• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    可視化黃色熒光石油焦基碳量子點(diǎn)高效檢測(cè)Cu2+

    2015-10-24 08:01:14吳文婷吳明鉑孫洪迪
    新型炭材料 2015年6期
    關(guān)鍵詞:石油焦探針量子

    王 月,吳文婷,吳明鉑,孫洪迪,

    謝 輝1,胡 超2,吳雪巖1,邱介山2

    (1.中國(guó)石油大學(xué)重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東青島266580;2.大連理工大學(xué)精細(xì)化工國(guó)家重點(diǎn)實(shí)驗(yàn)室,化工與環(huán)境生命學(xué)部炭素材料研究室,遼寧大連116024)

    可視化黃色熒光石油焦基碳量子點(diǎn)高效檢測(cè)Cu2+

    王 月1,吳文婷1,吳明鉑1,孫洪迪1,

    謝 輝1,胡 超2,吳雪巖1,邱介山2

    (1.中國(guó)石油大學(xué)重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東青島266580;2.大連理工大學(xué)精細(xì)化工國(guó)家重點(diǎn)實(shí)驗(yàn)室,化工與環(huán)境生命學(xué)部炭素材料研究室,遼寧大連116024)

    以石油焦為碳源,采用超聲輔助的化學(xué)氧化法直接制備可視化黃色熒光碳量子點(diǎn)(CQDs)。作為非標(biāo)記的探針,該CQDs無(wú)需任何修飾即可成功用于實(shí)際水樣中Cu2+的檢測(cè)。該熒光探針制備方法簡(jiǎn)單、經(jīng)濟(jì),可快速響應(yīng)(3 s),具有良好的選擇性、靈敏性和可重復(fù)利用性,并且可實(shí)現(xiàn)“混合即檢測(cè)”的快速檢測(cè)目的。其線性檢出范圍較寬,為0.25~10 μmol/L,檢出限為0.029 5 μmol/L。光誘導(dǎo)電子轉(zhuǎn)移機(jī)理可很好地解釋Cu2+猝滅CQDs的過程,本文提出的CQDs-Cu2+-EDTA“off-toon”檢測(cè)機(jī)理為金屬離子熒光探針的開發(fā)奠定了理論基礎(chǔ)。石油焦基CQDs在實(shí)際水樣Cu2+的檢測(cè)中具有快速響應(yīng)性,在實(shí)際傳感器應(yīng)用領(lǐng)域具有很好的實(shí)際應(yīng)用價(jià)值。

    石油焦;碳量子點(diǎn);黃色熒光;快速檢測(cè);Cu2+檢測(cè)

    1 Introduction

    Water pollution caused by heavy metal ions has become a critical issue worldwide.As a kind of heavy metals,a trace amount of copper is essential for many living organisms.However,electroplating wastewater with a plenty of copper is currently becoming a serious threat to human's health and the environment[1,2].Conventional analysis methods,such as atomic absorption spectrometry,electrochemical method,inductively coupled plasma-mass spectrometry and inductively plasma-mass emission spectrometry,have been widely used for the detection of Cu2+[3-5].However,the above-mentioned methods are usually time consuming,complicated to prepare sample,even with toxic reagents,and generally unsuitable for online application or in-field detection[6].Therefore,it is highly desired to develop a practicable method with a high accuracy and sensitivity for simple,rapid,green,and low-cost tracking of Cu2+in environmental,biological and tap water.

    Previously,the organic dye/organic complex fluorophore-based and quantum dots(QDs)-based probes,as fluorescent probes,have been proved to selectively respond to Cu2+due to their relatively high sensitivity[7-11].However,the employed organic dyes and QDs are easy to be oxidized,toxic and often lack photostability,which restrict their performance in practical applications[12-14].

    The emergency of fluorescent carbon quantum dots(CQDs)provides a new way to detect Cu2+,which could meet most requirements in Cu2+detection.As a new star in QDs family,CQDs show a considerably low toxicity,excellent aqueous solubility,high stability,resistance to photobleaching,and stable fluorescence,which make them promising in fields like fluorscent probe,optoelectrical devices,sensor cell imaging,etc[15-17].Based on the merits mentioned above,CQDs are more suitable as probe for thedetectionofCu2+thanotherflurescent materials.

    Some excellent works on CQDs as a probe for Cu2+detection have been reported.CQD-based Cu2+probe was firstly developed by Liu et al.in 2012[18].They explored the feasibility of photoluminescent polymer nanodots for Cu2+detection,which exhibit a blue fluorescent emission.The detection range is from 5×10-11to 5×10-5mol/L with a limit of detection(LOD)of 1 nmol/L,and their response time to Cu2+is 10 min.Recently,Wang et al.[19]developed a facile approach to prepare the blue-fluorescent graphene quantum dots via a hydrothermal re-oxidation of graphene oxide to detect Cu2+,the calibration curve of which displays a linear region of 0-15 μm with a detection limit of 0.226 μm.

    Here we prepared a new kind of yellow fluorescent CQDs from petroleum coke,which show a high selectivity,sensitivity and fast response for Cu2+detection.It should be noted that the high value-added utilization of heavy oil is still urgently needed,although lots of efforts have been reported[20-22].As a by-product in oil refining process,petroleum coke used to prepare CQDs can achieve a high value-added utilization.More importantly,the yellow fluorescent CQDs are easier to be distinguished by naked eyes compared with blue fluorescent CQDs.CQDs fluorescent intensity could be recovered by ethylene diamine tetraacetic acid(EDTA)and reused,whereas it could hardly be quenched by other metal ions,such as Al3+,Zn2+,Ca2+,Mg2+,Cd2+,Cr6+,Ba2+,Na+,As3+,K+,Ce3+and Sn4+.Moreover,the proposed CQDs probing system has been successfully applied for the determination of Cu2+both in natural water and tap water.

    2 Experimental

    2.1Chemicals and materials

    All chemical agents used were analytical-grade pure.98.0 wt.%sulfuric acid,65.0 wt.%nitric acid,28.0 wt.%ammonia,EDTA and all metal salts were provided by Sinopharm Chemical Reagent Company,China.Aqueous solutions of Ba2+,Ce3+and Na+were prepared from their nitrate salts,aqueous solutions of Mg2+,Zn2+,Ca2+,Sn4+and K+were prepared from their chloride salts,aqueous solution of Cu2+,Cd2+and Al3+were prepared from their sulfuric acid salts.Aqueous solutions of As3+and Cr6+were prepared from K2Cr2O7and Na3AsO4,respectively.Nitrate and chloride salts of Cu2+as well as chloride salts and sulfuric acid salts of Na+were also used.Quinine(97.0 wt.%)was from Aladdin Industrial Corporation at Shanghai of China.Inorganic filter membrane(0.22 μm)and 3500 Da molecular weight cut off(MWCO)membranes(Amicon Ultra-4,Millipore)were bought from Shanghai Green Bird Science&Technology Development Co.of China.The water used throughout the experiments was deionized(DI)water.

