2012; Wootz et al., 2013). A decrease in the amplitude of the glycinergic miniature currents in a cultured motoneuron preparation was reported as well as a global decrease in glycine synapses in slice (Martin and Chang, 2012; Wootz et al., 2013). Moreover, the ventral root initial response following dorsal root stimulation decreased (Bories et al., 2007) and cholinergic C-button synapses impinging on the motoneurons are enlarged (Pullen and Athanasiou, 2009). Finally, other cell types are involved in the degeneration as shown by co-cultures and chimeric mice experiments (see Ilieva et al., 2009). The EAAT2/GLT1 glutamate transporter is impaired in astrocytes, compromising glutamate clearance from the synaptic clefts (see Ilieva et al., 2009). Additionally, Calvo-Gallardo et al. (2015) found the SOD1 G93A chromaffi n cells to be hypoexcitable due to a decrease in nicotinic currents. Exactly how and which cells surrounding the motoneurons contribute to the disease is still unclear and more work needs to be undertaken to link this to altered excitability and to motoneuron degeneration.

    Recent challenging observations by Saxena et al., (2013) suggest that hyperexcitation could in fact be benefi cial to motoneuron survival. Instead of assessing the putative changes in spinal cord activity, Saxena et al. (2013) altered activity throughout the central nervous system and observed the eff ect of this manipulation on motoneuron degeneration. Blocking of the serotonin, AMPA or NMDA receptors induced an increased accumulation of misfolded SOD1 and unfolded protein response resulting in an acceleration of the disease progression. Conversely, injecting mice with moderate doses of AMPA delayed the disease progression and extended the mutant mice lifespan (and not that of the wild-type). Though they show that a mild hyperexcitation of the spinal cord slows the disease progression, what would be the eff ect of a stronger hyperexcitation? Could a strong increase in excitation be detrimental while a lower one is benefi cial? More experiments are required to elucidate whether synaptic hyperexcitation occurs in ALS and how it specifi cally aff ects the vulnerable motoneurons.

    To conclude, intrinsic hyperexcitability is unlikely to lead to motoneuron degeneration in ALS since vulnerable motoneurons are not hyperexcitable. In the juvenile mouse, only the resistant

    motoneurons are hyperexcitable. Moreover, in the adult mouse, the vulnerable motoneurons tend to become hypoexcitable. In this scheme, higher excitability is associated with the resistant motoneurons, suggesting a benefi cial eff ect for hyperexcitability. However, for Roselli and Caroni (2015), hyperexcitability is merely a maladaptive consequence of early stress and calcium increase. Whether hyperexcitation, hyperexcitability or higher calcium concentration are responsible for the motoneuron degeneration in ALS is therefore still under investigation and after many years of intensive research on ALS, we are still looking for the mechanism(s) initiating the orderly degeneration. Surprisingly, Quinlan et al. (2015) recently reported that action potential-evoked calcium transients in juvenile motoneurons are overall smaller in SOD1 G93A animals. This might call for a reevaluation of the entire underlying hypothesis of higher calcium infl ux. At the motoneuron level, probing various sensitive cellular pathways such as the stress on the protein degradation complex or directly measuring calcium hotspots will help narrowing down how cells slowly progress toward degeneration. Targeted modifi cations (either at the cell or circuit level) of the diff erent components controlling the motoneuron calcium concentration are necessary to better understand the slow degeneration and complex compensatory mechanisms taking place throughout the disease.

    Financial supports provided by the Agence Nationale pour la Recherche (HYPER-MND, ANR-2010-BLAN-1429-01), the NIHNINDS (R01NS077863), the Thierry Latran Fundation (OHEX Project) and Target ALS are gratefully acknowledged. Felix Leroy was recipient of a “Contrat Doctoral” from the Ecole Normale Supérieure, Cachan.

    The authors would like to thank Philippe Ascher, Arjun Masurkar and Georges mentis and for their corrections and advice.

    將10種酚類物質(zhì)的標準混合溶液逐步稀釋,配制成濃度分別為400,200,100,50,10 mg/L的混合標準溶液,在最佳色譜條件下進行檢測,根據(jù)實驗結(jié)果,繪制10種酚類物質(zhì)的標準曲線,得出線性方程及相關(guān)系數(shù),實驗結(jié)果見表2。

    Felix Leroy*,#, Daniel Zytnicki#

    Centre de Neurophysique, Physiologie et Pathologie, UMR 8119, Université Paris Descartes, UMR 8119, 45 rue des

    Saints-Pères, 752070 Paris Cedex 06, France

    *Correspondence to: Felix Leroy, Ph.D., fl 2379@columbia.edu.

