• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    可視化黃色熒光石油焦基碳量子點(diǎn)高效檢測(cè)Cu2+

    2015-10-24 08:01:14吳文婷吳明鉑孫洪迪
    新型炭材料 2015年6期
    關(guān)鍵詞:石油焦探針量子

    王 月,吳文婷,吳明鉑,孫洪迪,

    謝 輝1,胡 超2,吳雪巖1,邱介山2

    (1.中國(guó)石油大學(xué)重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東青島266580;2.大連理工大學(xué)精細(xì)化工國(guó)家重點(diǎn)實(shí)驗(yàn)室,化工與環(huán)境生命學(xué)部炭素材料研究室,遼寧大連116024)

    可視化黃色熒光石油焦基碳量子點(diǎn)高效檢測(cè)Cu2+

    王 月1,吳文婷1,吳明鉑1,孫洪迪1,

    謝 輝1,胡 超2,吳雪巖1,邱介山2

    (1.中國(guó)石油大學(xué)重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東青島266580;2.大連理工大學(xué)精細(xì)化工國(guó)家重點(diǎn)實(shí)驗(yàn)室,化工與環(huán)境生命學(xué)部炭素材料研究室,遼寧大連116024)

    以石油焦為碳源,采用超聲輔助的化學(xué)氧化法直接制備可視化黃色熒光碳量子點(diǎn)(CQDs)。作為非標(biāo)記的探針,該CQDs無(wú)需任何修飾即可成功用于實(shí)際水樣中Cu2+的檢測(cè)。該熒光探針制備方法簡(jiǎn)單、經(jīng)濟(jì),可快速響應(yīng)(3 s),具有良好的選擇性、靈敏性和可重復(fù)利用性,并且可實(shí)現(xiàn)“混合即檢測(cè)”的快速檢測(cè)目的。其線性檢出范圍較寬,為0.25~10 μmol/L,檢出限為0.029 5 μmol/L。光誘導(dǎo)電子轉(zhuǎn)移機(jī)理可很好地解釋Cu2+猝滅CQDs的過程,本文提出的CQDs-Cu2+-EDTA“off-toon”檢測(cè)機(jī)理為金屬離子熒光探針的開發(fā)奠定了理論基礎(chǔ)。石油焦基CQDs在實(shí)際水樣Cu2+的檢測(cè)中具有快速響應(yīng)性,在實(shí)際傳感器應(yīng)用領(lǐng)域具有很好的實(shí)際應(yīng)用價(jià)值。

    石油焦;碳量子點(diǎn);黃色熒光;快速檢測(cè);Cu2+檢測(cè)

    1 Introduction

    Water pollution caused by heavy metal ions has become a critical issue worldwide.As a kind of heavy metals,a trace amount of copper is essential for many living organisms.However,electroplating wastewater with a plenty of copper is currently becoming a serious threat to human's health and the environment[1,2].Conventional analysis methods,such as atomic absorption spectrometry,electrochemical method,inductively coupled plasma-mass spectrometry and inductively plasma-mass emission spectrometry,have been widely used for the detection of Cu2+[3-5].However,the above-mentioned methods are usually time consuming,complicated to prepare sample,even with toxic reagents,and generally unsuitable for online application or in-field detection[6].Therefore,it is highly desired to develop a practicable method with a high accuracy and sensitivity for simple,rapid,green,and low-cost tracking of Cu2+in environmental,biological and tap water.

    Previously,the organic dye/organic complex fluorophore-based and quantum dots(QDs)-based probes,as fluorescent probes,have been proved to selectively respond to Cu2+due to their relatively high sensitivity[7-11].However,the employed organic dyes and QDs are easy to be oxidized,toxic and often lack photostability,which restrict their performance in practical applications[12-14].

    The emergency of fluorescent carbon quantum dots(CQDs)provides a new way to detect Cu2+,which could meet most requirements in Cu2+detection.As a new star in QDs family,CQDs show a considerably low toxicity,excellent aqueous solubility,high stability,resistance to photobleaching,and stable fluorescence,which make them promising in fields like fluorscent probe,optoelectrical devices,sensor cell imaging,etc[15-17].Based on the merits mentioned above,CQDs are more suitable as probe for thedetectionofCu2+thanotherflurescent materials.

    Some excellent works on CQDs as a probe for Cu2+detection have been reported.CQD-based Cu2+probe was firstly developed by Liu et al.in 2012[18].They explored the feasibility of photoluminescent polymer nanodots for Cu2+detection,which exhibit a blue fluorescent emission.The detection range is from 5×10-11to 5×10-5mol/L with a limit of detection(LOD)of 1 nmol/L,and their response time to Cu2+is 10 min.Recently,Wang et al.[19]developed a facile approach to prepare the blue-fluorescent graphene quantum dots via a hydrothermal re-oxidation of graphene oxide to detect Cu2+,the calibration curve of which displays a linear region of 0-15 μm with a detection limit of 0.226 μm.

    Here we prepared a new kind of yellow fluorescent CQDs from petroleum coke,which show a high selectivity,sensitivity and fast response for Cu2+detection.It should be noted that the high value-added utilization of heavy oil is still urgently needed,although lots of efforts have been reported[20-22].As a by-product in oil refining process,petroleum coke used to prepare CQDs can achieve a high value-added utilization.More importantly,the yellow fluorescent CQDs are easier to be distinguished by naked eyes compared with blue fluorescent CQDs.CQDs fluorescent intensity could be recovered by ethylene diamine tetraacetic acid(EDTA)and reused,whereas it could hardly be quenched by other metal ions,such as Al3+,Zn2+,Ca2+,Mg2+,Cd2+,Cr6+,Ba2+,Na+,As3+,K+,Ce3+and Sn4+.Moreover,the proposed CQDs probing system has been successfully applied for the determination of Cu2+both in natural water and tap water.

    2 Experimental

    2.1Chemicals and materials

    All chemical agents used were analytical-grade pure.98.0 wt.%sulfuric acid,65.0 wt.%nitric acid,28.0 wt.%ammonia,EDTA and all metal salts were provided by Sinopharm Chemical Reagent Company,China.Aqueous solutions of Ba2+,Ce3+and Na+were prepared from their nitrate salts,aqueous solutions of Mg2+,Zn2+,Ca2+,Sn4+and K+were prepared from their chloride salts,aqueous solution of Cu2+,Cd2+and Al3+were prepared from their sulfuric acid salts.Aqueous solutions of As3+and Cr6+were prepared from K2Cr2O7and Na3AsO4,respectively.Nitrate and chloride salts of Cu2+as well as chloride salts and sulfuric acid salts of Na+were also used.Quinine(97.0 wt.%)was from Aladdin Industrial Corporation at Shanghai of China.Inorganic filter membrane(0.22 μm)and 3500 Da molecular weight cut off(MWCO)membranes(Amicon Ultra-4,Millipore)were bought from Shanghai Green Bird Science&Technology Development Co.of China.The water used throughout the experiments was deionized(DI)water.