    2.2Synthesis and purification of CQDs

    CQDs were obtained from petroleum coke via the ultrasonic-assisted chemical oxidation approach[23].In brief,2 g petroleum coke was added into a mixture of concentrated H2SO4(45 mL)and HNO3(15 mL).The solution was sonicated at 700 W in a flask for 2 h and then stirred under reflux in an oil bath at 120℃for 24 h.After the reaction,the mixture was cooled to room temperature(RT),then diluted ten times and adjusted to neutral with ammonia.The neutralized mixture was filtered with a 0.22 μm membrane and dialyzed in a dialysis bag(MWCO 3500 Da)for 72 h to remove the remaining salts and tiny fragments to obtain a CQD solution.The CQD solution exhibited a yellow emission under UV light at 365 nm.

    2.3Detection of Cu2+

    In a typical run,a standard 0.1 mol/L Cu2+solution was prepared by dissolving 0.125 g CuSO4· 5H2O in DI water and adjusting the volume to 5.0 mL in a volumetric flask.

    A fixed concentration of CQDs(0.02 mg/mL)was transferred to a fluorescent cuvette.The fluorescence intensity of the solution was recorded from 435 to 800 nm with an excitation wavelength of 420 nm.The fluorescence intensity of the solution was then recorded according to the amount of added Cu2+.Similar procedure was performed for various predetermined concentrations of Cu2+,EDTA and other metal ions.For the sake of comparison,the volume of CQD solution was fixed at 2 mL before the addition of Cu2+.All measurements were made at RT.

    In this experiment,two kinds of water,i.e.natural water obtained from Tangdao Bay of Qingdao,Shandong province,China and tap water from our lab were used to evaluate the CQD-based probe for Cu2+detection.Before analysis,natural water was firstly filtered through a 0.22 μm filtered membrane,then spiked Cu2+at different concentrations.The tap water was spiked with different concentrations of Cu2+solutions directly without any pretreatment.

    2.4Characterization

    All fluorescence measurements were carried out withaF-97Profluorescencespectrophotometer(Shanghai Lengguang Technology Co.,Ltd.,China).UV-Vis absorption spectra were measured by a GoldSpectrumlab54UV/Visspectrophotometer(Shanghai Lengguang Technology Co.,Ltd.,China).The transmission electron microscopic(TEM)image was obtained by the JEOL JEM-2100UHR microscope with an accelerating voltage of 200 kV.Fourier transform infrared(FT-IR)spectra were recorded on a Nicolet 6700 spectrometer.The time decay was measured on a Fluoro Max-4 fluorometer(Horiba Jobin Yvon Inc,F(xiàn)rance).An excitation wavelength of 405 nm was used and emission was collected at 510 nm.

    3 Results and discussion

    3.1Preparation and characterization of the CQDs

    With the help from mixed strong acids and ultrasonic treatment for 24 h,yellow fluorescent CQDs could be directly obtained from petroleum coke without any further passivation or modification.The yellow fluorescence intensity of the CQDs was strong enough for Cu2+detection,and the quantum yield of as-prepared CQDs was as high as 9.8%.

    Fig.1a shows the TEM image of the CQDs,which exhibits a spherical shape with a narrow size distribution.The corresponding particle size distribution of CQDs in Fig.1b indicates that their diameters are in the range of 2.0-4.5 nm(averaged 2.8 nm).

    Fig.1(a)TEM image and(b)the corresponding particle size distribution of CQDs.

    The FT-IR spectra of petroleum coke and the CQDs are shown in Fig.2.For petroleum coke,no obvious peaks are found except the small peaks at 2 918 and 2 857 cm-1,which are originated from —CH2vibration.However,rich hydrophilic groups including carboxyl and hydroxyl groups are found in CQDs.The typical peak at 3 441 cm-1is assigned to —OH group and the small peaks at 2 918 and 2 857 cm-1belongs to—CH2.The peaks at 1 608 and 1 763 cm-1arise from the stretching vibration of C==Oband in carboxylic moiety.Peak around 1 439 cm-1belongs to C—OH or C—H stretchingvibration,and peak at 1 128 cm-1can be identified as C—Ostretchingvibration[24,25].Obviously,the abundant hydrophilic groups help to greatly improve aqueous solubility of the CQDs,which are beneficial for their applications in water system.

    The optical properties of as-prepared CQDs were further explored.The UV—Vis absorption spectrum and fluorescence spectra of the CQDs are shown in Fig.3.The UV—Vis absorption spectrum of the aqueous CQDs(Fig.3a)shows an absorption band at ca.228 nm,attributing to π-π*electron transition of graphitic sp2domains[26].The normalized fluorescence intensities of the CQDs are plotted in Fig.3b.With the excitation wavelength increases from 300 to 580 nm,the emission peak red-shifts from 480 to 600 nm,indicating the excitation-dependent luminescent behavior of the CQDs.This may be associated with the aromaticC==Cbonds and surface defects resulted from C—OH andC==Ogroups in the CQDs[27,28].

    Fig.4a depicts the comparison of fluorescent spectra before and after 6 months.As shown in Fig.4a,the fluorescence intensity of the CQDs remains unchangedfor6months,suggestingthestable fluorescent properties of the CQDs.As molecular oxygen is regarded as one of the best-known collisional quenchers for fluorescent materials[19],the effect of dissolved oxygen on Cu2+detection via the CQD probe was investigated.The dissolved oxygen was removed by filling N2into cuvette for 30 min,detection result without oxygen was then obtained.Fig.4b shows that the fluorescence intensities of the CQD solutions are almost the same before and after the removal of dissolved oxygen.Therefore,in our case,the effect of dissolved oxygen can be neglected in Cu2+detection via the CQD probe,which is an advantage for CQD probing,especially in oxygen existing circumstance.

    Fig.2 FT-IR spectra of CQDs and petroleum coke.

    Fig.3(a)UV-Vis absorption spectrum and(b)normalized fluorescence spectra of CQDs.

    Fig.4(a)The stability of CQDs and(b)the effect of dissolved oxygen.

    3.2Detection of Cu2+

    To confirm the quenching is solely caused by Cu2+and not due to the associated anions,various salts with different types of anions were added and investigated(Fig.5a).All solutions containing Cu2+and different salts show similar quenching effect,proving that Cu2+is responsible for fluorescence quenching of the CQDs(Fig.5b).To prove that the quenching is not due to a synergistic effect of ions and their counter anions,the similar experiments were carried out by various Na+salts substituting above mentioned Cu2+salts(Fig.5c).Interestingly,none of the Na+salts show fluorescence quenching of the CQDs,further confirming that it is Cu2+that solely cause the fluorescence quenching of the CQDs.(Fig.5d).

