• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GO/MOF復(fù)合材料的制備及其吸附苯和乙醇性能

    2015-10-24 08:01:17劉國(guó)強(qiáng)王明璽黃正宏康飛宇
    新型炭材料 2015年6期
    關(guān)鍵詞:清華大學(xué)教育部石墨

    劉國(guó)強(qiáng),王明璽,黃正宏,康飛宇

    (1.清華大學(xué)材料學(xué)院,先進(jìn)材料教育部重點(diǎn)實(shí)驗(yàn)室,北京100084;2.武漢工程大學(xué)化學(xué)與環(huán)境工程學(xué)院,綠色化工過程教育部重點(diǎn)實(shí)驗(yàn)室,湖北武漢430074;3.清華大學(xué)深圳研究生院,先進(jìn)材料研究所,廣東深圳518055)

    GO/MOF復(fù)合材料的制備及其吸附苯和乙醇性能

    劉國(guó)強(qiáng)1,王明璽2,黃正宏1,康飛宇1

    (1.清華大學(xué)材料學(xué)院,先進(jìn)材料教育部重點(diǎn)實(shí)驗(yàn)室,北京100084;2.武漢工程大學(xué)化學(xué)與環(huán)境工程學(xué)院,綠色化工過程教育部重點(diǎn)實(shí)驗(yàn)室,湖北武漢430074;3.清華大學(xué)深圳研究生院,先進(jìn)材料研究所,廣東深圳518055)

    采用溶劑熱法制備了金屬有機(jī)骨架-氧化石墨烯(MOF/GO)復(fù)合材料,通過氮吸附/脫附、紅外光譜對(duì)其比表面積和孔結(jié)構(gòu)、表面官能團(tuán)進(jìn)行了表征,考察了其吸附苯和乙醇的性能。結(jié)果表明,當(dāng)氧化石墨烯的添加量為5.25 wt%時(shí),復(fù)合材料的比表面積和孔容最大。該材料對(duì)苯和乙醇有很高的吸附容量,其最大吸附容量可分別達(dá)到72和77 cm3/g。MOF-5/GO復(fù)合材料吸附揮發(fā)性有機(jī)物(VOCs)的容量不僅受孔結(jié)構(gòu)的影響,其表面特性也對(duì)吸附性能有重要作用。氧化石墨烯含量為3.5 wt%的GO/MOF復(fù)合材料對(duì)乙醇的吸附容量顯著增強(qiáng)是由于其含有大量的含氧官能團(tuán)。

    金屬有機(jī)骨架化合物(MOF-5);氧化石墨烯(GO);吸附;苯;乙醇

    1 Introduction

    Volatile organic compounds(VOCs)are pollutants present in gas and/or liquid streams of many industrial applications,such as chemical industry(biocides,plastics and solvents),automotive and aerospace industry[1],dry cleaning solvents in the garment industry,and solvent cleaning in the electronic industry.They are very harmful for both human health and environment,even at very low concentrations.It can be remarked that they are:(1)agents that destroy the ozone stratospheric layer,(2)precursors of photochemical oxidants,(3)agents of the acid rain,(4)elements of the climatic change,(5)agents that affect the nervous system and(6)carcinogenic and mutagenic agents[2].Thus,it is important to minimize their use,or to find new materials that can adsorb or mineralize them via environmental friendly catalysts and/or adsorption.

    One of the most useful methods to remove VOCs is the adsorption technique.For adsorption technologies ranging from gas separations to gas storage,selection of the proper solid adsorbents is the key to design an efficient adsorption process.Microporous and mesoporous adsorbents have been frequently used for the removal of VOCs.To examine the practicality of a solid adsorbent,the following characteristics must be considered:porosity,structural stability,reversible uptake and release,and capability for surface modification for creating molecule-specific adsorption sites[3].Removal of VOCs by adsorption process have been performed on several types of adsorbents,which includes carbon materials[4,5],surfactant modified zeolites[6,7],silica aerogels[8],silicalite[9],organic minerals[10],etc.As far as we know,some disadvantages such as low adsorption capacity,flammability and other problems associated with regeneration for most common porous materials are encountered in practical application[11].Therefore,much attention has been paid to new porous materials with a high adsorption capacity.

    Among various adsorbents,metal-organic frameworks(MOFs)are a group of materials,which have had a rapid development and opened new possibilities of applications owing to their excellent properties such as high surface area,high porosity,regular structure,modifiable surfaces and tunable pore size[12,13].In spite of the very high porosities of MOFs,their open framework is not able to provide strong,non-specific adsorption forces to retain small molecules at ambient conditions.Therefore,a surface consisting of a dense arrangement of atoms and a porous network is needed[14].To meet the above requirements,graphite oxide(GO)was selected as another component to prepare GO/MOF nano-composites by Bandosz's group,who also studied the ammonia[15-19],hydrogen sulfide[20]and NO(2)[21]reactive adsorption behavior oftheas-preparedGO/MOFcomposites.There are also many papers on the adsorption of various VOCs on Zn-based metal-organic frameworks MOF-5[22,23].However,as far as we know,there are still few works on the adsorption of VOCs on the GO/MOF-5 composites.

    In the Bandosz's experiments,GO powder prepared by Hummer's method was added in the well-dissolved zinc nitrate/1,4-benzenedicarboxylate(BDC)mixture,and the resulting suspensions were subsequently subjected to the same synthesis procedure as for MOF-5.As an extension of this work,we made some improvement of the synthesis procedure to get GO/MOF-5 composites,and also measured the benzene and ethanol adsorption properties of the samples.