    2.2Synthesis and purification of CQDs

    CQDs were obtained from petroleum coke via the ultrasonic-assisted chemical oxidation approach[23].In brief,2 g petroleum coke was added into a mixture of concentrated H2SO4(45 mL)and HNO3(15 mL).The solution was sonicated at 700 W in a flask for 2 h and then stirred under reflux in an oil bath at 120℃for 24 h.After the reaction,the mixture was cooled to room temperature(RT),then diluted ten times and adjusted to neutral with ammonia.The neutralized mixture was filtered with a 0.22 μm membrane and dialyzed in a dialysis bag(MWCO 3500 Da)for 72 h to remove the remaining salts and tiny fragments to obtain a CQD solution.The CQD solution exhibited a yellow emission under UV light at 365 nm.

    2.3Detection of Cu2+

    In a typical run,a standard 0.1 mol/L Cu2+solution was prepared by dissolving 0.125 g CuSO4· 5H2O in DI water and adjusting the volume to 5.0 mL in a volumetric flask.

    A fixed concentration of CQDs(0.02 mg/mL)was transferred to a fluorescent cuvette.The fluorescence intensity of the solution was recorded from 435 to 800 nm with an excitation wavelength of 420 nm.The fluorescence intensity of the solution was then recorded according to the amount of added Cu2+.Similar procedure was performed for various predetermined concentrations of Cu2+,EDTA and other metal ions.For the sake of comparison,the volume of CQD solution was fixed at 2 mL before the addition of Cu2+.All measurements were made at RT.

    In this experiment,two kinds of water,i.e.natural water obtained from Tangdao Bay of Qingdao,Shandong province,China and tap water from our lab were used to evaluate the CQD-based probe for Cu2+detection.Before analysis,natural water was firstly filtered through a 0.22 μm filtered membrane,then spiked Cu2+at different concentrations.The tap water was spiked with different concentrations of Cu2+solutions directly without any pretreatment.

    2.4Characterization

    All fluorescence measurements were carried out withaF-97Profluorescencespectrophotometer(Shanghai Lengguang Technology Co.,Ltd.,China).UV-Vis absorption spectra were measured by a GoldSpectrumlab54UV/Visspectrophotometer(Shanghai Lengguang Technology Co.,Ltd.,China).The transmission electron microscopic(TEM)image was obtained by the JEOL JEM-2100UHR microscope with an accelerating voltage of 200 kV.Fourier transform infrared(FT-IR)spectra were recorded on a Nicolet 6700 spectrometer.The time decay was measured on a Fluoro Max-4 fluorometer(Horiba Jobin Yvon Inc,F(xiàn)rance).An excitation wavelength of 405 nm was used and emission was collected at 510 nm.

    3 Results and discussion

    3.1Preparation and characterization of the CQDs

    With the help from mixed strong acids and ultrasonic treatment for 24 h,yellow fluorescent CQDs could be directly obtained from petroleum coke without any further passivation or modification.The yellow fluorescence intensity of the CQDs was strong enough for Cu2+detection,and the quantum yield of as-prepared CQDs was as high as 9.8%.

    Fig.1a shows the TEM image of the CQDs,which exhibits a spherical shape with a narrow size distribution.The corresponding particle size distribution of CQDs in Fig.1b indicates that their diameters are in the range of 2.0-4.5 nm(averaged 2.8 nm).

    Fig.1(a)TEM image and(b)the corresponding particle size distribution of CQDs.

    The FT-IR spectra of petroleum coke and the CQDs are shown in Fig.2.For petroleum coke,no obvious peaks are found except the small peaks at 2 918 and 2 857 cm-1,which are originated from —CH2vibration.However,rich hydrophilic groups including carboxyl and hydroxyl groups are found in CQDs.The typical peak at 3 441 cm-1is assigned to —OH group and the small peaks at 2 918 and 2 857 cm-1belongs to—CH2.The peaks at 1 608 and 1 763 cm-1arise from the stretching vibration of C==Oband in carboxylic moiety.Peak around 1 439 cm-1belongs to C—OH or C—H stretchingvibration,and peak at 1 128 cm-1can be identified as C—Ostretchingvibration[24,25].Obviously,the abundant hydrophilic groups help to greatly improve aqueous solubility of the CQDs,which are beneficial for their applications in water system.

    The optical properties of as-prepared CQDs were further explored.The UV—Vis absorption spectrum and fluorescence spectra of the CQDs are shown in Fig.3.The UV—Vis absorption spectrum of the aqueous CQDs(Fig.3a)shows an absorption band at ca.228 nm,attributing to π-π*electron transition of graphitic sp2domains[26].The normalized fluorescence intensities of the CQDs are plotted in Fig.3b.With the excitation wavelength increases from 300 to 580 nm,the emission peak red-shifts from 480 to 600 nm,indicating the excitation-dependent luminescent behavior of the CQDs.This may be associated with the aromaticC==Cbonds and surface defects resulted from C—OH andC==Ogroups in the CQDs[27,28].

    Fig.4a depicts the comparison of fluorescent spectra before and after 6 months.As shown in Fig.4a,the fluorescence intensity of the CQDs remains unchangedfor6months,suggestingthestable fluorescent properties of the CQDs.As molecular oxygen is regarded as one of the best-known collisional quenchers for fluorescent materials[19],the effect of dissolved oxygen on Cu2+detection via the CQD probe was investigated.The dissolved oxygen was removed by filling N2into cuvette for 30 min,detection result without oxygen was then obtained.Fig.4b shows that the fluorescence intensities of the CQD solutions are almost the same before and after the removal of dissolved oxygen.Therefore,in our case,the effect of dissolved oxygen can be neglected in Cu2+detection via the CQD probe,which is an advantage for CQD probing,especially in oxygen existing circumstance.

    Fig.2 FT-IR spectra of CQDs and petroleum coke.

    Fig.3(a)UV-Vis absorption spectrum and(b)normalized fluorescence spectra of CQDs.

    Fig.4(a)The stability of CQDs and(b)the effect of dissolved oxygen.

    3.2Detection of Cu2+

    To confirm the quenching is solely caused by Cu2+and not due to the associated anions,various salts with different types of anions were added and investigated(Fig.5a).All solutions containing Cu2+and different salts show similar quenching effect,proving that Cu2+is responsible for fluorescence quenching of the CQDs(Fig.5b).To prove that the quenching is not due to a synergistic effect of ions and their counter anions,the similar experiments were carried out by various Na+salts substituting above mentioned Cu2+salts(Fig.5c).Interestingly,none of the Na+salts show fluorescence quenching of the CQDs,further confirming that it is Cu2+that solely cause the fluorescence quenching of the CQDs.(Fig.5d).