    Fig.5(a,b)Fluorescent intensity responses of CQDs towards different salt solutions of Cu2+(50 μmol/L)and(c,d)Na+(50 μmol/L).

    The fluorescence intensity of the CQD solution versus scan time at 513 nm of emission wavelength are given in Fig.6.After a fast titration of Cu2+,the fluorescence intensity at 513 nm immediately decreases to the lowest value within 3 s,then reaches a constant value,which indicates a fast and completed reaction between CQDs and Cu2+.It is noted that the response time is 3 s,which is the fastest response probe compared to other CQD probes reported in literatures[18,19,29,30].Therefore,the on-line detection and “mix-and-detect”protocol can be realized.

    The insets of Fig.7a show the photographs of the CQD aqueous solution(left)and the CQDs with 50 μmol/L Cu2+(right)under UV light.Compared with other CQD probes(blue emission)[18,19,31],petroleum coke-based CQDs prepared here show a long wavelength(yellow fluorescence),which could be easier to be distinguished by naked eyes.After the titration of Cu2+,it can be clearly seen that the yellowvisual fluorescent CQDs is effectively quenched by Cu2+.The fluorescence intensity(F/F0,F(xiàn)0and F are the fluorescence intensities before and after the addition of Cu2+)gradually decreases by about 93%of its initial value when the concentration of added Cu2+increases to 50 μmol/L(Fig.7b).Particularly,with the addition of Cu2+,an obvious blue shift is observed(Fig.7a).The fluorescence intensity of the CQDs versus Cu2+concentration in the range of 0.25-10 μmol/L exhibits a good linearity(inset of Fig.7b).Under the current experimental conditions,the LOD of Cu2+is estimated to be 0.029 5 μmol/L based on 3Sb/k(here Sbis the standard deviation of the corrected blank signals of CQDs and k is the slope of the calibration curve),which can meet the limit of Cu2+in drinking water(20 μmol/L)set by U.S.Environmental Protection Agency[6],and is comparable to or even better than most previous reported nanoparticle-based probes[19,32-34].Recently,modified carbon dots or doped CQDs have been reported with a high LOD[18,30,35,36],which make us believe that the LODof as-made CQDs from petroleum coke can be increased in near future in our lab.

    The different F/F0ratios of the CQD solutions in the absence and presence of various metal ions were also calculated.The F/F0ratios of other metal ions are almost 4-5 times as high as that of Cu2+.In order to assess the selectivity of the proposed probing method on Cu2+,the possible interferences of coexisting cations in Cu2+aqueous solution were also tested(Fig.8).Those employed ions include Ba2+,Na+,Mg2+,Zn2+,Ca2+,Sn4+,K+,Mn2+,Cd2+,Al3+,As3+and Cr6+common in our living environment.Notably,Cu2+can substantially quench the fluorescence intensity of the CQDs,and the effect of other metal ions can be neglected.Such results directly illustrate that the CQDs can be developed as a rapid response fluorescent probe for detection of Cu2+with a high sensitivity and selectivity.

    Fig.6 The fluorescence intensity of CQD solution versus scan time at room temperature(inset:the enlarged drawing of selected area just after the addition of Cu2+)(excitation at 420 nm,emission at 513 nm;[Cu2+]=25 μmol/L).

    Fig.7(a)Fluorescence spectra of CQDs in the presence of Cu2+concentrations ranging from 0 to 50 μmol/L.(inset:photographs of CQD aqueous solution(left)and CQDs with 50 μmol/L Cu2+(right)under UV light).(b)Fluorescence intensity response of CQDs to the concentration of Cu2+(inset:fluorescence intensity response of CQDs versus the concentration of Cu2+from 0.25 to 10 μmol/L).

    Fig.8 Selective fluorescence intensity responses of aqueous CQD solution towards 50 μmol/L non-copper metal ions(gray bars),and the mixed solution of 50 μmol/L Cu2+and other metal ions(red bars)(excitation at 420 nm).

    3.3Possible sensing mechanism

    The sensing mechanism is not yet completely understood,even there are several suggested mechanisms in literature[37-39],such as inner filter effect,non-radiative recombination pathways,electron transfer process,ion binding interaction and hole-trap.

    Herein,a photoinduced electron transfer(PET)mechanism is proposed to explain the fluorescence quenching of the CQDs caused by Cu2+.The photoluminescence excitation(PLE)and fluorescence spectra of the CQDs have been detected in the absence and presence of Cu2+.

    CQDs with conjugate aromatics and many oxygen-containing groups are considered to be the electron donors.Due to the unfilled d shell,Cu2+are regarded as electron acceptors,which have a higher binding affinity and faster chelating kinetics with-COO-on the surface of the CQDs than other transition-metal ions[35].After the addition of 50 μM Cu2+into CQD aqueous solutions,the strong fluorescence intensity of the CQDs is quickly quenched and the corresponding PLE intensity is simultaneously reduced(Fig.9a).These phenomena indicate that there iselectron transfer from the CQDs to Cu2+at the excited state[34].To further implore the energy transfer and exciton recombination process of the CQDs in the presence and absence of Cu2+,the fluorescence decays of the CQDs by a time-correlated single-photon counting(TCSPC)in the absence and presence of Cu2+have been measured(Fig.9b).The fluorescence lifetime of the CQDs(the black line)is 3.86 ns,reflecting a fast exciton recombination process.After the addition of Cu2+(the red line),the lifetime of the CQDs decreases to 2.87 ns.This significantly shortened lifetime further confirms that there is an ultrafast electron transfer process in the CQDs-Cu2+system.

    In addition,EDTA is a kind of metal ion chelators,which can prevail over the CQDs,and form coordination complex with Cu2+[40].Cu2+-quenched CQD aggregates could be dissociated after the introduction of EDTA because Cu2+display a higher affinity to the oxygen-donor atoms in EDTA than the carboxylate groupsandconjugatearomaticsofthe CQDs[41].When EDTA(a strong Cu2+chelator)was added into the Cu2+-quenched CQDs solution,the fluorescence intensity of the CQDs can recover as high as 96.0%(Fig.10a).Moreover,repetitive experiments on the same CQD solution by added EDTA or Cu2+three times were also measured.It is easily seen that the fluorescence intensity of the CQDs can recover to 94.4%in the third cycle,indicating that CQDs are reusable(Fig.10b).