    # These authors contributed equally to this work.

    Accepted: 2015-05-29

    Bories C, Amendola J, Lamotte d’Incamps B, Durand J (2007) Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25:451-459.

    Calvo-Gallardo E, de Pascual R, Fernandez-Morales JC, Arranz-Tagarro JA, Maroto M, Nanclares C, Gandia L, de Diego AM, Padin JF, Garcia AG (2015) Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffi n cells of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Am J Physiol Cell Physiol 308:C1-19.

    Delestree N, Manuel M, Iglesias C, Elbasiouny SM, Heckman CJ, Zytnicki D (2014) Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. J Physiol 592:1687-703.

    Hadzipasic M, Tahvildari B, Nagy M, Bian M, Horwich AL, McCormick DA (2014) Selective degeneration of a physiological subtype of spinal motor neuron in mice with SOD1-linked ALS. Proc Natl Acad Sci U S A 111:16883-16888.

    Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761-772.

    Kanning KC, Kaplan A, Henderson CE (2010) Motor neuron diversity in development and disease. Ann Rev Neurosci 33:409-440.

    Kuo JJ, Siddique T, Fu R, Heckman CJ (2005) Increased persistent Na(+) current and its eff ect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol 563:843-854.

    Leroy F, Lamotte d’Incamps B, Imhoff-Manuel RD, Zytnicki D (2014) Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. ELife 3:e040406 doi:10.7554/eLife.040406.

    Martin E, Cazenave W, Cattaert D, Branchereau P (2013) Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 54:116-126.

    Martin LJ, Chang Q (2012) Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol 45:30-42.

    Mentis GZ, Blivis D, Liu W, Drobac E, Crowder ME, Kong L, Alvarez FJ, Sumner CJ, O’Donovan MJ (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69:453-467.

    Pullen AH, Athanasiou D (2009) Increase in presynaptic territory of C-terminals on lumbar motoneurons of G93A SOD1 mice during disease progression. Eur J Neurosci 29:551-561.

    Quinlan KA, Lamano JB, Samuels J, Heckman CJ (2015) Comparison of dendritic calcium transients in juvenile wild type and SOD1(G93A) mouse lumbar motoneurons. Front Cell Neurosci 9:139.

    Roselli F, Caroni P (2015) From intrinsic fi ring properties to selective neuronal vulnerability in neurodegenerative diseases. Neuron 85:901-910.

    Saba L, Viscomi MT, Caioli S, Pignataro A, Bisicchia E, Pieri M, Molinari M, Ammassari-Teule M, Zona C (2015) Altered functionality, morphology, and vesicular glutamate transporter expression of cortical motor neurons from a presymptomatic mouse model of amyotrophic lateral sclerosis. Cereb Cortex doi: 10.1093/cercor/bhu317.

    Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5:208ra149.

    Saxena S, Roselli F, Singh K, Leptien K, Julien JP, Gros-Louis F, Caroni P (2013) Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron 80:80-96.

    van Zundert B, Peuscher MH, Hynynen M, Chen A, Neve RL, Brown RH, Jr., Constantine-Paton M, Bellingham MC (2008) Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Neurosci 28:10864-10874.

    Vucic S, Nicholson GA, Kiernan MC (2008) Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131:1540-1550.

    Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SS, Sandoe J, Perez NP, Williams LA, Lee S, Boulting G, Berry JD, Brown RH, Jr., Cudkowicz ME, Bean BP, Eggan K, Woolf CJ (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7:1-11.

    Wootz H, Fitzsimons-Kantamneni E, Larhammar M, Rotterman TM, Enjin A, Patra K, Andre E, Van Zundert B, Kullander K, Alvarez FJ (2013) Alterations in the motor neuron-renshaw cell circuit in the Sod1(G93A) mouse model. J Comp Neurol 521:1449-1469.

    10.4103/1673-5374.165308 http://www.nrronline.org/

    Leroy F, Zytnicki D (2015) Is hyperexcitability really guilty in amyotrophic lateral sclerosis? Neural Regen Res 10(9):1413-1415.