    Fig.5(a,b)Fluorescent intensity responses of CQDs towards different salt solutions of Cu2+(50 μmol/L)and(c,d)Na+(50 μmol/L).

    The fluorescence intensity of the CQD solution versus scan time at 513 nm of emission wavelength are given in Fig.6.After a fast titration of Cu2+,the fluorescence intensity at 513 nm immediately decreases to the lowest value within 3 s,then reaches a constant value,which indicates a fast and completed reaction between CQDs and Cu2+.It is noted that the response time is 3 s,which is the fastest response probe compared to other CQD probes reported in literatures[18,19,29,30].Therefore,the on-line detection and “mix-and-detect”protocol can be realized.

    The insets of Fig.7a show the photographs of the CQD aqueous solution(left)and the CQDs with 50 μmol/L Cu2+(right)under UV light.Compared with other CQD probes(blue emission)[18,19,31],petroleum coke-based CQDs prepared here show a long wavelength(yellow fluorescence),which could be easier to be distinguished by naked eyes.After the titration of Cu2+,it can be clearly seen that the yellowvisual fluorescent CQDs is effectively quenched by Cu2+.The fluorescence intensity(F/F0,F(xiàn)0and F are the fluorescence intensities before and after the addition of Cu2+)gradually decreases by about 93%of its initial value when the concentration of added Cu2+increases to 50 μmol/L(Fig.7b).Particularly,with the addition of Cu2+,an obvious blue shift is observed(Fig.7a).The fluorescence intensity of the CQDs versus Cu2+concentration in the range of 0.25-10 μmol/L exhibits a good linearity(inset of Fig.7b).Under the current experimental conditions,the LOD of Cu2+is estimated to be 0.029 5 μmol/L based on 3Sb/k(here Sbis the standard deviation of the corrected blank signals of CQDs and k is the slope of the calibration curve),which can meet the limit of Cu2+in drinking water(20 μmol/L)set by U.S.Environmental Protection Agency[6],and is comparable to or even better than most previous reported nanoparticle-based probes[19,32-34].Recently,modified carbon dots or doped CQDs have been reported with a high LOD[18,30,35,36],which make us believe that the LODof as-made CQDs from petroleum coke can be increased in near future in our lab.

    The different F/F0ratios of the CQD solutions in the absence and presence of various metal ions were also calculated.The F/F0ratios of other metal ions are almost 4-5 times as high as that of Cu2+.In order to assess the selectivity of the proposed probing method on Cu2+,the possible interferences of coexisting cations in Cu2+aqueous solution were also tested(Fig.8).Those employed ions include Ba2+,Na+,Mg2+,Zn2+,Ca2+,Sn4+,K+,Mn2+,Cd2+,Al3+,As3+and Cr6+common in our living environment.Notably,Cu2+can substantially quench the fluorescence intensity of the CQDs,and the effect of other metal ions can be neglected.Such results directly illustrate that the CQDs can be developed as a rapid response fluorescent probe for detection of Cu2+with a high sensitivity and selectivity.

    Fig.6 The fluorescence intensity of CQD solution versus scan time at room temperature(inset:the enlarged drawing of selected area just after the addition of Cu2+)(excitation at 420 nm,emission at 513 nm;[Cu2+]=25 μmol/L).

    Fig.7(a)Fluorescence spectra of CQDs in the presence of Cu2+concentrations ranging from 0 to 50 μmol/L.(inset:photographs of CQD aqueous solution(left)and CQDs with 50 μmol/L Cu2+(right)under UV light).(b)Fluorescence intensity response of CQDs to the concentration of Cu2+(inset:fluorescence intensity response of CQDs versus the concentration of Cu2+from 0.25 to 10 μmol/L).

    Fig.8 Selective fluorescence intensity responses of aqueous CQD solution towards 50 μmol/L non-copper metal ions(gray bars),and the mixed solution of 50 μmol/L Cu2+and other metal ions(red bars)(excitation at 420 nm).

    3.3Possible sensing mechanism

    The sensing mechanism is not yet completely understood,even there are several suggested mechanisms in literature[37-39],such as inner filter effect,non-radiative recombination pathways,electron transfer process,ion binding interaction and hole-trap.

    Herein,a photoinduced electron transfer(PET)mechanism is proposed to explain the fluorescence quenching of the CQDs caused by Cu2+.The photoluminescence excitation(PLE)and fluorescence spectra of the CQDs have been detected in the absence and presence of Cu2+.

    CQDs with conjugate aromatics and many oxygen-containing groups are considered to be the electron donors.Due to the unfilled d shell,Cu2+are regarded as electron acceptors,which have a higher binding affinity and faster chelating kinetics with-COO-on the surface of the CQDs than other transition-metal ions[35].After the addition of 50 μM Cu2+into CQD aqueous solutions,the strong fluorescence intensity of the CQDs is quickly quenched and the corresponding PLE intensity is simultaneously reduced(Fig.9a).These phenomena indicate that there iselectron transfer from the CQDs to Cu2+at the excited state[34].To further implore the energy transfer and exciton recombination process of the CQDs in the presence and absence of Cu2+,the fluorescence decays of the CQDs by a time-correlated single-photon counting(TCSPC)in the absence and presence of Cu2+have been measured(Fig.9b).The fluorescence lifetime of the CQDs(the black line)is 3.86 ns,reflecting a fast exciton recombination process.After the addition of Cu2+(the red line),the lifetime of the CQDs decreases to 2.87 ns.This significantly shortened lifetime further confirms that there is an ultrafast electron transfer process in the CQDs-Cu2+system.

    In addition,EDTA is a kind of metal ion chelators,which can prevail over the CQDs,and form coordination complex with Cu2+[40].Cu2+-quenched CQD aggregates could be dissociated after the introduction of EDTA because Cu2+display a higher affinity to the oxygen-donor atoms in EDTA than the carboxylate groupsandconjugatearomaticsofthe CQDs[41].When EDTA(a strong Cu2+chelator)was added into the Cu2+-quenched CQDs solution,the fluorescence intensity of the CQDs can recover as high as 96.0%(Fig.10a).Moreover,repetitive experiments on the same CQD solution by added EDTA or Cu2+three times were also measured.It is easily seen that the fluorescence intensity of the CQDs can recover to 94.4%in the third cycle,indicating that CQDs are reusable(Fig.10b).

    Fig.11 illustrates the“off-to-on”mechanism of CQDs-Cu2+-EDTA.Based on the above detection mechanism and“mix-and-detect”protocol,CQD probe can be used for the detection of Cu2+in real water.Meanwhile,the proposed“off-to-on”mechanism of CQDs-Cu2+-EDTA may aid in the development of serial fluorescent probes for the detection of different metal ions.