    Fig.11 illustrates the“off-to-on”mechanism of CQDs-Cu2+-EDTA.Based on the above detection mechanism and“mix-and-detect”protocol,CQD probe can be used for the detection of Cu2+in real water.Meanwhile,the proposed“off-to-on”mechanism of CQDs-Cu2+-EDTA may aid in the development of serial fluorescent probes for the detection of different metal ions.

    Fig.9(a)Comparisons of PLE and fluorescence spectra of CQDs with and without 50 μmol/L Cu2+,and(b)fluorescence decay curves of CQDs by TSCPC in the absence and presence of Cu2+.

    Fig.10(a,b)Repetitiveness of the fluorescence intensity responses of aqueous CQD solution([Cu2+]=[EDTA]=25 μmol/L,excitation at 420 nm).

    3.4The feasibility of CQDs for sensing Cu2+in real water

    Fig.12 shows the fluorescence response of the CQDs in natural water(Fig.12a)and tap water(Fig.12c)with different concentration of Cu2+.The relationship between F0/F-1and the concentration of Cu2+of natural water(Fig.12b)and tap water(Fig.12d)are also given.It can be clearly seen that the fluorescence intensity gradually decreases with the concentration of Cu2+both in tap water and naturalwater.The calibration curve for determining Cu2+in tap water and natural water can be obtained in the range of 0-50 nmol/L.In spite of the interference from numerous minerals and organics/inorganics possibly existed in different water sources,the lowest detection concentration of Cu2+via the CQDs can reach 5 nmol/L,which meet the requirement of the Cu2+detection in real water.These results make us believe that CQD-based probe can be applied for an accurate analysis of Cu2+in a wide range including natural water and tap water.

    Fig.11 Mechanism schematic of Cu2+detection via the fluorescence response of CQDs.

    Fig.12 CQDs to detect Cu2+in real water:fluorescence spectra of CQDs in the presence of(a)natural water and(c)tap water with different concentrations of Cu2+.Relationship between F0/F-1and the concentration of(b)Cu2+of natural water,and(d)tap water(excitation at 420 nm).

    4 Conclusions

    In summary,a simple and effective yellow-visual fluorescent CQD probe for Cu2+detection was developed.CQDs were prepared from petroleum coke by an ultrasonic-assisted chemical oxidation method without any subsequent chemcial midifcation.The reusable as well as“mix-and-detect”CQD probe with a unprecedentedly rapid response compared with reported CQDs,is highly selective and hardly interfered by other metal ions.The CQD is fluorescence turn-off probe for a reliable detection of Cu2+in water with aresponse time as fast as 3 s,evidenced by the analysis of real water samples.The fluorescence intensity of the CQDs versus the concentration of Cu2+has a very good linearity from 0.25 to 10 μmol/L,and the detection limit is as low as 0.029 5 μmol/L.Theoretically,the detection mechanism of Cu2+via CQD probe is basically originated from a photoinduced electron transfer.The petroleum coke-based CQDs hold a great promise for real-world sensing applications.

    [1]Sung T W,Lo Y L.Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ion detection [J].Sensors and Actuators B-Chemical,2012,165(1):119-125.

    [2]Liu J,Lu Y.A DNA zyme catalytic beacon sensor for paramagnetic Cu2+ions in aqueous solution with high sensitivity and selectivity[J].Journal of the American Chemical Society,2007,129(32):9838-9839.

    [3]Poursaberi T,Hajiagha-Babaei L,Yousefi M,et al.The synthesis of a new thiophene-derivative schiff's base and its use in preparation of copper-ion selective electrodes[J].Electroanal,2001,13(18):1513-1517.

    [4]Zhao Y,Zhang X B,Han Z X,et al.Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+in aqueous solution and living cells[J].Analitical Chemistry,2009,81(16):7022-7030.

    [5]Piacenti da Silva M,Araujo Domingues Zucchi OL,Ribeiro-Silva A,et al.Discriminant analysis of trace elements in normal,benign and malignant breast tissues measured by total reflection X-ray fluorescence[J].Spectrochimica Acta Part B,2009,64(6):587-592.

    [6]Zhang J F,Zhou Y,Yoon J,et al.Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions(silver,gold and platinum ions)[J].Chemical Society Reviews,2011,40(7):3416-3429.

    [7]Balogh I S,Ruschak M,Andruch V,et al.An investigation of the reaction of copper ions with dimethylindodicarbocyanine dye:An application for the determination of Cu(I),Cu(II)and Cu(III)[J].Talanta,2008,76(1):111-115.

    [8]Royzen M,Dai Z,Canary J W.Ratiometric displacement approach to Cu(II)sensing by fluorescence[J].Journal of the A-merican Chemical Society,2005,127(6):1612-1613.

    [9]Li P,Duan X,Chen Z,et al.A near-infrared fluorescent probe for detecting copper(II)with high selectivity and sensitivity and its biological imaging applications[J].Chemical Communication,2011,47(27):7755-7757.

    [10]Li Y,Zhang X,Zhu B,et al.A simple but highly sensitive and selective colorimetric and fluorescent probe for Cu2+in aqueous media[J].Analyst,2011,136(6):1124-1128.

    [11]Xie H Y,Liang J G,Zhang Z L,et al.Luminescent CdSe-ZnS quantum dots as selective Cu2+probe[J].Spectrochimica Acta Part A,2004,60(11):2527-2530.

    [12]Jung H S,Kwon P S,Lee J W,et al.Coumarin-derived Cu2+-selective fluorescence sensor:Synthesis,mechanisms,and applications in living cells[J].Journal of the American Chemical Society,2009,131(5):2008-2012.

    [13]Eggeling C,Volkmer A,Seidel C A.Molecular photobleaching kinetics of rhodamine 6G by one-and two-photon induced confocal fluorescence microscopy[J].Chem Phys Chem,2005,6(5):791-804.

    [14]Freeman R,F(xiàn)inder T,Willner I.Multiplexed analysis of Hg2+and Ag+ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations[J].Angewandte Chemie International Edition,2009,48(42):7818-7821.

    [15]Xu X,Ray R,Gu Y,et al.Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].Journal of the American Chemical Society,2004,126(40):12736-12737.

    [16]Ponomarenko L,Schedin F,Katsnelson M,et al.Chaotic dirac billiard in graphene quantum dots[J].Science,2008,320(5874):356-358.

    [17]Peng J,Gao W,Gupta BK,et al.Graphene quantum dots derived from carbon fibers[J].Nano Letters,2012,12(2):844-849.

    [18]Liu S,Tian J,Wang L,et al.Hydrothermal treatment of grass:A low-cost,green route to nitrogen-doped,carbon-rich,photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-fee detection of Cu(II)ions[J].Advanced Materials,2012,24(15):2037-2041.

    [19]Wang F,Gu Z,Lei W,et al.Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II)ions[J].Sensors and Actuators B-Chemical,2014,190:516-522.