    猜你喜歡
    酚類標準溶液繪制
    Art on coffee cups
    碘標準溶液的均勻性、穩(wěn)定性及不確定度研究
    倒掛金鉤中酚類成分的研究
    放學后
    童話世界(2018年17期)2018-07-30 01:52:02
    黃荊酚類成分的研究
    中成藥(2017年7期)2017-11-22 07:33:21
    車前子酚類成分的研究
    中成藥(2017年3期)2017-05-17 06:09:00
    Portal vein embolization for induction of selective hepatic hypertrophy prior to major hepatectomy: rationale, techniques, outcomes and future directions
    標準溶液配制及使用中容易忽略的問題
    中國氯堿(2016年9期)2016-11-16 03:07:39
    在轉(zhuǎn)變中繪制新藍圖
    五味子漿果酚類成分提取與分離鑒定
    www.自偷自拍.com| 国产免费男女视频| 精品欧美一区二区三区在线| 欧美成狂野欧美在线观看| 99国产综合亚洲精品| 18禁国产床啪视频网站| 无遮挡黄片免费观看| 激情视频va一区二区三区| 欧美人与性动交α欧美软件| 免费在线观看日本一区| 精品午夜福利视频在线观看一区| 老鸭窝网址在线观看| 国产成人欧美| 丝袜美足系列| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉国产在线看| 久久久久久久久久久久大奶| 18禁美女被吸乳视频| 99国产精品免费福利视频| 欧美黑人精品巨大| 久久狼人影院| 久久久国产欧美日韩av| 日韩免费av在线播放| 成人av一区二区三区在线看| 亚洲成人免费电影在线观看| 人妻丰满熟妇av一区二区三区| www.精华液| 久久久国产成人精品二区 | svipshipincom国产片| 国产精品秋霞免费鲁丝片| 欧美成狂野欧美在线观看| 日韩av在线大香蕉| 香蕉丝袜av| 国产一区二区激情短视频| 精品国产美女av久久久久小说| 男女午夜视频在线观看| 久久人人97超碰香蕉20202| 侵犯人妻中文字幕一二三四区| 两性午夜刺激爽爽歪歪视频在线观看 | 女人高潮潮喷娇喘18禁视频| 12—13女人毛片做爰片一| 免费日韩欧美在线观看| 亚洲av片天天在线观看| 欧美大码av| 久久午夜综合久久蜜桃| 欧美中文日本在线观看视频| 很黄的视频免费| 别揉我奶头~嗯~啊~动态视频| 这个男人来自地球电影免费观看| 免费女性裸体啪啪无遮挡网站| 免费高清视频大片| 男女做爰动态图高潮gif福利片 | 黄色片一级片一级黄色片| 欧美乱妇无乱码| 啪啪无遮挡十八禁网站| 亚洲aⅴ乱码一区二区在线播放 | 国产一区二区在线av高清观看| 两个人免费观看高清视频| 伊人久久大香线蕉亚洲五| 麻豆久久精品国产亚洲av | 成人亚洲精品一区在线观看| 99久久人妻综合| 亚洲全国av大片| 欧美+亚洲+日韩+国产| 国产蜜桃级精品一区二区三区| 亚洲精品久久午夜乱码| 成人18禁在线播放| 国产精品秋霞免费鲁丝片| 亚洲一码二码三码区别大吗| 嫩草影视91久久| 亚洲精品中文字幕一二三四区| 国产亚洲精品综合一区在线观看 | 亚洲av片天天在线观看| 韩国av一区二区三区四区| 日本黄色视频三级网站网址| 日韩精品免费视频一区二区三区| 黄色视频不卡| 嫁个100分男人电影在线观看| 国产麻豆69| av天堂久久9| 成人永久免费在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产免费现黄频在线看| 国产单亲对白刺激| 欧美性长视频在线观看| 亚洲国产精品sss在线观看 | 亚洲午夜理论影院| 日韩成人在线观看一区二区三区| 成在线人永久免费视频| 婷婷丁香在线五月| 