    2 Experimental

    2.1Synthesis of GO/MOF composites

    GO synthesis:GO was prepared from natural graphite powder according to a modified Hummers method[24].46 mL of H2SO4(98%)was placed in a flask immersed into an ice bath.Graphite(2 g)were then added to the flask and stirred vigorously.Next,KMnO4(6 g)was slowly added into the flask,and the reaction temperature was then maintained below 20℃in an ice bath for about 30 min.The flask containing the reaction mixture was then transferred to a water bath at a temperature of 35℃,and the reaction mixture was stirred for about 45 min until a thick paste formed.Water(46 mL)was then added,the reaction temperature was increased to 90℃,and the reaction mixture was stirred for about 30 min.Finally,280 mL water was added into the mixture,followed by a slow addition of 10 mL of 30%aq.H2O2.A yellow dispersion was obtained and washed repeatedly with deionized water to remove the remaining salt until the pH reached about 7,and the solid was then dried under vacuum(50℃)for about 3 days.

    MOFsynthesis:zincnitratehexahydrate(5.2 g)and 1,4-benzenedicarboxylate(1.0 g)were mixed in 35 mL of DMF.The mixture was treated solvothermally at 120℃for 25 hours.The obtained sample was washed with DMF and CHCl3,and MOF was obtained by vacuum drying at 80℃.

    GO/MOF synthesis:GO was dispersed in N,N-dimethylformamide(DMF)to form GO solutions by sonication.The GO/MOF composites were prepared according to the preparation method of MOF-5[15].In a typical reaction,zinc nitrate hexahydrate(5.2 g),BDC(1.0 g)and glucose(0.5 g)were mixed in a 35 mL of GO/DMF solution.The mixture was treated solvothermally at 120℃for 25 hours.The obtained sample was washed with DMF and CHCl3,and MGs were obtained by vacuum drying at 80℃.Samples with GO weight percentages of 1.75%,3.5%,5.25%and 7%were obtained by changing the concentration of the GO in DMF of the solutions,and the samples arereferredtoasMGn(n=1-4),respectively.

    2.2Characterization of materials

    Thenitrogenadsorption-desorptionwasperformed at-196℃using a gas adsorption analyzer(BELsorp-max,Japan).The specific surface area was evaluated using BET method.The Density Functional Theory(DFT)was used to determine the pore size distributions(PSDs).The morphologies of the samples were examined by a LEO 1 530(LEO,Oberkochen,Germany)field emission scanning electron microscope(SEM).Mid-IR spectra(4 000-500 cm-1)were collected on a Nicolet 560 FT-IR spectrometer using pellets with samples dispersed in KBr.X-ray diffraction(XRD)patterns were obtained using a X-ray diffractometer(Rigaku D/max-2500)with Cu-Ka(40 kV,40 kA)radiation.The data were recorded over a 2 range of 5-90°.

    2.3Adsorption of benzene and ethanol

    The adsorption-desorption of benzene and ethanol vapor were measured using a BEL sorp-max at 30℃.All the samples were degassed at 150℃for 12 h prior to the adsorption measurements.The adsorption and desorption time at each p/p0was set at 300 s and the measured p/p0range was from 0 to 0.95.

    3 Results and discussion

    The pore size distributions(PSDs)for various samples evaluated by DFT are shown in Fig.1,the textual parameters are listed in Table 1,and the nitrogen adsorption-desorption isotherms were provided in our previous work[25].All the samples show a significant contribution of ultra-narrow pores of size around W=1 nm in the micropore region,especially for MGG3 with the highest differential pore volume of 2.0 cm3/g.For MG4,some large mesopores appear at 20-30 nm,which is attributed to the“tail”of the isotherms at high relative pressure.

    Fig.1(a),(b)DFT pore size distributions of GO,MGs and MOF-5.

    From Table 1,it can be seen that the surface area of MG1 and MG2 are lower than MOF-5,and it may be related to the blockage of pores by GO with a layer structure,which can be proved by the hysteresis loop H4,a characteristic of slit pores[26].In addition,blockage by carbons derived from partially solvothermal of glucose may be another reason,leading to a dramatically decrease of surface area.Further increase of the GO percentage to 5.25%leads to an increase of surface area,this could be attributed to the formation of graphene reduced by the glucose.The sharply decrease of surface area for MG4 may be attributed to the blockage with the carbonization products derived from hydrothermal of glucose.

    Table1 Textural properties of the samples.

    The FTIR spectra for the samples are shown in Fig.2a.Several bands are observed in the region 1 300-700 cm-1,and they are assigned to the out-ofplane vibrations of BDC.The bands in the region 750-75 cm-1are assigned to aromatic C—H out-ofplane bending vibrations[27],the bands in the 1 000-1 450 cm-1to C—O(hydroxyl,ester,or ether) stretching and O—H bending vibrations[28],the band at 1 390 cm-1to the symmetric stretching of carboxylic groups,those at 1 510 and 1 590 cm-1to the asymmetric stretching of carboxylic groups[16],the broad band at 3 000-700 cm-1to the overlapping bands from O-(hydroxyl or carboxyl),and the bands at 2 855 and 2 922 cm-1to stretching vibrations of aliphaticC—H[15,29].These results indicate that there are a large number of residues including hydroxyl and carboxyl groups on the surface of the as-prepared materials.It also can be seen that with an increase of the GO percentage,the intensity of adsorption bands,representing the amount of functional groups,becomes strong with the GO percentage up to 3.5%and then tends to be weak with a further increasing of the GO percentage.These functional groups can provide a potential avenue to load other functional groups,molecules,ions,and nanoparticles[28].As a result,it may show excellent adsorption performance for gas.