    [20]Christina C S,Zaher H,Ania C U.Preparation and characterization of activated carbon from oil sands coke[J].Fuel,2012,92(1):69-76.

    [21]Jiang B C,Zhang Y C,Zhou J X.Effects of chemical modification of petroleum cokes on the properties of the resulting activated carbon[J].Fuel,2008,87(10):1844-1848.

    [22]Wu M B,Zha Q F,Qiu J S,et al.Preparation of porous carbons from petroleum coke by different activation methods[J].Fuel,2005,84(14):1992-1997.

    [23]Wu M B,Wang Y,Wu W T,et al.Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J].Carbon,2014,78(11):480-489.

    [24]Wang J,Wang C F,Chen S.Amphiphilic egg-derived carbon dots:Rapid plasma fabrication,pyrolysis process,and multicolor printing patterns[J].Angewandte Chemie International Edition,2012,51(37):9431-9435.

    [25]Liu L,Li Y,Zhan L,et al.One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions[J].Science China Chemistry,2011,54(8):1342-1347.

    [26]Zhang X,Wang S,Liu M,et al.Size tunable fluorescent nanographite oxides:Preparation and cell imaging applications[J].Physical Chemistry Chemical Physics,2013,15(43):19013-19018.

    [27]Li M,Cushing S K,Zhou X,et al.Fingerprinting photoluminescence of functional groups in graphene oxide[J].Journal of Materials Chemistry,2012,22(44):23374-23379.

    [28]Zhu S,Zhang J,Tang S,et al.Surface chemistry routes to modulate the photoluminescence of graphene quantum dots:From fluorescence mechanism to up-conversion bioimaging ap-plications[J].Advanced Functional Materials,2012,22(22):4732-4740.

    [29]Lu W,Qin X,Liu S,et al.Economical,green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II)ions[J].Analytical Chemistry,2012,84(12):5351-5357.

    [30]Hu C,Yu C,Li M Y,et al.Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II)detection[J].Small,2014,10(23):4926-4933.

    [31]Liu R,Li H T,Kong W Q,et al.Ultra-sensitive and selective Hg2+detection based on fluorescent carbon dots[J].Materials Research Bulletin,2013,48(7):2529-2534.

    [32]Liu Y S,Zhao Y N,Zhang Y Y.One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II)ion detection[J],Sensors and Actuators B-Chemical,2014,196:647-652.

    [33]Liu X J,Zhang N,Bing T,et al.Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+[J].Analytical Chemistry,2014,86(5):2289-2296.

    [34]Hu S,Zhao Q,Dong Y,et al.Carbon-dot-loaded alginate gels as recoverable probes:Fabrication and mechanism of fluorescent detection[J].Langmuir,2013,29(40):12615-12621.

    [35]Sun H,Gao N,Wu L,et al.Highly photoluminescent aminofunctionalized graphene quantum dots used for sensing copper ions[J].Chemistry-A European Journal,2013,19(40):13362-13368.

    [36]Yang S W,Sun J,Li X B,et al.Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J].Journal of Materials Chemistry A,2014,2(23):8660-8667.

    [37]Chen Y F,Rosenzweig Z.Luminescent CdS quantum dots as selective ion probes[J].Analytical Chemistry,2002,74(19):5132-5138.

    [38]He Q W,Miller E W,Wong A P,et al.A selective fluorescent sensor for detecting lead in living cells[J].Journal of the American Chemical Society,2006,128(29):9316-9317.

    [39]Sun H J,Wu L,Wei W L,et al.Recent advances in graphene quantum dots for sensing[J].Material Today,2013,16(11):433-442.

    [40]Liu J M,Lin L P,Wang X X,et al.Highly selective and sensitive detection of Cu2+with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe[J].Analyst,2012,137(11):2637-2642.

    [41]Bai J M,Zhang L,Liang R P,et al.Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate pensing[J].Chemistry-A European Journal,2013,19(12):3822-3826 .

    Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ions

    WANG Yue1,WU Wen-ting1,WU Ming-bo1,SUN Hong-di1,XIE Hui1,HU Chao2,WU Xue-yan1,QIU Jie-shan2
    (1.State Key Laboratory of Heavy Oil Processing,China University of Petroleum,Qingdao266580,China;2.State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian116024,China)

    Yellow-visual fluorescent carbon quantum dots(CQDs)were prepared from petroleum coke by ultrasonic-assisted chemical oxidation andwere used as label-free probes for Cu2+detection in water.The detection of Cu2+by CQD probesis related to a quenching of fluorescence by a photo induced electron transfer mechanism.The quenched fluorescence of the CQDs by Cu2+can be recovered by adding ethylene diaminetetraacetic acid.The yellow-visual fluorescent CQD probes have a linear detection range from 0.25 to 10 μM,a detection limit of 0.029 5 μM,a response time of 3 s,and a superior sensitivity and selectivity for Cu2+detection compared to other fluorescent probes.The CQDs are easy to prepare,economical,reusable,fast to respond and can be used inonline detection.

    Petroleum coke;Carbon quantum dots;Yellow-visual;Fast response;Cu2+detection

    date:2015-10-12;Revised date:2015-12-09

    National Natural Science Foundation of China(51372277,51372028,21302224);Fundamental Research Funds for the Central Universities(14CX02060A,15CX08005A).

    s:WU Ming-bo,Professor,E-mail:wumb@upc.edu.cn;

    introduction:These authors contributed equally to this work.WANG Yue,Master Student,E-mail:wy163tan@163.com;

    1007-8827(2015)06-0550-10

    O613.71;O433.2

    A

    國(guó)家自然科學(xué)基金(51372277,51372028,21302224);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(14CX02060A,15CX08005A).

    吳明鉑,教授.E-mail:wumb@upc.edu.cn;

