• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GO/MOF復(fù)合材料的制備及其吸附苯和乙醇性能

    2015-10-24 08:01:17劉國(guó)強(qiáng)王明璽黃正宏康飛宇
    新型炭材料 2015年6期
    關(guān)鍵詞:清華大學(xué)教育部石墨

    劉國(guó)強(qiáng),王明璽,黃正宏,康飛宇

    (1.清華大學(xué)材料學(xué)院,先進(jìn)材料教育部重點(diǎn)實(shí)驗(yàn)室,北京100084;2.武漢工程大學(xué)化學(xué)與環(huán)境工程學(xué)院,綠色化工過程教育部重點(diǎn)實(shí)驗(yàn)室,湖北武漢430074;3.清華大學(xué)深圳研究生院,先進(jìn)材料研究所,廣東深圳518055)

    GO/MOF復(fù)合材料的制備及其吸附苯和乙醇性能

    劉國(guó)強(qiáng)1,王明璽2,黃正宏1,康飛宇1

    (1.清華大學(xué)材料學(xué)院,先進(jìn)材料教育部重點(diǎn)實(shí)驗(yàn)室,北京100084;2.武漢工程大學(xué)化學(xué)與環(huán)境工程學(xué)院,綠色化工過程教育部重點(diǎn)實(shí)驗(yàn)室,湖北武漢430074;3.清華大學(xué)深圳研究生院,先進(jìn)材料研究所,廣東深圳518055)

    采用溶劑熱法制備了金屬有機(jī)骨架-氧化石墨烯(MOF/GO)復(fù)合材料,通過氮吸附/脫附、紅外光譜對(duì)其比表面積和孔結(jié)構(gòu)、表面官能團(tuán)進(jìn)行了表征,考察了其吸附苯和乙醇的性能。結(jié)果表明,當(dāng)氧化石墨烯的添加量為5.25 wt%時(shí),復(fù)合材料的比表面積和孔容最大。該材料對(duì)苯和乙醇有很高的吸附容量,其最大吸附容量可分別達(dá)到72和77 cm3/g。MOF-5/GO復(fù)合材料吸附揮發(fā)性有機(jī)物(VOCs)的容量不僅受孔結(jié)構(gòu)的影響,其表面特性也對(duì)吸附性能有重要作用。氧化石墨烯含量為3.5 wt%的GO/MOF復(fù)合材料對(duì)乙醇的吸附容量顯著增強(qiáng)是由于其含有大量的含氧官能團(tuán)。

    金屬有機(jī)骨架化合物(MOF-5);氧化石墨烯(GO);吸附;苯;乙醇

    1 Introduction

    Volatile organic compounds(VOCs)are pollutants present in gas and/or liquid streams of many industrial applications,such as chemical industry(biocides,plastics and solvents),automotive and aerospace industry[1],dry cleaning solvents in the garment industry,and solvent cleaning in the electronic industry.They are very harmful for both human health and environment,even at very low concentrations.It can be remarked that they are:(1)agents that destroy the ozone stratospheric layer,(2)precursors of photochemical oxidants,(3)agents of the acid rain,(4)elements of the climatic change,(5)agents that affect the nervous system and(6)carcinogenic and mutagenic agents[2].Thus,it is important to minimize their use,or to find new materials that can adsorb or mineralize them via environmental friendly catalysts and/or adsorption.

    One of the most useful methods to remove VOCs is the adsorption technique.For adsorption technologies ranging from gas separations to gas storage,selection of the proper solid adsorbents is the key to design an efficient adsorption process.Microporous and mesoporous adsorbents have been frequently used for the removal of VOCs.To examine the practicality of a solid adsorbent,the following characteristics must be considered:porosity,structural stability,reversible uptake and release,and capability for surface modification for creating molecule-specific adsorption sites[3].Removal of VOCs by adsorption process have been performed on several types of adsorbents,which includes carbon materials[4,5],surfactant modified zeolites[6,7],silica aerogels[8],silicalite[9],organic minerals[10],etc.As far as we know,some disadvantages such as low adsorption capacity,flammability and other problems associated with regeneration for most common porous materials are encountered in practical application[11].Therefore,much attention has been paid to new porous materials with a high adsorption capacity.

    Among various adsorbents,metal-organic frameworks(MOFs)are a group of materials,which have had a rapid development and opened new possibilities of applications owing to their excellent properties such as high surface area,high porosity,regular structure,modifiable surfaces and tunable pore size[12,13].In spite of the very high porosities of MOFs,their open framework is not able to provide strong,non-specific adsorption forces to retain small molecules at ambient conditions.Therefore,a surface consisting of a dense arrangement of atoms and a porous network is needed[14].To meet the above requirements,graphite oxide(GO)was selected as another component to prepare GO/MOF nano-composites by Bandosz's group,who also studied the ammonia[15-19],hydrogen sulfide[20]and NO(2)[21]reactive adsorption behavior oftheas-preparedGO/MOFcomposites.There are also many papers on the adsorption of various VOCs on Zn-based metal-organic frameworks MOF-5[22,23].However,as far as we know,there are still few works on the adsorption of VOCs on the GO/MOF-5 composites.

    In the Bandosz's experiments,GO powder prepared by Hummer's method was added in the well-dissolved zinc nitrate/1,4-benzenedicarboxylate(BDC)mixture,and the resulting suspensions were subsequently subjected to the same synthesis procedure as for MOF-5.As an extension of this work,we made some improvement of the synthesis procedure to get GO/MOF-5 composites,and also measured the benzene and ethanol adsorption properties of the samples.