    Fig.2 FT-IR spectra for GO,MOF and MGs(a)before and(b)after adsorption of VOCs.

    Fig.2b shows that the IR spectra of MG2 and MG3 before and after ethanol and benzene vapor adsorption,which exhibits no significant change after the adsorption of benzene vapor.This is attributed to the similar molecular structure of benzene and BDC,which leads to an overlap for their vibration of band.A sharp bands at 3 606 cm-1is observed after ethanol adsorption for both samples,which is the stretching of O—H of gaseous ethanol[30],indicating that the ethanol vapor has been adsorbed onto the composites.

    Fig.3 shows the X-ray diffraction(XRD)patterns of the various samples before and after gas adsorption.The GO spectrum shows a peak at 2θ= 12.1°,indicating an interlayer distance of 0.73 mm.It suggests that the GO has a uniform and enlarged interlayer spacing with the residual oxygenated functional groups on GO sheets[31,32].The MOF-5 diffraction pattern is in good agreement with those found for a well-defined MOF-5 crystal[33].The diffraction patterns of the GO/MOF-5 composites are similar to that observed for MOF-5,which indicates that the MOF-5 structure is preserved.With an increase of the GO percentage,a distortion of the MOF-5 component and the further collapse are observed for the composite materials,and the intensity of diffraction peaks become weaker,especially for MG4,which is attributed to a high content of GO with an amorphous structure,and this result is in good agreement with the SEM observations.After exposure to benzene and ethanol,the patterns are slightly modified,but the overall patterns are preserved.For both of MG2 and MG3,a pronounced splitting appears at 2θ≈9.7°after the adsorption of benzene and ethanol,which indicates that benzene or ethanol retained in the composites leads to a distortion of the structure of the MOF-5 component.This splitting has also been observed by petit et al,who argued that the GO component in the composites induces a distortion of the structure of the MOF-5 component,and the exposure to ammonia can lead to a further distortion.

    Fig.3 X-ray diffraction patterns for the parent and composite materials(a)before and(b)after adsorption of benzene and ethanol.

    The benzene and ethanol adsorption isotherms at 30℃of MGs are shown in Fig.4.It is seen that the benzene uptakes for MG1 and MG2 increase sharply at the initial part,undergoes a long plateau at intermediate relative pressures,and slowly increases at high relative pressures.The adsorption amount follows the order MG3>MG2>MG1>MG4,which is consistent with the surface area.This suggests that the benzene adsorption capacity is related to the textural properties.The steep rise of benzene uptake in low relative pressure region is not observed and the adsorption amount increases slowly with pressure for MG-G1 and MG-G4.The adsorption capacity of MGG4 is much lower than other samples,which may be attributed to the lower surface area and larger pore size.

    Fig.4(a)Benzene and(b)ethanol adsorption-desorption isotherms at 30℃of MGs.

    For each sample,the ethanol adsorption isotherms presented in Fig.4b exhibits the similar trend as the benzene adsorption isotherms.The isotherms of MG2 and MG3 undergo a steep increase at the initial part,nearly plateau at intermediate relative pressures,and a slight rise at high pressures.For MG3,the adsorption amount increases slowly with the relative pressure,which is similar to benzene adsorption behavior.However,the adsorption capacity follows the order MG2>MG3>MG1>MG4,which is different from that of benzene adsorption.Actually,in the entire pressure region,the ethanol uptake of MG2 is higher than that of MG3,following an opposite trend as nitrogen and benzene adsorption.It is known that porous structure and surface chemistry are the two factors affecting the adsorption properties of materials.Since the surface area of MG2 is much lower than MG3,the higher ethanol adsorption capacity for MG2 would be attributed to the much more oxygencontaining functional groups arriving from the glucose modification,which enhances the the interaction of polar ethanol molecular with MG2.

    It is noticeable that the adsorption capacities for MG1 are higher than MG4 for both of benzene and ethanol adsorption,but they are all lower than other samples.This indicates that the porous structure is an important factor for the adsorption of VOCs,and high surface area and pore volume could get high adsorption capacity.Therefore,the adsorption capacities of VOCs for the samples depend on both of the surface chemistry and porous properties.In light of the above findings,the question that remains unanswered is whether the increase in the adsorption of VOCs are related to the surface chemistry or to the high porosity of the composites.Nevertheless,the physical and chemical properties of the VOCs can also have a great influence on the adsorption process.Therefore,additional analysis is required to address these issues.

    4 Conclusions

    GO/MOF composites are synthesized by solvothermal method.Their surface area exhibits a maximum with the GO percentages at 5.25%.The materials exhibit high adsorption capacities for benzene and ethanol,and the maximum uptakes reach up to 72 and 77 cm3/g,respectively.The adsorption capacities of VOCs for the GO/MOF composites are affected by both of the porous structure and surface properties.The ethanol adsorption capacity for the GO/MOF with a GO percentage of 3.5wt%is enhanced by its abundant oxygen-containing functional groups.

    [1]Yamamoto T,Kataoka S,Ohmori T.Characterization of carbon cryogel microspheres as adsorbents for VOC[J].Journal of Hazardous Materials,2010,177(1-3):331-335.

    [2]Lillo-Rodenas M A,Cazorla-Amoros D,Linares-Solano A.Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J].Carbon,2005,43(8):1758-1767.

    [3]Mu B,Walton K S.Adsorption equilibrium of methane and carbon dioxide on porous metal-organic framework Zn-BTB[J].Adsorption-JournaloftheInternationalAdsorptionSociety,2011,17(5):777-782.

    [4]Diaz E,Ordonez S,Vega A.Adsorption of volatile organic compounds onto carbon nanotubes,carbon nanofibers,and high-surface-area graphites[J].Journal of Colloid and Interface Science,2007,305(1):7-16.