在线观看66精品国产| 精品人妻在线不人妻| 欧美在线一区亚洲| 国产日韩一区二区三区精品不卡| 成人av一区二区三区在线看| 精品久久久久久久毛片微露脸| 亚洲人成电影免费在线| 国产熟女xx| 女人高潮潮喷娇喘18禁视频| 高清黄色对白视频在线免费看| 老司机午夜福利在线观看视频| 欧美乱码精品一区二区三区| 一a级毛片在线观看| 午夜亚洲福利在线播放| 校园春色视频在线观看| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 国产成+人综合+亚洲专区| 国产野战对白在线观看| 一个人观看的视频www高清免费观看 | 日本精品一区二区三区蜜桃| 女警被强在线播放| 亚洲va日本ⅴa欧美va伊人久久| 91成人精品电影| 午夜亚洲福利在线播放| 久久影院123| 亚洲中文字幕日韩| 久久久久久久午夜电影 | 国产xxxxx性猛交| 久久99一区二区三区| 熟女少妇亚洲综合色aaa.| 曰老女人黄片| 88av欧美| 最新在线观看一区二区三区| 欧美精品亚洲一区二区| 中文字幕人妻丝袜一区二区| x7x7x7水蜜桃| 一边摸一边抽搐一进一出视频| 国产一区在线观看成人免费| 十八禁人妻一区二区| xxx96com| 欧美日本亚洲视频在线播放| 在线观看午夜福利视频| 99精品在免费线老司机午夜| 久久久国产欧美日韩av| 久久精品91无色码中文字幕| 啦啦啦在线免费观看视频4| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 欧美日韩亚洲国产一区二区在线观看| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 亚洲人成伊人成综合网2020| 欧美不卡视频在线免费观看 | 亚洲色图综合在线观看| 波多野结衣av一区二区av| 亚洲七黄色美女视频| 亚洲avbb在线观看| 欧美亚洲日本最大视频资源| 国产亚洲精品久久久久5区| 一级片'在线观看视频| 黑人巨大精品欧美一区二区mp4| 欧美黑人欧美精品刺激| 性欧美人与动物交配| a级毛片黄视频| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| 韩国av一区二区三区四区| 免费少妇av软件| 中亚洲国语对白在线视频| 两个人看的免费小视频| 婷婷精品国产亚洲av在线| 一夜夜www| 午夜成年电影在线免费观看| 午夜视频精品福利| 欧美成人性av电影在线观看| 我的亚洲天堂| 精品久久久久久,| 国产精品久久久久久人妻精品电影| 高清在线国产一区| 嫩草影视91久久| 麻豆成人av在线观看| 国产精品二区激情视频| 女人被狂操c到高潮| 一级a爱视频在线免费观看| 99精品欧美一区二区三区四区| 99精品久久久久人妻精品| 欧美乱色亚洲激情| 免费高清视频大片| 亚洲avbb在线观看| 日韩精品青青久久久久久| 叶爱在线成人免费视频播放| 中文字幕最新亚洲高清| av中文乱码字幕在线| 满18在线观看网站| 级片在线观看| 欧美日本亚洲视频在线播放| 香蕉国产在线看| 热re99久久国产66热| 在线观看一区二区三区激情| 亚洲色图 男人天堂 中文字幕| 丝袜美足系列| 国产精品国产av在线观看| 成人黄色视频免费在线看| 亚洲av片天天在线观看| 日韩欧美三级三区| 国产单亲对白刺激| 国产欧美日韩一区二区三区在线| 欧美在线一区亚洲| 99久久99久久久精品蜜桃| 久热这里只有精品99| 国产熟女午夜一区二区三区| 激情在线观看视频在线高清| 国产一区二区激情短视频| 少妇的丰满在线观看| 欧美成人午夜精品| 国产亚洲精品久久久久5区| 国产精品一区二区在线不卡| 亚洲成人免费av在线播放| 久久天躁狠狠躁夜夜2o2o| 国产精品电影一区二区三区| 免费av毛片视频| 国产欧美日韩综合在线一区二区| 水蜜桃什么品种好| 亚洲性夜色夜夜综合| 久久伊人香网站| 国产精品综合久久久久久久免费 | 久久天躁狠狠躁夜夜2o2o| 