    2 Experimental

    2.1Synthesis of GO/MOF composites

    GO synthesis:GO was prepared from natural graphite powder according to a modified Hummers method[24].46 mL of H2SO4(98%)was placed in a flask immersed into an ice bath.Graphite(2 g)were then added to the flask and stirred vigorously.Next,KMnO4(6 g)was slowly added into the flask,and the reaction temperature was then maintained below 20℃in an ice bath for about 30 min.The flask containing the reaction mixture was then transferred to a water bath at a temperature of 35℃,and the reaction mixture was stirred for about 45 min until a thick paste formed.Water(46 mL)was then added,the reaction temperature was increased to 90℃,and the reaction mixture was stirred for about 30 min.Finally,280 mL water was added into the mixture,followed by a slow addition of 10 mL of 30%aq.H2O2.A yellow dispersion was obtained and washed repeatedly with deionized water to remove the remaining salt until the pH reached about 7,and the solid was then dried under vacuum(50℃)for about 3 days.

    MOFsynthesis:zincnitratehexahydrate(5.2 g)and 1,4-benzenedicarboxylate(1.0 g)were mixed in 35 mL of DMF.The mixture was treated solvothermally at 120℃for 25 hours.The obtained sample was washed with DMF and CHCl3,and MOF was obtained by vacuum drying at 80℃.

    GO/MOF synthesis:GO was dispersed in N,N-dimethylformamide(DMF)to form GO solutions by sonication.The GO/MOF composites were prepared according to the preparation method of MOF-5[15].In a typical reaction,zinc nitrate hexahydrate(5.2 g),BDC(1.0 g)and glucose(0.5 g)were mixed in a 35 mL of GO/DMF solution.The mixture was treated solvothermally at 120℃for 25 hours.The obtained sample was washed with DMF and CHCl3,and MGs were obtained by vacuum drying at 80℃.Samples with GO weight percentages of 1.75%,3.5%,5.25%and 7%were obtained by changing the concentration of the GO in DMF of the solutions,and the samples arereferredtoasMGn(n=1-4),respectively.

    2.2Characterization of materials

    Thenitrogenadsorption-desorptionwasperformed at-196℃using a gas adsorption analyzer(BELsorp-max,Japan).The specific surface area was evaluated using BET method.The Density Functional Theory(DFT)was used to determine the pore size distributions(PSDs).The morphologies of the samples were examined by a LEO 1 530(LEO,Oberkochen,Germany)field emission scanning electron microscope(SEM).Mid-IR spectra(4 000-500 cm-1)were collected on a Nicolet 560 FT-IR spectrometer using pellets with samples dispersed in KBr.X-ray diffraction(XRD)patterns were obtained using a X-ray diffractometer(Rigaku D/max-2500)with Cu-Ka(40 kV,40 kA)radiation.The data were recorded over a 2 range of 5-90°.

    2.3Adsorption of benzene and ethanol

    The adsorption-desorption of benzene and ethanol vapor were measured using a BEL sorp-max at 30℃.All the samples were degassed at 150℃for 12 h prior to the adsorption measurements.The adsorption and desorption time at each p/p0was set at 300 s and the measured p/p0range was from 0 to 0.95.

    3 Results and discussion

    The pore size distributions(PSDs)for various samples evaluated by DFT are shown in Fig.1,the textual parameters are listed in Table 1,and the nitrogen adsorption-desorption isotherms were provided in our previous work[25].All the samples show a significant contribution of ultra-narrow pores of size around W=1 nm in the micropore region,especially for MGG3 with the highest differential pore volume of 2.0 cm3/g.For MG4,some large mesopores appear at 20-30 nm,which is attributed to the“tail”of the isotherms at high relative pressure.

    Fig.1(a),(b)DFT pore size distributions of GO,MGs and MOF-5.

    From Table 1,it can be seen that the surface area of MG1 and MG2 are lower than MOF-5,and it may be related to the blockage of pores by GO with a layer structure,which can be proved by the hysteresis loop H4,a characteristic of slit pores[26].In addition,blockage by carbons derived from partially solvothermal of glucose may be another reason,leading to a dramatically decrease of surface area.Further increase of the GO percentage to 5.25%leads to an increase of surface area,this could be attributed to the formation of graphene reduced by the glucose.The sharply decrease of surface area for MG4 may be attributed to the blockage with the carbonization products derived from hydrothermal of glucose.

    Table1 Textural properties of the samples.

    The FTIR spectra for the samples are shown in Fig.2a.Several bands are observed in the region 1 300-700 cm-1,and they are assigned to the out-ofplane vibrations of BDC.The bands in the region 750-75 cm-1are assigned to aromatic C—H out-ofplane bending vibrations[27],the bands in the 1 000-1 450 cm-1to C—O(hydroxyl,ester,or ether) stretching and O—H bending vibrations[28],the band at 1 390 cm-1to the symmetric stretching of carboxylic groups,those at 1 510 and 1 590 cm-1to the asymmetric stretching of carboxylic groups[16],the broad band at 3 000-700 cm-1to the overlapping bands from O-(hydroxyl or carboxyl),and the bands at 2 855 and 2 922 cm-1to stretching vibrations of aliphaticC—H[15,29].These results indicate that there are a large number of residues including hydroxyl and carboxyl groups on the surface of the as-prepared materials.It also can be seen that with an increase of the GO percentage,the intensity of adsorption bands,representing the amount of functional groups,becomes strong with the GO percentage up to 3.5%and then tends to be weak with a further increasing of the GO percentage.These functional groups can provide a potential avenue to load other functional groups,molecules,ions,and nanoparticles[28].As a result,it may show excellent adsorption performance for gas.

    Fig.2 FT-IR spectra for GO,MOF and MGs(a)before and(b)after adsorption of VOCs.