    Fig.9(a)Comparisons of PLE and fluorescence spectra of CQDs with and without 50 μmol/L Cu2+,and(b)fluorescence decay curves of CQDs by TSCPC in the absence and presence of Cu2+.

    Fig.10(a,b)Repetitiveness of the fluorescence intensity responses of aqueous CQD solution([Cu2+]=[EDTA]=25 μmol/L,excitation at 420 nm).

    3.4The feasibility of CQDs for sensing Cu2+in real water

    Fig.12 shows the fluorescence response of the CQDs in natural water(Fig.12a)and tap water(Fig.12c)with different concentration of Cu2+.The relationship between F0/F-1and the concentration of Cu2+of natural water(Fig.12b)and tap water(Fig.12d)are also given.It can be clearly seen that the fluorescence intensity gradually decreases with the concentration of Cu2+both in tap water and naturalwater.The calibration curve for determining Cu2+in tap water and natural water can be obtained in the range of 0-50 nmol/L.In spite of the interference from numerous minerals and organics/inorganics possibly existed in different water sources,the lowest detection concentration of Cu2+via the CQDs can reach 5 nmol/L,which meet the requirement of the Cu2+detection in real water.These results make us believe that CQD-based probe can be applied for an accurate analysis of Cu2+in a wide range including natural water and tap water.

    Fig.11 Mechanism schematic of Cu2+detection via the fluorescence response of CQDs.

    Fig.12 CQDs to detect Cu2+in real water:fluorescence spectra of CQDs in the presence of(a)natural water and(c)tap water with different concentrations of Cu2+.Relationship between F0/F-1and the concentration of(b)Cu2+of natural water,and(d)tap water(excitation at 420 nm).

    4 Conclusions

    In summary,a simple and effective yellow-visual fluorescent CQD probe for Cu2+detection was developed.CQDs were prepared from petroleum coke by an ultrasonic-assisted chemical oxidation method without any subsequent chemcial midifcation.The reusable as well as“mix-and-detect”CQD probe with a unprecedentedly rapid response compared with reported CQDs,is highly selective and hardly interfered by other metal ions.The CQD is fluorescence turn-off probe for a reliable detection of Cu2+in water with aresponse time as fast as 3 s,evidenced by the analysis of real water samples.The fluorescence intensity of the CQDs versus the concentration of Cu2+has a very good linearity from 0.25 to 10 μmol/L,and the detection limit is as low as 0.029 5 μmol/L.Theoretically,the detection mechanism of Cu2+via CQD probe is basically originated from a photoinduced electron transfer.The petroleum coke-based CQDs hold a great promise for real-world sensing applications.

    [1]Sung T W,Lo Y L.Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ion detection [J].Sensors and Actuators B-Chemical,2012,165(1):119-125.

    [2]Liu J,Lu Y.A DNA zyme catalytic beacon sensor for paramagnetic Cu2+ions in aqueous solution with high sensitivity and selectivity[J].Journal of the American Chemical Society,2007,129(32):9838-9839.

    [3]Poursaberi T,Hajiagha-Babaei L,Yousefi M,et al.The synthesis of a new thiophene-derivative schiff's base and its use in preparation of copper-ion selective electrodes[J].Electroanal,2001,13(18):1513-1517.

    [4]Zhao Y,Zhang X B,Han Z X,et al.Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+in aqueous solution and living cells[J].Analitical Chemistry,2009,81(16):7022-7030.

    [5]Piacenti da Silva M,Araujo Domingues Zucchi OL,Ribeiro-Silva A,et al.Discriminant analysis of trace elements in normal,benign and malignant breast tissues measured by total reflection X-ray fluorescence[J].Spectrochimica Acta Part B,2009,64(6):587-592.

    [6]Zhang J F,Zhou Y,Yoon J,et al.Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions(silver,gold and platinum ions)[J].Chemical Society Reviews,2011,40(7):3416-3429.

    [7]Balogh I S,Ruschak M,Andruch V,et al.An investigation of the reaction of copper ions with dimethylindodicarbocyanine dye:An application for the determination of Cu(I),Cu(II)and Cu(III)[J].Talanta,2008,76(1):111-115.

    [8]Royzen M,Dai Z,Canary J W.Ratiometric displacement approach to Cu(II)sensing by fluorescence[J].Journal of the A-merican Chemical Society,2005,127(6):1612-1613.

    [9]Li P,Duan X,Chen Z,et al.A near-infrared fluorescent probe for detecting copper(II)with high selectivity and sensitivity and its biological imaging applications[J].Chemical Communication,2011,47(27):7755-7757.

    [10]Li Y,Zhang X,Zhu B,et al.A simple but highly sensitive and selective colorimetric and fluorescent probe for Cu2+in aqueous media[J].Analyst,2011,136(6):1124-1128.

    [11]Xie H Y,Liang J G,Zhang Z L,et al.Luminescent CdSe-ZnS quantum dots as selective Cu2+probe[J].Spectrochimica Acta Part A,2004,60(11):2527-2530.

    [12]Jung H S,Kwon P S,Lee J W,et al.Coumarin-derived Cu2+-selective fluorescence sensor:Synthesis,mechanisms,and applications in living cells[J].Journal of the American Chemical Society,2009,131(5):2008-2012.

    [13]Eggeling C,Volkmer A,Seidel C A.Molecular photobleaching kinetics of rhodamine 6G by one-and two-photon induced confocal fluorescence microscopy[J].Chem Phys Chem,2005,6(5):791-804.

    [14]Freeman R,F(xiàn)inder T,Willner I.Multiplexed analysis of Hg2+and Ag+ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations[J].Angewandte Chemie International Edition,2009,48(42):7818-7821.

    [15]Xu X,Ray R,Gu Y,et al.Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].Journal of the American Chemical Society,2004,126(40):12736-12737.

    [16]Ponomarenko L,Schedin F,Katsnelson M,et al.Chaotic dirac billiard in graphene quantum dots[J].Science,2008,320(5874):356-358.

    [17]Peng J,Gao W,Gupta BK,et al.Graphene quantum dots derived from carbon fibers[J].Nano Letters,2012,12(2):844-849.

    [18]Liu S,Tian J,Wang L,et al.Hydrothermal treatment of grass:A low-cost,green route to nitrogen-doped,carbon-rich,photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-fee detection of Cu(II)ions[J].Advanced Materials,2012,24(15):2037-2041.

    [19]Wang F,Gu Z,Lei W,et al.Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II)ions[J].Sensors and Actuators B-Chemical,2014,190:516-522.