    [5]Li L,Liu S,Liu J.Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J].Journal of Hazardous Materials,2011,192(2):683-690.

    [6]Barakat T,Rooke J C,Tidahy H L,et al.Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds [J].Chemsuschem,2011,4(10):1420-1430.

    [7]Silva B,F(xiàn)igueiredo H,Santos V P,et al.Reutilization of Cr-Y zeolite obtained by biosorption in the catalytic oxidation of volatile organic compounds[J].Journal of Hazardous Materials,2011,192(2):545-553.

    [8]Wang D,McLaughlin E,Pfeffer R,et al.Adsorption of organic compounds in vapor,liquid,and aqueous solution phases on hydrophobic aerogels[J].Industrial&Engineering Chemistry Research,2011,50(21):12177-12185.

    [9]Uguina M A,Sotelo J L,Delgado J A,et al.Adsorption of methyl ethyl ketone and trichloroethene from aqueous solutions onto silicalite fixed-bed adsorbers[J].Separation and Purification Technology,2005,42(1):91-99.

    [10]Koh S M,Dixon J B.Preparation and application of organominerals as sorbents of phenol,benzene and toluene[J].Applied Clay Science,2001,18(3-4):111-122.

    [11]Zhao Z,Li X,Li Z.Adsorption equilibrium and kinetics of pxylene on chromium-based metal organic framework MIL-101 [J].Chemical Engineering Journal,2011,173(1):150-157.

    [12]Kitagawa S,Kitaura R,Noro S.Functional porous coordination polymers[J].Angewandte Chemie-International Edition,2004,43(18):2334-2375.

    [13]Furukawa H,Ko N,Go Y B,et al.Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329(5990):424-428.

    [14]Petit C,Bandosz T J.MOF-graphite oxide composites:Combining the uniqueness of graphene layers and metal-organic frameworks[J].Advanced Materials,2009,21(46):4753-4757.

    [15]Petit C,Bandosz T J.MOF-graphite oxide nanocomposites:Surface characterization and evaluation as adsorbents of ammonia [J].Journal of Materials Chemistry,2009,19(36):6521-6528.

    [16]Petit C,Bandosz T J.Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites:Analysis of surface interactions[J].Advanced Functional Materials,2010,20(1):111-118.

    [17]Petit C,Mendoza B,Bandosz T J.Reactive adsorption of ammonia on Cu-based MOF/graphene composites[J].Langmuir,2010,26(19):15302-15309.

    [18]Petit C,Bandosz T J.Synthesis,characterization,and ammonia adsorption properties of mesoporous metal-organic framework(MIL(Fe))-graphite oxide composites:Exploring the limits of materials fabrication[J].Advanced Functional Materials,2011,21(11):2108-2117.

    [19]Petit C,Huang L,Jagiello J,et al.Toward understanding reactive adsorption of ammonia on cu-MOF/graphite oxide nanocomposites[J].Langmuir,2011,27(21):13043-13051.

    [20]Petit C,Mendoza B,Bandosz T J.Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites[J].Chemphyschem,2010,11(17):3678-3684.

    [21]Levasseur B,Petit C,Bandosz T J.Reactive adsorption of NO2on copper-based metal-organic framework and graphite oxide/ metal-organic framework composites[J].ACS Applied Materials &Interfaces,2010,2(12):3606-3613.

    [22]Britt D,Tranchemontagne D,Yaghi O M.Metal-organic frameworks with high capacity and selectivity for harmful gases[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(33):11623-11627.

    [23]Gu Z-Y,Jiang D-Q,Wang H-F,et al.Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks[J].Journal of Physical Chemistry C,2010,114(1):311-316.

    [24]Tang Z,Shen S,Zhuang J,et al.Noble-metal-promoted threedimensional macroassembly of single-layered graphene oxide[J].Angewandte Chemie-International Edition,2010,49(27):4603-4607.

    [25]Huang Z-H,Liu G,Kang F.Glucose-promoted Zn-based metal-organic framework/graphene oxide composites for hydrogen sulfide removal[J].Acs Applied Materials&Interfaces,2012,4(9):4942-4947.

    [26]Rouquerol F,Rouquerol J,Sing K.Adsorption by powders and porous solids[J].London:Academic Press,1999:18-20.

    [27]Lua A C,Yang T.Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell[J].Journal of Colloid and Interface Science,2004,274(2):594-601.

    [28]Zheng M,Liu Y,Jiang K,et al.Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J].Carbon,2010,48(4):1224-1233.

    [29]Sevilla M,F(xiàn)uertes A B.Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J].Chemistry-a European Journal,2009,15(16):4195-4203.

    [30]Ellison M D,Morris S T,Sender M R,et al.Infrared and computational studies of the adsorption of methanol and ethanol on single-walled carbon nanotubes[J].Journal of Physical Chemistry C,2007,111(49):18127-18134.

    [31]Seredych M,Tamashausky A V,Bandosz T J.Graphite oxides obtained from porous graphite:The role of surface chemistry and texture in ammonia retention at ambient conditions[J].Advanced Functional Materials,2010,20(10):1670-1679.

    [32]Xu Y,Sheng K,Li C,et al.Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS Nano,2010,4(7):4324-4330.

    [33]Hafizovic J,Bjorgen M,Olsbye U,et al.The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities[J].Journal of the A-merican Chemical Society,2007,129(12):3612-3620.

    Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol

    LIU Guo-qiang1,WAN Ming-xi2,HUANG Zheng-hong1,KANG Fei-yu1,3
    (1.Laboratory of Advanced Materials,School of Materials Science and Engineering,Tsinghua University,Beijing100084,China;2.Key Laboratory for Green Chemical Process of Ministry of Education,School of Chemical and Environmental Engineering,Wuhan Institute of Technology,Xiongchu Avenue 693,Wuhan430074,China;3.Institute of Advanced Materials Research,Graduate School at Shenzhen,Tsinghua University,Shenzhen518055,China)

    Graphene/metal-organic composites were synthesized by a solvothermal method and characterized by nitrogen adsorption,SEM and IR and their adsorption properties for benzene and ethanol were investigated.It was found that the surface area and pore volume both have maximum values for a graphene oxide(GO)percentage of 5.25 wt%.The composites have high adsorption capacities for both benzene and ethanol,and the maximum uptakes reach 72 and 77 cm3/g,respectively.The adsorption capacities of volatile organic compounds are determined by both the pore structure and the surface properties.The maximum ethanol adsorption capacity for the composite with a GO percentage of 3.5 wt%is due to its abundant oxygen-containing functional groups.

    MOF-5;Graphene;Adsorption;Benzene;Ethanol

    date:2015-10-26;Revised date:2015-12-08

    National High Technology Research and Development Program of China(2010AA064907).

    HUANG Zheng-hong,Ph.D,Associate Professor.E-mail:zhhuang@mail.tsinghua.edu.cn English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    TQ127.1+1

    A

    國(guó)家高技術(shù)研究發(fā)展計(jì)劃(2010AA064907).