    邱介山,教授.E-mail:jqiu@dlut.edu.cn

    作者介紹:王 月,碩士研究生.E-mail:wy163tan@163.com;吳文婷,講師,E-mail:wuwt@upc.edu.cn

    QIU Jie-shan,Professor,E-mail:jqiu@dlut.edu.cn

    WU Wen-ting,Lecturer,E-mail:wuwt@upc.edu.cn

    10.1016/S1872-5805(15)60204-9

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    猜你喜歡
    石油焦探針量子
    2022年諾貝爾物理學(xué)獎(jiǎng) 從量子糾纏到量子通信
    決定未來(lái)的量子計(jì)算
    新量子通信線路保障網(wǎng)絡(luò)安全
    高硫石油焦的堿催化煅燒脫硫?qū)嶒?yàn)研究
    一種簡(jiǎn)便的超聲分散法制備碳量子點(diǎn)及表征
    多通道Taqman-探針熒光定量PCR鑒定MRSA方法的建立
    BOPIM-dma作為BSA Site Ⅰ特異性探針的研究及其應(yīng)用
    高溫煅燒石油焦排料過程余熱回收
    透射電子顯微鏡中的掃描探針裝置
    兩種石油焦氣化制氫工藝的系統(tǒng)模擬研究
    久久精品91蜜桃| 高清在线视频一区二区三区 | 精品久久国产蜜桃| 成人毛片a级毛片在线播放| 亚洲天堂国产精品一区在线| 国产在视频线精品| 亚州av有码| 久久久午夜欧美精品| 亚洲精华国产精华液的使用体验| 99久国产av精品| 一边摸一边抽搐一进一小说| 国产精品人妻久久久影院| 国产免费福利视频在线观看| 亚洲无线观看免费| av线在线观看网站| 国产精品一区www在线观看| 日本爱情动作片www.在线观看| 久久久久久久久大av| 成年女人看的毛片在线观看| 黄色欧美视频在线观看| 韩国av在线不卡| 男女视频在线观看网站免费| 亚洲av男天堂| 久久久久久九九精品二区国产| 高清午夜精品一区二区三区| 欧美高清成人免费视频www| 精品人妻熟女av久视频| 综合色丁香网| 亚洲国产精品专区欧美| 日韩人妻高清精品专区| 三级经典国产精品| 国产精品人妻久久久久久| 高清在线视频一区二区三区 | 成人鲁丝片一二三区免费| 国产精品久久视频播放| 色综合站精品国产| 精品一区二区免费观看| 永久免费av网站大全| 国产免费男女视频| 夜夜爽夜夜爽视频| 久久精品国产99精品国产亚洲性色| 大香蕉97超碰在线| 一级二级三级毛片免费看| 久久这里只有精品中国| 亚洲激情五月婷婷啪啪| 亚洲av二区三区四区| 中文字幕av在线有码专区| 直男gayav资源| 国产亚洲一区二区精品| 99国产精品一区二区蜜桃av| 长腿黑丝高跟| 亚洲怡红院男人天堂| 日本免费一区二区三区高清不卡| 黄色配什么色好看| 黄色欧美视频在线观看| 别揉我奶头 嗯啊视频| 国产美女午夜福利| 亚洲欧美日韩卡通动漫| 国产高清国产精品国产三级 | 亚洲av中文av极速乱| 免费看光身美女| 夜夜爽夜夜爽视频| 亚洲久久久久久中文字幕| 非洲黑人性xxxx精品又粗又长| 国模一区二区三区四区视频| 舔av片在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av中文av极速乱| 亚洲成人av在线免费| 国产午夜精品论理片| 一级毛片aaaaaa免费看小| 国产精品伦人一区二区| 亚洲成人久久爱视频| 亚洲婷婷狠狠爱综合网| 99九九线精品视频在线观看视频| 精品午夜福利在线看| 搡女人真爽免费视频火全软件| 日本五十路高清| av天堂中文字幕网| 大香蕉久久网| av在线亚洲专区| 国产探花在线观看一区二区| 内地一区二区视频在线| 久久精品夜色国产| 中文乱码字字幕精品一区二区三区 | 建设人人有责人人尽责人人享有的 | 99热精品在线国产| 亚洲久久久久久中文字幕| 麻豆乱淫一区二区| 亚洲五月天丁香| 中文字幕熟女人妻在线| 亚洲自偷自拍三级| 菩萨蛮人人尽说江南好唐韦庄 | 自拍偷自拍亚洲精品老妇| www.av在线官网国产| 高清视频免费观看一区二区 | 久热久热在线精品观看| 国产真实乱freesex| 嫩草影院入口| 超碰av人人做人人爽久久| 又粗又硬又长又爽又黄的视频| 在线观看一区二区三区| 国产一区二区三区av在线| 国产亚洲5aaaaa淫片| 亚洲人成网站在线观看播放| 精品久久久久久成人av| 欧美xxxx性猛交bbbb| 日韩高清综合在线| 搡老妇女老女人老熟妇| 精品久久久久久久久av| 婷婷六月久久综合丁香| 五月伊人婷婷丁香| 又粗又爽又猛毛片免费看| 亚洲中文字幕一区二区三区有码在线看| 国产精品一区二区在线观看99 | 好男人视频免费观看在线| 国产黄色小视频在线观看| 听说在线观看完整版免费高清| 欧美bdsm另类| 91av网一区二区| 国产三级在线视频| 久久99精品国语久久久| 午夜福利高清视频| 男的添女的下面高潮视频| 日本黄大片高清| 人体艺术视频欧美日本| 一个人看的www免费观看视频| 日韩,欧美,国产一区二区三区 | 亚洲国产精品专区欧美| 成人国产麻豆网| 黄片wwwwww| 村上凉子中文字幕在线| 边亲边吃奶的免费视频| av福利片在线观看| 不卡视频在线观看欧美| 色5月婷婷丁香| 赤兔流量卡办理| 小蜜桃在线观看免费完整版高清| 国产成人a区在线观看| 精品99又大又爽又粗少妇毛片| 精品99又大又爽又粗少妇毛片| 欧美另类亚洲清纯唯美| 老司机福利观看| 如何舔出高潮| 免费看日本二区| 亚洲欧美精品综合久久99| 建设人人有责人人尽责人人享有的 | 国产午夜精品一二区理论片| av黄色大香蕉| 国产高清三级在线| 又黄又爽又刺激的免费视频.