    [20]Christina C S,Zaher H,Ania C U.Preparation and characterization of activated carbon from oil sands coke[J].Fuel,2012,92(1):69-76.

    [21]Jiang B C,Zhang Y C,Zhou J X.Effects of chemical modification of petroleum cokes on the properties of the resulting activated carbon[J].Fuel,2008,87(10):1844-1848.

    [22]Wu M B,Zha Q F,Qiu J S,et al.Preparation of porous carbons from petroleum coke by different activation methods[J].Fuel,2005,84(14):1992-1997.

    [23]Wu M B,Wang Y,Wu W T,et al.Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J].Carbon,2014,78(11):480-489.

    [24]Wang J,Wang C F,Chen S.Amphiphilic egg-derived carbon dots:Rapid plasma fabrication,pyrolysis process,and multicolor printing patterns[J].Angewandte Chemie International Edition,2012,51(37):9431-9435.

    [25]Liu L,Li Y,Zhan L,et al.One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions[J].Science China Chemistry,2011,54(8):1342-1347.

    [26]Zhang X,Wang S,Liu M,et al.Size tunable fluorescent nanographite oxides:Preparation and cell imaging applications[J].Physical Chemistry Chemical Physics,2013,15(43):19013-19018.

    [27]Li M,Cushing S K,Zhou X,et al.Fingerprinting photoluminescence of functional groups in graphene oxide[J].Journal of Materials Chemistry,2012,22(44):23374-23379.

    [28]Zhu S,Zhang J,Tang S,et al.Surface chemistry routes to modulate the photoluminescence of graphene quantum dots:From fluorescence mechanism to up-conversion bioimaging ap-plications[J].Advanced Functional Materials,2012,22(22):4732-4740.

    [29]Lu W,Qin X,Liu S,et al.Economical,green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II)ions[J].Analytical Chemistry,2012,84(12):5351-5357.

    [30]Hu C,Yu C,Li M Y,et al.Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II)detection[J].Small,2014,10(23):4926-4933.

    [31]Liu R,Li H T,Kong W Q,et al.Ultra-sensitive and selective Hg2+detection based on fluorescent carbon dots[J].Materials Research Bulletin,2013,48(7):2529-2534.

    [32]Liu Y S,Zhao Y N,Zhang Y Y.One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II)ion detection[J],Sensors and Actuators B-Chemical,2014,196:647-652.

    [33]Liu X J,Zhang N,Bing T,et al.Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+[J].Analytical Chemistry,2014,86(5):2289-2296.

    [34]Hu S,Zhao Q,Dong Y,et al.Carbon-dot-loaded alginate gels as recoverable probes:Fabrication and mechanism of fluorescent detection[J].Langmuir,2013,29(40):12615-12621.

    [35]Sun H,Gao N,Wu L,et al.Highly photoluminescent aminofunctionalized graphene quantum dots used for sensing copper ions[J].Chemistry-A European Journal,2013,19(40):13362-13368.

    [36]Yang S W,Sun J,Li X B,et al.Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J].Journal of Materials Chemistry A,2014,2(23):8660-8667.

    [37]Chen Y F,Rosenzweig Z.Luminescent CdS quantum dots as selective ion probes[J].Analytical Chemistry,2002,74(19):5132-5138.

    [38]He Q W,Miller E W,Wong A P,et al.A selective fluorescent sensor for detecting lead in living cells[J].Journal of the American Chemical Society,2006,128(29):9316-9317.

    [39]Sun H J,Wu L,Wei W L,et al.Recent advances in graphene quantum dots for sensing[J].Material Today,2013,16(11):433-442.

    [40]Liu J M,Lin L P,Wang X X,et al.Highly selective and sensitive detection of Cu2+with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe[J].Analyst,2012,137(11):2637-2642.

    [41]Bai J M,Zhang L,Liang R P,et al.Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate pensing[J].Chemistry-A European Journal,2013,19(12):3822-3826 .

    Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ions

    WANG Yue1,WU Wen-ting1,WU Ming-bo1,SUN Hong-di1,XIE Hui1,HU Chao2,WU Xue-yan1,QIU Jie-shan2
    (1.State Key Laboratory of Heavy Oil Processing,China University of Petroleum,Qingdao266580,China;2.State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian116024,China)

    Yellow-visual fluorescent carbon quantum dots(CQDs)were prepared from petroleum coke by ultrasonic-assisted chemical oxidation andwere used as label-free probes for Cu2+detection in water.The detection of Cu2+by CQD probesis related to a quenching of fluorescence by a photo induced electron transfer mechanism.The quenched fluorescence of the CQDs by Cu2+can be recovered by adding ethylene diaminetetraacetic acid.The yellow-visual fluorescent CQD probes have a linear detection range from 0.25 to 10 μM,a detection limit of 0.029 5 μM,a response time of 3 s,and a superior sensitivity and selectivity for Cu2+detection compared to other fluorescent probes.The CQDs are easy to prepare,economical,reusable,fast to respond and can be used inonline detection.

    Petroleum coke;Carbon quantum dots;Yellow-visual;Fast response;Cu2+detection

    date:2015-10-12;Revised date:2015-12-09

    National Natural Science Foundation of China(51372277,51372028,21302224);Fundamental Research Funds for the Central Universities(14CX02060A,15CX08005A).

    s:WU Ming-bo,Professor,E-mail:wumb@upc.edu.cn;

    introduction:These authors contributed equally to this work.WANG Yue,Master Student,E-mail:wy163tan@163.com;

    1007-8827(2015)06-0550-10

    O613.71;O433.2

    A

    國(guó)家自然科學(xué)基金(51372277,51372028,21302224);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(14CX02060A,15CX08005A).

    吳明鉑,教授.E-mail:wumb@upc.edu.cn;