    Fig.2b shows that the IR spectra of MG2 and MG3 before and after ethanol and benzene vapor adsorption,which exhibits no significant change after the adsorption of benzene vapor.This is attributed to the similar molecular structure of benzene and BDC,which leads to an overlap for their vibration of band.A sharp bands at 3 606 cm-1is observed after ethanol adsorption for both samples,which is the stretching of O—H of gaseous ethanol[30],indicating that the ethanol vapor has been adsorbed onto the composites.

    Fig.3 shows the X-ray diffraction(XRD)patterns of the various samples before and after gas adsorption.The GO spectrum shows a peak at 2θ= 12.1°,indicating an interlayer distance of 0.73 mm.It suggests that the GO has a uniform and enlarged interlayer spacing with the residual oxygenated functional groups on GO sheets[31,32].The MOF-5 diffraction pattern is in good agreement with those found for a well-defined MOF-5 crystal[33].The diffraction patterns of the GO/MOF-5 composites are similar to that observed for MOF-5,which indicates that the MOF-5 structure is preserved.With an increase of the GO percentage,a distortion of the MOF-5 component and the further collapse are observed for the composite materials,and the intensity of diffraction peaks become weaker,especially for MG4,which is attributed to a high content of GO with an amorphous structure,and this result is in good agreement with the SEM observations.After exposure to benzene and ethanol,the patterns are slightly modified,but the overall patterns are preserved.For both of MG2 and MG3,a pronounced splitting appears at 2θ≈9.7°after the adsorption of benzene and ethanol,which indicates that benzene or ethanol retained in the composites leads to a distortion of the structure of the MOF-5 component.This splitting has also been observed by petit et al,who argued that the GO component in the composites induces a distortion of the structure of the MOF-5 component,and the exposure to ammonia can lead to a further distortion.

    Fig.3 X-ray diffraction patterns for the parent and composite materials(a)before and(b)after adsorption of benzene and ethanol.

    The benzene and ethanol adsorption isotherms at 30℃of MGs are shown in Fig.4.It is seen that the benzene uptakes for MG1 and MG2 increase sharply at the initial part,undergoes a long plateau at intermediate relative pressures,and slowly increases at high relative pressures.The adsorption amount follows the order MG3>MG2>MG1>MG4,which is consistent with the surface area.This suggests that the benzene adsorption capacity is related to the textural properties.The steep rise of benzene uptake in low relative pressure region is not observed and the adsorption amount increases slowly with pressure for MG-G1 and MG-G4.The adsorption capacity of MGG4 is much lower than other samples,which may be attributed to the lower surface area and larger pore size.

    Fig.4(a)Benzene and(b)ethanol adsorption-desorption isotherms at 30℃of MGs.

    For each sample,the ethanol adsorption isotherms presented in Fig.4b exhibits the similar trend as the benzene adsorption isotherms.The isotherms of MG2 and MG3 undergo a steep increase at the initial part,nearly plateau at intermediate relative pressures,and a slight rise at high pressures.For MG3,the adsorption amount increases slowly with the relative pressure,which is similar to benzene adsorption behavior.However,the adsorption capacity follows the order MG2>MG3>MG1>MG4,which is different from that of benzene adsorption.Actually,in the entire pressure region,the ethanol uptake of MG2 is higher than that of MG3,following an opposite trend as nitrogen and benzene adsorption.It is known that porous structure and surface chemistry are the two factors affecting the adsorption properties of materials.Since the surface area of MG2 is much lower than MG3,the higher ethanol adsorption capacity for MG2 would be attributed to the much more oxygencontaining functional groups arriving from the glucose modification,which enhances the the interaction of polar ethanol molecular with MG2.

    It is noticeable that the adsorption capacities for MG1 are higher than MG4 for both of benzene and ethanol adsorption,but they are all lower than other samples.This indicates that the porous structure is an important factor for the adsorption of VOCs,and high surface area and pore volume could get high adsorption capacity.Therefore,the adsorption capacities of VOCs for the samples depend on both of the surface chemistry and porous properties.In light of the above findings,the question that remains unanswered is whether the increase in the adsorption of VOCs are related to the surface chemistry or to the high porosity of the composites.Nevertheless,the physical and chemical properties of the VOCs can also have a great influence on the adsorption process.Therefore,additional analysis is required to address these issues.

    4 Conclusions

    GO/MOF composites are synthesized by solvothermal method.Their surface area exhibits a maximum with the GO percentages at 5.25%.The materials exhibit high adsorption capacities for benzene and ethanol,and the maximum uptakes reach up to 72 and 77 cm3/g,respectively.The adsorption capacities of VOCs for the GO/MOF composites are affected by both of the porous structure and surface properties.The ethanol adsorption capacity for the GO/MOF with a GO percentage of 3.5wt%is enhanced by its abundant oxygen-containing functional groups.

    [1]Yamamoto T,Kataoka S,Ohmori T.Characterization of carbon cryogel microspheres as adsorbents for VOC[J].Journal of Hazardous Materials,2010,177(1-3):331-335.

    [2]Lillo-Rodenas M A,Cazorla-Amoros D,Linares-Solano A.Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J].Carbon,2005,43(8):1758-1767.

    [3]Mu B,Walton K S.Adsorption equilibrium of methane and carbon dioxide on porous metal-organic framework Zn-BTB[J].Adsorption-JournaloftheInternationalAdsorptionSociety,2011,17(5):777-782.

    [4]Diaz E,Ordonez S,Vega A.Adsorption of volatile organic compounds onto carbon nanotubes,carbon nanofibers,and high-surface-area graphites[J].Journal of Colloid and Interface Science,2007,305(1):7-16.