| 老女人水多毛片| 国产成人精品一,二区| 国产成人精品一,二区| 观看免费一级毛片| 免费看av在线观看网站| 桃色一区二区三区在线观看| 最近2019中文字幕mv第一页| 熟女人妻精品中文字幕| 能在线免费看毛片的网站| 欧美xxxx黑人xx丫x性爽| 午夜福利在线观看吧| 一区二区三区乱码不卡18| 嫩草影院精品99| 日韩欧美三级三区| 最近最新中文字幕免费大全7| 草草在线视频免费看| 亚洲国产精品专区欧美| 26uuu在线亚洲综合色| 日韩中字成人| 91av网一区二区| 亚洲欧洲国产日韩| 久久久成人免费电影| 亚洲精品乱久久久久久| 有码 亚洲区| 99九九线精品视频在线观看视频| 超碰av人人做人人爽久久| 校园人妻丝袜中文字幕| 国产精品爽爽va在线观看网站| 成人漫画全彩无遮挡| 一个人免费在线观看电影| av在线播放精品| 一区二区三区免费毛片| 国语对白做爰xxxⅹ性视频网站| 欧美成人a在线观看| 欧美成人一区二区免费高清观看| 丰满少妇做爰视频| 禁无遮挡网站| 搡女人真爽免费视频火全软件| 日产精品乱码卡一卡2卡三| 午夜福利高清视频| 国产三级在线视频| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影| 在线免费观看的www视频| 99在线人妻在线中文字幕| 长腿黑丝高跟| 国产亚洲最大av| 免费观看人在逋| 丝袜美腿在线中文| 久久久久九九精品影院| 日韩亚洲欧美综合| 久久精品夜色国产| 蜜桃亚洲精品一区二区三区| 亚洲久久久久久中文字幕| 国产精品麻豆人妻色哟哟久久 | 国产老妇伦熟女老妇高清| 午夜免费激情av| 性插视频无遮挡在线免费观看| 嫩草影院入口| 午夜精品在线福利| 乱系列少妇在线播放| 桃色一区二区三区在线观看| 欧美3d第一页| 干丝袜人妻中文字幕| 午夜福利成人在线免费观看| 免费看日本二区| 观看免费一级毛片| 国产精品不卡视频一区二区| 亚洲性久久影院| 国产精品1区2区在线观看.| av.在线天堂| 国产亚洲5aaaaa淫片| 久久婷婷人人爽人人干人人爱| 精品午夜福利在线看| 成年女人永久免费观看视频| 在线观看美女被高潮喷水网站| 午夜福利在线观看吧| 国产精品美女特级片免费视频播放器| 晚上一个人看的免费电影| 国产亚洲av片在线观看秒播厂 | 亚洲最大成人av| 日日干狠狠操夜夜爽| 99久久精品国产国产毛片| 三级毛片av免费| 特大巨黑吊av在线直播| 联通29元200g的流量卡| 不卡视频在线观看欧美| av.在线天堂| 只有这里有精品99| 日本wwww免费看| 91久久精品国产一区二区三区| 久久韩国三级中文字幕| 乱系列少妇在线播放| 亚洲国产成人一精品久久久| 久久久精品大字幕| 看免费成人av毛片| 纵有疾风起免费观看全集完整版 | 日本三级黄在线观看| 国产在线一区二区三区精 | 亚洲性久久影院| av福利片在线观看| 国产爱豆传媒在线观看| 看非洲黑人一级黄片| 日韩欧美三级三区| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 国产乱来视频区| 亚洲av成人精品一区久久| 国产免费男女视频| 亚洲欧美精品自产自拍| 哪个播放器可以免费观看大片| av又黄又爽大尺度在线免费看 | 国模一区二区三区四区视频| 亚洲欧美中文字幕日韩二区| 久久久国产成人精品二区| 男女那种视频在线观看| 熟妇人妻久久中文字幕3abv| 国产av码专区亚洲av| 日韩精品青青久久久久久| 精品久久久久久电影网 | 中文字幕免费在线视频6| 久久久精品大字幕| 白带黄色成豆腐渣| 久久久午夜欧美精品| 美女黄网站色视频| 成人午夜高清在线视频| 国产成人aa在线观看| 亚洲精品一区蜜桃| 欧美+日韩+精品| 三级国产精品欧美在线观看| 国产真实伦视频高清在线观看| 日韩三级伦理在线观看| 卡戴珊不雅视频在线播放| 三级毛片av免费| av在线老鸭窝| 岛国毛片在线播放| 91午夜精品亚洲一区二区三区| 97超视频在线观看视频| 日本av手机在线免费观看| 欧美色视频一区免费| 成年免费大片在线观看| 国产69精品久久久久777片| 国产乱人偷精品视频| 高清视频免费观看一区二区 | 成人午夜精彩视频在线观看| 人人妻人人澡人人爽人人夜夜 | 久热久热在线精品观看| 国产免费又黄又爽又色| 国产欧美日韩精品一区二区| 国产成人午夜福利电影在线观看| 91狼人影院| 亚洲欧美精品自产自拍| 热99在线观看视频| 久久99热这里只频精品6学生 | 99热这里只有是精品在线观看| 啦啦啦韩国在线观看视频| 老司机影院毛片| 91av网一区二区| 国产精品精品国产色婷婷| 国产老妇伦熟女老妇高清| 级片在线观看| 亚洲最大成人中文| 亚洲av中文av极速乱| 我的女老师完整版在线观看| 在线免费十八禁| av国产久精品久网站免费入址| 国产真实乱freesex| 精品久久久久久成人av| 亚洲性久久影院| 日韩av在线免费看完整版不卡| 国产男人的电影天堂91| 亚洲婷婷狠狠爱综合网| 中文字幕亚洲精品专区| 亚洲无线观看免费| 久久精品人妻少妇| 97超视频在线观看视频| 丰满少妇做爰视频| 中文字幕免费在线视频6| 天天一区二区日本电影三级| 亚洲激情五月婷婷啪啪| 亚洲18禁久久av| 亚洲婷婷狠狠爱综合网| 久久久久久久国产电影| 国产精品99久久久久久久久| 国产三级在线视频| 麻豆国产97在线/欧美| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 美女被艹到高潮喷水动态| 日本黄色视频三级网站网址| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院新地址| 51国产日韩欧美| 精品久久久噜噜| 国产极品精品免费视频能看的| 国产精品久久久久久精品电影| 国产免费视频播放在线视频 | 精品久久久久久久末码| 三级国产精品片| 欧美潮喷喷水| h日本视频在线播放| 哪个播放器可以免费观看大片| 在线观看美女被高潮喷水网站| 久久精品国产亚洲网站| 日韩欧美在线乱码| 男人舔奶头视频| 日韩强制内射视频| 非洲黑人性xxxx精品又粗又长| 美女被艹到高潮喷水动态| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 精品欧美国产一区二区三| 欧美一级a爱片免费观看看| 一级黄色大片毛片| 日日撸夜夜添| 亚洲国产最新在线播放| 老师上课跳d突然被开到最大视频| 色网站视频免费| 亚洲av.av天堂| 国产亚洲av嫩草精品影院| 国产亚洲av片在线观看秒播厂 | 水蜜桃什么品种好| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 国产精品国产三级国产av玫瑰| 欧美成人a在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品乱码一区二三区的特点| 国产真实伦视频高清在线观看| 69人妻影院| 中文字幕制服av| 日韩,欧美,国产一区二区三区 | 精品欧美国产一区二区三| 中文字幕人妻熟人妻熟丝袜美| 亚洲av二区三区四区| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品国产亚洲网站| 亚洲av中文字字幕乱码综合| 国产乱人视频| 久久久久久国产a免费观看| 国产麻豆成人av免费视频| 日韩一区二区视频免费看| 神马国产精品三级电影在线观看| 中文字幕熟女人妻在线| 美女高潮的动态| 人妻制服诱惑在线中文字幕| 国产一区二区在线观看日韩| 免费搜索国产男女视频| 极品教师在线视频| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 亚洲四区av| 大又大粗又爽又黄少妇毛片口| 午夜福利高清视频| 啦啦啦啦在线视频资源| 国产综合懂色| 日本免费在线观看一区| 精品一区二区免费观看| 国内精品宾馆在线| 国产欧美日韩精品一区二区| 亚洲精品久久久久久婷婷小说 | 丰满少妇做爰视频| 又黄又爽又刺激的免费视频.