国产成人免费无遮挡视频| 亚洲国产精品sss在线观看 | 亚洲色图av天堂| 天堂动漫精品| 午夜久久久在线观看| 亚洲成人久久性| 精品免费久久久久久久清纯| 亚洲精品av麻豆狂野| 久久国产精品男人的天堂亚洲| 午夜免费激情av| 9191精品国产免费久久| 亚洲成人国产一区在线观看| 91麻豆av在线| 99久久人妻综合| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜理论影院| 国产一区二区在线av高清观看| 婷婷丁香在线五月| 亚洲精品一区av在线观看| 日韩大码丰满熟妇| 女性被躁到高潮视频| 国产一区二区三区综合在线观看| 免费av中文字幕在线| 好男人电影高清在线观看| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www| 18禁国产床啪视频网站| 婷婷丁香在线五月| 久久欧美精品欧美久久欧美| 日韩大码丰满熟妇| 777久久人妻少妇嫩草av网站| 一个人免费在线观看的高清视频| 50天的宝宝边吃奶边哭怎么回事| 欧美在线黄色| 首页视频小说图片口味搜索| 亚洲专区中文字幕在线| 麻豆av在线久日| 日韩免费高清中文字幕av| 99国产精品免费福利视频| 亚洲欧美精品综合久久99| 12—13女人毛片做爰片一| 69av精品久久久久久| 国产精品野战在线观看 | 国产1区2区3区精品| 另类亚洲欧美激情| 亚洲欧美精品综合久久99| 自线自在国产av| 一边摸一边抽搐一进一小说| 欧美日韩瑟瑟在线播放| 99国产综合亚洲精品| 9色porny在线观看| 久久精品国产亚洲av香蕉五月| 视频区图区小说| 亚洲精品成人av观看孕妇| 久久中文字幕人妻熟女| 日日摸夜夜添夜夜添小说| 两个人免费观看高清视频| 精品一区二区三区四区五区乱码| 纯流量卡能插随身wifi吗| 老鸭窝网址在线观看| 亚洲国产欧美网| 精品乱码久久久久久99久播| 亚洲欧洲精品一区二区精品久久久| 午夜免费成人在线视频| 免费在线观看黄色视频的| 变态另类成人亚洲欧美熟女 | 久久草成人影院| 老熟妇仑乱视频hdxx| 亚洲五月天丁香| 咕卡用的链子| 亚洲av日韩精品久久久久久密| 天堂影院成人在线观看| 80岁老熟妇乱子伦牲交| 成人三级做爰电影| 精品久久久久久,| 国产精品美女特级片免费视频播放器 | 中文亚洲av片在线观看爽| 日日干狠狠操夜夜爽| 91精品国产国语对白视频| 欧美黄色片欧美黄色片| www.熟女人妻精品国产| 男人舔女人下体高潮全视频| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 在线观看免费日韩欧美大片| 一级黄色大片毛片| 久久久久久久久久久久大奶| 9热在线视频观看99| 成在线人永久免费视频| 亚洲av片天天在线观看| 久久香蕉国产精品| 精品第一国产精品| 99热只有精品国产| av天堂久久9| 日本 av在线| 大码成人一级视频| 波多野结衣av一区二区av| 精品国产一区二区久久| 久久婷婷成人综合色麻豆| 日韩大码丰满熟妇| 亚洲欧美精品综合一区二区三区| 99国产精品一区二区蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清国产精品国产三级| 国产主播在线观看一区二区| av网站在线播放免费| 亚洲少妇的诱惑av| 中文字幕人妻熟女乱码| 老司机靠b影院| 丝袜人妻中文字幕| 黄色成人免费大全| 一个人观看的视频www高清免费观看 | 国产成人精品在线电影| 久久 成人 亚洲| 99精品欧美一区二区三区四区| 国产片内射在线| 国产一区在线观看成人免费| 成熟少妇高潮喷水视频| 午夜福利欧美成人| 午夜久久久在线观看| 国产xxxxx性猛交| 性欧美人与动物交配| 亚洲少妇的诱惑av| 欧美黄色淫秽网站| 欧美日本亚洲视频在线播放| 美女 人体艺术 gogo| 