    [5]Li L,Liu S,Liu J.Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J].Journal of Hazardous Materials,2011,192(2):683-690.

    [6]Barakat T,Rooke J C,Tidahy H L,et al.Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds [J].Chemsuschem,2011,4(10):1420-1430.

    [7]Silva B,F(xiàn)igueiredo H,Santos V P,et al.Reutilization of Cr-Y zeolite obtained by biosorption in the catalytic oxidation of volatile organic compounds[J].Journal of Hazardous Materials,2011,192(2):545-553.

    [8]Wang D,McLaughlin E,Pfeffer R,et al.Adsorption of organic compounds in vapor,liquid,and aqueous solution phases on hydrophobic aerogels[J].Industrial&Engineering Chemistry Research,2011,50(21):12177-12185.

    [9]Uguina M A,Sotelo J L,Delgado J A,et al.Adsorption of methyl ethyl ketone and trichloroethene from aqueous solutions onto silicalite fixed-bed adsorbers[J].Separation and Purification Technology,2005,42(1):91-99.

    [10]Koh S M,Dixon J B.Preparation and application of organominerals as sorbents of phenol,benzene and toluene[J].Applied Clay Science,2001,18(3-4):111-122.

    [11]Zhao Z,Li X,Li Z.Adsorption equilibrium and kinetics of pxylene on chromium-based metal organic framework MIL-101 [J].Chemical Engineering Journal,2011,173(1):150-157.

    [12]Kitagawa S,Kitaura R,Noro S.Functional porous coordination polymers[J].Angewandte Chemie-International Edition,2004,43(18):2334-2375.

    [13]Furukawa H,Ko N,Go Y B,et al.Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329(5990):424-428.

    [14]Petit C,Bandosz T J.MOF-graphite oxide composites:Combining the uniqueness of graphene layers and metal-organic frameworks[J].Advanced Materials,2009,21(46):4753-4757.

    [15]Petit C,Bandosz T J.MOF-graphite oxide nanocomposites:Surface characterization and evaluation as adsorbents of ammonia [J].Journal of Materials Chemistry,2009,19(36):6521-6528.

    [16]Petit C,Bandosz T J.Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites:Analysis of surface interactions[J].Advanced Functional Materials,2010,20(1):111-118.

    [17]Petit C,Mendoza B,Bandosz T J.Reactive adsorption of ammonia on Cu-based MOF/graphene composites[J].Langmuir,2010,26(19):15302-15309.

    [18]Petit C,Bandosz T J.Synthesis,characterization,and ammonia adsorption properties of mesoporous metal-organic framework(MIL(Fe))-graphite oxide composites:Exploring the limits of materials fabrication[J].Advanced Functional Materials,2011,21(11):2108-2117.

    [19]Petit C,Huang L,Jagiello J,et al.Toward understanding reactive adsorption of ammonia on cu-MOF/graphite oxide nanocomposites[J].Langmuir,2011,27(21):13043-13051.

    [20]Petit C,Mendoza B,Bandosz T J.Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites[J].Chemphyschem,2010,11(17):3678-3684.

    [21]Levasseur B,Petit C,Bandosz T J.Reactive adsorption of NO2on copper-based metal-organic framework and graphite oxide/ metal-organic framework composites[J].ACS Applied Materials &Interfaces,2010,2(12):3606-3613.

    [22]Britt D,Tranchemontagne D,Yaghi O M.Metal-organic frameworks with high capacity and selectivity for harmful gases[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(33):11623-11627.

    [23]Gu Z-Y,Jiang D-Q,Wang H-F,et al.Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks[J].Journal of Physical Chemistry C,2010,114(1):311-316.

    [24]Tang Z,Shen S,Zhuang J,et al.Noble-metal-promoted threedimensional macroassembly of single-layered graphene oxide[J].Angewandte Chemie-International Edition,2010,49(27):4603-4607.

    [25]Huang Z-H,Liu G,Kang F.Glucose-promoted Zn-based metal-organic framework/graphene oxide composites for hydrogen sulfide removal[J].Acs Applied Materials&Interfaces,2012,4(9):4942-4947.

    [26]Rouquerol F,Rouquerol J,Sing K.Adsorption by powders and porous solids[J].London:Academic Press,1999:18-20.

    [27]Lua A C,Yang T.Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell[J].Journal of Colloid and Interface Science,2004,274(2):594-601.

    [28]Zheng M,Liu Y,Jiang K,et al.Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J].Carbon,2010,48(4):1224-1233.

    [29]Sevilla M,F(xiàn)uertes A B.Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J].Chemistry-a European Journal,2009,15(16):4195-4203.

    [30]Ellison M D,Morris S T,Sender M R,et al.Infrared and computational studies of the adsorption of methanol and ethanol on single-walled carbon nanotubes[J].Journal of Physical Chemistry C,2007,111(49):18127-18134.

    [31]Seredych M,Tamashausky A V,Bandosz T J.Graphite oxides obtained from porous graphite:The role of surface chemistry and texture in ammonia retention at ambient conditions[J].Advanced Functional Materials,2010,20(10):1670-1679.

    [32]Xu Y,Sheng K,Li C,et al.Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS Nano,2010,4(7):4324-4330.

    [33]Hafizovic J,Bjorgen M,Olsbye U,et al.The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities[J].Journal of the A-merican Chemical Society,2007,129(12):3612-3620.

    Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol

    LIU Guo-qiang1,WAN Ming-xi2,HUANG Zheng-hong1,KANG Fei-yu1,3
    (1.Laboratory of Advanced Materials,School of Materials Science and Engineering,Tsinghua University,Beijing100084,China;2.Key Laboratory for Green Chemical Process of Ministry of Education,School of Chemical and Environmental Engineering,Wuhan Institute of Technology,Xiongchu Avenue 693,Wuhan430074,China;3.Institute of Advanced Materials Research,Graduate School at Shenzhen,Tsinghua University,Shenzhen518055,China)

    Graphene/metal-organic composites were synthesized by a solvothermal method and characterized by nitrogen adsorption,SEM and IR and their adsorption properties for benzene and ethanol were investigated.It was found that the surface area and pore volume both have maximum values for a graphene oxide(GO)percentage of 5.25 wt%.The composites have high adsorption capacities for both benzene and ethanol,and the maximum uptakes reach 72 and 77 cm3/g,respectively.The adsorption capacities of volatile organic compounds are determined by both the pore structure and the surface properties.The maximum ethanol adsorption capacity for the composite with a GO percentage of 3.5 wt%is due to its abundant oxygen-containing functional groups.

    MOF-5;Graphene;Adsorption;Benzene;Ethanol

    date:2015-10-26;Revised date:2015-12-08

    National High Technology Research and Development Program of China(2010AA064907).

    HUANG Zheng-hong,Ph.D,Associate Professor.E-mail:zhhuang@mail.tsinghua.edu.cn English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    TQ127.1+1

    A

    國(guó)家高技術(shù)研究發(fā)展計(jì)劃(2010AA064907).