    黃正宏,博士,副研究員.E-mail:zhhuang@mail.tsinghua.edu.cn

    1007-8827(2015)06-0566-06

    10.1016/S1872-5805(15)60205-0

    猜你喜歡
    清華大學(xué)教育部石墨
    清華大學(xué):“如鹽在水”開展課程思政
    石墨系升溫球的實(shí)踐與應(yīng)用
    昆鋼科技(2022年1期)2022-04-19 11:36:14
    我的清華大學(xué)自主招生經(jīng)歷
    石墨烯的健康路
    教育部召開座談會(huì)推進(jìn)一流大學(xué)和一流學(xué)科建設(shè)
    新課程研究(2016年1期)2016-12-01 05:52:14
    他永遠(yuǎn)是我們的老學(xué)長(zhǎng)——清華大學(xué)受助研究生來信摘編
    教育部:高考地方性加分項(xiàng)目2018年減至35個(gè)
    我校兩教育部重大課題攻關(guān)項(xiàng)目開題
    石墨礦中固定碳的分析與探討
    一道2009年清華大學(xué)自主招生數(shù)學(xué)試題的思考
    av网站免费在线观看视频| videossex国产| 国产无遮挡羞羞视频在线观看| 亚洲欧洲日产国产| 久久久久久人人人人人| 黄网站色视频无遮挡免费观看| 国产一级毛片在线| 亚洲性久久影院| 国产av码专区亚洲av| 久久精品国产自在天天线| 精品第一国产精品| 天堂俺去俺来也www色官网| 亚洲丝袜综合中文字幕| 高清黄色对白视频在线免费看| 一区二区av电影网| 久久精品国产综合久久久 | 国产成人精品福利久久| 亚洲欧洲国产日韩| 大片免费播放器 马上看| 欧美 日韩 精品 国产| 国产成人午夜福利电影在线观看| 国产精品国产三级专区第一集| 国产激情久久老熟女| 我要看黄色一级片免费的| 久久久久精品性色| 咕卡用的链子| 欧美人与善性xxx| 高清毛片免费看| av黄色大香蕉| 美女视频免费永久观看网站| 黄色 视频免费看| 人妻系列 视频| 欧美3d第一页| 18禁动态无遮挡网站| 麻豆乱淫一区二区| 秋霞在线观看毛片| 一边摸一边做爽爽视频免费| av线在线观看网站| 国产av码专区亚洲av| 国产成人91sexporn| 美女福利国产在线| 乱人伦中国视频| 性高湖久久久久久久久免费观看| 国产成人免费观看mmmm| 国产老妇伦熟女老妇高清| 一个人免费看片子| 国产成人精品久久久久久| 最近最新中文字幕免费大全7| 99九九在线精品视频| 亚洲图色成人| 国产熟女欧美一区二区| 国产亚洲欧美精品永久| 韩国av在线不卡| 赤兔流量卡办理| 亚洲精品日韩在线中文字幕| 久久青草综合色| 婷婷成人精品国产| 欧美激情国产日韩精品一区| 成人国产麻豆网| 少妇猛男粗大的猛烈进出视频| av女优亚洲男人天堂| 天天躁夜夜躁狠狠躁躁| 一区二区日韩欧美中文字幕 | 满18在线观看网站| 欧美bdsm另类| 在线观看国产h片| 色婷婷久久久亚洲欧美| 在线观看人妻少妇| 国产一区二区激情短视频 | 国产成人欧美| 乱码一卡2卡4卡精品| 亚洲av电影在线进入| 国产国语露脸激情在线看| 少妇人妻久久综合中文| 久久久久久久大尺度免费视频| 日本欧美国产在线视频| 如何舔出高潮| 久久久精品区二区三区| 韩国高清视频一区二区三区| 国产一区有黄有色的免费视频| 精品视频人人做人人爽| 美女中出高潮动态图| 国产又色又爽无遮挡免| 中国美白少妇内射xxxbb| 午夜老司机福利剧场| 又粗又硬又长又爽又黄的视频| 国产国拍精品亚洲av在线观看| 99久久综合免费| 国产一级毛片在线| 久久精品aⅴ一区二区三区四区 | 夜夜爽夜夜爽视频| 色94色欧美一区二区| 岛国毛片在线播放| 日韩欧美一区视频在线观看| 人人妻人人爽人人添夜夜欢视频| 日本黄大片高清| 最黄视频免费看| 精品第一国产精品| 夜夜骑夜夜射夜夜干| 亚洲精品国产av蜜桃| 久久狼人影院| 久久精品人人爽人人爽视色| 人成视频在线观看免费观看| 极品人妻少妇av视频| 一区二区三区四区激情视频| videossex国产| 少妇 在线观看| 精品99又大又爽又粗少妇毛片| 国产又爽黄色视频| 久久久久久久久久成人| 狠狠婷婷综合久久久久久88av| 精品一区二区免费观看| 97在线视频观看| 日日爽夜夜爽网站| 欧美 亚洲 国产 日韩一| 亚洲人与动物交配视频| 国产爽快片一区二区三区| 在线观看免费视频网站a站| 日日啪夜夜爽| 国产伦理片在线播放av一区| 在线看a的网站| 美女大奶头黄色视频| 色哟哟·www| 男女边吃奶边做爰视频| 久久99热这里只频精品6学生| 精品久久久精品久久久| 久久精品久久久久久久性| 国产深夜福利视频在线观看| 国产又爽黄色视频| 女性生殖器流出的白浆| 亚洲精品久久久久久婷婷小说| 熟女电影av网| 永久网站在线| av播播在线观看一区| 亚洲综合色惰| 国产成人a∨麻豆精品| 少妇人妻精品综合一区二区| 日韩制服骚丝袜av| 亚洲精品日韩在线中文字幕| 国产极品粉嫩免费观看在线| 一区二区av电影网| 91精品三级在线观看| 国产福利在线免费观看视频| 如日韩欧美国产精品一区二区三区| 国产亚洲午夜精品一区二区久久| 久久国内精品自在自线图片| 飞空精品影院首页| 老女人水多毛片| 人人妻人人爽人人添夜夜欢视频| 亚洲天堂av无毛| 激情五月婷婷亚洲| 欧美 亚洲 国产 日韩一| 丰满饥渴人妻一区二区三| 赤兔流量卡办理| 亚洲av日韩在线播放| 69精品国产乱码久久久| 国产高清国产精品国产三级| 春色校园在线视频观看| 精品少妇内射三级| 妹子高潮喷水视频| 天天影视国产精品| 亚洲在久久综合| 最近最新中文字幕大全免费视频 | 国产一区二区在线观看av| 卡戴珊不雅视频在线播放| 久久99热6这里只有精品| 极品少妇高潮喷水抽搐| 国产成人精品福利久久| 亚洲天堂av无毛| 成人18禁高潮啪啪吃奶动态图| 99久国产av精品国产电影| 如何舔出高潮| 亚洲性久久影院| 免费女性裸体啪啪无遮挡网站| a级毛片在线看网站| www.