欧美亚洲日本最大视频资源| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆久久精品国产亚洲av | 日韩精品青青久久久久久| 久99久视频精品免费| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 欧美国产精品va在线观看不卡| 亚洲性夜色夜夜综合| 国产亚洲精品综合一区在线观看 | 国产精品一区二区精品视频观看| 免费搜索国产男女视频| av免费在线观看网站| 最近最新中文字幕大全免费视频| 欧美不卡视频在线免费观看 | 免费在线观看影片大全网站| 欧美日韩视频精品一区| 久久婷婷成人综合色麻豆| 午夜精品在线福利| 久久久久久人人人人人| 三级毛片av免费| 自线自在国产av| 国产国语露脸激情在线看| 每晚都被弄得嗷嗷叫到高潮| 别揉我奶头~嗯~啊~动态视频| 欧美亚洲日本最大视频资源| 久99久视频精品免费| 日韩免费av在线播放| 欧美日韩福利视频一区二区| 精品电影一区二区在线| 无人区码免费观看不卡| 亚洲精品在线观看二区| 女人被狂操c到高潮| 无遮挡黄片免费观看| 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 色婷婷av一区二区三区视频| 欧美av亚洲av综合av国产av| 中文字幕色久视频| 欧美黑人精品巨大| 国产精品一区二区在线不卡| 日本精品一区二区三区蜜桃| 可以在线观看毛片的网站| 免费高清视频大片| 美女福利国产在线| 香蕉丝袜av| 日韩免费高清中文字幕av| 少妇裸体淫交视频免费看高清 | 久久精品人人爽人人爽视色| 亚洲国产欧美网| 黄色视频,在线免费观看| 香蕉久久夜色| cao死你这个sao货| 一边摸一边做爽爽视频免费| 国产精华一区二区三区| 久久婷婷成人综合色麻豆| 中文字幕人妻熟女乱码| 日本五十路高清| 操美女的视频在线观看| 欧美av亚洲av综合av国产av| 午夜久久久在线观看| 另类亚洲欧美激情| 精品国产乱子伦一区二区三区| 99国产精品免费福利视频| 亚洲色图综合在线观看| 亚洲性夜色夜夜综合| 国产成+人综合+亚洲专区| 51午夜福利影视在线观看| 在线十欧美十亚洲十日本专区| 精品免费久久久久久久清纯| 国产精品1区2区在线观看.| www.www免费av| 黄网站色视频无遮挡免费观看| 中文欧美无线码| 亚洲一区二区三区色噜噜 | 久久精品91蜜桃| 一区在线观看完整版| 欧美日韩亚洲高清精品| 久久这里只有精品19| 色在线成人网| 夫妻午夜视频| 99国产精品免费福利视频| 国产1区2区3区精品| 大陆偷拍与自拍| 热99国产精品久久久久久7| 国产成人精品无人区| 成年版毛片免费区| 99riav亚洲国产免费| 不卡一级毛片| 99久久国产精品久久久| 成人三级黄色视频| 法律面前人人平等表现在哪些方面| 久久天堂一区二区三区四区| 久久这里只有精品19| 新久久久久国产一级毛片| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三| 国产日韩一区二区三区精品不卡| 国产一区二区在线av高清观看| 9191精品国产免费久久| 男女床上黄色一级片免费看| 亚洲av片天天在线观看| 18禁美女被吸乳视频| 又黄又爽又免费观看的视频| 大香蕉久久成人网| 男人舔女人的私密视频| 欧美黄色淫秽网站| 国产精品久久久人人做人人爽| 国产日韩一区二区三区精品不卡| 国产精品日韩av在线免费观看 | 丰满饥渴人妻一区二区三| 99在线视频只有这里精品首页| 亚洲 国产 在线| www国产在线视频色| avwww免费| 久久人人爽av亚洲精品天堂| 国产一区二区三区在线臀色熟女 | 欧美日韩视频精品一区| 亚洲精品一区av在线观看| 校园春色视频在线观看| 国产精品二区激情视频| 咕卡用的链子| 亚洲五月天丁香| 色哟哟哟哟哟哟| 色婷婷av一区二区三区视频| 欧美黑人精品巨大| 亚洲 欧美一区二区三区| 精品久久久久久久毛片微露脸| www日本在线高清视频| 