    黃正宏,博士,副研究員.E-mail:zhhuang@mail.tsinghua.edu.cn

    1007-8827(2015)06-0566-06

    10.1016/S1872-5805(15)60205-0

    猜你喜歡
    清華大學(xué)教育部石墨
    清華大學(xué):“如鹽在水”開展課程思政
    石墨系升溫球的實(shí)踐與應(yīng)用
    昆鋼科技(2022年1期)2022-04-19 11:36:14
    我的清華大學(xué)自主招生經(jīng)歷
    石墨烯的健康路
    教育部召開座談會(huì)推進(jìn)一流大學(xué)和一流學(xué)科建設(shè)
    新課程研究(2016年1期)2016-12-01 05:52:14
    他永遠(yuǎn)是我們的老學(xué)長(zhǎng)——清華大學(xué)受助研究生來信摘編
    教育部:高考地方性加分項(xiàng)目2018年減至35個(gè)
    我校兩教育部重大課題攻關(guān)項(xiàng)目開題
    石墨礦中固定碳的分析與探討
    一道2009年清華大學(xué)自主招生數(shù)學(xué)試題的思考
    天天一区二区日本电影三级| 少妇被粗大猛烈的视频| 91久久精品电影网| 午夜福利高清视频| 汤姆久久久久久久影院中文字幕| 成人欧美大片| 亚洲不卡免费看| 91精品国产九色| 欧美成人一区二区免费高清观看| 一本色道久久久久久精品综合| 黄片wwwwww| 国产午夜精品久久久久久一区二区三区| 亚洲精品视频女| 国产熟女欧美一区二区| 波野结衣二区三区在线| 国产欧美亚洲国产| 久久精品国产亚洲av涩爱| 国产毛片在线视频| 日韩欧美一区视频在线观看 | 在线 av 中文字幕| 国产日韩欧美在线精品| 国产熟女欧美一区二区| 你懂的网址亚洲精品在线观看| 人体艺术视频欧美日本| 日本wwww免费看| 国产高清国产精品国产三级 | 直男gayav资源| 欧美+日韩+精品| 天天躁夜夜躁狠狠久久av| 各种免费的搞黄视频| 久久韩国三级中文字幕| 内地一区二区视频在线| 在线精品无人区一区二区三 | 中文精品一卡2卡3卡4更新| 一区二区三区免费毛片| 久久6这里有精品| 麻豆久久精品国产亚洲av| 国产成人免费观看mmmm| 久久久亚洲精品成人影院| 亚洲综合色惰| 毛片女人毛片| 亚洲人成网站在线播| 特级一级黄色大片| 亚洲熟女精品中文字幕| 久久6这里有精品| 亚洲精品中文字幕在线视频 | 精品久久国产蜜桃| 简卡轻食公司| 国产在线男女| 亚洲精品久久久久久婷婷小说| 国产一区亚洲一区在线观看| 国产亚洲精品久久久com| 老师上课跳d突然被开到最大视频| 亚洲色图av天堂| 97人妻精品一区二区三区麻豆| 欧美性猛交╳xxx乱大交人| 国产美女午夜福利| 欧美高清成人免费视频www| 纵有疾风起免费观看全集完整版| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品成人av观看孕妇| 国产成人免费观看mmmm| 久久久久久久久久久免费av| 国产在线男女| 国产在线一区二区三区精| 欧美国产精品一级二级三级 | 久久久久性生活片| 建设人人有责人人尽责人人享有的 | 国产精品麻豆人妻色哟哟久久| 在线观看人妻少妇| tube8黄色片| 亚洲av中文字字幕乱码综合| 91狼人影院| 80岁老熟妇乱子伦牲交| 三级男女做爰猛烈吃奶摸视频| 久久精品国产自在天天线| 久久精品久久精品一区二区三区| 国产在线一区二区三区精| 久久女婷五月综合色啪小说 | 国产精品一二三区在线看| 国产精品国产av在线观看| 久久热精品热| 青青草视频在线视频观看| 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 精品人妻视频免费看| 综合色丁香网| 高清毛片免费看| 伦理电影大哥的女人| 3wmmmm亚洲av在线观看| 成人无遮挡网站| 日本三级黄在线观看| 三级经典国产精品| 国产一区亚洲一区在线观看| 亚洲欧美日韩另类电影网站 | 人人妻人人澡人人爽人人夜夜| 看非洲黑人一级黄片| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| 99久久九九国产精品国产免费| 欧美日韩视频精品一区| 69av精品久久久久久| 精品99又大又爽又粗少妇毛片| 看十八女毛片水多多多| 亚洲自偷自拍三级| 国产精品99久久99久久久不卡 | 国产综合精华液| 又爽又黄无遮挡网站| 国产探花极品一区二区| 婷婷色综合大香蕉| 99久久精品国产国产毛片| 99热这里只有是精品50| freevideosex欧美| 午夜福利视频精品| 联通29元200g的流量卡| 亚洲欧美精品专区久久| 能在线免费看毛片的网站| av黄色大香蕉| 精品人妻偷拍中文字幕| 免费观看性生交大片5| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| 久久人人爽人人爽人人片va| 成年免费大片在线观看| .国产精品久久| 亚洲av.av天堂| 一级毛片我不卡| 国产一区有黄有色的免费视频| 三级国产精品欧美在线观看| 国产精品人妻久久久久久| 看十八女毛片水多多多| 国产成人福利小说| 特大巨黑吊av在线直播| 日本黄大片高清| 国产国拍精品亚洲av在线观看| 亚洲欧美一区二区三区国产| 亚洲无线观看免费| 欧美日韩视频精品一区| 婷婷色综合www| 一级毛片aaaaaa免费看小| 国内精品美女久久久久久| 街头女战士在线观看网站| 嫩草影院新地址| 日韩亚洲欧美综合| 成年女人在线观看亚洲视频 | 亚洲精品国产av蜜桃| av天堂中文字幕网| 久久精品综合一区二区三区| 亚洲va在线va天堂va国产| 免费在线观看成人毛片| 高清欧美精品videossex| 最后的刺客免费高清国语| 最后的刺客免费高清国语| 乱系列少妇在线播放| 中文字幕人妻熟人妻熟丝袜美| 伊人久久精品亚洲午夜| 亚洲激情五月婷婷啪啪| 色吧在线观看| 亚洲色图综合在线观看| 免费黄色在线免费观看| 男女无遮挡免费网站观看| 高清午夜精品一区二区三区| 少妇丰满av| 视频中文字幕在线观看| 国产视频内射| 国产又色又爽无遮挡免| 国产永久视频网站| 男女边吃奶边做爰视频| 国产欧美日韩一区二区三区在线 | 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 免费av毛片视频| 水蜜桃什么品种好| 女人久久www免费人成看片| 国产男人的电影天堂91| 色视频www国产| 网址你懂的国产日韩在线| 亚洲国产欧美在线一区| 亚洲av不卡在线观看| 免费观看av网站的网址| 偷拍熟女少妇极品色| 国产在线一区二区三区精| 22中文网久久字幕| 69av精品久久久久久| 欧美97在线视频| 久久99蜜桃精品久久| 18禁裸乳无遮挡免费网站照片| 久热这里只有精品99| 黄片wwwwww| 老司机影院成人| 欧美+日韩+精品| av免费在线看不卡| 成人二区视频| 国产永久视频网站| 久久久久九九精品影院| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 午夜激情福利司机影院| 夫妻性生交免费视频一级片| 亚洲av电影在线观看一区二区三区 | 久久久亚洲精品成人影院| 女人十人毛片免费观看3o分钟| 又黄又爽又刺激的免费视频.