熟女人妻精品国产 | 久久精品人人爽人人爽视色| 美女主播在线视频| 丰满迷人的少妇在线观看| 久久国内精品自在自线图片| 久久精品国产鲁丝片午夜精品| 熟女av电影| 欧美xxⅹ黑人| 免费久久久久久久精品成人欧美视频 | 成人手机av| 免费久久久久久久精品成人欧美视频 | 黄片播放在线免费| 国产片特级美女逼逼视频| 97在线人人人人妻| 欧美最新免费一区二区三区| 街头女战士在线观看网站| 中文字幕最新亚洲高清| 最近的中文字幕免费完整| 亚洲伊人色综图| 久久精品人人爽人人爽视色| 成人手机av| 免费大片18禁| 黄网站色视频无遮挡免费观看| a级片在线免费高清观看视频| av在线观看视频网站免费| 丰满乱子伦码专区| 日韩 亚洲 欧美在线| 美女中出高潮动态图| 男女边摸边吃奶| 免费av中文字幕在线| 成人二区视频| 女性生殖器流出的白浆| 亚洲精品,欧美精品| 丰满迷人的少妇在线观看| 婷婷色综合www| 韩国精品一区二区三区 | 久久人人爽av亚洲精品天堂| 成人二区视频| 免费大片黄手机在线观看| 最黄视频免费看| 9191精品国产免费久久| 在线观看人妻少妇| 黑丝袜美女国产一区| 99久久中文字幕三级久久日本| av电影中文网址| 国产一区有黄有色的免费视频| 在线看a的网站| 男女国产视频网站| 日日撸夜夜添| 日本猛色少妇xxxxx猛交久久| 美女国产高潮福利片在线看| 80岁老熟妇乱子伦牲交| 交换朋友夫妻互换小说| 亚洲美女视频黄频| 亚洲国产精品一区三区| 热99久久久久精品小说推荐| 精品熟女少妇av免费看| 亚洲欧洲国产日韩| 亚洲婷婷狠狠爱综合网| 国产乱人偷精品视频| 黑丝袜美女国产一区| 桃花免费在线播放| 18禁在线无遮挡免费观看视频| 亚洲国产精品国产精品| 色网站视频免费| 色婷婷av一区二区三区视频| 99久久精品国产国产毛片| 在线观看免费视频网站a站| 婷婷色麻豆天堂久久| 日韩av免费高清视频| 亚洲人与动物交配视频| 高清视频免费观看一区二区| 日本与韩国留学比较| 青春草亚洲视频在线观看| 亚洲人与动物交配视频| 国产精品人妻久久久久久| 免费人妻精品一区二区三区视频| 成人漫画全彩无遮挡| 欧美成人午夜精品| 99国产精品免费福利视频| 国产精品无大码| av卡一久久| 黑人巨大精品欧美一区二区蜜桃 | 国产麻豆69| 人妻人人澡人人爽人人| 天天影视国产精品| 久久免费观看电影| 搡老乐熟女国产| 国产精品久久久久成人av| 80岁老熟妇乱子伦牲交| 丝袜人妻中文字幕| 亚洲国产精品一区三区| 欧美亚洲日本最大视频资源| 少妇高潮的动态图| 欧美bdsm另类| 国语对白做爰xxxⅹ性视频网站| 91成人精品电影| 精品熟女少妇av免费看| 伦理电影免费视频| 在线观看www视频免费| 大话2 男鬼变身卡| 午夜福利影视在线免费观看| 亚洲av电影在线进入| 综合色丁香网| 日韩成人伦理影院| 国产国拍精品亚洲av在线观看| 亚洲av在线观看美女高潮| 国产一区二区三区av在线| 黄色视频在线播放观看不卡| 天天操日日干夜夜撸| 欧美日韩国产mv在线观看视频| 十八禁网站网址无遮挡| 久久久国产一区二区| 麻豆乱淫一区二区| 免费观看性生交大片5| 在线 av 中文字幕| 国产乱人偷精品视频| 欧美激情极品国产一区二区三区 | 亚洲综合精品二区| 日韩一区二区视频免费看| 2022亚洲国产成人精品| 嫩草影院入口| 巨乳人妻的诱惑在线观看| 亚洲精品视频女| 亚洲,一卡二卡三卡| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 久久久久久人人人人人| 美女脱内裤让男人舔精品视频| 久久久精品94久久精品| 亚洲成人一二三区av| 国产成人精品福利久久| 亚洲欧洲国产日韩| 性色avwww在线观看| 国产亚洲av片在线观看秒播厂| 免费观看在线日韩| 国产男人的电影天堂91| 老司机影院成人| 久久av网站| 国产一区二区三区av在线| 亚洲成人手机| 国产乱人偷精品视频| 亚洲第一区二区三区不卡| 国产亚洲午夜精品一区二区久久| 少妇 在线观看| 两个人免费观看高清视频| 日本与韩国留学比较| av卡一久久| 精品国产一区二区三区四区第35| 亚洲精品aⅴ在线观看| 免费av中文字幕在线| 午夜精品国产一区二区电影| 国产成人精品久久久久久| 免费av中文字幕在线| 韩国av在线不卡| 九草在线视频观看| 亚洲国产av新网站| 亚洲综合精品二区| 国产免费又黄又爽又色| 亚洲精品日韩在线中文字幕| 日日爽夜夜爽网站| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 久久热在线av| 精品亚洲乱码少妇综合久久| 成人影院久久| 飞空精品影院首页| 满18在线观看网站| 免费观看性生交大片5| 国产色婷婷99| 蜜臀久久99精品久久宅男| av国产久精品久网站免费入址| 亚洲国产毛片av蜜桃av| 丝袜人妻中文字幕| 久久99热这里只频精品6学生| 久久精品国产亚洲av天美| 天堂中文最新版在线下载| 成人漫画全彩无遮挡| 欧美成人精品欧美一级黄| 男女免费视频国产| 91精品国产国语对白视频| 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| 亚洲熟女精品中文字幕| 多毛熟女@视频| 国产在线一区二区三区精| 最新的欧美精品一区二区| 丰满少妇做爰视频| 99re6热这里在线精品视频| 色吧在线观看| 久久99热6这里只有精品| 欧美变态另类bdsm刘玥| 国产欧美日韩综合在线一区二区| 侵犯人妻中文字幕一二三四区| 女性生殖器流出的白浆| 一级毛片电影观看| 老熟女久久久| 汤姆久久久久久久影院中文字幕| 一区二区三区乱码不卡18| 午夜福利,免费看| 中文精品一卡2卡3卡4更新| 欧美亚洲日本最大视频资源| 永久免费av网站大全| 国产成人av激情在线播放| 十八禁高潮呻吟视频| 亚洲激情五月婷婷啪啪| av国产精品久久久久影院| 男女午夜视频在线观看 | 丝袜美足系列| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 精品一区二区三区视频在线| 欧美日本中文国产一区发布| 日韩三级伦理在线观看| 亚洲精品中文字幕在线视频| 男女下面插进去视频免费观看 | 亚洲中文av在线| 欧美精品av麻豆av| 国产色爽女视频免费观看| 波多野结衣一区麻豆| 男人爽女人下面视频在线观看| 精品国产一区二区三区久久久樱花| 青青草视频在线视频观看| 日韩在线高清观看一区二区三区| 日本爱情动作片www.