    邱介山,教授.E-mail:jqiu@dlut.edu.cn

    作者介紹:王 月,碩士研究生.E-mail:wy163tan@163.com;吳文婷,講師,E-mail:wuwt@upc.edu.cn

    QIU Jie-shan,Professor,E-mail:jqiu@dlut.edu.cn

    WU Wen-ting,Lecturer,E-mail:wuwt@upc.edu.cn

    10.1016/S1872-5805(15)60204-9

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    猜你喜歡
    石油焦探針量子
    2022年諾貝爾物理學(xué)獎(jiǎng) 從量子糾纏到量子通信
    決定未來(lái)的量子計(jì)算
    新量子通信線路保障網(wǎng)絡(luò)安全
    高硫石油焦的堿催化煅燒脫硫?qū)嶒?yàn)研究
    一種簡(jiǎn)便的超聲分散法制備碳量子點(diǎn)及表征
    多通道Taqman-探針熒光定量PCR鑒定MRSA方法的建立
    BOPIM-dma作為BSA Site Ⅰ特異性探針的研究及其應(yīng)用
    高溫煅燒石油焦排料過程余熱回收
    透射電子顯微鏡中的掃描探針裝置
    兩種石油焦氣化制氫工藝的系統(tǒng)模擬研究
    国产精品国产三级专区第一集| 久久久国产欧美日韩av| 亚洲视频免费观看视频| 欧美精品人与动牲交sv欧美| 免费久久久久久久精品成人欧美视频| 亚洲四区av| 高清在线视频一区二区三区| 国产在线免费精品| 日本wwww免费看| 一级毛片电影观看| 中文乱码字字幕精品一区二区三区| 亚洲情色 制服丝袜| 一级毛片电影观看| 国产成人av激情在线播放| 男女边吃奶边做爰视频| 日本猛色少妇xxxxx猛交久久| 亚洲av福利一区| 国产男人的电影天堂91| 大片电影免费在线观看免费| 成年美女黄网站色视频大全免费| 欧美日韩一区二区视频在线观看视频在线| 国产精品av久久久久免费| 中文字幕另类日韩欧美亚洲嫩草| 免费女性裸体啪啪无遮挡网站| 久久99一区二区三区| 99国产综合亚洲精品| 亚洲av中文av极速乱| 中文精品一卡2卡3卡4更新| 一级毛片我不卡| 亚洲国产欧美日韩在线播放| 国产亚洲av片在线观看秒播厂| 亚洲三区欧美一区| av线在线观看网站| 性高湖久久久久久久久免费观看| 观看av在线不卡| 色婷婷av一区二区三区视频| 日韩一卡2卡3卡4卡2021年| 亚洲欧美成人综合另类久久久| e午夜精品久久久久久久| 成人国产麻豆网| 欧美少妇被猛烈插入视频| www日本在线高清视频| 男女午夜视频在线观看| 在线天堂中文资源库| 波多野结衣一区麻豆| 国产精品女同一区二区软件| 纯流量卡能插随身wifi吗| 国产在线视频一区二区| 免费在线观看黄色视频的| 综合色丁香网| 欧美成人精品欧美一级黄| 欧美人与善性xxx| 亚洲精品,欧美精品| 久久影院123| 丰满迷人的少妇在线观看| 日韩不卡一区二区三区视频在线| 成年动漫av网址| 另类精品久久| 国产成人免费无遮挡视频| 国精品久久久久久国模美| 老司机影院成人| 国产乱来视频区| 新久久久久国产一级毛片| 成年动漫av网址| 亚洲精华国产精华液的使用体验| 欧美黄色片欧美黄色片| 大香蕉久久网| 亚洲欧美一区二区三区黑人| 国产免费福利视频在线观看| 高清黄色对白视频在线免费看| 超色免费av| 午夜老司机福利片| 中国三级夫妇交换| 久久ye,这里只有精品| xxxhd国产人妻xxx| 男人爽女人下面视频在线观看| 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o | 国产片内射在线| 欧美日韩av久久| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 青春草亚洲视频在线观看| 国产日韩欧美视频二区| 久久亚洲国产成人精品v| 在线观看免费日韩欧美大片| 国产成人av激情在线播放| 婷婷色av中文字幕| 亚洲国产日韩一区二区| 亚洲一级一片aⅴ在线观看| av不卡在线播放| 久久狼人影院| 国产精品一国产av| 一本久久精品| 免费看不卡的av| 汤姆久久久久久久影院中文字幕| 午夜福利视频精品| 无遮挡黄片免费观看| 51午夜福利影视在线观看| xxx大片免费视频| 欧美日韩av久久| 伊人久久大香线蕉亚洲五| 亚洲成人免费av在线播放| 亚洲精品久久成人aⅴ小说| 97在线人人人人妻| 欧美人与善性xxx| 在线看a的网站| 日韩制服骚丝袜av| 国产精品欧美亚洲77777| 我的亚洲天堂| 97精品久久久久久久久久精品| 亚洲精品国产区一区二| 男人舔女人的私密视频| 亚洲成人av在线免费| 少妇的丰满在线观看| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 久久99精品国语久久久| 精品少妇内射三级| 女人高潮潮喷娇喘18禁视频| a级毛片在线看网站| 亚洲av电影在线观看一区二区三区| 婷婷成人精品国产| 老司机影院毛片| 日韩大片免费观看网站| 国产乱来视频区| 老汉色av国产亚洲站长工具| 成人国产av品久久久| 欧美变态另类bdsm刘玥| 欧美日韩福利视频一区二区| 成年人午夜在线观看视频| 国产精品久久久人人做人人爽| 久久精品亚洲av国产电影网| 女人爽到高潮嗷嗷叫在线视频| 欧美在线黄色| 日本色播在线视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲av日韩精品久久久久久密 | 日本wwww免费看| 超碰成人久久| av视频免费观看在线观看| 中文欧美无线码| 热re99久久国产66热| 国产成人系列免费观看| 国产极品天堂在线| 欧美少妇被猛烈插入视频| 精品卡一卡二卡四卡免费| 欧美精品亚洲一区二区| 国产精品99久久99久久久不卡 | 人体艺术视频欧美日本| 亚洲激情五月婷婷啪啪| 中文欧美无线码| 国产麻豆69| 爱豆传媒免费全集在线观看| 男女国产视频网站| av在线播放精品| 国产精品久久久久久精品电影小说| 亚洲精品中文字幕在线视频| 欧美av亚洲av综合av国产av | 久久久久精品久久久久真实原创| 国产麻豆69| 欧美另类一区| 日韩 亚洲 欧美在线| 波多野结衣av一区二区av| 19禁男女啪啪无遮挡网站| 又大又爽又粗| 久久久久精品久久久久真实原创| 性少妇av在线| 青青草视频在线视频观看| 三上悠亚av全集在线观看| 亚洲,欧美,日韩| 国产精品国产三级专区第一集| 伦理电影免费视频| 黄网站色视频无遮挡免费观看| 妹子高潮喷水视频| 成年av动漫网址| 亚洲久久久国产精品| 欧美精品一区二区大全| 国产一区二区 视频在线| 黄色怎么调成土黄色| 伊人久久大香线蕉亚洲五| 亚洲成色77777| 久久免费观看电影| 国产成人欧美在线观看 | 国产精品二区激情视频| 成年美女黄网站色视频大全免费| 国产成人欧美在线观看 | 汤姆久久久久久久影院中文字幕| 国产精品秋霞免费鲁丝片| 人妻人人澡人人爽人人| 国产xxxxx性猛交| 国产精品久久久久久人妻精品电影 | av.