| av播播在线观看一区| 最后的刺客免费高清国语| 18+在线观看网站| 亚洲av成人精品一二三区| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 免费不卡的大黄色大毛片视频在线观看| 国产在视频线精品| 一级毛片我不卡| 国产精品一区二区性色av| 久久精品国产亚洲av涩爱| 麻豆成人av视频| 伦理电影大哥的女人| freevideosex欧美| 王馨瑶露胸无遮挡在线观看| 人人妻人人爽人人添夜夜欢视频 | 97超碰精品成人国产| 久久精品久久久久久噜噜老黄| 五月天丁香电影| 久久鲁丝午夜福利片| 成人国产av品久久久| 欧美激情久久久久久爽电影| 亚洲内射少妇av| 免费黄网站久久成人精品| 男的添女的下面高潮视频| 国产成人a∨麻豆精品| 午夜免费观看性视频| 亚洲成人中文字幕在线播放| 少妇人妻精品综合一区二区| 国产精品99久久久久久久久| 夫妻午夜视频| 老女人水多毛片| 国产午夜精品久久久久久一区二区三区| 国产亚洲精品久久久com| 免费看光身美女| 最近最新中文字幕免费大全7| 国产视频内射| 天天躁夜夜躁狠狠久久av| 18禁在线无遮挡免费观看视频| 免费av观看视频| 日日撸夜夜添| 内地一区二区视频在线| av在线观看视频网站免费| 一本久久精品| 女人久久www免费人成看片| 男女国产视频网站| 男女无遮挡免费网站观看| 亚洲欧美成人综合另类久久久| 最近2019中文字幕mv第一页| 欧美三级亚洲精品| 亚洲精品影视一区二区三区av| 国产精品国产av在线观看| 色吧在线观看| 一级av片app| 国产熟女欧美一区二区| 午夜福利视频精品| 国产欧美亚洲国产| 午夜免费鲁丝| 免费av观看视频| xxx大片免费视频| 高清毛片免费看| 2021天堂中文幕一二区在线观| 能在线免费看毛片的网站| .国产精品久久| 亚洲av福利一区| 最近的中文字幕免费完整| 成人亚洲欧美一区二区av| 综合色丁香网| 91狼人影院| 亚洲内射少妇av| 中文在线观看免费www的网站| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 成人高潮视频无遮挡免费网站| 男女国产视频网站| a级一级毛片免费在线观看| av免费在线看不卡| av黄色大香蕉| 精品一区二区免费观看| 99热这里只有精品一区| 亚洲精品成人久久久久久| 水蜜桃什么品种好| 午夜福利在线观看免费完整高清在| 欧美zozozo另类| 人人妻人人看人人澡| 亚洲av福利一区| 中文字幕制服av| 国产精品99久久久久久久久| 精品熟女少妇av免费看| 免费少妇av软件| 99视频精品全部免费 在线| 美女主播在线视频| 欧美激情在线99| 久久久久久久大尺度免费视频| 网址你懂的国产日韩在线| 成人国产av品久久久| 欧美日韩一区二区视频在线观看视频在线 | 日韩大片免费观看网站| 好男人在线观看高清免费视频| 大香蕉久久网| 欧美日韩视频高清一区二区三区二| 午夜免费观看性视频| 亚洲精品色激情综合| 熟妇人妻不卡中文字幕| 黄片wwwwww| 欧美3d第一页| 国产精品偷伦视频观看了| 黄色视频在线播放观看不卡| 身体一侧抽搐| 国产精品熟女久久久久浪| 一个人看的www免费观看视频| 日本爱情动作片www.在线观看| 日韩成人伦理影院| 深爱激情五月婷婷| 亚洲国产精品999| 欧美少妇被猛烈插入视频| 天堂网av新在线| www.色视频.com| 精品99又大又爽又粗少妇毛片| 国产真实伦视频高清在线观看| 少妇 在线观看| 边亲边吃奶的免费视频| 熟女人妻精品中文字幕| 国产永久视频网站| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在| 好男人视频免费观看在线| 色综合色国产| 欧美成人a在线观看| 国产精品99久久久久久久久| 嫩草影院新地址| 伦精品一区二区三区| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 国产av不卡久久| 国产色爽女视频免费观看| 日本wwww免费看| 精品99又大又爽又粗少妇毛片| 免费观看a级毛片全部| 又爽又黄无遮挡网站| 久久99蜜桃精品久久| 日韩一区二区三区影片| 免费看a级黄色片| 在线 av 中文字幕| 在线观看av片永久免费下载| 亚洲精品第二区| 男女啪啪激烈高潮av片| 免费在线观看成人毛片| 国产午夜精品久久久久久一区二区三区| 在线免费观看不下载黄p国产| 久久久亚洲精品成人影院| 国产 精品1| 纵有疾风起免费观看全集完整版| 国产精品99久久99久久久不卡 | 久久99热6这里只有精品| 日本免费在线观看一区| 色婷婷久久久亚洲欧美| 国产永久视频网站| 久久久久性生活片| 精品人妻视频免费看| 国产精品久久久久久精品古装| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品成人av观看孕妇| 婷婷色麻豆天堂久久| 狂野欧美激情性bbbbbb| 久久久亚洲精品成人影院| 国产黄色视频一区二区在线观看| 国产女主播在线喷水免费视频网站| 激情五月婷婷亚洲| 中文字幕制服av| 色网站视频免费| 久热这里只有精品99| 内射极品少妇av片p| 黑人高潮一二区| 99热全是精品| 岛国毛片在线播放| 亚洲av一区综合| 国产欧美日韩精品一区二区| 又大又黄又爽视频免费| 亚洲精品中文字幕在线视频 | 久久99热这里只有精品18| 日本欧美国产在线视频| 97超碰精品成人国产| 精品国产乱码久久久久久小说| 午夜免费鲁丝| 