在线观看| 国产在线免费精品| 国产在视频线精品| 国产永久视频网站| 久久99热6这里只有精品| 成人黄色视频免费在线看| 久久久久久久国产电影| 中国三级夫妇交换| 久热这里只有精品99| 国产视频首页在线观看| 久久鲁丝午夜福利片| 热re99久久国产66热| 大陆偷拍与自拍| 一本大道久久a久久精品| 亚洲一码二码三码区别大吗| 97精品久久久久久久久久精品| 只有这里有精品99| 狠狠精品人妻久久久久久综合| 久久这里只有精品19| 少妇精品久久久久久久| 免费av中文字幕在线| 国产伦理片在线播放av一区| 少妇猛男粗大的猛烈进出视频| 最近中文字幕2019免费版| 在现免费观看毛片| 18在线观看网站| 国产一级毛片在线| 久久久久久伊人网av| 精品亚洲成a人片在线观看| 观看av在线不卡| 亚洲欧美日韩另类电影网站| 大陆偷拍与自拍| 黄色毛片三级朝国网站| 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久 | 午夜免费观看性视频| 各种免费的搞黄视频| 18禁观看日本| 街头女战士在线观看网站| 狂野欧美激情性bbbbbb| 香蕉丝袜av| 啦啦啦视频在线资源免费观看| 深夜精品福利| 精品一区在线观看国产| 丁香六月天网| 少妇被粗大猛烈的视频| 99热这里只有是精品在线观看| 国产免费一级a男人的天堂| 性色avwww在线观看| 亚洲成色77777| 啦啦啦视频在线资源免费观看| 尾随美女入室| 国产男人的电影天堂91| av线在线观看网站| 亚洲精品乱码久久久久久按摩| 免费观看无遮挡的男女| 国产午夜精品一二区理论片| 又粗又硬又长又爽又黄的视频| 国产色爽女视频免费观看| 制服诱惑二区| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区久久久樱花| 在线观看国产h片| 国产色婷婷99| 国产乱人偷精品视频| 免费观看在线日韩| 久久精品国产综合久久久 | 男女国产视频网站| 亚洲精品久久成人aⅴ小说| 中国三级夫妇交换| 亚洲图色成人| 日韩中字成人| 亚洲精品中文字幕在线视频| freevideosex欧美| 热99国产精品久久久久久7| 99视频精品全部免费 在线| 高清不卡的av网站| 国产不卡av网站在线观看| 午夜激情久久久久久久| 丁香六月天网| 精品一区二区免费观看| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 久久精品夜色国产| 国产免费福利视频在线观看| 王馨瑶露胸无遮挡在线观看| 卡戴珊不雅视频在线播放| 少妇被粗大的猛进出69影院 | 热re99久久国产66热| 色5月婷婷丁香| 国产精品三级大全| 日韩视频在线欧美| www.色视频.com| 中文字幕制服av| 亚洲av国产av综合av卡| 18禁在线无遮挡免费观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日本中文国产一区发布| 欧美另类一区| 国产又爽黄色视频| 一区二区av电影网| 三级国产精品片| 欧美精品人与动牲交sv欧美| 欧美日韩视频高清一区二区三区二| 久久久精品免费免费高清| 一本色道久久久久久精品综合| 少妇精品久久久久久久| 久久精品久久久久久噜噜老黄| 亚洲人与动物交配视频| 亚洲激情五月婷婷啪啪| a 毛片基地| 国产免费一级a男人的天堂| 我要看黄色一级片免费的| 大陆偷拍与自拍| 久久午夜福利片| 亚洲中文av在线| 啦啦啦视频在线资源免费观看| 国产在线免费精品| 美女福利国产在线| 九九在线视频观看精品| 国产在视频线精品| 免费女性裸体啪啪无遮挡网站| 我要看黄色一级片免费的| 亚洲欧美一区二区三区黑人 | 丝袜脚勾引网站| 人成视频在线观看免费观看| 亚洲国产色片| 高清黄色对白视频在线免费看| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人 | 国产老妇伦熟女老妇高清| 国产免费一级a男人的天堂| 日韩 亚洲 欧美在线| 国产黄频视频在线观看| 日韩一区二区三区影片| 亚洲av中文av极速乱| 亚洲精品国产av成人精品| 在线天堂最新版资源| 国产成人免费无遮挡视频| 色94色欧美一区二区| 久久精品久久精品一区二区三区| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 深夜精品福利| 久久青草综合色| 国产成人精品福利久久| 国产成人a∨麻豆精品| 免费高清在线观看日韩| 最后的刺客免费高清国语| 成人亚洲欧美一区二区av| 日韩欧美精品免费久久| 亚洲人成77777在线视频| 国产精品久久久久久av不卡| 成人亚洲精品一区在线观看| 国产成人免费无遮挡视频| 老司机影院毛片| 高清欧美精品videossex| 成人毛片60女人毛片免费| 亚洲人与动物交配视频| 丝袜人妻中文字幕| 青春草国产在线视频| 丝袜人妻中文字幕| 婷婷成人精品国产| av免费观看日本| 三上悠亚av全集在线观看| 国产成人91sexporn| 日本91视频免费播放| 免费不卡的大黄色大毛片视频在线观看| 女的被弄到高潮叫床怎么办| 制服诱惑二区| 一级黄片播放器| 亚洲精品日韩在线中文字幕| 久久精品久久久久久久性| 日本av免费视频播放| 国产欧美日韩一区二区三区在线| 国产 一区精品| 亚洲精品中文字幕在线视频| 99热国产这里只有精品6| 国产深夜福利视频在线观看| 99香蕉大伊视频| 一个人免费看片子| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞伦理黄片| 久久影院123| 十八禁网站网址无遮挡| 亚洲婷婷狠狠爱综合网| 男女免费视频国产| 99热6这里只有精品| 国产一区二区三区av在线| 日韩制服丝袜自拍偷拍| 亚洲精品乱久久久久久| 午夜福利乱码中文字幕| 久久影院123| 亚洲中文av在线| 又黄又粗又硬又大视频| 制服丝袜香蕉在线| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 国产一级毛片在线| 日韩不卡一区二区三区视频在线| 日本91视频免费播放| 高清av免费在线| 深夜精品福利| 卡戴珊不雅视频在线播放| 国产成人精品久久久久久| 少妇熟女欧美另类| av福利片在线| 免费黄频网站在线观看国产| 一边亲一边摸免费视频| 亚洲精品一二三| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| a 毛片基地| 国产精品无大码| 精品亚洲成国产av|