| 国产一级毛片七仙女欲春2| 国产成人精品婷婷| 成人av在线播放网站| 可以在线观看毛片的网站| 日本五十路高清| 久久6这里有精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产高清在线一区二区三| 国产成人精品婷婷| 熟女人妻精品中文字幕| 亚洲,欧美,日韩| 久久99热这里只有精品18| 男插女下体视频免费在线播放| 可以在线观看毛片的网站| 免费看a级黄色片| 丝袜美腿在线中文| 日本一本二区三区精品| 91午夜精品亚洲一区二区三区| 超碰av人人做人人爽久久| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线 | 午夜视频国产福利| 亚洲精品aⅴ在线观看| 噜噜噜噜噜久久久久久91| 欧美极品一区二区三区四区| 日本黄色视频三级网站网址| 色综合站精品国产| 如何舔出高潮| 九九在线视频观看精品| 丰满乱子伦码专区| 精品久久久久久成人av| 国产成人精品久久久久久| 激情 狠狠 欧美| 特大巨黑吊av在线直播| 亚洲电影在线观看av| 激情 狠狠 欧美| 内地一区二区视频在线| av在线蜜桃| 一个人免费在线观看电影| 午夜久久久久精精品| 欧美精品国产亚洲| 五月玫瑰六月丁香| 久久精品夜色国产| 国产探花在线观看一区二区| 22中文网久久字幕| 久久久精品欧美日韩精品| 亚洲人与动物交配视频| 国内精品一区二区在线观看| 日韩三级伦理在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲在久久综合| 色综合亚洲欧美另类图片| 亚洲欧美中文字幕日韩二区| 国产伦一二天堂av在线观看| 国产黄色视频一区二区在线观看 | 午夜福利在线在线| 欧美激情在线99| 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| 亚洲aⅴ乱码一区二区在线播放| 日本一本二区三区精品| 亚洲欧美精品专区久久| 亚洲精品影视一区二区三区av| 日韩视频在线欧美| 日韩欧美精品v在线| 最后的刺客免费高清国语| 看片在线看免费视频| 国内揄拍国产精品人妻在线| 1024手机看黄色片| 国产免费男女视频| 亚洲一级一片aⅴ在线观看| 非洲黑人性xxxx精品又粗又长| 黄色配什么色好看| 又粗又硬又长又爽又黄的视频| 国产单亲对白刺激| 亚洲第一区二区三区不卡| 青青草视频在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 日本免费一区二区三区高清不卡| 视频中文字幕在线观看| 国产高清三级在线| 成人三级黄色视频| 国产老妇伦熟女老妇高清| 内射极品少妇av片p| 国产精品人妻久久久影院| 久久精品国产99精品国产亚洲性色| 你懂的网址亚洲精品在线观看 | 亚洲在线观看片| 美女大奶头视频| 亚洲欧美中文字幕日韩二区| 岛国毛片在线播放| 久久久久久国产a免费观看| 国产精品永久免费网站| 精品人妻偷拍中文字幕| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩欧美精品在线观看| 亚洲一级一片aⅴ在线观看| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 观看美女的网站| 午夜精品一区二区三区免费看| 亚洲精品成人久久久久久| 中文乱码字字幕精品一区二区三区 | 中文字幕熟女人妻在线| 高清在线视频一区二区三区 | 国产精品一及| 韩国高清视频一区二区三区| 亚洲成人av在线免费| 成人漫画全彩无遮挡| 又黄又爽又刺激的免费视频.| 久久国产乱子免费精品| 插阴视频在线观看视频| 波多野结衣巨乳人妻| 99久久精品热视频| 国产真实乱freesex| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 99久久人妻综合| 日本五十路高清| 久久久久网色| 久久久久国产网址| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 又粗又爽又猛毛片免费看| 午夜福利视频1000在线观看| 人妻制服诱惑在线中文字幕| 亚洲国产欧美人成| av在线老鸭窝| 黄片wwwwww| 久久久久性生活片| 午夜福利网站1000一区二区三区| 毛片一级片免费看久久久久| av在线亚洲专区| 麻豆国产97在线/欧美| 久久久久久久久久久丰满| 亚洲乱码一区二区免费版| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 毛片一级片免费看久久久久| 色5月婷婷丁香| 国产精品日韩av在线免费观看| 天堂影院成人在线观看| 国产精品无大码| av女优亚洲男人天堂| 插逼视频在线观看| 69av精品久久久久久| 亚洲人成网站在线观看播放| 免费不卡的大黄色大毛片视频在线观看 | 搡女人真爽免费视频火全软件| a级毛色黄片| 日韩一本色道免费dvd| 国产亚洲精品久久久com| 国产精品.久久久| 精品免费久久久久久久清纯| 国产成人午夜福利电影在线观看| 亚洲18禁久久av| 级片在线观看| 日本wwww免费看| 成年av动漫网址| 精品人妻视频免费看| 亚洲人与动物交配视频| 久久久久久九九精品二区国产| 99久国产av精品国产电影| 99视频精品全部免费 在线| 成人无遮挡网站| 久久久久国产网址| 在线观看美女被高潮喷水网站| 成人一区二区视频在线观看| 国产成人精品婷婷| 亚洲在线自拍视频| 国产精品,欧美在线| 尤物成人国产欧美一区二区三区| 亚洲欧洲国产日韩| 精品99又大又爽又粗少妇毛片| 久久精品国产自在天天线| 91精品国产九色| 精品久久久久久久久亚洲| 啦啦啦啦在线视频资源| 国产av在哪里看| 麻豆av噜噜一区二区三区| 免费看a级黄色片| 色视频www国产| 亚洲成人精品中文字幕电影| 青春草国产在线视频| 亚洲欧美精品专区久久| 欧美丝袜亚洲另类| 亚洲真实伦在线观看| 日本黄色片子视频| 亚洲真实伦在线观看| 干丝袜人妻中文字幕| 国产 一区精品| 亚洲国产成人一精品久久久| 男女下面进入的视频免费午夜| 成人亚洲精品av一区二区| 久久亚洲精品不卡| 亚洲精品乱码久久久v下载方式| www.色视频.com| 精品久久久久久久久久久久久| 日韩大片免费观看网站 | 亚洲,欧美,日韩| 日日干狠狠操夜夜爽|