秋霞伦理黄片| av在线观看视频网站免费| 久久久色成人| 国产又色又爽无遮挡免| 久久久久久伊人网av| 亚洲欧美中文字幕日韩二区| 少妇高潮的动态图| 夫妻午夜视频| 日日啪夜夜爽| 汤姆久久久久久久影院中文字幕| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花 | 91久久精品电影网| 丝袜美腿在线中文| 国产精品麻豆人妻色哟哟久久| av在线观看视频网站免费| 一个人观看的视频www高清免费观看| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 黄色怎么调成土黄色| 国产亚洲av片在线观看秒播厂| av播播在线观看一区| 国产免费一区二区三区四区乱码| 91精品一卡2卡3卡4卡| 日日撸夜夜添| 国产一级毛片在线| 身体一侧抽搐| 久久韩国三级中文字幕| 大陆偷拍与自拍| 嫩草影院新地址| 97在线人人人人妻| 国产精品无大码| 水蜜桃什么品种好| 一个人看的www免费观看视频| 日韩av免费高清视频| 美女视频免费永久观看网站| 男女下面进入的视频免费午夜| 亚洲不卡免费看| 色吧在线观看| 日韩欧美一区视频在线观看 | www.色视频.com| 一级爰片在线观看| 久久久精品94久久精品| 国产探花极品一区二区| 69av精品久久久久久| 国产老妇女一区| 久久久久网色| 国产黄频视频在线观看| 中文字幕亚洲精品专区| 18禁裸乳无遮挡动漫免费视频 | 国产亚洲午夜精品一区二区久久 | 日韩人妻高清精品专区| 国产免费福利视频在线观看| 久久久精品94久久精品| 美女视频免费永久观看网站| 免费观看在线日韩| 亚洲aⅴ乱码一区二区在线播放| 久久这里有精品视频免费| 国内揄拍国产精品人妻在线| 精品人妻熟女av久视频| 国产有黄有色有爽视频| 免费大片18禁| 人妻 亚洲 视频| 亚洲av成人精品一二三区| 免费看av在线观看网站| 午夜福利高清视频| 高清欧美精品videossex| 女人久久www免费人成看片| 久久综合国产亚洲精品| 亚洲av中文字字幕乱码综合| 成人美女网站在线观看视频| 亚洲国产欧美在线一区| 亚洲精品一二三| 丝袜美腿在线中文| 大话2 男鬼变身卡| 美女高潮的动态| 一区二区av电影网| 久久精品熟女亚洲av麻豆精品| 91久久精品国产一区二区三区| 搞女人的毛片| 成人无遮挡网站| 亚洲av欧美aⅴ国产| 啦啦啦啦在线视频资源| 日日撸夜夜添| 免费看不卡的av| 国产高清有码在线观看视频| 日本-黄色视频高清免费观看| 午夜激情福利司机影院| 视频区图区小说| 亚洲在线观看片| 青春草亚洲视频在线观看| 白带黄色成豆腐渣| 国产精品久久久久久精品电影小说 | 人体艺术视频欧美日本| 欧美xxxx性猛交bbbb| 国产黄频视频在线观看| 又爽又黄a免费视频| 久久久国产一区二区| 伦精品一区二区三区| 亚洲国产最新在线播放| 亚洲一区二区三区欧美精品 | 亚洲国产欧美在线一区| 亚洲国产精品999| 王馨瑶露胸无遮挡在线观看| 日韩av不卡免费在线播放| 中文字幕亚洲精品专区| 啦啦啦在线观看免费高清www| 国产伦在线观看视频一区| 国产免费一区二区三区四区乱码| 男女啪啪激烈高潮av片| 欧美高清性xxxxhd video| 国产av不卡久久| 在线精品无人区一区二区三 | 国产高清三级在线| 偷拍熟女少妇极品色| 欧美日韩综合久久久久久| 亚洲人与动物交配视频| 搡女人真爽免费视频火全软件| 国产免费又黄又爽又色| 校园人妻丝袜中文字幕| 国产熟女欧美一区二区| 天堂俺去俺来也www色官网| 亚洲伊人久久精品综合| 少妇的逼水好多| 国产免费视频播放在线视频| 纵有疾风起免费观看全集完整版| 晚上一个人看的免费电影| 大码成人一级视频| 高清视频免费观看一区二区| 最后的刺客免费高清国语| 国产黄色免费在线视频| 国产乱人偷精品视频| 亚洲精品国产色婷婷电影| 黄色日韩在线| 最近2019中文字幕mv第一页| 国产精品av视频在线免费观看| 午夜免费观看性视频| 少妇猛男粗大的猛烈进出视频 | 如何舔出高潮| 一级片'在线观看视频| 国产一区二区三区综合在线观看 | 中文字幕久久专区| 亚洲精品久久午夜乱码| 我的老师免费观看完整版| 成人二区视频| 亚洲av福利一区| 国产一区二区三区综合在线观看 | 精品视频人人做人人爽| 国产成人免费无遮挡视频| 久久久久久九九精品二区国产| 欧美丝袜亚洲另类| 色吧在线观看| 特级一级黄色大片| 好男人在线观看高清免费视频| 亚洲精品成人久久久久久| 男人添女人高潮全过程视频| 日日摸夜夜添夜夜爱| 我的老师免费观看完整版| 亚洲av不卡在线观看| 一级a做视频免费观看| 亚洲色图av天堂| 51国产日韩欧美| 亚洲欧洲国产日韩| 国产成人午夜福利电影在线观看| 日韩欧美精品免费久久| av在线观看视频网站免费| 丝袜喷水一区| 最近中文字幕高清免费大全6| 三级国产精品欧美在线观看| 国产欧美日韩一区二区三区在线 | 免费大片黄手机在线观看| 国产人妻一区二区三区在| 精品国产乱码久久久久久小说| a级一级毛片免费在线观看| 王馨瑶露胸无遮挡在线观看| 一区二区三区精品91| 老师上课跳d突然被开到最大视频| 国产精品女同一区二区软件| 国产午夜福利久久久久久| 成人二区视频| 国产男女内射视频| 国产精品.久久久| 在线免费观看不下载黄p国产| 七月丁香在线播放| 国产探花极品一区二区| 午夜爱爱视频在线播放| 少妇人妻久久综合中文| 色5月婷婷丁香| 五月天丁香电影| 亚洲欧洲国产日韩| 久久亚洲国产成人精品v| 日本欧美国产在线视频| 又大又黄又爽视频免费| 亚洲欧美成人精品一区二区| 99久国产av精品国产电影| 黄片wwwwww| 人人妻人人看人人澡| 免费观看的影片在线观看| 成人黄色视频免费在线看| 秋霞伦理黄片| 最后的刺客免费高清国语| 亚洲熟女精品中文字幕| 久久久精品免费免费高清| 国语对白做爰xxxⅹ性视频网站| 亚洲熟女精品中文字幕| 99久久精品一区二区三区| 最后的刺客免费高清国语| 97人妻精品一区二区三区麻豆| 国产伦精品一区二区三区四那| 精品久久久精品久久久| 亚洲成人中文字幕在线播放| 精品久久久久久久人妻蜜臀av| 国产在视频线精品| 国产一区二区在线观看日韩| 久久久欧美国产精品| 亚洲四区av| 在线观看一区二区三区| 久久亚洲国产成人精品v| 国产片特级美女逼逼视频| 精品一区二区免费观看| 精品少妇黑人巨大在线播放| 亚洲国产日韩一区二区| 秋霞在线观看毛片| 中文精品一卡2卡3卡4更新| av福利片在线观看|