在线天堂| 午夜老司机福利片| 久久ye,这里只有精品| 国产精品熟女久久久久浪| 午夜影院在线不卡| 51午夜福利影视在线观看| 国产精品成人在线| 人人妻人人添人人爽欧美一区卜| 热re99久久精品国产66热6| a级片在线免费高清观看视频| 99国产综合亚洲精品| 日本一区二区免费在线视频| 综合色丁香网| 午夜日韩欧美国产| 最近的中文字幕免费完整| 十八禁高潮呻吟视频| 少妇被粗大的猛进出69影院| 亚洲国产日韩一区二区| 国产一区二区三区av在线| 亚洲欧洲国产日韩| 久久天躁狠狠躁夜夜2o2o | 国产福利在线免费观看视频| 哪个播放器可以免费观看大片| 男女高潮啪啪啪动态图| av国产精品久久久久影院| a 毛片基地| 国产免费又黄又爽又色| 黑丝袜美女国产一区| 日本wwww免费看| 91精品伊人久久大香线蕉| 97在线人人人人妻| 女性生殖器流出的白浆| 亚洲美女视频黄频| 伦理电影免费视频| 欧美人与性动交α欧美软件| 97在线人人人人妻| 亚洲,欧美,日韩| 母亲3免费完整高清在线观看| 久久这里只有精品19| 国产高清国产精品国产三级| 老司机亚洲免费影院| 日韩电影二区| 亚洲成av片中文字幕在线观看| 国产有黄有色有爽视频| 欧美在线一区亚洲| 99久久精品国产亚洲精品| 男女高潮啪啪啪动态图| 亚洲,一卡二卡三卡| 丝袜在线中文字幕| 亚洲视频免费观看视频| 亚洲欧美精品自产自拍| 国产精品偷伦视频观看了| 天堂8中文在线网| 久久韩国三级中文字幕| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久久久久久大奶| 免费在线观看完整版高清| 日韩熟女老妇一区二区性免费视频| 免费观看av网站的网址| 亚洲欧洲国产日韩| 国产人伦9x9x在线观看| 卡戴珊不雅视频在线播放| 国产老妇伦熟女老妇高清| 免费黄色在线免费观看| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| 1024香蕉在线观看| 国产一区有黄有色的免费视频| 国产一级毛片在线| a级毛片黄视频| 美女视频免费永久观看网站| 国产又色又爽无遮挡免| 肉色欧美久久久久久久蜜桃| 青草久久国产| 亚洲国产中文字幕在线视频| 一级毛片我不卡| 又黄又粗又硬又大视频| 国产精品一区二区精品视频观看| 伊人久久国产一区二区| 女性生殖器流出的白浆| 午夜福利免费观看在线| 久久精品国产亚洲av高清一级| 91国产中文字幕| 可以免费在线观看a视频的电影网站 | 免费黄色在线免费观看| 如何舔出高潮| 久久人人爽av亚洲精品天堂| 天天躁日日躁夜夜躁夜夜| 国产老妇伦熟女老妇高清| 观看美女的网站| 国产高清国产精品国产三级| 两性夫妻黄色片| 日韩av不卡免费在线播放| 久久99一区二区三区| 99香蕉大伊视频| 各种免费的搞黄视频| 久久久久精品国产欧美久久久 | 极品人妻少妇av视频| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 国产精品女同一区二区软件| 秋霞伦理黄片| 亚洲精品,欧美精品| 欧美日韩视频精品一区| 人人澡人人妻人| 丝袜喷水一区| 亚洲欧洲国产日韩| 久久久久久久国产电影| 国产精品偷伦视频观看了| 久久久久网色| 天堂中文最新版在线下载| 一个人免费看片子| 亚洲国产av新网站| 国产精品蜜桃在线观看| 亚洲精品,欧美精品| 国产精品久久久久久精品电影小说| 免费高清在线观看日韩| 国产成人免费无遮挡视频| av线在线观看网站| 午夜日本视频在线| 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 我要看黄色一级片免费的| 美女高潮到喷水免费观看| 国产精品一区二区在线不卡| 久久婷婷青草| 一级片'在线观看视频| 午夜精品国产一区二区电影| 亚洲欧美精品自产自拍| 老司机深夜福利视频在线观看 | 熟妇人妻不卡中文字幕| 久久精品亚洲av国产电影网| 建设人人有责人人尽责人人享有的| 久久99一区二区三区| av电影中文网址| 女人久久www免费人成看片| 日韩av免费高清视频| 亚洲国产成人一精品久久久| 超色免费av| a 毛片基地| 欧美日本中文国产一区发布| 国产成人av激情在线播放| 亚洲精品久久成人aⅴ小说| 亚洲一级一片aⅴ在线观看| 午夜精品国产一区二区电影| 精品国产乱码久久久久久小说| 99热全是精品| 日韩av在线免费看完整版不卡| 欧美 亚洲 国产 日韩一| 看免费成人av毛片| 黑人欧美特级aaaaaa片| 久久精品aⅴ一区二区三区四区| 国产成人欧美在线观看 | 中文字幕人妻丝袜一区二区 | 国产成人午夜福利电影在线观看| 大片电影免费在线观看免费| 在线观看人妻少妇| 亚洲av男天堂| 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 99热全是精品| 青草久久国产| 亚洲av综合色区一区| 日韩大码丰满熟妇| 亚洲欧美激情在线| 18在线观看网站| 最近的中文字幕免费完整| 成人毛片60女人毛片免费| 中文字幕精品免费在线观看视频| 免费观看人在逋| netflix在线观看网站| 国产一区二区激情短视频 | √禁漫天堂资源中文www| 波多野结衣av一区二区av| 日本一区二区免费在线视频| 久久久久久人妻| 日本色播在线视频| 999久久久国产精品视频| 欧美精品一区二区免费开放| 妹子高潮喷水视频| 免费人妻精品一区二区三区视频| 性色av一级| 久久99精品国语久久久| 欧美成人午夜精品| 超色免费av| 国产精品国产三级国产专区5o| 精品福利永久在线观看| 丝袜美足系列| videosex国产| netflix在线观看网站| 国产精品.