一级,二级,三级黄色视频| 麻豆久久精品国产亚洲av | 他把我摸到了高潮在线观看| 中文字幕av电影在线播放| 欧美日韩乱码在线| 久久香蕉精品热| 国产国语露脸激情在线看| 搡老岳熟女国产| 色尼玛亚洲综合影院| 99国产精品免费福利视频| 午夜91福利影院| 亚洲一码二码三码区别大吗| 成人特级黄色片久久久久久久| 亚洲人成电影免费在线| 巨乳人妻的诱惑在线观看| 伦理电影免费视频| 亚洲精品国产精品久久久不卡| 午夜91福利影院| 电影成人av| 少妇粗大呻吟视频| 亚洲一区高清亚洲精品| 国产精品国产av在线观看| 久久 成人 亚洲| 亚洲av第一区精品v没综合| 午夜两性在线视频| 性少妇av在线| 精品人妻在线不人妻| 高潮久久久久久久久久久不卡| 精品久久久久久久毛片微露脸| 国产精品国产高清国产av| 午夜精品在线福利| 亚洲国产毛片av蜜桃av| 国产高清国产精品国产三级| 成人亚洲精品一区在线观看| 国产乱人伦免费视频| 欧美在线一区亚洲| 在线观看一区二区三区| 高潮久久久久久久久久久不卡| 俄罗斯特黄特色一大片| 午夜两性在线视频| av片东京热男人的天堂| 亚洲精品一二三| 美女福利国产在线| a级毛片在线看网站| 热re99久久精品国产66热6| 国产亚洲欧美98| 80岁老熟妇乱子伦牲交| 中文字幕高清在线视频| 啪啪无遮挡十八禁网站| 亚洲中文字幕日韩| 欧美黄色淫秽网站| 日韩欧美三级三区| 一本大道久久a久久精品| 在线观看免费日韩欧美大片| 日本五十路高清| 级片在线观看| 极品教师在线免费播放| 欧美激情久久久久久爽电影 | 国产99久久九九免费精品| 久久人妻福利社区极品人妻图片| 久久国产精品影院| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 欧美 亚洲 中文字幕| √禁漫天堂资源中文www| 日本黄色日本黄色录像| 99国产精品一区二区三区| 如日韩欧美国产精品一区二区三区| 无遮挡黄片免费观看| 久久人人爽av亚洲精品天堂| 91av网站免费观看| 亚洲精品中文字幕在线视频| 婷婷丁香在线五月| 亚洲精品粉嫩美女一区| 午夜激情av网站| 欧美日韩一级在线毛片| 精品国产一区二区三区四区第35| 国产精品电影一区二区三区| 啪啪无遮挡十八禁网站| 嫩草影视91久久| 国产片内射在线| 亚洲性夜色夜夜综合| 在线观看66精品国产| 日本撒尿小便嘘嘘汇集6| 欧美不卡视频在线免费观看 | 亚洲人成电影观看| av中文乱码字幕在线| 9色porny在线观看| 欧美成人性av电影在线观看| 18禁观看日本| 国产高清国产精品国产三级| 黄频高清免费视频| 午夜精品国产一区二区电影| 法律面前人人平等表现在哪些方面| 91成年电影在线观看| 精品福利观看| 热99re8久久精品国产| 丰满的人妻完整版| 无限看片的www在线观看| 国产熟女午夜一区二区三区| 精品人妻在线不人妻| 国产熟女xx| 后天国语完整版免费观看| 一区福利在线观看| 久久久久久久久中文| 国产精华一区二区三区| 久久狼人影院| 一级毛片高清免费大全| av超薄肉色丝袜交足视频| 新久久久久国产一级毛片| 精品国产乱子伦一区二区三区| 18禁美女被吸乳视频| 男人舔女人的私密视频| 制服人妻中文乱码| 最近最新中文字幕大全免费视频| www.自偷自拍.com| 在线观看舔阴道视频| 成人手机av| 在线观看一区二区三区| 亚洲欧美一区二区三区久久| 国产成人影院久久av| 啦啦啦免费观看视频1| 日日夜夜操网爽| 中亚洲国语对白在线视频| 精品久久久久久,| 丁香六月欧美| 超色免费av| 丁香欧美五月| 丁香六月欧美| 一区二区三区精品91| 久久狼人影院| 香蕉久久夜色| 精品熟女少妇八av免费久了| 91麻豆精品激情在线观看国产 | 亚洲色图 男人天堂 中文字幕| 国产主播在线观看一区二区| 午夜福利影视在线免费观看| 在线观看免费午夜福利视频| 国产精品久久久人人做人人爽| 欧美 亚洲 国产 日韩一|