久久久| 久久青草综合色| 亚洲男人天堂网一区| 精品一区在线观看国产| 国产午夜精品一二区理论片| 亚洲欧洲精品一区二区精品久久久 | 最近中文字幕2019免费版| 亚洲精品av麻豆狂野| 久久鲁丝午夜福利片| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 免费观看性生交大片5| 啦啦啦 在线观看视频| 国产成人啪精品午夜网站| 中文字幕高清在线视频| 夜夜骑夜夜射夜夜干| 两个人免费观看高清视频| 色综合欧美亚洲国产小说| 国产精品久久久av美女十八| 中文精品一卡2卡3卡4更新| av在线老鸭窝| 色吧在线观看| 久久狼人影院| 久久ye,这里只有精品| 国产不卡av网站在线观看| 久久ye,这里只有精品| 亚洲成人国产一区在线观看 | 亚洲av综合色区一区| 男人操女人黄网站| 欧美日韩亚洲高清精品| 日本一区二区免费在线视频| 精品亚洲成a人片在线观看| 一级毛片 在线播放| 午夜福利视频在线观看免费| 精品午夜福利在线看| 久久精品熟女亚洲av麻豆精品| www.精华液| 国产午夜精品一二区理论片| 综合色丁香网| 波野结衣二区三区在线| 亚洲自偷自拍图片 自拍| 制服丝袜香蕉在线| 少妇 在线观看| 免费高清在线观看视频在线观看| 黄色 视频免费看| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲av高清不卡| 日韩大码丰满熟妇| 女的被弄到高潮叫床怎么办| 日本wwww免费看| 高清在线视频一区二区三区| 一级片'在线观看视频| 考比视频在线观看| 大片电影免费在线观看免费| 熟女av电影| 国产高清国产精品国产三级| 久久鲁丝午夜福利片| 精品卡一卡二卡四卡免费| 久久久国产精品麻豆| 9191精品国产免费久久| 亚洲欧美精品自产自拍| 一级黄片播放器| 电影成人av| 国产亚洲一区二区精品| 亚洲av成人精品一二三区| av在线app专区| 精品久久蜜臀av无| 欧美变态另类bdsm刘玥| 精品一区二区三区av网在线观看 | 国产视频首页在线观看| 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 女人久久www免费人成看片| av电影中文网址| 欧美精品一区二区大全| 另类精品久久| 日韩不卡一区二区三区视频在线| 天天影视国产精品| 亚洲欧洲精品一区二区精品久久久 | 男女免费视频国产| 五月天丁香电影| 久久天躁狠狠躁夜夜2o2o | 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频| 巨乳人妻的诱惑在线观看| 亚洲综合色网址| 精品人妻在线不人妻| 欧美久久黑人一区二区| 久久国产精品大桥未久av| 亚洲一区中文字幕在线| 这个男人来自地球电影免费观看 | 操出白浆在线播放| 少妇精品久久久久久久| 国产亚洲午夜精品一区二区久久| 99re6热这里在线精品视频| 中文字幕高清在线视频| 亚洲精品aⅴ在线观看| 一级a爱视频在线免费观看| 婷婷色麻豆天堂久久| 在线观看www视频免费| 少妇人妻 视频| 亚洲国产看品久久| 亚洲情色 制服丝袜| 看免费成人av毛片| 在现免费观看毛片| 18在线观看网站| 成年av动漫网址| 国产成人欧美在线观看 | 又大又爽又粗| 亚洲专区中文字幕在线 | a级片在线免费高清观看视频| 中文字幕av电影在线播放| 欧美激情高清一区二区三区 | 亚洲熟女精品中文字幕| 女人高潮潮喷娇喘18禁视频| 免费av中文字幕在线| 九草在线视频观看| 国产老妇伦熟女老妇高清| 91aial.com中文字幕在线观看| 国产深夜福利视频在线观看| 国产精品三级大全| 五月开心婷婷网| 国产精品熟女久久久久浪| 丝袜人妻中文字幕| 伊人久久国产一区二区| 国产片内射在线| 亚洲中文av在线| 色婷婷久久久亚洲欧美| 哪个播放器可以免费观看大片| 18禁观看日本| 精品久久蜜臀av无| 99国产精品免费福利视频| 好男人视频免费观看在线| 日韩一本色道免费dvd| 18禁观看日本| 国产精品三级大全| 美女高潮到喷水免费观看| av女优亚洲男人天堂| 99香蕉大伊视频| 男人添女人高潮全过程视频| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| 婷婷成人精品国产| 日韩中文字幕视频在线看片| 久久精品国产亚洲av涩爱| 免费在线观看视频国产中文字幕亚洲 | 国产精品国产av在线观看| 看免费av毛片| 欧美在线一区亚洲| 国产精品蜜桃在线观看| 日韩av免费高清视频| 欧美激情极品国产一区二区三区| 久久久久网色| 国产欧美日韩综合在线一区二区| 久久精品熟女亚洲av麻豆精品| 国产av国产精品国产| 欧美在线一区亚洲| 熟妇人妻不卡中文字幕| av一本久久久久| 亚洲成色77777| 亚洲欧美精品综合一区二区三区| 午夜老司机福利片| 亚洲视频免费观看视频| 美国免费a级毛片| 超色免费av| 波多野结衣av一区二区av| 久久人人爽av亚洲精品天堂| 亚洲欧美精品自产自拍| 国产精品蜜桃在线观看| 亚洲欧洲日产国产| 久久精品人人爽人人爽视色| 最近的中文字幕免费完整| 日本vs欧美在线观看视频| 亚洲第一青青草原| 美国免费a级毛片| 日本av免费视频播放| 欧美在线黄色| 丁香六月欧美| 日韩人妻精品一区2区三区| 成年av动漫网址| 国产片内射在线| 国产熟女欧美一区二区| 国产亚洲一区二区精品| av又黄又爽大尺度在线免费看| 亚洲久久久国产精品| 久久精品亚洲熟妇少妇任你| 欧美日韩一级在线毛片| 成年动漫av网址| 久久韩国三级中文字幕| 一级,二级,三级黄色视频| 97在线人人人人妻| 91老司机精品| 欧美在线一区亚洲| 亚洲图色成人| 国产高清国产精品国产三级| 国产伦人伦偷精品视频| 久久久久久免费高清国产稀缺| 各种免费的搞黄视频| 日韩,欧美,国产一区二区三区| 中文乱码字字幕精品一区二区三区| 久久久久精品久久久久真实原创| 国产午夜精品一二区理论片| 一本久久精品| 日本色播在线视频| 人妻 亚洲 视频| 午夜日韩欧美国产| 又大又爽又粗| 亚洲第一av免费看| 91精品伊人久久大香线蕉| 免费高清在线观看视频在线观看| 在线观看一区二区三区激情| 免费观看性生交大片5| 日韩av不卡免费在线播放| 国产亚洲av片在线观看秒播厂| 久久综合国产亚洲精品| 人成视频在线观看免费观看| 九九爱精品视频在线观看| 国产精品一区二区在线不卡| 国产成人精品久久久久久| 九九爱精品视频在线观看| 国产一区二区 视频在线| 久久人妻熟女aⅴ| 男人舔女人的私密视频| 久久ye,这里只有精品| 亚洲七黄色美女视频| 久久久久久人妻| 欧美久久黑人一区二区| 欧美在线一区亚洲| 国产日韩欧美亚洲二区| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 精品亚洲成国产av| 精品少妇久久久久久888优播|